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Abstract— It is often useful to know the geographic positions of
nodes in a communications network, but adding GPS receivers or
other sophisticated sensors to every node can be expensive. MDS-
MAP is a recent localization method based on multidimensional
scaling (MDS). It uses connectivity information—who is within
communications range of whom—to derive the locations of the
nodes in the network, and can take advantage of additional data,
such as estimated distances between neighbors or known positions
for certain anchor nodes, if they are available. However, MDS-
MAP is an inherently centralized algorithm and is therefore of
limited utility in many applications. In this paper, we present
a new variant of the MDS-MAP method, which we call MDS-
MAP(P) standing for MDS-MAP using patches of relative maps,
that can be executed in a distributed fashion. Using extensive
simulations, we show that the new algorithm not only preserves
the good performance of the original method on relatively
uniform layouts, but also performs much better than the original
on irregularly-shaped networks. The main idea is to build a
local map at each node of the immediate vicinity and then
merge these maps together to form a global map. This approach
works much better for topologies in which the shortest path
distance between two nodes does not correspond well to their
Euclidean distance. We also discuss an optional refinement step
that improves solution quality even further at the expense of
additional computation.

I. INTRODUCTION

Large-scale networks with hundreds and even thousands of
very small, battery-powered and wirelessly connected sensor
and actuator nodes are becoming a reality [1]. For example,
future sensor networks will involve a very large number
of sensor nodes densely deployed over physical space. In
particular, the nodes are typically highly resource-constrained
(processor, memory, and power), have limited communication
range, are prone to failure, and are put together in ad-hoc
networks.

Imagine a network of sensors sprinkled across a large build-
ing or an area such as a forest. Typical tasks for such networks
are to send a message to a node at a given location (without
knowing which node or nodes are there, or how to get there),
to retrieve sensor data (e.g., sound or temperature levels) from
nodes in a given region, and to find nodes with sensor data
in a given range. Most of these tasks require knowing the
positions of the nodes, or at least relative positions among
them. With a network of thousands of nodes, it is unlikely
that the position of each node has been pre-determined. Nodes
could be equipped with a global positioning system (GPS) to
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provide them with absolute position, but this is currently a
costly solution.

MDS-MAP [2] is a newly proposed localization method
based on multidimensional scaling (MDS). It determines the
positions of nodes given only basic information that is likely
to be already available, namely, which nodes are within com-
munications range of which others. If the distances between
neighboring nodes can be measured, that information can be
easily incorporated into the method. MDS-MAP is able to
generate relative maps that represent the relative positions of
nodes when there are no “anchor” nodes that have known
absolute coordinates. When the positions of a sufficient num-
ber of anchor nodes are known, e.g., 3 anchors for 2-D
localization and 4 anchors for 3-D, MDS-MAP then determines
the absolute coordinates of all nodes in the network. MDS-
MAP often outperforms previous methods when nodes are
positioned relatively uniformly in space, especially when the
number of anchors is low. MDS-MAP uses the distance or
connectivity information between all nodes at the same time,
whereas previous triangulation-based methods localize one
unknown node at a time and only use the information between
the unlocalized and anchor nodes.

However, like many existing methods, MDS-MAP does not
work well on irregularly-shaped networks, where the shortest
path distance between two nodes does not correlate well with
their true Euclidean distance. In this paper, we build on the
basic MDS-MAP method to develop a new algorithm that works
well on both uniform and irregular networks. The main idea is
to compute a local map using MDS for each node consisting
only of nearby nodes, and then to merge these local-area
maps together to form a global map. Thus we call the new
technique MDS-MAP(P), which stands for MDS-MAP using
patches of relative maps. This approach avoids using shortest
path distances between far away nodes, and the smaller local
maps constructed using local information are usually quite
good. Another advantage of the new method is that it can
be done in a distributed fashion, which makes it appropriate
for large-scale networks.

An optional refinement step using least-square minimization
may be used to refine the relative maps computed by MDS.
MDS is often good at finding the right general layout of the
network, but not the precise locations of nodes. That makes the
MDS solution a good starting point for the local optimization
done in the refinement step. This starting point is better



than those obtained by other methods such as collaborative
multilateration [3]. The refinement improves solution quality
but is much more expensive than MDS. MDS computes
analytical solutions in O(n3), where n is the number of nodes,
where the least-square minimization is solved by an iterative
optimization method, which is about two orders of magnitude
slower than MDS for 100-node networks and even more for
larger networks. Thus, the refinement provides a trade-off
between solution quality and computational cost.

The next section of the paper describes the new MDS-
MAP(P) method in detail. Then, after an overview of previous
proposals, we will present an extensive empirical evaluation.
We will compare the new algorithm’s performance with previ-
ous methods on various uniform and irregular networks, with
node locations either chosen randomly or according to a rough
grid layout.

