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Abstract
While basic principles of microtubule organization are well understood, much remains to be
learned about the extent and significance of variation in that organization among cell types and
conditions. Large numbers of images of microtubule distributions for many cell types can be
readily obtained by high throughput fluorescence microscopy but direct estimation of the
parameters underlying the organization is problematic because it is difficult to resolve individual
microtubules present at the microtubule-organizing center or at regions of high crossover.
Previously, we developed an indirect, generative model-based approach that can estimate such
spatial distribution parameters as the number and mean length of microtubules. In order to validate
this approach, we have applied it to 3D images of NIH 3T3 cells expressing fluorescently-tagged
tubulin in the presence and absence of the microtubule depolymerizing drug nocodazole. We
describe here the first application of our inverse modeling approach to live cell images and
demonstrate that it yields estimates consistent with expectations.
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1. INTRODUCTION
Microtubules play a critical role in many cellular processes and are a target of drugs used to
treat cancer. The spatial distributions of microtubules are such that the density is very high
close the centrosomal region and often very low at the lamellipodial region of the cell. High
throughput image acquisition methods such as fluorescence microscopy can acquire images
of an intact microtubule network, but their current resolution is not high enough to trace all
individual microtubules in intact cells.

Currently, methods and validation sets have been generated on portions of microtubules that
are clearly distinguishable, accounting for only a small fraction of the total microtubules in
an intact cell [1,2]. While these likely suffice for studying dynamics of microtubules that
reach the lamellipodium, they do not allow construction of whole cell models.
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We have previously described a generative model of microtubules and developed an indirect
method of estimating its parameters [3]. Since whole cell images with known parameters
were not available, we tested the ability of the method to accurately estimate model
parameters using synthetic images generated using the model. These tests revealed a low
error in estimation but estimates for real images could only be described as generally
consistent with current knowledge. Here we describe estimation of microtubule model
parameters from 3D fluorescence microscopy images of live cells under conditions in which
changes in those parameters are expected. This was done by acquiring images of living NIH
3T3 cells expressing fluorescently-tagged tubulin in the presence and absence of
nocodazole, a drug that is known to depolymerize microtubules [4].

2. DATA ACQUISITION
2.1. 3d NIH 3T3 dataset

NIH 3T3 cells expressing EGFP-tagged alpha tubulin generated using CD-tagging [5] were
cultured in DMEM supplemented with 10% Fetal Calf Serum and 100 U/ml penicillin and
100 ug/ml streptomycin. The cells were grown to 80% confluency. On the day of imaging,
the media was changed to Opti-MEM and a final concentration of 0.5 ug/ml of Hoechst was
added to label nuclei. The dish was incubated for at least 3 h in a CO2 incubator and then
placed in a heated chamber that was maintained at 37 °C throughout image acquisition. 3D
images were acquired using a Zeiss LSM 510 confocal fluorescence microscope. The
spacing between voxels was 0.09 microns in the focal plane and 0.48 microns along the
axial dimension. 3D images of five different cells were acquired at 0, 10, 20, 30, 40 min
after addition of nocodozale or buffer. Due to photobleaching, full 3D images could not be
acquired for the same cell at each time point, and therefore different cells were imaged at
each time point (only interphase cells were selected).

2.2. Fluorescent bead acquisition
As our modeling approach requires a model of the point spread function of the microscope
used for acquisition, we generated an empirical estimate of the function using 20 nm
fluorescent beads (488 nm absorption). 0.1 ml of a suspension of beads in optiMEM was
placed on a clean glass slide and quickly covered by a coverslip. 3D images were acquired
as above.

3. METHODS
3.1. Generative model of microtubules

The generative model of polymerized tubulin distribution previously described for HeLa
cells [3] was applied to NIH 3T3 with only minor modifications. While the plasma
membrane position for HeLa images was estimated using a fluorescence channel showing
total cell protein, this channel was not available in the 3T3 images. The tubulin image itself
was therefore used for this purpose since the presence of free tubulin allowed for a reliable
estimate of cell boundaries.

3.2. Point spread function
3D images of beads were segmented into individual bead regions using Ridler-Calvard
thresholding and registered using the 3D centroid of the bead. The beads were then averaged
to estimate the point spread function.
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3.3. Free tubulin distribution estimation and generation
Our previous generative model only took into account polymerized tubulin because the
images were acquired by immunofluorescence staining of fixed cells lacking appreciable
free tubulin. This is because permeabilization of cells with detergents like Triton-X to allow
antibody penetration causes most of the free tubulin to diffuse away. However, live cell
imaging of fluorescently-tagged tubulin detects both free tubulin monomers and
polymerized microtubules. We therefore extend the previous model to account for free
tubulin by estimating histograms of free tubulin intensities h(reg, nz) for each nuclear or
cytoplasmic region and for each 2D slice number nz. Free tubulin regions in each of the 2D
slices was estimated by first detecting and removing the polymerized tubulin regions, as
follows. The input image was blurred using a Gaussian filter with standard deviation of 3,
and the resulting image was subtracted from the input image. The subtracted image was
binarized to separate zero and nonzero pixels. Since the binary image has small clusters of
disconnected objects seemingly forming microtubule fibers, the binary image is blurred
again to connect objects that are close to each other. This operation was performed using a
Gaussian filter with standard deviation of 2. The resulting image was again binarized. This
ad hoc approach resulted in a reasonable definition of microtubules (as shown in Fig. 1). In
order to generate free tubulin images for simulations, the histograms h(reg, nz) were
sampled to generate the corresponding distribution of free tubulin in all regions of the cell,
f(x).

