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~ Abstract—A Neuro-Fuzzy Ensemble model (NFE) is proposed be explained and interpreted by human understandable fuzzy
in this paper for analysing the gene expression data from ryles. This provides the researchers an insight into theetsod
microarray experiments. The proposed approach was testedro Meanwhile, fuzzy systems adapt numerical data (inputiautp

three benchmark cancer gene expression data sets. Experimtel - into h l istic t hich off d
results show that our NFE model can be used as an efficient pairs) into human linguistic terms, which offer very goo

computational tool for microarray data analysis. In addition, Capabilities to deal with noisy and missing data.
compared to some current most widely used approaches, Newro  However, how to define the rules and membership functions

Fuzzy(NF)-based models not only supply good classification requires a lot of prior knowledge. This can be usually otgdin

results, but their behavior can also be explained and intereeted 51y hyman expert, especially in the case of large amount of

in human understandable terms, which provides the researoérs ion dat hich i t task. Hvbrid N

with a better understanding of the data. gene expression data, which IS not an easy task. Rybrid Neuro
Fuzzy (NF) models, which combine the learning ability of heu
ral systems and the interpreting ability of fuzzy systenss) c

. INTRODUCTION automatically generate and adjust the membership furstion
?nd linguistic rules directly from data.

Many methods have been designed and used so far fo
discovering the mystery behind the DNA data. One of the mqstbnfortunately, NF methods have suffered some well-known

revolutionary techniques is the high-density DNA micrasrr imitations in dealing with h'gh Q|menS|ona_I data. Althqug
some fuzzy-rule-based applications for microarray anglys

chlps,_ or commonly called DNA. c_hlps, or gene chips. Th'ﬁave already been presented [12] [13], all these reported
technique can measure the activities of thousands of genes )
. ) . . systems are small models and only perform well on simple
simultaneously under different experimental environraemtd .
" " oo data sets. Because large rule-based models imply huge com-
conditions. It allows us to have a “global” view of the cell.[1

) : . ; utational cost, they sometimes are unacceptable in peacti
The gene expression profiles from particular microarr

. QAN order to improve the inherent weakness of individual NF
experiments _have been recen_tly used _for cancer Clasmat}nodels a Neuro-Fuzzy Ensemble (NFE) model is developed
[2] [3] [4]. This approach promises to give a be_tter therdjoeu in_this ,paper. The proposed NFE model is tested on three
m_eas_urement to cancer patients by diagnosing cancer tyBgﬁchmark microarray cancer data sets, including leukemia
with improved accuracy [4]. However, the amount of data

produced by this new technology is usually too large &ancer data set, colon cancer data set, and lymphoma cancer

. ta set.
be manually analysable. Hence, the need to automatically . .
) : . “Compared to some other benchmark problems in machine
analyse the microarray data offers an opportunity for Miaehi

: I : learning, microarray data sets may be problematic. The num-
Learning (ML) methods to have a significant impact on cancgr, - ¢ fgeatures (geﬁes) usually inythe Pange of 2,000-30,00
research. ’ ' ’

Unsupervised methods, such as Clustering (5], and Sl /%0 B o127 110 TS 28 0 Ee o o or
Organizing Maps (SOMs) [6] were initially used to analyse 9 ' 9

the relationships among different genes. Recently, izl classification_. _Mo.st genes do not influence the _performance
methods, such as Support Vector Machir;es (SVMs’) 7] Mul?—f the classification task. Taking such genes into account

' ! during classification increases the dimension of the diaasi
Layer Perceptrons (MLP or NNs) [8] [9], K Nearest Nelghbo{ion problem, poses computational difficulties and introsk
(KNN) method [10] [11], and Decision Trees (DTs) [9] have '

! . ) . unnecessary noise in the process. A major goal for diagnosti
been successfully applied to classify different tissuest B y P jor g an

. . ; research is to develop diagnostic procedures based on inex-
most of the current methods in microarray analysis can not

completely bring out the hidden information in the datENSive microarrays that have enough probes to detecfrcerta

i : . diseases. This requires the selection of some genes which
Meanwhile, they are generally lacking robustness witheesp ; . e .
. C are highly related to the particular classification prohlém,
to noisy and missing data.

