PDA: Privacy-preserving Data Aggregation in Wireless Sensc
Networks

Wenbo He Xue Liu Hoang Nguyen

Klara Nahrstedt Tarek Abdelzaher

Department of Computer Science
University of lllinois at Urbana-Champaign
Champaign, IL, 61801, United States

Abstract— Providing efficient data aggregation while preserv- ing local recommendations. Without providing proper privacy
ing data privacy is a challenging problem in wireless sensor net- protection, such applications of WSNs will not be practical,

works research. In this paper, we present two privacy-preserving
data aggregation schemes for additive aggregation functions. The
first scheme —Cluster-based Private Data Aggregation (CPBA)

since participating parties may not allow tracking their private
data. In this paper, we discuss how to carry privacy-preserving

leverages clustering protocol and algebraic properties of poly- data aggregation in wireless sensor networks. In the following,
nomials. It has the advantage of incurring less communication we first elaborate two specific motivating applications of using

overhead. The second scheme Slice-Mix-AggRegaTe (SMARF  wireless sensor network to carry out private data aggregation.

builds on slicing techniques and the associative property of addi-
tion. It has the advantage of incurring less computation overhead.
The goal of our work is to bridge the gap between collaborative
data collection by wireless sensor networks and data privacy.
We assess the two schemes by privacy-preservation efficacy,

1) As alluded above, wireless sensors may be placed in
houses to collect statistics about water and electricity
consumption within a large neighborhood. The aggre-
gated population statistics may be useful for individual,

communication overhead, and data aggregation accuracy. We
present simulation results of our schemes and compare their
performance to a typical data aggregation scheme FAG, where
no data privacy protection is provided. Results show the efficacy
and efficiency of our schemes. To the best of our knowledge, this
paper is among the first on privacy-preserving data aggregation
in wireless sensor networks.

business, and government agencies for resource planning
purposes and usage advice. However, the readings of
sensors could reveal daily activities of a household, such
as when all family members are gone or when someone
is taking a shower (different water appliances have
distinct signatures of consumption that can reveal their
identity). Hence we need a way to collect the aggregated
sensor readings while at the same time preserve data
privacy.

Future in-home floor sensors, collecting weight infor-
mation, are used together with shoe-mounted sensors,
collecting exercise-related information, in an obesity
study to correlate exercise and weight loss. Aggregate
statistics from those data are useful for agencies such as
Department of Health and Human Services, as well as
insurance companies for medical research and financial
planning purposes. However, individual’s health data
should be kept private and not be known to other people.

I. INTRODUCTION

A wireless sensor network (WSN) is an ad-hoc network
composed of small sensor nodes deployed in large humber
to sense the physical world. Wireless sensor networks have)
very broad application prospects including both military and
civiian usage. They include surveillance [1], tracking at
critical facilities [2], or monitoring animal habitats [3]. Sensor
networks have the potential to radically change the way people
observe and interact with their environment.

Sensors are usually resource-limited and power-constrained.
They suffer from restricted computation, communication, and
power resources. Sensors can provide fine-grained raw data.
Alternatively, they may need to collaborate on in-network From these data aggregation examples, we see why preserv-
processing to reduce the amount of raw data sent, thog the privacy of individual sensor readings while obtaining
conserving resources such as communication bandwidth @&egurate aggregate statistics can be an important requirement.
energy. We refer to such in-network processing generically &be protection of privacy also gives us add-on benefits includ-
data aggregationIn many sensor network applications, théng enhanced security. Consider the scenario when an adver-
designer is usually concerned with aggregate statistics sucrsagy compromises a portion of the sensor nodes: when there is
SUM AVERAGE or MAX/MIN of data readings over a certainn0 privacy protection, the comprised nodes can overhear the
region or period. As a result, data aggregation in WSNs heata messages and decrypt them to get sensitive information.
received substantial attention. However, with privacy protection, even if data are overheard

As sensor network applications expand to include increa@nd decrypted, it is still difficult for the adversary to recover
ingly sensitive measurements of everyday life, preserving d&gnsitive information.
privacy becomes an increasingly important concern. For exam-Consequently, providing a reasonable guideline on building
ple, a future application might measure household details sugfstems that perform private data aggregation is desirable. It is
as power and water usage, computing average trends and nveddl-known that end-to-end data encryption is able to protect



private communications between two parties (such as the dafeeless sensor networks. Section IV provides our two algo-
source and data sink), as long as the two parties have agmitkms for private data aggregation. Section V evaluates the
ment on encryption keys. However, end-to-end encryption proposed schemes. We summarize our findings and lay out
link level encryption alone isiot a good candidate for private future research directions in Section VI.

