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Neuro-Fuzzy Ensemble Approach for Microarray
Cancer Gene Expression Data Analysis
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Abstract— A Neuro-Fuzzy Ensemble model (NFE) is proposed
in this paper for analysing the gene expression data from
microarray experiments. The proposed approach was tested on
three benchmark cancer gene expression data sets. Experimental
results show that our NFE model can be used as an efficient
computational tool for microarray data analysis. In additi on,
compared to some current most widely used approaches, Neuro-
Fuzzy(NF)-based models not only supply good classification
results, but their behavior can also be explained and interpreted
in human understandable terms, which provides the researchers
with a better understanding of the data.

I. I NTRODUCTION

Many methods have been designed and used so far for
discovering the mystery behind the DNA data. One of the most
revolutionary techniques is the high-density DNA microarray
chips, or commonly called DNA chips, or gene chips. This
technique can measure the activities of thousands of genes
simultaneously under different experimental environments and
conditions. It allows us to have a “global” view of the cell [1].

The gene expression profiles from particular microarray
experiments have been recently used for cancer classification
[2] [3] [4]. This approach promises to give a better therapeutic
measurement to cancer patients by diagnosing cancer types
with improved accuracy [4]. However, the amount of data
produced by this new technology is usually too large to
be manually analysable. Hence, the need to automatically
analyse the microarray data offers an opportunity for Machine
Learning (ML) methods to have a significant impact on cancer
research.

Unsupervised methods, such as Clustering [5], and Self-
Organizing Maps (SOMs) [6] were initially used to analyse
the relationships among different genes. Recently, supervised
methods, such as Support Vector Machines (SVMs) [7], Multi-
Layer Perceptrons (MLP or NNs) [8] [9], K Nearest Neighbor
(KNN) method [10] [11], and Decision Trees (DTs) [9] have
been successfully applied to classify different tissues. But
most of the current methods in microarray analysis can not
completely bring out the hidden information in the data.
Meanwhile, they are generally lacking robustness with respect
to noisy and missing data.

Different from black-box methods, fuzzy rule-based models
can not only provide good classification results, but also easily
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be explained and interpreted by human understandable fuzzy
rules. This provides the researchers an insight into the models.
Meanwhile, fuzzy systems adapt numerical data (input/output
pairs) into human linguistic terms, which offer very good
capabilities to deal with noisy and missing data.

However, how to define the rules and membership functions
requires a lot of prior knowledge. This can be usually obtained
from human expert, especially in the case of large amount of
gene expression data, which is not an easy task. Hybrid Neuro-
Fuzzy (NF) models, which combine the learning ability of neu-
ral systems and the interpreting ability of fuzzy systems, can
automatically generate and adjust the membership functions
and linguistic rules directly from data.

Unfortunately, NF methods have suffered some well-known
limitations in dealing with high dimensional data. Although
some fuzzy-rule-based applications for microarray analysis
have already been presented [12] [13], all these reported
systems are small models and only perform well on simple
data sets. Because large rule-based models imply huge com-
putational cost, they sometimes are unacceptable in practice.
In order to improve the inherent weakness of individual NF
models, a Neuro-Fuzzy Ensemble (NFE) model is developed
in this paper. The proposed NFE model is tested on three
benchmark microarray cancer data sets, including leukemia
cancer data set, colon cancer data set, and lymphoma cancer
data set.

Compared to some other benchmark problems in machine
learning, microarray data sets may be problematic. The num-
ber of features (genes), usually in the range of 2,000-30,000,
is much larger than the number of samples (usually in the
range of 40-200). But not all of these genes are needed for
classification. Most genes do not influence the performance
of the classification task. Taking such genes into account
during classification increases the dimension of the classifica-
tion problem, poses computational difficulties and introduces
unnecessary noise in the process. A major goal for diagnostic
research is to develop diagnostic procedures based on inex-
pensive microarrays that have enough probes to detect certain
diseases. This requires the selection of some genes which
are highly related to the particular classification problem, i.e.,
the informative genes. This process is called gene selection,
or feature selection in machine learning in general. A most
widely used gene selection method, Information Gain (IG), is
adopted for the purpose of this work.

