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Abstract
Automation has arrived to Parallel Coordinates. A geometrically motivated

classifier is presented and applied, with both training and testing stages, to 3 real
datasets. Our results compared to those from 23 other classifiers have the least
error. The algorithm is based on parallel coordinates and :

� has very low computational complexity in the number of variables and the
size of the dataset – contrasted with the very high or unknown (often un-
stated) complexity of other classifiers,

� the low complexity enables the rule derivation to be done in near real-time
hence making the classificationadaptive to changing conditions,

� provides comprehensible and explicit rules – contrasted to neural networks
which are “black boxes”,

� does dimensionality selection – where the minimal set oforiginal variables
(not transformed new variables as in Principal Component Analysis) re-
quired to state the rule is found,

� orders these variables so as to optimize the clarity of separation between the
designated set and its complement – this solves the pesky “ordering prob-
lem” in parallel coordinates.

The algorithm isdisplay independent, hence it can be applied to very large in size
and number of variables datasets. Though it is instructive to present the results
visually, the input size is no longer display-limited as forvisualdata mining.

Motivation and the Algorithm

T he display of multivariate datasets in parallel coordinates (abbr.k-coords) transforms
the search for relations into a 2-D pattern recognition problem. Until now the discovery
involved a skillful interaction between the “detective” and the data display; a process
which was illustrated in the “Multidimensional Detective” [3]. It is not surprising that
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the most persistent requests and admonitions were for tools which, at least partially,
automate the Knowledge Discovery process.

Classification is a basic task in data analysis and pattern recognition and an algo-
rithm accomplishing it is called aClassifier or Rule Finder [2], [6], [7]. The input is
a datasetP and a designated subsetS. The output is a characterization, that is a set
of conditions or rules, to distinguish elements ofS from all other members ofP the
“global” dataset. The output may also be that there is insufficient information in the
dataset to provide the desired distinction. As an example, a bank manager having data
on all his customers (here this is the setP ) may want a rule to distinguish the most
profitable (or riskiest) customers (this would be the setS) from all others. Such a task,
assuming that there is sufficient information in the dataset, can be assigned to a clas-
sifier. This paper consisting of the description and results from an automatic classifier
based onk-coords is in a sense the sequel to [3].

With parallel coordinates a datasetP with N variables is transformed into a set of
points in N-dimensional space. In this setting, the designated subsetS can be described
by means of a hypersurface which encloses just the points ofS. In practical situations
the strict enclosure requirement is dropped and some points ofS may be omitted (in
the lingo of Data Mining these points are called “false negatives”), and some points of
P � S are allowed (these are the “false positives”) in the hypersurface. The description
of such a hypersurface is equivalent to the rule for identifying, within someacceptable
error, the elements ofS. This is thegeometricalbasis for the classifier presented here.
The algorithm accomplishing this entails:

� use of an efficient “wrapping” algorithm to enclose the points ofS in a hyper-
surfaceS1 containingS and typically also some points ofP � S; soS � S1, of
course such anS1 is not unique1,

� the points in(P � S) \ S1 are isolated and the wrapping algorithm is applied to
enclose them, and usually also a few points ofS1, producing a new hypersurface
S2 with S � (S1 � S2),

� the points inS not included inS1�S2 are next marked for input to the wrapping
algorithm, a new hypersurfaceS3 is produced containing these points as well as
some other points inP � (S1 � S2) resulting inS � (S1 � S2) [ S3,

� the process is repeated alternatively producing upper and lower containment
bounds forS; termination occurs when an error criterion (which can be user
specified) is satisfied or when convergence is not achieved.

Basically, the “wrapping” algorithm is a fast way of producing a hypersurface en-
closing tightly a given point set. The kind of surface produced is a convex-hull ap-
proximation. The efficiency of the version implemented here is due to the use of the
k-coords representations of N-dimensional objects applied in the description of the
resulting hypersurface [4]. To summarize, initially the wrappingS1 encloses all the
points ofS = S0. Then in the attempt to remove all extraneous points acavity is
created by the subsequent wrapping. Such cavities are generically denoted byS2n for
n = 1; 2; :::. Usually some of the points ofS are enclosed inS2n, so a correction
follows with aS2n+1, the hypersurfaces with odd subscript, which enclose and add
these points to the previous approximation for the enclosure ofS. Such a correction
may also add some points ofP � S which need to subsequently removed, or better
reduced, to provide an increasingly tighter bound. So the process entails bounding the
designated setS alternately from above and below providing, in case of convergence,

1To avoid unnecessary verbiage by a statementSj � Sk we also mean that the set of points enclosed in
the hypersurfaceSj is contained in the set of points enclosed by the hypersurfaceSk .
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an increasingly better approximation forS. It can and does happen that the process
does not converge whenP does not contain sufficient information to characterizeS. It
may also happen thatS is so “porous” (i.e. sponge-like) that an inordinate number of
iterations are required.