II. LOCALIZATION USING MDS
A. Problem Formulation

We consider the node localization problem under two dif-
ferent scenarios. In the first, only proximity (or connectivity)
information is available. Each node only knows what nodes are
nearby, presumably by means of some local communication
channel such as radio or sound, but not how far away these
neighbors are or in what direction they lie. In the second sce-
nario, the proximity information is enhanced by knowing the
distances, perhaps with limited accuracy, between neighboring
nodes.

In both cases, the network is represented as an undirected
graph with vertices V' and edges E. The vertices correspond to
the nodes, of which zero or more may be special nodes, which
we call anchors, whose positions are already known. For the
proximity-only case, the edges in the graph correspond to the
connectivity information. For the case with known distances to
neighbors, the edges are associated with values corresponding
to the estimated distances. We assume that all the nodes being
considered in the positioning problem form a connected graph.
If an outlying node is not within communications range of
any other nodes, we obviously have no way of estimating its
position.

There are two possible outputs when solving the localization
problem. One is a relative map and the other is an absolute
map. Relative information may be all that is obtainable in sit-
uations in which powerful sensors or expensive infrastructure
cannot be installed, or when there are not enough anchors
present to uniquely determine the absolute positions of the
nodes. Furthermore, some applications only require relative
positions of nodes, such as in some direction-based routing
algorithms [4], [5]. Sometimes, however, an absolute map is
required. The task of finding an absolute map is to determine
the absolute geographic coordinates of all the nodes. This is
needed in applications such as geographic routing and target
discovery and tracking [6], [7].

B. MDS-MAP
MDS-MAP is based on a well-established technique known

as classical multidimensional scaling (MDS). MDS has its
origins in psychometrics and psychophysics. It is a set of
data analysis techniques that display the structure of distance-
like data as a geometrical picture [8]. MDS starts with one or
more matrices representing distances or similarities between
objects and finds a placement of points in a low-dimensional
space, usually two- or three-dimensional, where the distances
between the points resemble the original similarities. MDS
is often used as part of exploratory data analysis or infor-
mation visualization. By visualizing objects as points in a
low-dimensional space, the complexity in the original data
matrix can often be reduced while preserving the essential
information.

There are many types of MDS techniques, including metric
MDS and nonmetric MDS, replicated MDS, weighted MDS,
deterministic and probabilistic MDS. In classical metric MDS,
proximities are treated as distances in a Euclidean space [9].
Analytical solutions are derived from the proximity matrix
efficiently through singular value decomposition and provide
the best low-rank approximation (e.g., 2-D space) in the least
squared error sense. In practice, the technique tolerates error
gracefully, due to the overdetermined nature of the solution.
Because classical metric MDS has a closed-form solution, it
can be performed efficiently on large matrices.

In the basic MDS-MAP algorithm [2], given a network, the
values of the edges are assigned to a constant, such as 1,
when only connectivity information is available. Otherwise,
if the distance of two neighbor nodes is known, the value of
the corresponding edge is the measured distance. MDS-MAP
consists of the following three steps:

1) Compute shortest paths between all pairs of nodes in the
region of consideration. The shortest path distances are
used to construct the distance matrix for MDS. The time
complexity is O(n?), where n is the number of nodes.

2) Apply classical MDS to the distance matrix, retaining
the first 2 (or 3) largest eigenvalues and eigenvectors to
construct a 2-D (or 3-D) relative map. Again, the time
complexity is O(n?),

3) Given sufficient anchor nodes (3 or more for 2-D net-
works, 4 or more for 3-D networks), the coordinates of
the anchors in the relative map are mapped to their ab-
solute coordinates through a linear transformation. The
best linear transformation between the absolute positions
of the anchors and their positions in the relative map
is computed. Finding the transformation takes O(m?)
time, where m is the number of anchors. Applying the
transformation to all nodes takes O(n) time.

Classical MDS requires the distance between every pair of
nodes. The shortest path distance between two remote nodes
provides an estimate of the true Euclidean distance. This
estimate is fine when the networks are dense or uniform, but
is not good for very irregular ones. When the estimation is off,
the result of classical MDS is not good. The new MDS-MAP
methods presented in the next section address this issue.



C. The MDS-MAP(P) Method

In the new MDS-MAP method, individual nodes compute
their own local maps using their local information and then
the local maps are merged to form a global map. We call it
MDS-MAP(P).

In MDS-MAP(P), each node applies MDS-MAP to compute
a local map that includes only relatively nearby nodes, e.g.,
those within two communication hops. Two maps are then
merged together based on their common nodes. The best linear
transformation (minimizing conformation errors) is computed
to transform the coordinates of the common nodes in one
map to those in the other map. This computation can be done
efficiently.

The steps of MDS-MAP(P) are as follows:

1) Set the range for local maps, R;,. For each node,
neighbors within R;,, hops are involved in building its
local map. The value of Ry, affects the amount of
computation in building the local maps, as well as the
quality. We use Rj,, = 2 in the experiments reported
here.