Different from black-box methods, fuzzy rule-based moder1e informative genes. This process is called gene sefgctio

can not onlv provide aood classification results. but alsshea or feature selection in machine learning in general. A most
yp 9 ' ¥ widely used gene selection method, Information Gain (I6), i
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TABLE |
A TYPICAL GENE EXPRESSION MATRIX(m X n), WHERE ROWS
REPRESENT SAMPLES OBTAINED UNDER DIFFERENT EXPERIMENTAL

Out Cross Validation strategy (LOOCYV) to evaluate models,
as described in Section IV-C.
The rest of this paper is organized as follows: how to clas-

. . . . CONDITIONS AND COLUMNS REPRESENT GENES
sify different types of cancer by using microarray techigglo

is described in Sections Il and Ill; why single NF approachés Gene 1| Gene 2] ... [ Gene m-1| Gene m] Class
do not perform well for this particular application is exipled gamp:e % égg-é 1277?%41 ggg-i Igi-g 11
in Section IV-A; a NFE model is introduced in Section V- ampem ——=
B; experimental results and analytical work are presemed TSample n-1| 6750 | 451 | .. 8419 782.8 1
Section V; some conclusions are drawn in Section VI. Samplen| 782 | 893.8 | .. 467.9 330.1 1
Il. MICROARRAY TECHNOLOGY
Microarray
Applying microarray experiments to study biological prob- Experiments
lems was firstly introduced by a research team at Stanford
University in 1995. It is currently one of the best tools for Sean ), Traslate
biomedical research. Microarray techniques allow sirmata .
. . Cancer Gene
ous measuring of the expression of thousands of genes under Eimression
different experimental environments and conditions. Htdas Data
us to analyse_the gene information very rapidly by managing Piaicaii
them at one time. . 4
In the experiments, different DNA samples are fixed to a .
glass microscope slide, each at a predefined position in the Gen Selartion
array, known as “gene chip”. mRNAs isolated from different
tissue samples, or under different conditions, are labeitu
i ¥
two different fluorochromes (generally the green Cy3 and the
red Cy5), then hybridized with the arrayed DNA probes on Classification
the slide. Using a fluorescent microscope and image analysis
the gene expression data (denoted(@sare measured by
computing the log ratio between the two intensities of each
dye.
Tumor Normal
Int(Cyb)
G =logg——"—= 1
92 Int(Cy3) @

where Int(Cy5) is the intensity of red color, andint(Cy3) Fig. 1. Cancer Classification System.
is the intensity of green color.
Generally, microarray experiments can be divided into two ) B . )
types. One focuses on time series data which contains the gg@ing certain classifiers. This can be summarized as follows
expression data of various genes during the time span of ke the given gene expression data be denoted as

experiment. Anqther type of microarray experiment cossist D={(g1,t1,) s (Grstn))} » )
of gene expression data of various genes taken from differen .
tissue samples or under different experimental condition¥here an input vectoy; = (g1,...,g9m) denotes a gene

Different conditions can be used to answer such questionsea®ression pattermy is the number of genes in this pattetp,
which genes are changed under certain conditions. MeaswhiePresents which class the pattern belongs to (see Setiion |
different tissues under the same experiment conditions &@@dn denotes the number of patterns in the data set. Now, let
helpful in the classification of different types of tissudhe US choosen genes out ofn according to certain algorithms.
data from a series of such experiments can be representeten, select patterns with, genes to train the classifier, and
as am x n gene expression matrix, see Table |. Eacl§aven—n patterns (withiz genes) out to test the performance
row represents a sample that consists of m genes from étdrained model. Figure 1 gives a typical cancer classificat
experiment. Each sample belongs to a certain class (norrBg$tem.
or tumor). In each data set, the researchers repeated thee sam
experiment on n different volunteers, each line in this data Ill. GENE SELECTION
representing a volunteer. Recent researches have shown that a small number of genes
From Table I, we can see that classifying microarray get® sufficient for accurate diagnosis of most cancers, even
expression data can be looked as a high-dimensional-lafveugh the number of genes vary greatly between different
sample problem. Common approaches are to select a sulistases [15]. Indeed, a large set of gene expression ésatur
of the most useful features, then classify the differentdam will not only significantly bring higher computational cost
as cancer or non-cancer, according to the selected feahyresand slow down the learning process, but also decrease the



e TABLE I
classification accuracy due to the phenomenon known as CUISE AT IONSHIP AMONG THE NUMBER OF INPUT FEATURESTHE

of dimensionality, in which the risk of over-fitting incressas

. NUMBER OF FUZZY RULES AND THE NUMBER OF PARAMETERS NEEDED
the number of selected genes grows [15]. More importantly,
by using a small subset of genes, we can not only get a better
diagnostic accuracy, but also get an opportunity to further
analyse the nature of the disease and the genetic mechanisms