Because a small number of available data usually can not
sufficiently represent the whole search space, the traditional
training and testing strategies do not perform well. As sug-
gested in previous work [8] [14], we will be using Leave One
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Out Cross Validation strategy (LOOCV) to evaluate models,
as described in Section IV-C.

The rest of this paper is organized as follows: how to clas-
sify different types of cancer by using microarray technology
is described in Sections II and III; why single NF approaches
do not perform well for this particular application is explained
in Section IV-A; a NFE model is introduced in Section IV-
B; experimental results and analytical work are presented in
Section V; some conclusions are drawn in Section VI.

II. M ICROARRAY TECHNOLOGY

Applying microarray experiments to study biological prob-
lems was firstly introduced by a research team at Stanford
University in 1995. It is currently one of the best tools for
biomedical research. Microarray techniques allow simultane-
ous measuring of the expression of thousands of genes under
different experimental environments and conditions. It enables
us to analyse the gene information very rapidly by managing
them at one time.

In the experiments, different DNA samples are fixed to a
glass microscope slide, each at a predefined position in the
array, known as “gene chip”. mRNAs isolated from different
tissue samples, or under different conditions, are labeledwith
two different fluorochromes (generally the green Cy3 and the
red Cy5), then hybridized with the arrayed DNA probes on
the slide. Using a fluorescent microscope and image analysis,
the gene expression data (denoted asG) are measured by
computing the log ratio between the two intensities of each
dye.

G = log2
Int(Cy5)

Int(Cy3)
(1)

whereInt(Cy5) is the intensity of red color, andInt(Cy3)
is the intensity of green color.

Generally, microarray experiments can be divided into two
types. One focuses on time series data which contains the gene
expression data of various genes during the time span of an
experiment. Another type of microarray experiment consists
of gene expression data of various genes taken from different
tissue samples or under different experimental conditions.
Different conditions can be used to answer such questions as
which genes are changed under certain conditions. Meanwhile,
different tissues under the same experiment conditions are
helpful in the classification of different types of tissues.The
data from a series ofn such experiments can be represented
as a m × n gene expression matrix, see Table I. Each
row represents a sample that consists of m genes from one
experiment. Each sample belongs to a certain class (normal
or tumor). In each data set, the researchers repeated the same
experiment on n different volunteers, each line in this dataset
representing a volunteer.

From Table I, we can see that classifying microarray gene
expression data can be looked as a high-dimensional-low-
sample problem. Common approaches are to select a subset
of the most useful features, then classify the different samples
as cancer or non-cancer, according to the selected features, by

TABLE I

A TYPICAL GENE EXPRESSION MATRIX(m × n), WHERE ROWS

REPRESENT SAMPLES OBTAINED UNDER DIFFERENT EXPERIMENTAL

CONDITIONS AND COLUMNS REPRESENT GENES

Gene 1 Gene 2 ... Gene m-1 Gene m Class
Sample 1 165.1 276.4 ... 636.6 784.9 1
Sample 2 653.6 1735.1 ... 524.1 104.5 -1

... ... ... ... ... ... ...
Sample n-1 675.0 45.1 ... 841.9 782.8 -1

Sample n 78.2 893.8 ... 467.9 330.1 1

Fig. 1. Cancer Classification System.

using certain classifiers. This can be summarized as follows.
Let the given gene expression data be denoted as

D̃ = {(g1, t1, ) , ..., (gn, tn, )} , (2)

where an input vectorgi = (g1, ..., gm) denotes a gene
expression pattern,m is the number of genes in this pattern,ti
represents which class the pattern belongs to (see Section III),
andn denotes the number of patterns in the data set. Now, let
us choosẽm genes out ofm according to certain algorithms.
Then, select̃n patterns withm̃ genes to train the classifier, and
leaven−ñ patterns (withm̃ genes) out to test the performance
of trained model. Figure 1 gives a typical cancer classification
system.