At stepr the output is the description of the setSr which consists of:

� a list of the minimum number of variables needed to describeS without loss
of information. Unlike other methods, like the Principal Component Analysis
(PCA), the classifier discards only the redundant variables. It is important to
clarify this point. A subsetS of a multidimensional setP is not necessarily of
the same dimensionality asP . So the classifier finds the dimensionality ofS
in terms of the original variables and retains only those describeS. That is, it
finds thebasisin the mathematical sense of the smallest subspace containingS,
or more precisely the current approximation for it. This basis is the minimal
setMr of variables needed to describeS. We call this dimensionalityselec-
tion to distinguish it from dimensionalityreductionwhich is usually donewith
loss of information. Retaining the original variables is important in the appli-
cations where the domain experts have developed intuition about the variables
they measure. The classifier presentsMr ordered according to a criterion which
optimizes the clarity of separation. This may be appreciated with the example
provided in the attached figure, in addition,

� the current approximation of the rule stated in terms of conditions on the vari-
ablesMr , which constitutes the description of the current hypersurface, is ob-
tained.

So on convergence, say at step2n, the description ofS is provided as :

S � (S1 � S2) [ (S3 � S4) [ :::[ (S2n�1 � S2n)

this being the terminating expression resulting from the algorithm.

The implementation allows the user to select a subset of the available variables and
restrict the rule generation to these variables. In certain applications, as in process
control, not all variables can be controlled and hence it would be useful to have a rule
involving such variables that are “accessible” in a meaningful way. There are also two
options available :

� either minimize the number of variables used in the rule, or

� minimize the number of steps, in terms of the unions and (relative) complements,
in the rule.

In the first case, when the first hypersurfaceS1 is found, the variables occurring in
its description are the minimum number of variables needed to describeS. From this
point on the algorithm can be restricted to use only these. If convergence is achieved a
rule involving this minimal set of variables is obtained; we fondly refer to this variation
as Enclosed Cavitiesand abbreviate it byEC. By contrast, when the algorithm is
allowed to operate on all the initially selected variablesat each step, the number of
operations in the terminating expression is reduced. This variation of the classifier is
called Nested Cavities(abbr. NC). Clearly the minimal set of variables needed to
specifyS is not given byNC. In practice, the reduction in the number of steps between
EC andNC turns out to be substantial.

It was already pointed out that, dimensionalityselectioninvolves finding the di-
mensionality,M , of the subsetS in terms of the original variables. To illustrate, let us
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consider a setP in N-D and a subsetS � P which is contained in a p-dimensional
(p < N � 1) plane (called a p-flat) of N-D. This p-flat is positioned so that every one
of it’s points can be described as a linear combination of p variables with p being the
minimum such number (i.e. basis). ThenEC will returnM = p. NowS is rotated so
that minimallyq > p of the original variables are needed to describe every one of the
points ofS as linear combinations. In this casep < q = M � N . As an example, if
N = 3 takeP to be a cube with axes parallel edges, andS � P a line segment which
is parallel to one of the axes so thatM = 1. The line segmentS is now rotated so that
it is no longer parallel to any of the axes. In that caseM = 2 if S is contained in a
plane parallel to a principal plane orM = 3 if not. This shows that there is still room
for dimensionalityreductionmethods like PCA to be appliedafter dimensionalityse-
lection. For this will result in new variables involving theminimumnumber of original
variables. The prospect is certainly worth exploring. In the 3 cases presented next the
dimensionality was lowered significantly not only byEC but also byNC to less than
half and in one case to about 1/4 of the original variables.

One of the pesky problems in using parallel coordinates for viewing a specific
dataset is to somehow find an axes permutation which is “good” (i.e. provides rich
visual cues on what may be true or not) about thespecificdataset. There is an inher-
ent ordering emerging from dimensionality selection which, as we see below, answers
this need well. This ordering is completely dataset specific. Further, since the algo-
rithm is display independentthere is no inherent limitation as to the size and number
of variables in the dataset. The most significant limitation then in visual data mining is
finally overcome. The visual aspects can now be used for displaying the result as well
as exploring the salient features of the distribution of data brought out by the classifier.

