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ABSTRACT

In fast MR imaging with long readout times, such as echo-
planar imaging (EPI) and spiral scans, it is important to cor-
rect for the effects of field inhomogeneity to reduce image
distortion and blurring. Such corrections require an accurate
field map, a map of the off-resonance frequency at each voxel.
Standard fieldmap estimation methods yield noisy fieldmaps,
particularly in image regions having low spin density. This
paper describes regularized methods for fieldmap estimation.
These methods exploit the fact that fieldmaps are smooth func-
tions. Efficient convergent algorithms are given even though
the problem is highly nonlinear. Results show that the pro-
posed regularized methods significantly improve the quality
of fieldmap estimates relative to conventional unregularized
methods.

1. INTRODUCTION

For field-corrected MR image reconstruction, e.g., [1, 2]: one
must have available an accurate estimate of the fieldmap ω =
(ω1, . . . , ωN ), where N is the number of pixels. A com-
mon approach to measuring fieldmaps is to acquire two scans
of the object with slightly different echo times, and then to
reconstruct images y and z (without field correction) from
those two scans. The usual model for those reconstructed im-
ages is

yj = fj + εj

zj = fj eıωj�t + ηj , (1)

where �t denotes the echo-time difference, fj denotes the
underlying complex transverse magnetization in the jth voxel,
and εj and ηj denote (complex) noise. The goal is to estimate
ω from y and z, whereas f = (f1, . . . , fN ) is a nuisance pa-
rameter vector. For simplicity, we define the unknown phase
to be xj = ωj�t, so that the goal is to estimate x from y and
z. The next section reviews the standard approach for this
problem, and then describes three new and improved meth-
ods.
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2. FIELDMAP ESTIMATION METHOD

2.1. Conventional phase / fieldmap estimator

The usual estimator x̂j uses the phase difference of the two
images, computed as follows [1]:

x̂j = ∠(y∗
j zj) = ∠zj − ∠yj , (2)

and the fieldmap estimate is simply a scaled version: ω̂j =
x̂j/�t . This expression would work perfectly in the absence
of noise and phase wrapping, within voxels where |fj | > 0.
However, (2) can be very sensitive to noise, particularly in
voxels where the image magnitude |fj | is small relative to the
noise deviations. Furthermore, that estimate ignores our a pri-
ori knowledge that fieldmaps tend to be smooth or piecewise
smooth. Although one could try to smooth the above esti-
mate using a lowpass filter, usually many of the x̂j values are
severely corrupted so smoothing will further propagate such
errors. Instead, we propose below to integrate the smoothing
into the estimation of x in the first place, rather than trying to
“fix” the noise in x̂ by post processing.

2.2. Maximum-likelihood phase / fieldmap estimation

The conventional estimate (2) appears to disregard noise ef-
fects, so a natural approach is to estimate x using a maximum
likelihood (ML) method based on a statistical model for the
measurements y and z. In MR, the k-space measurements
have zero-mean white gaussian complex noise, and we fur-
thermore assume that the additive noise values in y and z in
(1) are independent and have the same variance σ2. Under
these assumptions, the joint log-likelihood for f and x given
y and z is

log p(y;f) + log p(z;f ,x)

≡ −1
2σ2

N∑
j=1

|yj − fj |2 + |zj − fj eıxj |2 ,

where “≡” denotes equality to within constants independent
of x. Thus, one achieves simultaneous ML estimation of f
and x by the following minimization problem:

arg min
x∈RN

arg min
f∈CN

N∑
j=1

∥∥∥∥[
yj

zj

]
−

[
1

eıxj

]
fj

∥∥∥∥2

.
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This problem is quadratic in fj , leading to the following ML
estimate:

f̂j =
yj + e−ıxj zj

2
.

Substituting this estimate back into the cost function and sim-
plifying yields the following minimization problem for ML
estimation of x:

arg min
x

Ψ(x), Ψ(x) =
N∑

j=1

1
2

∣∣yj − e−ıxj zj

∣∣2 .

Now note that

1
2

∣∣yj − e−ıxj zj

∣∣2 ≡ −1
2

(
yj eıxj z∗j + y∗

j e−ıxj zj

)
= − real

(
y∗

j e−ıxj zj

)
= − ∣∣y∗

j zj

∣∣ cos(∠zj − ∠yj − xj) .

Thus the ML cost function is equivalent to

Ψ(x) ≡
N∑

j=1

∣∣y∗
j zj

∣∣ [1 − cos(∠zj − ∠yj − xj)] . (3)

The ML estimate is not unique here due to the possibility of
phase wrapping. But ignoring that issue, because 1 − cos(t)
has a minimum at zero, the ML estimate of x is x̂j = ∠zj −
∠yj , which is simply the usual estimate (2) once again. Thus
the usual method is in fact an ML estimator under the white
gaussian noise model!