TO BE UPDATED IN EACH EPOCH NOG DENOTES THE NUMBER OF
SELECTED GENES

NoG  Number of Rules  Number of Parameters

responsible for it. Therefore, the microarray cancer diass g 297 foss
tion problem can be classified as a combinational optindzati 4 81 360
problem with two main objectives: minimizing the number of g 3‘2‘3 27;;4
selected genes and maximizing the classification accuracy. 7

2187 7008
Filter method and wrapper method are two basic feature
selection approaches in machine learning. Filtering poces
are widely used in the area of microarray analysis. A common
way is to rank all features according to the values of A. Individual Neuro-Fuzzy Models
univariate scoring. met_ric, and the top ranked feature_s ar%\e use Adaptive-Network-based Fuzzy Inference System
selected for classification. The wrapper approach, which igngs) to build the individual classifiers in the ensemble.
popular in many machine learning applications, is not I3r9eaNF|s is a Sugeno-like fuzzy system in a five-layered net-
used in DNA microarray tasks. Therefore, in our work, W&ok structure. Back-propagation strategy is used to tifaén
will adopt th_e Information Gain, the most widely used filteyi membership functions, while the least mean squares digorit
gene selection method. (LSE) determines the coefficients of the linear combination
in the consequent part of the rules. It has been proven that
this hybrid algorithm is much more efficient than a standard
A. Information Gain gradient method in training the ANFIS [17].
The same as other fuzzy-rule-based systems, ANFIS can
training samples, it is possible to define a measure of tﬁgl;reae&rlwyu?nallane(ilifhilr?hu(tjIrzr:)edlsslorrljlezm;rllzmﬁ’eESeth::SoLesidsuént
effectiveness of a feature/gene in classifying the trgrdata. gyragneters In an AEFIS mod’el i t’he nl’meer c;f inputg i

This measure is simply the expected reduction in entro the number of membership functions for each iNpukis
caused by partitioning the data according to this featu (Tﬂ,-:‘n the number of the fuzzyF;uIe% o P

so-called Information Gain [16]. Assuming a given set O
microarray gene expression datd, the information gain of R=KN (5)
a genei is defined as:

Given entropyE as a measure of impurity in a set of

The number of the adaptive parametétss then:
_ joN+1 N
1600 =B~ Y SE(L), @) P= R RN (©)
veV(3) where K V1 refers to the non-linear adaptive parameters, and
KN x N to the linear adaptive parameters. For example, when
whereV (i) is the set of all possible values of featurel/, is the number of membership functions for each input is 3, the
the subset of\/ for which featurel has the value), E(M) relationship between the inputs and rules is shown in Table |
is the entropy of the entire set, at{ M/,,) is the entropy of From Egs. 5, 6 and Table Il, we can see that the computational
the subset\/,. The entropy functior¥' is defined as: cost increases very quickly while the number of inputs grows
We simulated the models on an IBM R51 laptop (CPU: PIV-
¢ oA (e 1.5G, Memory: 1G). The computer is out of memory when
E=) -1 log)—> (4)  the number of inputs is | than 6
- |Z C| |Z C| PU S IS arger_ t.Eln . o
g=1 But, the collection of well-distributed, sufficient, andcae
_ i rately measured input data is the basic requirement to robtai
yvhere|C’j| is the nl_meer Of_ sample_s In Cla@?' The_ ent_ropy an accurate model [18]. When data sets require a relatively
IS SUPPQSed to give the |nf0rmat|0n required in bits, ar\grge number of genes to represent their properties, we need
is traditionally used to deal with boolean valued featurgy josign some strategies to enable the model to accept more
(hot/cold, trueffalse, etc.). Fortunately, this methoth &2 s \ith less computational cost. Recommended appesach
easily extended to handle the data with continuous valugdl| qe: evaluate and select rules, delete antecederittede

features. fuzzy sets, etc.