data aggregation. This is because: IR Wo
. RELATED RK
1) If end-to-end communications are encrypted, the in- . )
termediate nodes could not easily perform in-network In typical wireless sensor networks, sensor nodes are usually

processing to get aggregated results resource-constrained and battery-limited. In order to save

2) Even when data are encrypted at the link level, the othgSources and energy, data must be aggregated to avoid
end of the communication is still able to decrypt it an&verwhelmln_g amounts of traffic in the_ network. Thgre has
get the private data. Hence privacy is violated. been extensive work on data aggregation schemes in sensor

) ] ] networks, including [4], [5], [6], [7], [8], [9]. These efforts
Though research on privacy-preserving computation hggare the assumption that all sensors are trusted and all com-
been active in other domains including cryptography and daiqnications are secure. However, in reality, sensor networks
mining, previously-studied schemes are not readily applicablg, jikely to be deployed in an untrusted environment, where
to private data aggregations in WSNs. Most of them are eiﬂ'lﬁ{ks, for example, can be eavesdropped. An adversary may
not suitable for or too computational-expensive to be used éBmpromise cryptographic keys and manipulate the data.
Fhe res.ogrce—co_nstrained sensor networks, as we will discusgork presented in [10], [11], [12] investigates secure data
in detail in Section II. aggregation schemes in the face of adversaries who try to
In this paper, we present two privacy-preserving data agggmper with nodes or steal the information. Work presented
gation schemes calle@luster-based Private Data Aggregationjn [13], [14] shows how to set up secret keys between sensor
(CPDA) and Slice-Mix-AggRegaTe (SMARTgspectively, for npodes to guarantee secure communications. For most existing
additive aggregation functions in WSNs. The goal of our workecyre data aggregation schemes though, an intermediate ag-
is to bridge the gap between collaborative data aggregatigfegation node has to decrypt the received data, then aggregate
and data privacy in wireless sensor networks. When theregig gata according to the corresponding aggregation function,
no packet loss, in bottPDAandSMART the sensor network ang finally encrypt the aggregated result before forwarding
can obtain greciseaggregation result while guaranteeing that This sequence is fairly expensive for data aggregation in
no private sensor reading is released to other sensors. Obsgpsor networks. To reduce computational overhead, Girao et
that this is a stronger result than previously proposed protocgis [16] and Castelluccia et al. [17] propose using homomor-
that are able to computgproximateaggregates only (without phic encryption ciphers, which allow efficient aggregation of
violating privacy). Our presented schemes can be built @ncrypted data without decryption involved in the intermediate
top of existing secure communication protocols. Thereforggdes. Though these schemes are more efficient and can
both security and privacy are supported by the proposed dgivide end-to-end privacy, they do not protect the private
aggregation schemes. data of a node from being known by other neighboring or
In the CPDA scheme, sensor nodes are formed randomtermediate nodes. This is because when the neighboring or
into clusters. Within each cluster, our design leverages ahtermediate nodes know the encryption key, they can decrypt
gebraic properties of polynomials to calculate the desirgde private data. In contrast, the private data aggregation
aggregate value. At the same time, it guarantees that §hemes we present in this paper can guarantee that the private
individual node knows the data values of other nodes. Thata of a sensor node is not released to any other nodes.
intermediate aggregate values in each cluster will be furtherprivacy has also been studied in the data mining do-
aggregated (along an aggregation tree) on their way to tein [18], [19], [20], [21]. Two major classes of schemes are
data sink. In theSMARTscheme, each node hides its privatgsed. The first class is based on data perturbation (random-
data by slicing it into pieces. It sends encrypted data slicesjs@tion) techniques. In a data perturbation scheme, a random
different intermediate aggregation nodes. After the pieces afigmber drawn from a certain distribution is added to the
received, intermediate nodes calculate intermediate aggregsigate data. Given the distribution of the random perturbation,
values and further aggregate them to the sink. In both schemesovering the aggregated result is possible. At the same time,
data privacy is preserved while aggregation is carrying outby using the randomized data to mask the private values,
We evaluate the two schemes in terms of efficacy of privagyivacy is achieved. However, data perturbation techniques
preservation, communication overhead, and data aggregatiive the drawback that they do not yield accurate aggregation
accuracy, comparing them with a commonly used data aggresults. Furthermore, as shown by Kargupta et al. in [20] and
gation schemelAG [4], where no data privacy is provided.by Huang et al. in [21], certain types of data perturbation might
Simulation results demonstrate the efficacy and efficiency nét preserve privacy well.
our schemes. Another class of privacy-preserving data mining
The rest of the paper is organized as follows. Section $themes [22], [23], [24] is based on Secure Multi-party
summarizes the related work. Section Ill describes the modabmputation (SMC) techniques [25], [26], [27]. SMC deals
and requirements of privacy-preserving data aggregation viith the problem of a joint computation of a function with