2) Compute local maps for individual nodes. For each node,
do the following:

a) Compute shortest paths between all pairs of nodes
in its local mapping range R;,,. The shortest path
distances are used to construct the distance matrix
for MDS.

b) Apply MDS to the distance matrix and retain the
first 2 (or 3) largest eigenvalues and eigenvectors
to construct a 2-D (or 3-D) local map.

¢) Refine the local map. Using the node coordinates in
the MDS solution as the initial point, we perform
least squares minimization to make the distances
between nearby nodes match the measured ones.
We discuss the exact formulation below. In our
prototype implementation, this refinement step is
more computationally expensive than MDS.

The overall complexity of computing each local map is
O(k3), where k is the average number of neighbors.
Thus the complexity of computing n local maps is
O(k3n), where n is the number of nodes.

3) Merge local maps. Local maps can be merged sequen-
tially or in parallel. There are various ways of merging
local maps sequentially, such as randomly or according
to certain order best for an application. In this paper,
we use a simple strategy. For clarity, the process will be
described from a centralized point of view, although it
need not involve the entire network. First we randomly
pick a node and make its local map the core map. Then
we grow the core map by merging maps of neighboring
nodes to the core map. Each time a neighbor’s map
with the maximal number of common nodes with the
core map is selected. Eventually the core map covers the
whole network. As we explain below, if the merges are
chosen carefully, the complexity of this step is O(k3n),
where £ is the average number of neighbors and n is

the number of nodes.

4) Refine the global map (optional). Using the node co-
ordinates in the global map as the initial solution, we
apply least squares minimization to make the distances
between neighboring nodes match the measured ones.
This step is O(n®) and is much more expensive than
the other steps for large networks.

5) Given sufficient anchor nodes (3 or more for 2-D net-
works, 4 or more for 3-D networks), transform the global
map to an absolute map based on the absolute positions
of anchors. For r anchors, the complexity of this step is
O(r3 +n).

When the optional refinement step in Step 4 is used, we
will refer to the algorithm as MDS-MAP(P,R). For large-size
networks of constant density, & is limited by a constant and &
and r are much smaller than n. Thus the complexity of MDS-
MAP(P) is O(n), linear in terms of the number of nodes in
the network. This nice property makes MDS-MAP(P) suitable
for large-scale networks.

Step 2(c) and 4 use similar least squares minimization tech-
niques to refine relative maps. The minimization problem has
many local minima, but relatively efficient local optimization
techniques such as the Levenberg-Marquardt gradient descent
method can be used. Generic global optimization techniques
such as simulated annealing or genetic algorithms may also be
applied, but they are slow. When using local optimization, if
the starting point is not good, the solution of local optimization
will not be good.

MDS can provide a very good starting point for local
optimization. MDS is good at finding the right topology of
the network, but not the precise locations of nodes, because
MDS uses shortest path distances to approximate the distance
between nodes more than 1 hop away and the approximation
may not be accurate. Although this starting point is often
much better than those obtained by other methods such as
collaborative multilateration [3], errors in the O(n?) long-
distance estimates can overwhelm the O(n) short-range mea-
surements. The refinement technique improves the relative
maps by forcing them to conform more closely to the distances
to nearby neighbors.

The exact objective function used during refinement mea-
sures not only distances between one-hop neighbors, but also
distances between some multi-hop neighbors, although these
distances are weighted less. We use a refinement range R,.f,
defined in terms of hops, to specify what information is con-
sidered. R,y = 1 means only distances between immediate
neighbors are considered; R,.; = 2 means distances to all
nodes within two hops are considered; and so on. Different
values of R,.; offer trade-offs between computational cost
and solution quality.

Specifically, let (z;,y;),2# = 1,---,N represent the
coordinates of the N nodes in a local map; d;; =
V(i — 2;)% 4+ (y; — y;)? be the Euclidean distance between
two nodes ¢ and j; and p;; be the proximity of nodes 7 and j.
When only connectivity information is available, p;; = 1 if ¢
and j are 1-hop neighbors, p;; = 2 if 7 and j are 2 hops apart,




and so on so forth. When distance measures between 1-hop
neighbors are available, p;; is the distance measure between ¢
and j if they are 1-hop neighbors, and p;; is the shortest path
distance if ¢ and j are more than 1 hop away. When there are
actual distance estimates in some part of the networks and only
connective information in the other part, the p;; of hop counts
are multiplied by the average hop distances. The objective of
the refinement step is:

min Z wij(dij7pij)2,f0rk:1,"'N (1)
T it

where w;; is the weight. If w;; = 0 for all ¢ and j that are
more than 1-hop away, then only the 1-hop connectivity or
distance measures are used. In our experiments, we found
that the information between 2-hop neighbors is also helpful.
Thus we set R,.y to 2, and w;; = 1 when 4 and j is 1-
hop away and w;; = 1/4 when they are two hops apart.
The refinement improves the map by giving local information
between neighbor nodes more weight than that between far
away nodes, which may be less accurate.