B. Ensemble Learning

Besides building individual ANFIS models as described

Here we construct a Neuro-Fuzzy Ensemble model apove, we designed a Neuro-Fuzzy Ensemble (NFE), which
combining several individual NF models to learn the sanmewnsists of several different single ANFIS models, to degw
data using different subsets of genes. this problem. Each individual model learns different sibse

IV. NEURO-FUzZzY ENSEMBLE



TABLE Il
1372 COMPARISON OF COMPUTATIONAL COST BETWEEN INDIVIDUALNF AND
NFEMODELS. WE COMPARE THE NUMBER OF RULES AND PARAMETERS
OF INDIVIDUAL NF AND NFE MODELS. EACH INPUT OF THENF MODELS

479

7821

w2 | ANFIS 1 HAS 3 MEMBERSHIP FUNCTIONS IN THIS COMPARISON THE NFE
_— CONTAINS TWO INDIVIDUAL NF MODELS. NOG DENOTES THE NUMBER
_— OF SELECTED GENESNOR DENOTES THE NUMBER OF RULESNOP
s ANFIS 2 DENOTES THE NUMBER OF PARAMETERS NEEDED TO BE UPDATED IN
EACH EPOCH
e L . Majority
] ANFIS 3 Vote NF NFE
NoG NoR NoP NoR  NoP
2 9 45 N/A N/A
3 27 108 N/A N/A
4 81 360 N/A  N/A
My - 6 729 2484 54 216
0 ANFIS 2 8 6.6 x10* 7.9x10° 162 720
' 12 1.7x107 2.7x10% 243 1080

768 16 4.3 %109 8.6 x 1010 324 1440
20 1.1x10'2 26x103 405 1800

1720

Fig. 2.  The main structure of the NFE: individual ANFIS classifiers in
the ensemble, each havidginputs, so that the whole model can stully-n
genes. The output of the ensemble is taken by simple majeoting (MV).

process [19].

C. Training and Testing Strategy

of genes, so that the overal modgl can work with a relativelyIn order to use as many samples as possible, we adopt
large numbgr of genes. Meanwhile, extra good perfprm_an| %ve-one-out cross validation (LOOCYV or jackknife stgybe

can be obtalned_ by the nature of _the ensemble_ Iegr_mng. |ts§i train and evaluate our models. We divide all samples, at
We set the maximum number of inputs for an 'f‘d""d_“a' Nrandom, intoK distinct subsets, whet& equals to the number
network in the NFE _to pe 4, due_' to the conS|derat|ons_ samples. We then train the model usifg— 1 subsets
computational costs implied, as discussed above. Each meébmples in our case), and test the training performance on

s randomly selected f_rom the topx n r?”ked genes, Wherethe Kth sample. The LOOCV accuracy is obtained by:
n is the number of singe NF models in the ensemble. The

output strategy of our NFE model is Majority Voting, where ~ Acs
the output of the majority of individual NF networks will LOOCV accuracy = K Y

be considered to be the output of the ensemble. The M Rere Acs is the number of correctly classified samples in

structure of our NFE is shown in Figure 2. . K experiments. LOOCV accuracy is strongly suggested to be
The advantages of our NFE model can be summarized as . : e %
follows: Used as an evaluation of microarray data classification byyma
’ other researchers. In order to compare with their work, this

o It allows the model to learn more features when th&rategy is also adopted in our study.
optimal subset of genes is relatively large.

« Normally, several classifiers imply higher computational
costs than building a single classifier only. However, our

NFE model Seems tp require much less computatlonalln this study, the proposed models are tested on three data
cost than building gsmglg Iarge.NF model, when the N€&ats: leukemia cancer data set, colon cancer data set, and
essary numper of inputs is reIauyer _Iarge. A comparis %mphoma cancer data set. We adopt three important criteria
of compuj[atmnal CO_StS between individual NF models angr empirical evaluation of the performance of our models:
the NFE is shown in Table III.