multi-party private inputs. SMC usually leverages public-key network, thus reduce resource and power usage. Data
cryptography. Hence SMC-based privacy-preserving data aggregation achieves bandwidth efficiency by using in-
mining schemes are usually computationally expensive, network processing. In private data aggregation schemes,
which is not applicable to resource-constrained wireless additional overhead is introduced to protect privacy.
sensor networks. However, a good private data aggregation scheme should
As we will show in the rest of this paper, unlike previous keep that overhead as small as possible.
privacy-preserving approaches, our new private data aggre3) Accuracy: An accurate aggregation of sensor data is
gation schemes have the advantages: (1) They preserve data desired, with the constraint that no other sensors should
privacy such that individual sensor data is only known to their ~ know the exact value of any individual sensor. Accuracy
owner; (2) The aggregation result is accurate when there is no  should be a criterion to estimate the performance of
data loss; (3) They are more efficient and hence more suitable private data aggregation schemes.
for resource-constrained wireless sensor networks. )
C. Key Setup for Encryption
IIl. M ODEL AND BACKGROUND To set context for our work, in this section, we first briefly
A. Sensor Networks and the Data Aggregation Model review a random key distribution mechanism proposed in [13],
In this paper, a sensor network is modeled as a connectedwhich our proposed schemes operate.
graphG(V, £), where sensor nodes are represented as the sebecurity Assumptions and Key Setup:
of verticesV and wireless links as the set of edgésThe In the new private data aggregation algorithmSRDA and
number of sensor nodes is defined|&$= N. SMARTF some messages are encrypted to prevent attackers
A data aggregation function is defined agt) = from eavesdropping. Our schemes can be built on top of exist-
f(di(t),da(t),---,dn(t)), whered;(t) is the individual sen- ing key distribution and encryption schemes in wireless sensor
sor reading at time for node:. Typical functions off include networks. Here, we briefly review a random key distribution
sum average min, max and count If d;(¢ = 1,---,N) is mechanism proposed in [13] which we use in the design of
given, the computation ofy at a query server (data sink)our schemes.
is trivial. However, due to the large data traffic in sensor In [13], key distribution consists of three phases: (1)key
networks, bandwidth constraints on wireless links, and largee-distribution, (2)shared-key discovery, and (3)path-key es-
power consumption of packet transmitlprdata aggregation tablishment. In the pre-distribution phase, a lakgg-poolof
techniques are needed to save resources and power. K keys and their corresponding identities are generated. For
In this paper, wg focus on additive aggregation functionsach sensor within the sensor netwokkkeys are randomly
. . . : . drawn from thekey-pool Thesek keys form akey ring for
that s, f(t) = Z; dit). It is worth noting that using a sensor node. During the key-discovery phase, each sensor
additive aggregation functions is not too restrictive, singgode finds out which neighbors share a common key with
many other aggregation functions, includiagerage count itself by exchanging discovery messages. If two neighboring
variance standard deviationand any othemomentof the npodes share a common key then there is a secure link between
measured data, can be reduced to the additive aggregatigp nodes. In the path-key establishment phase, a path-key is
function sum[17]. assigned to the pairs of neighboring sensor nodes who do not
B. Requirements of Private Data Aggregation shar_e a common _key but can be connected by two or more
: : . _ ulti-hop secure links at the end of the shared-key discovery
Protecting the data privacy in many wireless sensor netwonkase_

gpplications_is a major concern. The follqwing criteria summ > In the random key distribution mechanism mentioned above
rize the desirable characteristics of a private data aggregat{He probability that any pair of nodes possess at least one

scheme.: common key is:
1) Privacy: Each node’s data should be only known to )
itself. Furthermore, the private data aggregation scheme » =1 (K- k)" )
should be able to handle to some extent attacks and conmee (K —2k)!K!

collusion among compromised nodes. When a sensoi ¢t the probability that any other node can overhear the
network is under a malicious attack, it is possible th%tncrypted message by a given key BSernear It is the

some nodes may collude to uncover the private dglgspability that a third node possesses the same key as this
of other node(s). Furthermore, wireless links may bg,qe. Therefore

eavesdropped by attackers to reveal private data. A good k 5
private data aggregation scheme should be robust to such Poverhear = 72+ @
attacks.