In our experiments, we use the Levenberg-Marquardt
method (Isgnonlin in Matlab’s optimization toolbox) to solve
the problem. For a 2-D n-node network, the problem has
2n variables and no constraints. The Jacobian can also be
computed analytically. Usually only the first few iterations of
Isgnonlin give significant improvement. Thus the maximum
number of iteration is set to a small number, e.g., 10. Although
this local optimization algorithm is fast, it is considerably
slower than classical MDS. For 100-node networks, it is about
two orders of magnitude slower. For larger networks, the time
difference becomes larger.

After forming the local maps, they must be merged. We
use an incremental greedy algorithm. Let LN (p) = {q|q is
within Ry, hops from p } represent the set of nodes in p’s
neighborhood; and LM (p) represent the local map of node
p, which contains the coordinates of nodes in LN (p). First,
randomly select a node p and construct the set C' = {p} of
nodes that have been considered. Let the set D = LN(p)
represent those nodes that have been localized, and M =
LM (p) be the current global map. Iterate the following steps
until C contains all nodes.

1) Find p’ € D—C such that the number of common nodes
in D and LN(p') is the largest.

2) Merge M and LM (p'). Set C = CU{p'}, D=DU
LN(p'), and M = merge (M, LM (p')).

Two local maps are combined by minimizing the conforma-
tion difference of their common nodes subject to the best linear
transformation. Because we do not mandate a rigid mapping,
our method is more resilient to errors.

For each local map M, we maintain two lists of nodes,
OPEN(M) and CLOSED(M). Nodes in CLOSED(M)
have been considered, i.e., their local maps have already been
merged into M. The local maps of nodes in OPEN (M) have

not been merged. For node p,

CLOSED(LM (p))
OPEN(LM(p)) =

{r}
LN(p) — {p}

The actual merging of two maps M and M’ is straightfor-

ward:

1) Compute the intersection I = (CLOSED(M) U
OPEN(M))N(CLOSED(M'YUOPEN (M")).

2) Find a linear transformation 1" of the nodes in I from
their coordinates in M’ to those in M, such that the sum
of squared errors between M and T'(M') is minimized.
T have two options. One includes translation, reflection,
and orthogonal rotation. The other includes scaling as
well. In our experiments, we report results using the
option without scaling, which works slightly better than
the one with scaling. Without scaling, the information
from both individual maps is better preserved in the
combined map.

3) Update M and related data. Set

OPEN(M) = (OPEN(M) UOPEN(M'))
—(CLOSED(M) U CLOSED(M"))

CLOSED(M) = CLOSED(M) U CLOSED(M')

To get the coordinates of a node p in the new combined
map M,
o if pisin the old M but not in M’, use its coordinates
in M;
o if pisin M’ but not in the old M, use its coordinate
in T(M"),
« otherwise, use the average of p’s coordinates in the
old M and T'(M").

Figure 1 shows an example of merging two local maps by
this method. In the topmost panels, a polygon has been drawn
around the nodes present in both local maps. The two maps
were computed using connectivity information only. The linear
transformation 7' for map 2 is

0.981 —0.196
T(z,y) = (x y)< 0.196 0.981

)+(0.016 —0.835) (2)

When three or more anchors are present in a 2-D sub-
network, an absolute map can be computed. Since the algo-
rithm does not require anchor nodes in building a relative map
of a sub-network, it can be applied to many sub-networks in
parallel. Distributed map merging has a number of benefits,
including more balanced computation and communication
among the nodes, faster construction of the global map,
and information of multi-level granularity being distributed
in the network, leading to better support for flexibility and
robustness.

The communication cost in a distributed implementation of
MDS-MAP(P) is proportional to the sizes of the local maps.
The number of messages depends on the mapping range R,
and whether local distance measures are available. For R;,, =
2 and only using connectivity, each node only needs to know



2-hop local map of node 48 (map 1) 2-hop local map of node 37 (map 2)

Fig. 1.
nodes.

An example of merging two local maps based on their common

the IDs of its 2-hop neighbors. First each node broadcasts its
ID and each one records its 1-hop neighbors. Then each node
broadcasts the IDs of its 1-hop neighbors. Now each node is
ready to compute its own local map. In merging the local maps
to form a global map, whether done sequentially or in parallel,
the information of each node’s local map has to arrive at the
destination. Using a binary aggregation tree, each local map is
sent through O(logn) hops. So the total communication cost
is O(nlogn).