III. G ENE SELECTION

Recent researches have shown that a small number of genes
is sufficient for accurate diagnosis of most cancers, even
though the number of genes vary greatly between different
diseases [15]. Indeed, a large set of gene expression features
will not only significantly bring higher computational cost
and slow down the learning process, but also decrease the
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classification accuracy due to the phenomenon known as curse
of dimensionality, in which the risk of over-fitting increases as
the number of selected genes grows [15]. More importantly,
by using a small subset of genes, we can not only get a better
diagnostic accuracy, but also get an opportunity to further
analyse the nature of the disease and the genetic mechanisms
responsible for it. Therefore, the microarray cancer classifica-
tion problem can be classified as a combinational optimization
problem with two main objectives: minimizing the number of
selected genes and maximizing the classification accuracy.

Filter method and wrapper method are two basic feature
selection approaches in machine learning. Filtering procedures
are widely used in the area of microarray analysis. A common
way is to rank all features according to the values of a
univariate scoring metric, and the top ranked features are
selected for classification. The wrapper approach, which is
popular in many machine learning applications, is not largely
used in DNA microarray tasks. Therefore, in our work, we
will adopt the Information Gain, the most widely used filtering
gene selection method.

A. Information Gain

Given entropyE as a measure of impurity in a set of
training samples, it is possible to define a measure of the
effectiveness of a feature/gene in classifying the training data.
This measure is simply the expected reduction in entropy
caused by partitioning the data according to this feature,
so-called Information Gain [16]. Assuming a given set of
microarray gene expression dataM , the information gain of
a genei is defined as:

IG(M, i) = E(M) −
∑

v∈V (i)

Mv

M
E(Mv), (3)

whereV (i) is the set of all possible values of featurei, Mv is
the subset ofM for which featureI has the valuev, E(M)
is the entropy of the entire set, andE(Mv) is the entropy of
the subsetMv. The entropy functionE is defined as:

E =
c∑

j=1

−
|Cj |

|
∑

C|
log2

|Cj |

|
∑

C|
(4)

where|Cj | is the number of samples in classCj . The entropy
is supposed to give the information required in bits, and
is traditionally used to deal with boolean valued features
(hot/cold, true/false, etc.). Fortunately, this method can be
easily extended to handle the data with continuous valued
features.

IV. N EURO-FUZZY ENSEMBLE

Here we construct a Neuro-Fuzzy Ensemble model by
combining several individual NF models to learn the same
data using different subsets of genes.

TABLE II

THE RELATIONSHIP AMONG THE NUMBER OF INPUT FEATURES, THE

NUMBER OF FUZZY RULES, AND THE NUMBER OF PARAMETERS NEEDED

TO BE UPDATED IN EACH EPOCH. NOG DENOTES THE NUMBER OF

SELECTED GENES.

NoG Number of Rules Number of Parameters
2 9 45
3 27 108
4 81 360
5 243 774
6 729 2484
7 2187 7008
... ... ...

A. Individual Neuro-Fuzzy Models

We use Adaptive-Network-based Fuzzy Inference System
(ANFIS) to build the individual classifiers in the ensemble.
ANFIS is a Sugeno-like fuzzy system in a five-layered net-
work structure. Back-propagation strategy is used to trainthe
membership functions, while the least mean squares algorithm
(LSE) determines the coefficients of the linear combinations
in the consequent part of the rules. It has been proven that
this hybrid algorithm is much more efficient than a standard
gradient method in training the ANFIS [17].