The key distribution algorithm discussed above is efficient

2) Efficiency: The goal of data aggregation is o0 reducg, yorms of using a small number of keys to support secure
the number of messages transmitted within the sensQfi\munication in a large-scale sensor network, hence prevent-

1A Berkeley mote consumes approximately the same amount of energylR eavesdroping. This is illustrated in the following numerical
compute 800 instructions as it does in sending a single bit of data [4]. example.



Assume a key pool of siz& = 10000, and key ring size
of £ = 200. The probability that any pair of nodes can find a
shared key in common i8.onnec: = 98.3% by Equation (1).
In other words, the probability that a pair of hodes does not
share a common key i$.7%. For these pairs who do not (®)
share a common key, they can use the path-key establishme’
procedure described above to establish a shared key. Once a © @ @
pair of nodes select a shared key, the probability that any other

node owns the same Key ji8,crhear = % = 0.2%, which is (@) Query Server Q triggers a (b) A and X become cluster
very small query by HELLO message. A re- leader, so they broadcast the

: cipient of HELLO message elects HELLO message to their neigh-
itself as a cluster leader randomly. bors.

IV. PRIVATE DATA AGGREGATIONPROTOCOLS

In this section, we present two private data aggregation
protocols focusing on additive data aggregation. The first ® @
scheme is calledCluster-based Private Data Aggregation ®
(CPDA) It consists of three phases: cluster formation, cal- ®
culation of the aggregate results within clusters, and cIust
data aggregation. The second scheme is callglite-Mix-

AggRegaTe (SMART)In SMART each node hides its private
5

data by slicing the data and sending encrypted data slices t XS
different aggregators. Then the aggregators collect and forw
data to a query server. When the server receives the aggreg@g)egodeE receives multi-

(d) Several clusters have been constructed

data, it calculates the final aggregation result. ple HELLO messages, then and the aggregation tree of cluster leaders is
) _ E randomly selects one to formed

A. Cluster-based Private Data Aggregation (CPDA) join.

1) Formation of Clusters: The first step inCPDA is to Fig. 1. Formation of clusters
construct clusters to perform intermediate aggregations. We
propose a distributed protocol for this purpose. — ‘f;‘;:j:;:‘ 7”5"011‘5’::;};6"‘1

The cluster formation procedure is illustrated in Figure 1. A
qguery servelQ triggers a query by {ELLO message. Upon \_;,@\% @

N\Z.

receiving theHELLO message, a sensor node elects itself as x :> Oéf/;i@ @%\\\S‘; :>
a cluster leader with a probability., which is a preselected S AN 4 F
Yy z S c 3/ B

parameter for all nodes. If a node becomes a cluster Ieade \@ _Eﬂfi_vf*_kf_— e

will forward the HELLO message to its neighbors; otherwise, Broad . (2)Enli:§/(pvtc’alx<ftci)send (3yBroadcast assembied
the node waits for a certain period of time to geELLO ~ (1Broadeastseeds customized values information F ,, Fy, F,
messages from its neighbors, then it decides to join one of the
clusters by broadcasting JOIN message. As this procedure

goes on, multiple clusters are constructed.