To summarize, the key difference between MDS-MAP(P)
and the basic MDS-MAP is that MDS-MAP(P) computes small
relative maps using local information, instead of a global
map using pair-wise distances between any two nodes. For
MDS-MAP(P) to work, the local maps have to be accurate
enough so that when they are merged together to form a

TABLE 1

THE TYPICAL TIME IN SECONDS TAKEN BY THE MAJOR STEPS OF
MDS-MAP(P,R) FOR DIFFERENT SIZE NETWORKS.

Network | Compute local maps Merge Refine
Size MDS | Refinement | local maps | global map
50 nodes | 0.08 4.74 0.59 0.49
100 nodes | 0.25 18.1 1.68 2.9
200 nodes | 0.49 36.3 5.0 19.3
300 nodes | 0.91 55.79 12.4 84.6

global map, errors will not become too large. Empirically, we
found that when the connectivity level is over 12 for random
networks and over 6 for grid networks, good local maps can
be constructed using nodes within 2 hops. Using only nodes
within 1-hop distance does not work as well, especially when
only connectivity information is available.

On the other hand, using nodes within 3-hop distance can
produce local maps as good as using 2-hop neighbors, and
sometimes slightly better. However, this is computationally
more expensive. In addition, a larger local map means more
information needs to be stored and transmitted. When the local
maps are computed by sensor nodes in networks, each of them
only have limited memory and communication bandwidth.

The rule of thumb is to set the size of the local map just large
enough to get the desired accuracy. The right size depends
on the topology of the network, the network density, and the
accuracy of local distance measurement.

To give a concrete sense of the actual running time of the
methods, Table I shows the typical time taken by the major
steps of MDS-MAP(P,R). The program was run in Matlab 6.5
on a Dell Latitude C640 with a 2GHz Mobile Pentium 4M and
512MB RAM. All networks have connectivity 10. The data
shows that MDS on local maps is very fast and the refinement
of local maps is about 2 orders of magnitude more expensive.
(This may be due in part to our use of Isgnonlin in Matlab,
which calculates many terms that will have weight zero in the
objective function.) Note that the computation of local maps
can be distributed to all the nodes in the network. Thus the
computation at each node is not increased much as the network
becomes larger. The cost of merging local maps grows faster
than linear due to the larger maps being manipulated. The
cost of refining the global map grows quickly and becomes
dominant for large networks. The desired extent of the global
map will vary according to the application at hand.

D. Examples

We use four example problems to illustrate the behavior of
these MDS-MAP-based algorithms. Two are uniform topologies
and the other two are irregular topologies. They are shown
in Figure 2. In the graphs, circles represent nodes and edges
represent connections between nodes that are within commu-
nication range of each other.

1) Basic MDS-MAP : Figure 3 shows the results of the
basic MDS-MAP method on the random uniform example.
Four random anchor nodes (denoted by the star *) are used
in the position estimation. (Note that this particular example
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Fig. 2. Four example problems: (a) random uniform placement — 200 nodes
are randomly placed in a 107 x 10r square; (b) random C-shaped placement
— 160 nodes are randomly placed in an area of C shape within a 10r x 10r
square; (c) regular uniform placement — 100 nodes are placed on a grid with
10%tr placement errors; and (d) regular C-shaped placement — 79 nodes are
placed on a C shape grid with 10%r placement errors. The radio range is
1.5r, where the placement unit length » = 1. The average connectivity levels
of the four problems are 12.1, 11.5, 6.0, and 5.1, respectively.

shows a rather unlucky selection, as the four anchors are
almost collinear.) The circles represent the true locations
of the nodes and the lines connect the estimated positions
with the true positions. The longer the line, the larger the
error is. The results when using connectivity information and
when using local distance measures are both shown. The
example demonstrates that MDS-MAP works well on uniform
topologies using only connectivity information and is better
when accurate local distance measures are available. When the
network has a regular topology, such as nodes being placed
near grid points, MDS-MAP obtains very good solutions, as
shown in Figure 4.

The basic MDS-MAP method performs badly on C-shaped
topologies. Figure 5 shows the results of MDS-MAP on the
random C-shaped example. Four random anchor nodes (de-
noted by *) are used. The average error of using connectivity
is 2.4, very large. MDS-MAP does not work well because the
shortest path distance between two nodes in the two wings
is much bigger than their actual Euclidean distance. Accurate
local distance measures do not help. The average error of using
local distances with 5% error is 2.3, still very large.

The basic MDS-MAP method performs badly on irregular
topologies even when they have regular internal structure, such
as nodes being placed near grid points. Figure 6 shows the
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Fig. 3. Results of the basic MDS-MAP on the example of random uniform
placement using connectivity only (left) or the distance measures between
neighboring nodes with 5% errors (right). The same four random anchors are
used and the position estimation errors are 0.67 and 0.25, respectively.
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Fig. 4. Results of the basic MDS-MAP on the example of grid placement
using connectivity only (left) or the distance measures between neighboring
nodes with 5% errors (right). Four random anchors are used and the position
estimation errors are 0.42 and 0.17, respectively.

results of MDS-MAP on the C-shaped grid example. The basic
MDS-MAP performs as poorly as it does on the random C-
shaped example. Accurate local distance measures do not help
either.