3.4. Tubulin Image Formation
Here we describe the tubulin fluorescence image formation used for generating simulated
images. Let I(x) be the tubulin fluorescence image. Let p(x) and f(x) be the polymerized
tubulin and free tubulin images respectively. Let * denote a 3D convolution. Then, I(x) = psf
*[p(x) + f(x)], where psf is the point spread function of the imaging system (estimated as
above). This can be written as:

(1)

where p′(x) is the model generated in pixel coordinates by the generative model for a given
set of parameters and λ is the scaling factor that matches the single polymerized tubulin
intensities in the simulated images to the real images (see below). Let f2( x) = psf * f(x).
Equation (1) then becomes:

Hence, for a given set of parameters θ, I(x|θ) can be generated. For a given set of parameters,
the amount of free tubulin was adjusted by scaling f2 (x) according to the total amounts (total
intensity) available (see Figure 2 for an example).

3.5 Single microtubule intensity estimation
The intensity of a single microtubule was estimated from the 2D slice and region just below
the nucleus of the cell. The reason for this is that the microtubules (if present) in this region
have a very minimal overlap and are generally traceable. λ was defined as:
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where ϕ[.] is the single microtubule intensity in the real (R) and simulated (S) images.
ϕ[pR(x)] was estimated by averaging tubular pixel values and subtracting out the average
free tubulin pixel values. The tubular pixel regions were detected using the method
described by Frangi et al. [6] (see Figure 3 for an example). The remaining regions were
assumed to be free tubulin. ϕ[pS(x)] was estimated directly from generated polymerized
tubulin images p(x). λ was estimated from many images across the dataset and a single
average value λ ̄ was used.

3.6 Library generation
As described in [3], a library of simulated images was generated for all combinations of
discrete values of the four parameters:

Number of microtubules = 0, 5, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220

Mean of length distribution (μ) = 5, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220
microns

Coefficient of variation of length = 0, 0.1, 0.2, 0.3

Collinearity (cos α) = 0.97, 0.984, 0.992, 0.996, 1

3.7 Feature selection and matching
As described previously [3], parameters are indirectly estimated by choosing the synthetic
image from the library that is most similar to a given real image. This choice is made using
numerical features calculated to describe the fluorescence distributions, and a critical
component of this approach is the choice of features and distance function. We describe here
a feature selection method to include in the distance function using training data. Cells
corresponding to the 40-min time point do not appear to have polymerized tubulin.
Therefore features were selected so as to minimize the normalized Euclidean distance in
feature space between 4 images of the 40-min time point of nocodazole treated cells and
simulated images for 0 microtubules (only free tubulin).

4. RESULTS
3D confocal microscopy images were acquired at five different time points in the presence
and absence of nocodazole, keeping all imaging parameters fixed. Figure 4 shows an
example set of such images for various times of treatment with nocodazole.

Cells treated with nocodazole for 40 min appear to have all of their microtubules
depolymerized. All but one of the five images at this time point were therefore used to train
the feature selection approach, and the features selected were used to estimate model
parameters from all the images except the ones that were used for training. This procedure
was repeated by holding out each image in turn (five-fold cross-validation). Figure 5 shows
the parameter estimates averaged over the five folds and the five replicates per time point.
Hence all points are averaged over 25 (5 folds × 5 replicates) except that the last time point
is averaged over five folds only. The number and mean of length distribution for
nocodazole-treated cells decrease as a function of time, but in the control case, these
parameters do not show a decreasing trend. The standard deviation error bars are very large
in some of the points. This is because the parameters are averaged over different cells that
are likely to have varying numbers and lengths of microtubules because of their varying
sizes. However, there is a clear decrease in the number and mean of the length from the first
and last time points in the nocodazole treated case as opposed to the untreated case.
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5. CONCLUSIONS AND DISCUSSION
We have validated a microtubule distribution estimation system by estimating parameters
from an image set of live cells. The estimated parameters follow the expected trend: cells
treated with nocodazole tend to have less polymerized tubulin. Future work will include
improving many of the image processing routines to achieve higher efficiency and
robustness, as well as exploring the dependence of the estimates on the accuracy of the point
spread function.

In future, we plan to estimate parameters from different cell types. We also plan to build
generative models of organelles (such as lysosomes or mitochondria) whose distribution
may be conditioned on the microtubule model. Ultimately, we seek to build models in a
hierarchical, conditional manner so that models of all cell components can be constructed by
automated learning from cell images.
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Fig. 1.
(A) 2D slice from a 3D image stack of a cell untreated with nocodazole. (B) Removal of
polymerized tubulin (C) Regeneration of free tubulin distribution by sampling from free
tubulin intensity histograms estimated from (B).
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Fig. 2.
A 2D slice in the 3D stack of a simulated image. The image was generated with the number
of microtubules set to 100, the mean of the length distribution to 60 microns, the standard
deviation of length to 6 microns and the collinearity to 0.9961.

Shariff et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Single microtubule intensity detection on microtubules in a slice just below the nucleus. The
tubulin image is shown in blue and the points identified as showing a single microtubule are
marked in red.
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Fig. 4.
Example images of NIH 3T3 cells expressing EGFP-tagged alpha-tubulin at various time
points after addition of 20 uM nocodazole (from left to right, 0, 10, 20, 30, and 40 min).
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Fig. 5.
Parameter estimates of the number (A) and mean length (B) averaged over different folds
and repetitions.
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