2) Calculation within Clusters: The second step @PDA g:ereﬁ“ andr4 are two random numbers generated by node

Fig. 2. Message exchange

is the intermediate aggregations within clusters. To simpli and known only to noded. Similarly, node B and C

the discussion, we use a simple scenario, where a clu e latev? vE . vB andvC <. +C indenendently as:
contains three memberst, B, andC. a, b and ¢ represent VA, VB, Ve va,VB, Y0 P y as.

the private data held by nodes B and C, respectively. Let NodeB:v8 = b+ rPa+rPa?
A be the cluster leader of this cluster. LBtandC be cluster B _ pugBy B2
members. Our privacy-preserving aggregation protocol based VB LyTrny,
B B B2
on the additive property of polynomials. Figure 2 illustrates ve = bzt
the message exchange among the three nodes to obtain the
desired sum without releasing individual private data. NodeC :v§ = c+r¥z+r§a?,
First, nodes within a cluster share a common (non-private) S = c+rSy+ry?
knowledge of non-zero numbers, refer toseedsz, y, andz, WC = earChygCy2
which are distinct with each other (as shown in Figure 2(1)). = 1 2o
Then nodeA calculates Then nodeA encryptsv and sends td using the shared key
oA = a4 el 4 rda? betweenA andB. It also encrypt@é and sends f[(ﬂ. using the
; " e sharing key betweeml and C' (Figure 2(2)). Similarly node
VB =a Ty T2y, B encrypts and sends; to A andv5 to C; nodeC encrypts

ve = a+ iz +ry2? and sends/§ to A andv§ to B. When nodeA receivesv’



and v§, it has the knowledge ot} = a + r{'z + rs'a?,

vB = b+ rPr +rP2? and v = ¢+ r{x + r§a?. Next,

node A calculates assembled valug, = v4 + o5 + 0§ =

a+b+c)+rx+ e, wherer; = rff + 78 + ¢ and
1 1 1

to join another cluster. In the following, we show that given
a properp,., the percentage of clusters that need to merge is
small, and the cluster size is in a reasonable range.

We model a sensor network as a random network, assuming

ry =14 +r8 +r¢. Similarly nodeB and C calculate their d is the average degree of a node. If a nade the cluster

assembled valueBg = vy +vE +v§ = (a+b+c) +riy+

roy? and Fo = vé + vg + vg = (a+b+c)+riz+re2?

respectively. Then nod8 andC broadcast's and F; to the
cluster leaderd (Figure 2(3)). So far, nodel knows all the
assembled values:

Fa=v4408 +0§ = (a+b+¢) +riz+ rea?,
Fp=vp+vp +og = (a+b+c)+ry+ry’,
FC:vé+vg+vgz(a+b+0)+7"12’+7‘222-

3

Then the cluster leadet can deduce the aggregate value-
b+ ¢). This is because:,y, z, Fa, Fg, F are known toA.
By rewriting Equation (3) as

U=G'F, 4)
1 =z =z a+b+ec
whereG= |1 y v* |,U= r1 ,and F =
1 2z 22 T9

[Fa, Fp, Fc]', a+ b+ cis known as the first element &f.
Note thatG is of full rank, becauser, y and z are distinct
numbers.

It is necessary to encrypts, v4, v5, vE, v9, andv§. For
example, if nodeC' overhears the values, then C' knows
v, v&, and Fy4, thenC can deduceyy = F4 — v — 08,
and further it can obtaim if x, v4, va, v& are known.
However, if nodeA encryptsvs and sends it to nod®, then
node C' cannot getvs. With only v4, F4 andz from node

A, nodeC cannot deduce the value af However, if nodes

B andC collude by releasing!’s information ¢ andv) to

each other, them’s data will be disclosed. To prevent such
collusion, the cluster size should be large. In a cluster of size 04|
m, if less than(m — 1) nodes collude, the data won't be

disclosed.

3) Cluster Data Aggregation: A common technique for
data aggregation is to build a routing tree. We implement

leader of a cluster of’;, then the probability that a neighbor
of i joins theC; is

p; = P(a neighbor ofi joins C;) = (1 — pc)ai7

Pc

wherel —p.. is the probability that the neighbor is not a leader
of another cluster. Only in this case is the neighbor able to join
C;. A neighbor is surrounded byp.. cluster leaders including
i, thereforeﬁ is the probability that a non-leader neighbor
of i joins C;. The probability that cluste€; hask members
is:

(®)

d

Pici=n=( 2, )t a-p @)

Therefore, the percentage of clusters that need to merge is
given by:

me—1
P(Cil<me) = Y P(Ci|=k)
k=1
me—2 E _
= ( L >pik(1—pz)dk @)
k=0
25% - — 7 I:lpczm
ol i I:lpC:l/S |
-pc:1/5

Percentage

OHHHI Hﬂmﬂlnll

1 2 3 4 5 6 7 8 9 10 11
Cluster size (degree =20)

Fig. 3. Distribution of cluster size with different.