This is not the right forum to analyze the computational complexity and other in-
tricacies of the algorithm. It is worth pointing out that achieving an “optimum”, in the
sense of minimizing the number of cavities, turns out to be an NP-complete problem.
Still the next best thing is done here in terms of discovering the cavities in order of
decreasing size. Other relevant aspects are:

� an approximate convex-hull boundary foreach cavity is obtained,

� utilizing properties of the representation of multidimensional objects ink-coords,
a very low polynomial worst case complexity ofO(N2jP j2) in the number of
variablesN and dataset sizejP j is obtained; it is worth contrasting this with the
often unknown, or unstated, or very high (even exponential) complexity of other
classifiers,

� an intriguing prospect, due to the low complexity, is that the rule can be derived
in near real-time making the classifieradaptive to changing conditions,

� the minimal subset of variables needed for classification is found,

� the rule is given explicitly in terms of conditions on these variables, in terms of
included and excluded intervals, and provides “a picture” showing the complex
distributions with regions where there is data and “holes” with no data; that can
provide significant insights to the domain experts,

Results

T hree datasets, benchmarks in classification, are used to test the classifier. The results
are then compared to those obtained with other well-known classifiers.
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On the classifiers

During 1990-1993, Michie, Spiegelhalter and Taylor [5], on behalf of the ESPRIT
program of the European Union, made extensive studies of several classifiers applied
to diverse datasets. About 23 different classifiers were applied to about 20 datasets
for comparative trials in theStatLog project. This was designed to test classification
procedures on large-scale commercially important problems in order to determine suit-
ability of the various techniques to industry. There were three main types of classifiers
used:

1. Extension to Linear Discrimination

This group includes algorithms which start with linear combinations and are
followed by non-linear transformations of various sorts. Seven (7) different such
classifiers were used named :Discrim, Logdisc, Quadisc, SMART, Backdrop,
Cascade and DIPOL92.

2. Decision Trees and Rule-Based Methods

The 9 decision tree and rule-based methods used were :NewID,AC2, Cal5,
C4.5, CART, IndCART, Baytree, CN2, ITRule

3. Density Estimates

These algorithms estimate probability density ateach point, they were :Naive-
Bay, CASTLE, ALLOC80, K-NN, RBF, Kohonen and LvQ.

Data, Results and Comparisons

Satellite image data

Satellite data is used extensively in military, meteorological, earth resources plan-
ning and lots of other applications. The specific dataset used inStatlogis from a region
in Australia. It consists of multi-spectral values and associated classificationaccording
to ground type and can be found in theStatlogftp site. Each frame consists of four dig-
ital images of the same scene in different spectral bands, two in the visible and two in
the near infra-red region. There are 36 variables (the attributes) and the class attribute
for six (6) soil types i.e. the six classes to be characterized by the classifier(s). The
data has 4435 samples(data items) for the training set and 2000 samples in the test set.
By way of explanation, for validation the dataset is partitioned intotraining andtesting
subsets, the “popular” proportions being about 2/3 to 1/3. The rule is derived, by the
classifier, on the the training set and tested on the remainder of the data; the error per-
tains to the false “positives” and “negatives”. The important measure is thetest error
which should be as small as possible; to a lesser extent the difference between the train
and test errors should be small. The comparative results are shown in Table 1 below.

By way of an example, a rule found byNC for one of the classes of this dataset re-
quired 23 out of the 35 attributes and was done in 4 iterations (i.e.only 4 hypersurfaces
were needed). The class size wasjSj = 479 (out of a total of 4435 items). It turns out
thatjS1j = 1291; jS2j = 831; jS3j = 162; jS4j = 143. Notice that,

479 = jSj = (460) + (19) = j(S1 � S2) [ (S3 � S4)j

So in this case the rule found is “exact”. Of course, this should not be taken literally
since it depends on the actual data items used for training as can be seen from the test
error. Not surprisingly the larger the datasets the more reliable are rules found and the
closer are the training and testing errors. In a great many casesS2 turned out to be the
hypersurface requiring the largest number of variables for its definition. We conjecture
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RANK CLASSIFIER
Error rate %

Train Test

1 Nested Cavities (NC) 4.3 9.0
2 k-NN 8.9 9.4
3 LVQ 4.8 10.5
4 DIPOL92 5.1 11.1
5 RBF 11.1 12.1
6 ALLOC80 3.6 13.2
7 IndCART 2.3 13.8
8 CART 7.9 13.8
9 Backprop 11.2 13.9
10 Baytree 2.0 14.7
11 CN2 1.0 15.0
12 C4.5 4.0 15.0
13 NewID 6.7 15.0
14 Cal5 12.5 15.1
15 Quadisc 10.6 15.5
16 AC2 15.7
17 SMART 12.3 15.9
18 Cascade 11.2 16.3
19 Logdisc 11.9 16.3
20 Discrim 14.9 17.1
21 Kohonen 10.1 17.9
22 CASTLE 18.6 19.4
23 NaiveBay 30.8 28.7
24 ITrule Failed Failed

Table 1: Summary of theStatLogresults and comparison with theNested Cavities
(NC) classifier for the satellite image data. The error is averaged over the six classes.

that this is an indication of the existence of many “borderline” cases (i.e. close elements
in the classS and it’s complement) and it may suggest that the class definition may be
“fuzzy”.