« NFE can significantly improve the generalization abil- * Number of selected genes,
ity (classification performance) compared to single NF ¢ Predictive accuracy on selected genes,
models, and they can also help address three classi¢ EXtracted knowledge from the trained models.
machine learning problems: lack of data, local optima, Before the experiments, we linearly scale all data in the [0,
and representational limitations. Lack of data is one df] interval. If y is a gene expression value of a gepethe

V. EXPERIMENTAL RESULTS

the major problems in microarray analysis. scaled value will be
o NFE can relieve the trial-and-error process by tuning — min(g)
architectures. gla') = i J (8)

: max(g) — min(g)
Though, we have to point out that the ensemble structure
increases the complexity of the system, which means tinere min(g) and maz(g) is the minimum and maximum

model will loose the transparency of the decision-makingalues of gene expressions in the database.



TABLE IV

A. Microarray Cancer Data Sets
TOP20RANKED LEUKEMIA GENES SELECTED BYIG2

1) Colon Cancer Data SetThe data set we used here
H H 13 1 H H Qe
was firstly reported in [20]. Tf:e can’(,:er_ b|pp5|es WerI Rank D Gene name Descripfion
collected from tumors, and the “normal” biopsies were CO—T 4050 X03934  GB DEF = T-cell antigen receptor gene
lected from healthy parts of the colons of the same patients T3-delta 3 _
[20]. This data set contains 62 samples. There are 40 tumor? ~ 6510 ~ U23852  GB DEF = T-lymphocyte specific protein
tyrosine kinase p56lck (Ick) abberant mRNA
samples, an_d 22 normal sqmples. _Fr_om about 6000 genes 4312  x59871  TCF7 Transcription factor 7 (T-cell specific)
represented in each sample in the original data set, onl9 200 4 4055 X04145 CD3G CD3G antigen, gamma polypeptide
; ; . A (TiT3 complex)
genes were selected. The data is available at http://s2inae.i 5542 M37271  T-GELL ANTIGEN CD7 PRECURSOR
star.edu.sg/rp/ColonTumor/ColonTumor.html.

: 5543  M37271  T-CELL ANTIGEN CD7 PRECURSOR
2) Leukemia Cancer Data SetThe data set we used

5466 X58072 GATA3 GATA-binding protein 3
; ; 6606 X00437 TCRB T-cell receptor, beta cluster
here was reported in [3]. The gene expression measurement 1604  M12886  TORB T-cell receptor. beta cluster
were taken from 63 bqne marrow samp!es and 9 peripherahy  eeos  X76223  GB DEF = MAL gene exon 4
blood samples [3]. This data set contains 72 samples. All11 1893  M28826  CD1B CD1b antigen (thymocyte antigen)
. ; . 12 2833 U16954  (AF1lg) mRNA
samples can be d|V|d(_ad into two subtypes: 25 samples of13 4357 %60092  T-CELL DIFFERENTIATION ANTIGEN
acute myeloid leukemia (AML) and 47 samples of acute CD6 PRECURSOR
lymphoblastic leukemia (ALL). The expression levels of 912 14 4847  X95735  Zyxin

genes were reported. The data is available at http://sémes.i 15 1106 J04132 (TiCT%?’fo%B%i)amige”' zeta polypeptide

star.edu.sg/rp/Leukemia/ALLAML.html. 16 3332  U50743  Na,K-ATPase gamma subunit mRNA
3) Lymphoma Cancer Data Sethe data set we used here 17 6236  U83239  CC chemokine STCP-1 mRNA

was reported in [21]. This data set contains 47 samples. B18 ~ 4484 ~ X69398  CDA7 CDA7 antigen (Rh-related antigen,
. ) integrin-associated signal transducer)

cell diffuse large cell lymphoma (B-DLCL) data set includes 19 4201  Xx56468  14-3-3 PROTEIN TAU

two subtypes: germinal center B cell-like DLCL and active 20 2454  S65738  Actin depolymerizing factor [human, fetal

B cell-like DLCL. The expression levels of 4026 genes were brain, MRNA, 1452 nf]

reported. 24 samples are germinal center B-like DLCL and 23

samples are active B cell-like DLCL. The data is available at TABLE V

http://www.genome.wi.mit.edu/MPR. COMPARISON OF THE CLASSIFICATION PERFORMANCE OF DIFFERENT