CPDAoon top of the TAG Tiny AGgregation [4] protocol. Each B
cluster leader routes the derived sum within the cluster backFor a fixed network density, for examplé= 20, P(|C;| <

towards the query server through a TAG routing tree rooted3t = 6.9% if p. =

the server.
Discussions on Parameter Selection i€PDA

1/5; P(|C;| < 3) = 1.8% if p. =
1/6. Figure 3 shows that the distribution of cluster size can
be controlled by parametes. without merging. By local

In CPDA a larger cluster size introduces a larger conbservation of any sensor node, the number of clusters is
putational overhead (Equation (4). However, a larger clustef + 1)p.. On the other hand, if we desire nodes in each
size is preferred for the sake of improved privacy under noduster, then the desired cluster size shouldibé. Therefore,

collusion attacks. ICPDA, we should guarantee a cluster sizé we target the cluster size arourtd and choose, = .
m > 3. Generally, let’s define:. as the minimum cluster size.

1
Tk

We should sein. > 3. Next, we discuss how to ensure ever- Slice-Mix-AggRegaTe (SMART)

cluster has a cluster size larger tharn., and how to tune

parameterp. to reduce communication overhead dfuster
formation phase.
If a clusterC; has a size smaller tham,, (|C;| < m.),

One drawback of the cluster based protocol is the compu-
tational overhead of data aggregation within clusters (Equa-
tion (4)). In this section, we present a new scheBMART
which reduces computational overhead at the cost of slightly

the cluster leader of’; needs to broadcast a “merge” requeshcreased communication bandwidth consumption. As the



name suggests, “Slice-Mix-AggRegaTeMART)” is a three-
step scheme for private-preserving data aggregation.

Step 1 (“Slicing”): Each node (: = 1,---, N), randomly
selects a set of nodes (J = |S;|) within k hops. For a dense
WSN, we can takér = 1. Node: then slices its private data
d; randomly intoJ pieces (i.e., represents it as a sum.Jof

numbers).
One of theJ pieces is kept at nodeitself. The remaining
J — 1 pieces are encrypted and sent to nodes in the randomly (@) Slicing J = 3,h = 1)ds;(i # j) Is

encrypted and transmitted from nodeo j, where

selected sef5;. We denoted;; as a piece of data sent from @ 8. dis is the data piece kept at node

nodei to nodej. For nodes to which nodedoes not send any
slice, d;; = 0. The desired aggregate result can be expressed Ty Tymdyptdyytdgytdsytdg,
as

N N N
= d; = dyj, 8
d ; ZZ ’ © +d,@ r,=d @ﬂi ®r1:d2,1+d“

=1 j=1 ro=d +d T, 37 Uy TdyyTdyy
whered;; = 0,Vj € S;.
Step 2 (“Mixing”) : When a nodej receives an encrypted redyetdsgtdgtdyg  Tedytd gt rdy,
slice, it decrypts the data using its shared key with the sender. (b) Mixing: Each node decrypts all data pieces received
Upon receiving the first slice, the node waits for a certain time, and sums them up including the one kept at itséifX
which guarantees that all slices of this round of aggregation are asri.
received. Then, it sums up all the received slices= > ;" d;;, o L

Wheredij =0, g S;.
Step 3 (“Aggregation”): All nodes aggregate the data and
send the result to the query server. Similar to the aggregation
step of CPDA the aggregation is designed using tree-based s
routing protocols. When a node gets all data slices, it forwards
a message of the sum addressed to its parent, which in
turn forwards the message along the tree. Eventually the
aggregation reaches the root (query server). Since

Query
Server

(c) Aggregation (No encryption is needed)

N N N N N
Z rj = Z Z dij = Z Z dij. 9) Fig. 4. |lllustration of three steps IBMART
j=1

j=1i=1 i=1 j=1

The final d?‘ta at the root is the aggregation of all sensor dé\tﬁat is, there are two cases that may lead to privacy violation:
f by Equatlpn (8) and (9). (1) An unauthorized sensor node holds a communication key
Figure 4 illustrates the 3—s_tep scheme 9f fBMART_p_ro- and is able to decrypt messages sent fronnder our key
IQCOI for a sensor network with network sizeé :,7’ slicing distribution mechanism, the probability that an eavesdropper
siz€ J = 3, and hop length. = 1. For SMART in step 1, has the communication key used fpnd one of its neighbors
sliced data should be encrypted asURDA IS Poverhear (EQuation (2)). (2) Multiple neighbors efcollude
V. EVALUATION to steal private data collected by, We can assume the