Vowel recognition data

This is an interesting problem in speech recognition where likely users are the
physically handicaped, or those with “busy hands”, or without keyboardaccess. The
tasks may involve changing radio frequencies in airplane cockpits, asking for stock-
market quotations on the telephone etc.

The process involves digital sampling of speech then acoustic signal processing,
followed by recognition of the phonemes, groups of phonemes and words. The goal
here is a speaker-independent rule based on 10 variables of 11 vowels occurring in
various words spoken (recorded and processed) by 15 British male and female speak-
ers. Deterding [1] collected this dataset of vowels and which can be found in the CMU
benchmark repository on the WWW. There are 528 entries for training and 462 for test-
ing. Three other types of classifiers were also applied to this dataset: neural networks
and k-NN by Robinson & Fallside [8], and Decision trees by Shang and Breiman [9].
For the sake of variety both versions of our classifier were used and a somewhat dif-
ferent error test procedure was used. The results are shown in Table 2 and speak for
themselves.

Monkey neural data

We have decided to include the result on this dataset due to its interesting and
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Rank Classifier Testing Mode Test Error Rate %

1 Nested Cavities (NC) Cross validation 7.9
2 CART-DB Cross validation 10.0
3 Nested Cavities (NC) Train & Test 10.5
4 Enclosed Cavities (EC) Cross validation 13.9
5 Train & Test 13.9
6 CART Cross validation 21.8
7 k-NN Train & Test 44.0
8 RBF Train & Test 46.5
9 Multi-layer perceptron Train & Test 49.4
10 Single-layer perceptron Train & Test 66.7

Table 2: Summary of classification results for the vowel dataset.

unusual features. Here there are two classes to be distinguished consisting of pulses
measured on two separate neurons in a monkey’s brain (poor thing!). The experiment
was conducted at the Yale Medical School and we received the data from Prof. R.
Coiffman’s group which has been working on this classification problem. There are
600 samples with 32 variables. Remarkably, convergence was obtained with only one
iteration and dimensionality selection required only 8 of the 32 parameters. The result-
ing ordering shows a striking separation. In the attached figure the first pair of variables
x1; x2 originaly given is plotted showing no separation. In the adjoining plot the best
pairx11; x14, as chosen by the classifier’s ordering, shows remarkable separation. The
discovery of this manually would require constructing and inspecting a scatterplot with
496 pairs ...! The result shows that the data consists of two “banana-like”2 clusters in
8-D one (the complement in this case) enclosing the other (class for which the rule was
found). Note that the classifier can actually describe highly complex regions. It can
build and “carve” the cavity shown. It is no wonder that separation attempts in terms
of hyperplanes or nearest-neighbour techniques can fail badly on such datasets. The
rule gave an error of 3.92 % using train-and-test with 66 % of the data for training) and
impressed the Yale group – not an easy feat!

Summary and Conclusions

� TheNested Cavities (NC)with the smaller number of steps and the larger num-
ber of variables gives, not surprisingly, constistently better results than theEn-
closed Cavities (EC)version of the classifier.

� The larger the dataset the better the classification results.

� The classifier works best with continuous variables though it can handle well a
small (i.e. no more than 20 % of the total) number of categorical variables.

The geometric formulation combined with the results on the representation of mul-
tidimensional objects ink-coords gave a classifier with remarkably low computational
complexity. This makes feasible the classification of truly large in size and number of
variable datasets something we hope to test with suitable partners in the near future.
The low complexity, enables the derivation of the rule in near real-time, andthenap-
ply it to incoming data, rendering the classifieradaptive to changing conditions. The
rules provided are explicit, and “visualizable” and yield dimensionality selection which
choses and orders the minimal set of variables needed to state the rulewithout loss of
information . As it often happens such work raises new questions, on termination crite-
ria, automatic approaches to overfiting, interpretation of the “geometry” of the dataset

2One observer suggested that this was due to the monkey’s thinking of bananas during this fateful exper-
iment ...!
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as described by the rule and others. Automation with of Knowledged Discovery with
parallel coordinates in finally in sight.

Internet Repositories

1. ftp.ics.uci.edu/pub/machine-learning-databases

2. ftp.ics.uci.edu/pub/machine-learning-databases/statlog

3. clyde.boltz.cs.cmu.edu/bench.html
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