2) MDS-MAP(P) and MDS-MAP(PR): In this section, we
use the examples to demonstrate that MDS-MAP(P) performs
as well as the basic MDS-MAP method on uniform topologies
and is much better on irregular topologies. When global re-
finement is added, which we call MDS-MAP(P,R), the solutions
improves further.

Figure 7 shows the results of MDS-MAP(P) and MDS-
MAP(P,R) on the random uniform placement example. Using
connectivity information only, the average error of MDS-
MAP(P) is 0.40r, about 60% of the error of the basic MDS-
MAP. After refinement, the error of MDS-MAP(PR) is 0.317,
even better. Using local distance measures, MDS-MAP(P)
and MDS-MAP(P,R) obtain better results. The error of MDS-
MAP(P) is 0.16r, much better than the basic MDS-MAP. After
refinement, the error of MDS-MAP(P,R) is only 0.067.

Figure 8 shows the results on the random C-shaped place-
ment example. Although MDS-MAP(P) (error 1.2r) is better
than the basic MDS-MAP (error 2.4r), the error is still large.
The global refinement in MDS-MAP(P,R) helps to reduce
the error to 0.43r. Using good local distance measures, the
solution of MDS-MAP(P) (error 0.72r) is improved and the
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Fig. 5. Results of the basic MDS-MAP on the example of random C-shaped
placement using connectivity only (left) or the distance measures between
neighboring nodes with 5% errors (right). Four random anchors are used and
the position estimation errors are 2.4 and 2.3, respectively.
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Fig. 6. Results of the basic MDS-MAP on the example of C-shaped grid
placement using connectivity only (left) or the distance measures between
neighboring nodes with 5% errors (right). Four random anchors are used and
the position estimation errors are 2.1 for both cases.

solution of MDS-MAP(P,R) is even better (error 0.297).

For networks with regular topologies, MDS-MAP(P) and
MDS-MAP(P,R) obtain very good results. For the uniform
grid example, they find close to perfect solutions. For the C-
shaped grid example, they also perform very well, as shown
in Figure 9.

These specific examples have visually illustrated the per-
formance of the methods. More extensive experimental results
and further comparisons will be presented in Section IV.

III. RELATED WORK

Node localization has been a topic of active research in
recent years. A detailed survey of the area is provided by
Hightower and Borriello [10]. Many systems use some kind
of range or distance information and many of them rely on
powerful beacon nodes with unusual capabilities, such as radio
or laser ranging devices. Others use distance or angle measures
from a fixed set of reference points or anchor nodes. For
example, the GPS-less system by Bulusu et al. [11] uses a
grid of anchor nodes. Each unknown node sets its position to
the centroid of the beacons near the unknown. The position
accuracy is about one-third of the separation distance between
beacons. The method needs a high beacon density to work
well.

Among those existing localization methods that use only
connectivity information, Doherty’s [12] convex constraint
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Fig. 7. Results of MDS-MAP(P) and MDS-MAP(P,R) on the example

of random uniform placement. The upper two diagrams show their results
using connectivity information only, whereas the lower two diagrams show
their results using distance measures between neighboring nodes with 5%
distance errors.

satisfaction method formulates the localization problem with
uniform communication as a feasibility problem with convex
radial constraints. The problem is solved by semi-definite
programming (an interior point method). The method requires
centralized computation. In addition, for the method to work
well, it needs anchor nodes to be placed on the outer boundary,
preferably at the corners. When the anchors are located in the
interior of the network, there are many feasible solutions of
the constraint satisfaction problem. The majority of them give
large position estimation errors.

Most other methods are based on triangulation. These
include DV-Hop and DV-distance methods by Niculescu and
Nath [13], Hop-TERRAIN and refinement by Savarese et
al. [14], and collaborative multilateration by Savvides et al.
[3]. In the “DV-based” methods [13], the anchors flood their
location to all nodes in the network. Then, each unknown node
performs a triangulation to three or more anchors to estimate
its position. The method works well in dense and regular
topologies. For sparse and irregular networks, the accuracy
degrades to the radio range and is not very good. The “DV-
distance” method uses distance between neighboring nodes to
reduces the location error. These methods perform badly for
irregular topologies.

The Hop-TERRAIN and refinement method [14] is similar
to the “DV-based” methods. For the start-up phase, they
use Hop-TERRAIN, an algorithm similar to DV-hop. Hop-
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Fig. 8. Results of MDS-MAP(P) and MDS-MAP(P,R) on the example
of random C-shaped placement. The upper two diagrams show their results
using connectivity information only, whereas the lower two diagrams show
their results using distance measures between neighboring nodes with 5%
distance errors.