The same as other fuzzy-rule-based systems, ANFIS can
not easily handle high dimensional problems, as this leads to
a large number of input nodes, rules, and, hence, consequent
parameters. In an ANFIS model, if the number of inputs is
N , the number of membership functions for each input isK,
then the number of the fuzzy rulesR is:

R = KN (5)

The number of the adaptive parametersP is then:

P = KN+1 + KN × N (6)

whereKN+1 refers to the non-linear adaptive parameters, and
KN ×N to the linear adaptive parameters. For example, when
the number of membership functions for each input is 3, the
relationship between the inputs and rules is shown in Table II.
From Eqs. 5, 6 and Table II, we can see that the computational
cost increases very quickly while the number of inputs grows.
We simulated the models on an IBM R51 laptop (CPU: PIV-
1.5G, Memory: 1G). The computer is out of memory when
the number of inputs is larger than 6.

But, the collection of well-distributed, sufficient, and accu-
rately measured input data is the basic requirement to obtain
an accurate model [18]. When data sets require a relatively
large number of genes to represent their properties, we need
to design some strategies to enable the model to accept more
inputs with less computational cost. Recommended approaches
include: evaluate and select rules, delete antecedents, delete
fuzzy sets, etc.

B. Ensemble Learning

Besides building individual ANFIS models as described
above, we designed a Neuro-Fuzzy Ensemble (NFE), which
consists of several different single ANFIS models, to deal with
this problem. Each individual model learns different subsets
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Fig. 2. The main structure of the NFE:n individual ANFIS classifiers in
the ensemble, each havingR inputs, so that the whole model can studyR∗n

genes. The output of the ensemble is taken by simple majorityvoting (MV).

of genes, so that the overal model can work with a relatively
large number of genes. Meanwhile, extra good performance
can be obtained by the nature of the ensemble learning itself.
We set the maximum number of inputs for an individual NF
network in the NFE to be 4, due to the considerations on
computational costs implied, as discussed above. Each input
is randomly selected from the top4× n ranked genes, where
n is the number of singe NF models in the ensemble. The
output strategy of our NFE model is Majority Voting, where
the output of the majority of individual NF networks will
be considered to be the output of the ensemble. The main
structure of our NFE is shown in Figure 2.

The advantages of our NFE model can be summarized as
follows:

• It allows the model to learn more features when the
optimal subset of genes is relatively large.

• Normally, several classifiers imply higher computational
costs than building a single classifier only. However, our
NFE model seems to require much less computational
cost than building a single large NF model, when the nec-
essary number of inputs is relatively large. A comparison
of computational costs between individual NF models and
the NFE is shown in Table III.

• NFE can significantly improve the generalization abil-
ity (classification performance) compared to single NF
models, and they can also help address three classic
machine learning problems: lack of data, local optima,
and representational limitations. Lack of data is one of
the major problems in microarray analysis.

• NFE can relieve the trial-and-error process by tuning
architectures.

Though, we have to point out that the ensemble structure
increases the complexity of the system, which means the
model will loose the transparency of the decision-making

TABLE III

COMPARISON OF COMPUTATIONAL COST BETWEEN INDIVIDUALNF AND

NFE MODELS. WE COMPARE THE NUMBER OF RULES AND PARAMETERS

OF INDIVIDUAL NF AND NFE MODELS. EACH INPUT OF THENF MODELS

HAS 3 MEMBERSHIP FUNCTIONS. IN THIS COMPARISON, THE NFE

CONTAINS TWO INDIVIDUAL NF MODELS. NOG DENOTES THE NUMBER

OF SELECTED GENES, NOR DENOTES THE NUMBER OF RULES, NOP

DENOTES THE NUMBER OF PARAMETERS NEEDED TO BE UPDATED IN

EACH EPOCH.

NF NFE
NoG NoR NoP NoR NoP

2 9 45 N/A N/A
3 27 108 N/A N/A
4 81 360 N/A N/A
6 729 2484 54 216
8 6.6 × 104 7.9 × 105 162 720
12 1.7 × 107 2.7 × 108 243 1080
16 4.3 × 109 8.6 × 1010 324 1440
20 1.1 × 1012 2.6 × 1013 405 1800
... ... ... ... ...

process [19].