2.3. Penalized likelihood phase / fieldmap estimation

The ML estimator ignores our a priori knowledge that field-
maps tend to be spatially smooth functions due to the physi-
cal nature of main field inhomogeneity and susceptibility ef-
fects. A natural approach to incorporating this characteristic
is to add a regularizing roughness penalty to the cost function.
Here we regularize only the phase map x and not the magne-
tization map f ; we expect f to be far less smooth because it
contains anatomical details. Such regularization is equivalent
to replacing ML estimation with a certain Bayesian MAP es-
timator. In either case, based on (3) the resulting regularized
cost function has the form

Ψ(x) =
N∑

j=1

|yjzj | [1 − cos(∠zj − ∠yj − xj)] + β R(x),

(4)
where R(x) is a spatial roughness penalty. This cost function
automatically gives low weight to any voxels where the mag-
nitude |yjzj | is small. For such voxels, the regularization term
will have the effect of smoothing or extrapolating the neigh-
boring values. Thus, this approach avoids the phase “outlier”
problem that plagues the usual estimate (2) in voxels with low
signal magnitude.

If x corresponds to a N × M fieldmap x[n,m], then a
typical regularizing roughness penalty uses the differences

between horizontal and vertical neighboring voxel values as
follows:

R(x) =
N−1∑
n=1

M−1∑
m=0

ψ(x[n,m]−x[n − 1,m])

+
N−1∑
n=0

M−1∑
m=1

ψ(x[n,m]−x[n,m − 1]) . (5)

Usually ψ is differentiable, so we can minimize the cost func-
tion Ψ(x) either by conventional gradient descent methods
or by optimization transfer methods [3]. In particular, in the
usual case where ψ̇(t) /t is bounded by unity, then one can
show that the following iteration is guaranteed to decrease
Ψ(x) monotonically:

x(n+1) = x(n) − diag

{
1

|yjzj | + β · 4
}
∇Ψ(x(n)), (6)

because the second derivative of 1 − cos t is bounded above
by unity. This algorithm will converge to a local minimizer of
Ψ(x) within the “basin” that contains the initial estimate [3].
We use the ML estimate to initialize x(0).

2.4. PWLS fieldmap estimator

Usually the time delay �t is chosen to ensure that there will
be little if any phase wrapping. In such cases, we can simplify
computation by approximating the 1−cos term in (4) with its
second-order Taylor series: 1 − cos(t) ≈ t2/2. Substituting
this approximation into (4) leads to the following penalized
weighted least squares (PWLS) cost function for estimating
x:

Ψ(x) =
N∑

j=1

wj
1
2

(∠zj − ∠yj − xj)
2 + β R(x), (7)

where we define a magnitude weighting function as follows:

wj � |yjzj | . (8)

PWLS estimators give more weight to the “good data” and
use regularization to control noise.

In the current image processing literature, edge-preserving
potential functions ψ are quite popular. However, because
fieldmaps are spatially smooth and often free of “edges,” typ-
ically we use the quadratic function ψ(t) = t2/2 here. Be-
cause in this case the cost function (7) is quadratic, it is min-
imized easily by the conjugate-gradient (CG) algorithm. We
denote the resulting method as QPWLS-CG. If one encoun-
ters fieldmaps that have steep gradients, then it may be prefer-
able to use an edge-preserving potential function ψ. In such
cases one can use a CG algorithm with a modified line search
[4] to minimize Ψ efficiently. However, the model (1) may
be unrealistic if the field gradients are so steep that there is
substantial within-voxel variation. For such cases it may be
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necessary to consider other formulations such as the k-space
approach described in §2.6.

To simplify processing somewhat further, one could bina-
rize the weights wj using a threshold:

wj �
{

1, |yjzj | > γ
0, otherwise, (9)

where we set the threshold γ to include only voxels with “suf-
ficiently large” magnitude, e.g., γ = 0.4maxj |yjzj | . This
approach was used routinely in our group prior to the devel-
opment of the ML-based weighting in (7).

The primary limitation on of the cost function (7) is that it
ignores any phase wrap that may occur when evaluating (2).
If such phase wrap is possible, then it may be preferable to
use the penalized likelihood estimator (4).