CLASSIFIERS ON LEUKEMIA CANCER DATA SETCOLON CANCER DATA

SET, AND LYMPHOMA CANCER DATA SET. GSMETHOD DENOTES THE

oo N o Ul

B. EXperlment Setup GENE SELECTION METHOD

Each variable is described by three membership functions
for both NF and NFE models, and the initial shape of the

GSMethod  NoSG Colon Leukemia  Lymphomia

membership function is a bell-shaped function, see Figureingie NF G ) 9355 875 8793
3 (Top). There are5 individual NF networks in our NFE NFE IG 20 100 95.85 95.65
; SVM [7] IG 50 90.30 94.10 N/A
model, an(_j each_ NF mode_l hASm_pu_ts. Th_e output of the SVM [9] SNR 20 6 0 590 26.0
ensemble is obtained by using Majority Voting (MV). The top LLE 50 85.0 95.0 91.0
20 ranked genes obtained by the IG method were selected for KNN EA 50 75.81 72.64 [11] 74.47
classification when using the NFE model. The top 4 ranked €45  Releff 460 8548[16] 81.94[16]  82.98

genes are selected for classification when using the single N
models. The top 20 Leukemia genes with the highest scores

were listed in Table IV. attractive for researchers in the area, as they can better
understand the data or explain how the results are obtained.
C. Results and Comparison Meanwhile, NF-based models can also easily incorporate pri

_knowledge, which helps obtaining more refined models and
The performance of our NFE model was compared W'@hortening the training process

that of single NF models and some other reported approaches,
by using the same training and testing strategies, see Vable
Our models obtained better results on Colon cancer data set,
and similar results on Leukemia and Lymphoma data set, bufThe classification performance obtained by our NFE model
both NF and NFE models use less number of genes compatisgery competitive. But, there are still many issues thatie
with other approaches. The performance of the NFE modellie considered in future research. After combination, th& NF
much better than that of single NF models on the three canceodel becomes more complex than a single NF model and
data sets, see Table V. therefore more difficult to analyse. While a single NF model
Furthermore, different from black-box approaches, NFean be easily explained and interpreted by users, an ensembl
based models can extract some useful knowledge from datbseveral NF models would be more difficult to understand.
for example, adjusted membership function (Figure 3), afithe balance between the classification accuracy and inter-
trained fuzzy rules (Table VI). All this knowledge can beretability should be further explored. The performancéef
presented in human understandable form. This seems vBIfyE can be further enhanced by using other ensemble training

VI. CONCLUSION AND FUTURE WORK



TABLE VI

FIVE RULES SELECTED FROM A SINGLENF MODEL IN THE ENSEMBLE ON
COLON CANCER DATA SET. THERE ARE TWO MEMBERSHIP FUNCTIONS

FOR EACH VARIABLE.

Descriptions of Rules

If (M63391 is small) and (R87126 is small) then (output in€x)
If (M63391 is small) and (R87126 is medium) then (output &ncer)
If (M63391 is small) and (R87126 is large) then (output igiNal)
If (M63391 is large) and (R87126 is small) then (output isn€a)
If (M63391 is large) and (R87126 is large) then (output igrival)

inimfl inlmf2 in1mf3
1 i
0.8
o
G
206 1
5 2
E 3
; 0.4 7
2 9
o
0.2
0 (5]
0 02 04 06 08 1
input1 [6]
[7]
in2mfl in2mf2 in2mf3
1 PN 1
[8l
0.8 ]
o
G
@
% 0.6 ) 1
£ | [l
k] |
@ 04 | 4
g ( [10]
o \
0.2 ! 1
\
" [11]
0 > - —
01 02 03 04 05 (12]
input2
[13]
Fig. 3. Initial membership functions (Top) and Adjusted nbemship
functions (Bottom) of the NFE model on Colon Cancer Data Set. [14]
[15]

techniques, i.e., bagging and boosting. While LOOCYV is not
the only appropriate strategy, bootstrap resampling ftiecien [16
can also be considered for such kind of problems [19]. In

addition, NF-based methods offer good potential to deah wit

highly noisy/missing data, which can also be considerechas

important future research direction. Our experimentaliltes
show that the NFE models can be very effective tools fo¥el
microarray gene expression data classification problems.
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