C. Training and Testing Strategy

In order to use as many samples as possible, we adopt
leave-one-out cross validation (LOOCV or jackknife strategy)
to train and evaluate our models. We divide all samples, at
random, intoK distinct subsets, whereK equals to the number
of samples. We then train the model usingK − 1 subsets
(samples in our case), and test the training performance on
the Kth sample. The LOOCV accuracy is obtained by:

LOOCV accuracy =
Acs

K
(7)

where Acs is the number of correctly classified samples in
K experiments. LOOCV accuracy is strongly suggested to be
used as an evaluation of microarray data classification by many
other researchers. In order to compare with their work, this
strategy is also adopted in our study.

V. EXPERIMENTAL RESULTS

In this study, the proposed models are tested on three data
sets: leukemia cancer data set, colon cancer data set, and
lymphoma cancer data set. We adopt three important criteria
for empirical evaluation of the performance of our models:

• Number of selected genes,
• Predictive accuracy on selected genes,
• Extracted knowledge from the trained models.

Before the experiments, we linearly scale all data in the [0,
1] interval. If y is a gene expression value of a geneg, the
scaled value will be

g(a′) =
y − min(g)

max(g) − min(g)
(8)

where min(g) and max(g) is the minimum and maximum
values of gene expressions in the database.
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A. Microarray Cancer Data Sets

1) Colon Cancer Data Set:The data set we used here
was firstly reported in [20]. The “cancer” biopsies were
collected from tumors, and the “normal” biopsies were col-
lected from healthy parts of the colons of the same patients
[20]. This data set contains 62 samples. There are 40 tumor
samples, and 22 normal samples. From about 6000 genes
represented in each sample in the original data set, only 2000
genes were selected. The data is available at http://sdmc.i2r.a-
star.edu.sg/rp/ColonTumor/ColonTumor.html.

2) Leukemia Cancer Data Set:The data set we used
here was reported in [3]. The gene expression measurements
were taken from 63 bone marrow samples and 9 peripheral
blood samples [3]. This data set contains 72 samples. All
samples can be divided into two subtypes: 25 samples of
acute myeloid leukemia (AML) and 47 samples of acute
lymphoblastic leukemia (ALL). The expression levels of 7129
genes were reported. The data is available at http://sdmc.i2r.a-
star.edu.sg/rp/Leukemia/ALLAML.html.

3) Lymphoma Cancer Data Set:The data set we used here
was reported in [21]. This data set contains 47 samples. B
cell diffuse large cell lymphoma (B-DLCL) data set includes
two subtypes: germinal center B cell-like DLCL and active
B cell-like DLCL. The expression levels of 4026 genes were
reported. 24 samples are germinal center B-like DLCL and 23
samples are active B cell-like DLCL. The data is available at
http://www.genome.wi.mit.edu/MPR.

B. Experiment Setup

Each variable is described by three membership functions
for both NF and NFE models, and the initial shape of the
membership function is a bell-shaped function, see Figure
3 (Top). There are5 individual NF networks in our NFE
model, and each NF model has4 inputs. The output of the
ensemble is obtained by using Majority Voting (MV). The top
20 ranked genes obtained by the IG method were selected for
classification when using the NFE model. The top 4 ranked
genes are selected for classification when using the single NF
models. The top 20 Leukemia genes with the highest scores
were listed in Table IV.

C. Results and Comparison

The performance of our NFE model was compared with
that of single NF models and some other reported approaches,
by using the same training and testing strategies, see TableV.
Our models obtained better results on Colon cancer data set,
and similar results on Leukemia and Lymphoma data set, but
both NF and NFE models use less number of genes comparing
with other approaches. The performance of the NFE model is
much better than that of single NF models on the three cancer
data sets, see Table V.