2.5. Example

Fig. 1 shows an example of the data magnitude |yj | and the
usual phase estimate (2) which is very noisy. This is real data
taken from a 3T MR scanner. It also shows the penalized like-
lihood estimate based on (6), the QPWLS estimate from (7),
and the QPWLS estimate using (9). The normalized RMS
difference between the penalized likelihood method and the
QPWLS approximation (7) was 3.1%, whereas the QPWLS
results based on the binary weights (9) differed by over 40%
normalized RMS. Compared to penalized-likelihood, the QP-
WLS cost function is somewhat easier to minimize, so QP-
WLS with the approximation (7) is a practical and accurate
approach in the usual cases where phase wrapping is not ex-
pected.
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Fig. 1. Top row: magnitude image |yj |, usual phase estimate
(2), and binary weights wj in (9). Bottom row (phase es-
timates): penalized likelihood using (6), QPWLS using (7),
and QPWLS using (9).

2.6. Fieldmap estimation in k-space

The methods described above estimate the fieldmap from two
reconstructed images. To work well, those images should be
relatively free of artifacts, blur, and distortions, necessitating
appropriate data acquisition types. For pulse sequences with
long readout times, it may be more appropriate to estimate
the fieldmap directly from the raw k-space data. A typical
scenario is that we can collect two sets of k-space data, with
slightly different echo times, from which we want to estimate
the fieldmap ω and the baseline magnetization f . A reason-
able model for the data is:

E
[
y
(l)
i

]
=

∫
f(�x) e−ı ω(�x)(ti+l�t) e−ı2π�νi·�x d�x, l = 0, 1.

This is a joint estimation problem like that described in [5].
One can define a cost function in terms of f and ω, and then
alternate between holding ω fixed and minimizing over f (us-
ing the CG method) and then holding f fixed and minimizing
over ω (using steepest descent [5] or linearization [6] or opti-
mization transfer methods akin to [7]). These k-space meth-
ods require considerably more computation than the image
domain methods, so one should first apply an image-domain
method to get a reasonable initial estimate of the fieldmap ω.

2.7. Spatial resolution analysis of fieldmap estimation

One drawback of the regularized methods (4) and (7) above
is that the user must select the regularization parameter β,
which could seem tedious if one uses trial-and-error methods.
Fortunately, it is particularly simple to analyze the spatial res-
olution properties for this problem, using the methods in [8]
for example. The local frequency response of the QPWLS
estimator (7) at the jth voxel can be shown to be

H(ω1, ω2) ≈ 1
1 + (β/wj)(ω2

1 + ω2
2)p

, (10)

where p = 1 for regularization based on first-order differ-
ences as in (5), and p = 2 for 2nd-order finite differences.
(See [9] for related analyses.) Using this form, one can use
the inverse 2D DSFT to compute the PSF h[n,m] and tabulate
its FWHM as a function of β/wj . Fig. 2 shows this FWHM
as a function of log2(β/wj), for both p = 1 and p = 2.
The FWHM increases monotonically with β, as expected, al-
though the “knees” in the curve are curious. Nevertheless,
one can use this graph to select the appropriate β given the
desired spatial resolution in the estimated fieldmap. To sim-
plify such selection, we normalize the weights in (8) by the
median of the nonzero values so that the “typical” wj value
is unity. The resulting spatial resolution will be inherently
nonuniform, with more smoothing in the regions with low
magnitudes wj and vice versa. One could explore modified
regularization methods [8] to make the resolution uniform,
but in this application nonuniform resolution seems appropri-
ate since the goals include “interpolating” across signal voids.

708



Fig. 3 shows that the shape of the PSF depends strongly
on whether one uses regularization based on 1st-order or 2nd-
order finite differences. These profiles suggest that 2nd-order
differences are preferable since the PSF tails decrease more
rapidly even when the FWHM values are identical.
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Fig. 2. Angularly averaged FWHM of PSF for fieldmap esti-
mation as a function of log2 β for wj = 1.
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Fig. 3. Profiles through reconstructed PSF corresponding to
(10) for regularization based on 1st-order or 2nd-order finite
differences. The regularization parameter β was chosen in
both cases so that the FWHM was 3 pixels.

3. DISCUSSION

We have described two regularized methods for fieldmap es-
timation, the penalized-likelihood method (4) and the PWLS
method (7). Both of these methods yield fieldmaps that inter-
polate smoothly over regions with low spin density, thereby
avoiding the phase outliers that plague the conventional esti-
mate (2).

Our analysis also shows that the conventional estimate (2)
is in fact the ML estimate, a property that has previously gone
unnoticed to our knowledge.

We also analyzed the spatial resolution properties of these
regularized methods, leading to a practical procedure for choos-
ing the regularization parameter to achieve a given desired
spatial resolution.

It is desirable to show how the field maps shown in Fig. 1
will affect the image quality for standard trajectories such as
EPI or a spiral. Space constraints prohibit such images here,
but will be shown in a longer version in preparation.
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