TERRAIN is run once at the beginning to generate a rough
initial estimate of the nodes’ locations. Then the refinement
algorithm is run iteratively to improve and refine the position
estimates. The algorithm is concerned only with nodes within
a one-hop neighborhood and uses a least-squares triangulation
method to determine a node’s position based on its neighbors’
positions and distances to them. The method delivers localiza-
tion accuracy comparable to that of the “DV-based” methods.

The collaborative multilateration method needs many an-
chors to work well [3]. The method estimates node locations
by using anchor locations that are several hops away and
distance measures to neighboring nodes. The method has
three main phases: (1) formation of a collaborative subtree,
which only includes nodes that can be uniquely determined,
(2) computation of initial estimates with respect to anchor
nodes, and (3) position refinement by minimizing the residual
between the measured distances between the nodes and the
distances computed using the node location estimates. The
coverage of multilateration is low when the number of anchors
is small, and many nodes are not localized.

Some previous approaches also build local maps [15], [16].
They are worse than our methods because their local maps are
built using triangulation or geometry and have larger errors.

What is the single most important reason that MDS-based
methods achieve better accuracy than previous methods? It is
the joint utilization of all connectivity information, or local
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Fig. 9. Results of MDS-MAP(P) and MDS-MAP(P,R) on the example of
C-shaped grid placement. The upper two diagrams show their results using
connectivity information only, whereas the lower two diagrams show their
results using distance measures between neighboring nodes with 5% distance
errors.

distance measures if they are available, among all nodes,
including the ones that have yet to be localized. Most previous
methods are based on triangulation. A common problem of
triangulation-based methods is that one node at a time is
triangulated based on anchors and the information between
nodes of unknown position is not utilized.

IV. EXPERIMENTAL RESULTS

In these experiments, we assess the average-case perfor-
mance of MDS-MAP methods. For each of several different
types of network, the algorithms are run on many randomly-
generated examples. The same types of networks are used as in
Section II-D: (a) uniform random, 200 nodes randomly placed
inside a 10r x 10r square, where r = 1 is the placement
unit length; (b) C-shaped random, 160 nodes randomly placed
inside an area of C shape within a 107 x 10r square; (c)
uniform grid, 100 nodes placed on a 107 x 10r grid; and (d)
C-shaped grid, 79 nodes placed on a C shape grid within a
107 x 10r square.

To model the errors in grid placements, we add Gaussian
noise to the coordinates of nodes. For a 10%1r placement error,
a random variable of 0 mean and 10%r standard deviation is
added to each coordinate of a grid point. Thus the nodes are
not placed exactly on the grid points. The distance measure
is modeled as the true distance blurred with Gaussian noise.
Assume the true distance is d* and range error is e,; then
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the measured distance is a random value drawing from a nor-
mal distribution d*(1 + N(0,e,)). The connectivity (average
number of neighbors) is controlled by radio range R.

Four examples of these test problems are shown in Figure 2
in the last section. The experiments were done in Matlab. The
anchor nodes were selected randomly. Thirty random trials
were conducted for each data point.

A. Uniform Networks

Figure 10 shows the results of the three MDS-MAP algo-
rithms on the random uniform networks with 200 nodes. The
errors are plotted against the average connectivity level. The
radio ranges (R) are from 1.25r to 2.5r, with an increment
0.25r, which lead to average connectivity levels 8.8, 12.3,
16.4, 20.9, 25.9, and 31.1, respectively. Three, four, six, and
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ten random anchors are used.

For the case of using connectivity information only, MDS-
MAP(P) is consistently better than the basic MDS-MAP and
is more than 10%R better when the connectivity is low.
MDS-MAP(P,R) improves upon MDS-MAP(P). Although more
anchors lead to better results, the improvement with more than
6 anchors is small.

Using connectivity information only, MDS-MAP algorithms
are much better than the convex optimization approach in [12]
when the number of anchor nodes is low. For example, with
4 to 10 anchors in a 200-node random network, the convex
optimization approach has an average estimation error of more
than twice the radio range when the radio range is 1.25R and
above. The results are also better than Hop-TERRAIN [14],
especially when the number of anchors is small. For example,
with 4 anchors (2%) and a connectivity level 12.3, MDS-
MAP(P) using connectivity information only has an average
error of about 27% R, whereas Hop-TERRAIN has an average
error of about 90%R.

Using local distance measures with 5% errors, all methods
get much better results. The average error is roughly half of
that obtained when using only proximity information. MDS-
MAP(P) is comparable to MDS-MAP(P,R) when the connectiv-
ity level is 12.3 and above.

Unlike most previous methods, MDS-MAP localizes all
nodes in a connected network and does not impose constraints
such as a node having to possess three or more neighbors.
However the nodes with only one or two neighbors are more
likely to have larger errors. That is why the average errors for
sparse networks are very large.