Furthermore, different from black-box approaches, NF-
based models can extract some useful knowledge from data,
for example, adjusted membership function (Figure 3), and
trained fuzzy rules (Table VI). All this knowledge can be
presented in human understandable form. This seems very

TABLE IV

TOP 20 RANKED LEUKEMIA GENES SELECTED BYIG2

Rank ID Gene name Description
1 4050 X03934 GB DEF = T-cell antigen receptor gene

T3-delta
2 6510 U23852 GB DEF = T-lymphocyte specific protein

tyrosine kinase p56lck (lck) abberant mRNA
3 4342 X59871 TCF7 Transcription factor 7 (T-cell specific)
4 4055 X04145 CD3G CD3G antigen, gamma polypeptide

(TiT3 complex)
5 5542 M37271 T-CELL ANTIGEN CD7 PRECURSOR
6 5543 M37271 T-CELL ANTIGEN CD7 PRECURSOR
7 5466 X58072 GATA3 GATA-binding protein 3
8 6606 X00437 TCRB T-cell receptor, beta cluster
9 1694 M12886 TCRB T-cell receptor, beta cluster
10 6696 X76223 GB DEF = MAL gene exon 4
11 1893 M28826 CD1B CD1b antigen (thymocyte antigen)
12 2833 U16954 (AF1q) mRNA
13 4357 X60992 T-CELL DIFFERENTIATION ANTIGEN

CD6 PRECURSOR
14 4847 X95735 Zyxin
15 1106 J04132 CD3Z CD3Z antigen, zeta polypeptide

(TiT3 complex)
16 3332 U50743 Na,K-ATPase gamma subunit mRNA
17 6236 U83239 CC chemokine STCP-1 mRNA
18 4484 X69398 CD47 CD47 antigen (Rh-related antigen,

integrin-associated signal transducer)
19 4291 X56468 14-3-3 PROTEIN TAU
20 2454 S65738 Actin depolymerizing factor [human, fetal

brain, mRNA, 1452 nt]

TABLE V

COMPARISON OF THE CLASSIFICATION PERFORMANCE OF DIFFERENT

CLASSIFIERS ON LEUKEMIA CANCER DATA SET, COLON CANCER DATA

SET, AND LYMPHOMA CANCER DATA SET. GSMETHOD DENOTES THE

GENE SELECTION METHOD.

GSMethod NoSG Colon Leukemia Lymphomia
Single NF IG 4 93.55 87.5 87.23

NFE IG 20 100 95.85 95.65
SVM [7] IG 50 90.30 94.10 N/A
SVM [9] SNR 50 65.0 59.0 76.0

LLE 50 85.0 95.0 91.0
KNN EA 50 75.81 72.64 [11] 74.47
C4.5 ReliefF 4-60 85.48 [16] 81.94 [16] 82.98

attractive for researchers in the area, as they can better
understand the data or explain how the results are obtained.
Meanwhile, NF-based models can also easily incorporate prior
knowledge, which helps obtaining more refined models and
shortening the training process.

VI. CONCLUSION AND FUTURE WORK

The classification performance obtained by our NFE model
is very competitive. But, there are still many issues that need to
be considered in future research. After combination, the NFE
model becomes more complex than a single NF model and
therefore more difficult to analyse. While a single NF model
can be easily explained and interpreted by users, an ensemble
of several NF models would be more difficult to understand.
The balance between the classification accuracy and inter-
pretability should be further explored. The performance ofthe
NFE can be further enhanced by using other ensemble training



6

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

input1

D
eg

re
e 

of
 m

em
be

rs
hi

p
in1mf1 in1mf2 in1mf3

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

input2

D
eg

re
e 

of
 m

em
be

rs
hi

p

in2mf1 in2mf2 in2mf3

Fig. 3. Initial membership functions (Top) and Adjusted membership
functions (Bottom) of the NFE model on Colon Cancer Data Set.

techniques, i.e., bagging and boosting. While LOOCV is not
the only appropriate strategy, bootstrap resampling technique
can also be considered for such kind of problems [19]. In
addition, NF-based methods offer good potential to deal with
highly noisy/missing data, which can also be considered as an
important future research direction. Our experimental results
show that the NFE models can be very effective tools for
microarray gene expression data classification problems.
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