In this section we evaluate the private-preserving dapicPapility that any two nodes collude igoiiude-

aggregation schemes presented in this paper. We evaluatg®" thf simplicity of derivation, let us defin@.crnear =
how our schemes perform in terms of privacy-preservatiobketiude = d- 4 IS interpreted as the probability that the link
efficiency, and aggregation accuracy. We TAG [4], a typical level privacy is broken. A privacy metri®(q) is defmed as
data aggregation scheme as the baseline. Since the delffnProbability that the private data of nodeis disclosed

of TAG does not take privacy into consideration, no daf@’ @ giveng under either conditions abov&(q) measures
privacy protection is provided. We only use it to evaluatthe performance of the privacy-preservation of a private data

the efficiency and aggregation accuracy compared with diggregation scheme.

proposed schemes. 1) Privacy-preservation Analysis dEPDA: In the CPDA
) ) ] scheme, private data may be disclosed to neighbors only when
A. Privacy-preservation Efficacy the sensor nodes exchange messages within the same cluster.

In order to evaluate the performance of privacy-preservatioBjven a cluster of sizen, a node needs to send — 1
we first define the privacy metric. In wireless sensor networkancrypted messages to other-1 members within the cluster.
private data of a sensor nodenay be disclosed to others wherOnly if a node knows alln — 1 keys, can it crack all other
attackers can eavesdrop on communication and/or collude— 1 neighbors’ private data. Otherwise, no data is disclosed.



ConsequentlyP(q) is estimated as

dmac

Plg)= Y. Plm=k)(1—(1—g

k=m,

(k=1)x (k—2)
2

M), (10)

@

o
g
S S

Percentage that private data is disclosed
8

whered, ... IS the maximum cluster sizen. is the required
minimum cluster sizeP(m = k) represents the probability
that a cluster size i&. Figure 5 shows that under different
cluster sizes, an eavesdropper has to break all the dashed links
to steal other members’ private data. In a cluster, either all or
none private data is known to an eavesdropper. Assuming the
probability for an eavesdropper to break one dashed link is
then qw is the probability that a node can overhear
all encrypted messages to other members in the cluster of size
k, and thus know their private data.

-7

>
-

00z 003 004 005 006 G7 o008 o009 o1
q: probability that link level privacy is broken

(a) CPDA

PO S S ] il il

1 000z 003 004 005 006 007 008 009 O
q: probability that link level privacy is broken

m=3 m=4 m=5 m=6 (b)SMART
é l g i] X | X Fig. 6. P(q) underCPDA and SMART
Eavesdropper Eavesdropper . .
Eavesdropper Eavesdropper B. Communication Overhead

Fig. 5. An eavesdropper has to break all the dashed links to steal all privateCPDA and SMART use data-hiding techniques and en-
data in a cluster; otherwise no private data is disclosed crypted communication to protect data privacy. This introduces
some communication overhead. In order to investigate band-
2) Privacy-preservation Analysis of SMARIM the SMART width efficiency of these schemes, we implemer@&DAand
scheme, a sensor nodeslices its private data intd pieces SMARTIn ns2on top of the data aggregation component of
and then encrypts and sends- 1 pieces to its neighbors. It TAG. We did extensive simulations and collected results to
keeps one piece to itself. As a result, the out-degree isf compare these two schemes together WitkG (no privacy
J — 1 and the in-degree of is the number of neighbors whoprotection). In our experiments, we consider networks with
encrypt and send data piecess00Only if an eavesdropper 600 sensor nodes. These nodes are randomly deployed over
breaksJ — 1 outgoing links and all incoming links of a nodea 400meters x 400meters area. The transmission range of a
s, will it be able to crack the private data held ®yTherefore, sensor node i50 meters and data rate isMbps

P(q) can be approximated by At the beginning of each simulation, a query is delivered
from the query server to the sensor nodes. SimilaFfAG [4],
dmag the query specifies ampoch durationF, which is the amount

Pg) =q""" Z P(in — degree = k) ¢, A1) of time for the data aggregation procedure to finish. Upon
k=0 receiving such a query, a parent node on the aggregation tree
whered, 4 is the maximum in-degree in a networR(in — subdivides the epoch such that its children are required to
degree = k) is the probability that the in-degree of a node isleliver their data (protected data (DPDA and SMART or
k. unprotected data iTAG) in this parent-defined time interval.
Figure 6 compares privacy-preservation performance ofFigure 7(a) shows the communication overheadTA®G,
CPDAandSMARTVvia simulation, where we consider a 1000CPDA with p. = 0.3, and SMARTwith J=3 under different
node random network. The average degree of a notle. i8s epoch durations. We use the total number of bytes of all
we can see from Figure 6, faPDA the smaller the value packets communicated during the aggregation as the metric.
of p. (the probability of a node independently becoming Bach point in the figure is the average result of 50 runs of
cluster leader), the larger the average cluster size, hence tlhe simulation. In each run, one randomly generated sensor
better the privacy-preservation performance is. However, ifreetwork topology is used. The vertical line of each data point
cluster size is larger, the computational overhead to compuépresents th65% confidence interval of the data collected.
the intermediate aggregation value by Equation (4) will also Simulation results can be explained by analyzing the num-
be larger. IN'SMART the larger the value off (the number ber of exchanged messages in each schem&AB, each
of slices each node chooses to decompose its private datage needs to send messages for data aggregation: one
the better privacy can be achieved. However, a latfevill Hello message to form an aggregation tree, and one message
also yield larger communication overhead. For b@RDA for data aggregation. In our implementation GPDA a
and SMART there is a design tradeoff between the privacgluster leader sends roughlymessages and cluster members
protection and computation/communication efficiency. sends3 messages for private data aggregation. Accordingly,
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Fig. 8. Accuracy under collision and packet loss

4p. + 3(1 — p.) = 3+ p. is the average number of messageS. Accuracy
sent by a node iCPDA Thus, the message overheaddRDA |, jdeal situations when there is no data loss in the netiork
is less than twice as that TAG. SMARTwith J = 3, needs to poth CPDAandSMARTshould getl00% accurate aggregation
exchange2 messages during the slicing step anhdhessages results. However, in wireless sensor networks, due to collisions
for data aggregation (the same &C). Hence, each node gyer wireless channels and processing delays, messages may
needst messages for the private data aggregation. Therefogays |ost or delayed. Therefore, the aggregation accuracy is
the overhead 0BMARTIs double that ofTAG. affected. We define the accuracy metric as the ratio between
Now let us further study the effect @f. on the communi- the collected sum _by_t_he data aggregation sc_heme used and
cation overhead ir€PDA Figure 7(b) shows the result Withthe real sum of all individual sensor nodes. A higher accuracy
— 0.1.0.2.0.3 respectivelv. As we can see the larger th\éalue means the collected sum using the specific aggregation
Pe = 15502, L P - S ' 9 scheme is more accurate. An accuracy valué.ofrepresents
p. value, the larger the communication overhead. It is VelY ideal situation
interesting to notice that whep. = 0.1, communication Figure 8(a) shoWs the accuracy BAG, CPDA (with p, —
106 small, many nodes cannot be sovered due o meuficidg) 21 SWART (it J=3) from our simulaion. Here we
' y : . Hive two observations. First, the accuracy increases as the
number of cluster Ieaders' Th's. also explains why accuracyelgoch duration increases. Two reasons contribute to this: 1)
very low whenp. = 0.1 (in Section V-C). With a larger epoch duration, the data packets to be sent
Finally, let us study the effect of on the communication yvithin this duration will have Iess_ chqnce to collide QUe to the
overhead iNSMART Figure 7(c) shows the result witli = increased average packet sending .|ntervals; 2) With a larger
2,3,4 respectively. As we can see, the larger thevalue, €Poch duration, the data packets will have a better chance of

the larger the communication overhead. This is becalisePeing delivered within the deadline. The second observation
represents the number of slices each node chooses to dec§ni)at TAG has better accuracy thalPDAand SMART That
pose its private data into. Since, in slicing phase of SMARTS because without the communication overhead introduced by
each node send$ — 1 pieces of sliced data to its selectedPlivacy-preservation, there will be less data collisions.
neighbors. Including one message for tree formation and ond 1gure 8(b) shows the aggregation accuracyC#DA with

for aggregation, the total number of messages exchanged&gPect to the selection of.. First, we see when using the

roughly proportional to/ + L. _Hence the larger the value of 2paia |oss may be caused by collision in wireless channels, deadline
J, the larger the communication overhead. missing or disconnection to the query server through an aggregation tree
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