We have also done extensive experiments on grid networks.
Figure 12 compares the results of the basic MDS-MAP, MDS-
MAP(P), and MDS-MAP(P,R) on uniform grid networks with 4
random anchors. All three methods obtain much better results
at lower connectivity levels on the grid networks than on the
random networks, either using connectivity information only
or local distance measures. The reason is that the local maps
for the random networks are not as good as the ones for the
grid networks.

MDS-MAP(P) does not need many anchors to achieve good
solutions. For example, when there is sufficient connectivity, 3
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MAP(P,R) on random C-shaped networks with 6 and 10 anchors, using
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anchors for the grid placements and 4 anchors for the random
placement are usually enough to find good solutions.

B. Irregular Networks

Irregular topologies are much harder than uniform topolo-
gies and previous methods reported very poor results on
them [13].

Figure 13 shows the performance of the three MDS-MAP
methods on the random C-shaped networks with 160 nodes.
The radio ranges (R) are the same as before, from 1.25r
to 2.5r, with an increment 0.25r, which leads to average
connectivity levels 8.6, 12.0, 15.4, 19.2, 23.1, and 27.1,
respectively.

On the random C-shaped networks, the basic MDS-MAP
returns poor solutions because the distance estimations for
nodes on separate wings are far from their actual Euclidean
distances.

MDS-MAP(P) performs well on these C-shaped networks,
especially when the connectivity level is 12.0 or more,
and finds solutions just slightly worse than those by MDS-
MAP(P,R). Again, although more anchors lead to better results,
the improvement with more than 6 anchors is small.

Knowing good local distance measures does not make the
basic MDS-MAP better, but helps MDS-MAP(P) and MDS-
MAP(P,R), as shown in Figure 13. The results of MDS-MAP(P)
and MDS-MAP(PR) are very close, implying that the global
refinement in MDS-MAP(P,R) does not do much in those
circumstances.

On networks with similar connectivity levels, the results of
the basic MDS-MAP on the C-shaped networks are much worse
than those on the uniform networks. In contrast, MDS-MAP(P)



Known connectivity, 4 anchors Known distance, 4 anchors

250 250
—— MDS-MAP —<— MDS-MAP

200 O~ MDS-MAP(P) 200 \ -0~ MDS-MAP(P)
2 MDS-MAPPR)| & |2 Mps-wapR)
s
150 - \
N

100 100

Median error (%R)
Median error (%R)
|
*

/

a
50 - 50 8.

N
Bo-g-—a- o
0 5 10 15 0 5 10 15

Connectivity Connectivity

Fig. 14.  Comparison of the basic MDS-MAP, MDS-MAP(P), and
MDS-MAP(P,R) on C-shaped grid networks with 4 random anchors, using
connectivity information (left) or local distance measures between 1-hop
neighbors with 5% errors (right).

and MDS-MAP(P,R) perform quite well. They have larger er-
rors for C-shaped networks than for uniform networks because
some nodes on the main paths of the C-shaped networks have
low connectivity, which leads to poor local maps. These poor
local maps can affect the global map significantly.

Figure 14 shows their results on C-shaped grid networks.
Again, MDS-MAP(P) and MDS-MAP(P,R) are much better than
the basic MDS-MAP, and achieve good results.

Finally, we compare MDS-MAP(P) and MDS-MAP(P,R) with
DV-hop and DV-distance on the random uniform and C-shaped
networks. The results are shown in Figure 15. The results
of DV-hop and DV-distance are similar to the ones in [13].
For the uniform networks, MDS-MAP(P) and MDS-MAP(P,R)
are consistently much better than DV-hop and DV-distance.
When using connectivity information only, the errors of MDS-
MAP(P) and MDS-MAP(P,R) are consistently less than half of
those of DV-hop. When using local distance measures with
5% errors, the errors of MDS-MAP(P) and MDS-MAP(P,R) are
just one quarter of those of DV-distance when the connectivity
is low. Their results become similar when the connectivity is
high.

For the C-shaped networks, MDS-MAP(P) and MDS-
MAP(P,R) are not better than DV-hop and DV-distance when
the connectivity is low. That is because the local maps of
MDS-MAP(P) are not very accurate for low connectivity. The
error of a local map on the central path of an C-shaped network
can significantly affect the global map. In contrast, in relatively
uniform networks, the effects of local maps on the global map
are much more constrained. When the connectivity is high,
MDS-MAP(P) and MDS-MAP(P,R) are much better than DV-
hop and DV-distance. When using connectivity information
only, the errors of MDS-MAP(P) and MDS-MAP(P,R) are about
half of those of DV-hop. When using accurate local distance
measures, the errors of MDS-MAP(P) and MDS-MAP(P,R) are
just one quarter of those of DV-distance.

V. POSSIBLE EXTENSIONS

As we have shown, the proposed algorithms work well for
near-uniform radio propagation. However, in the real world,
radio propagation indoors and in cluttered circumstances is
far from uniform. Local distance estimation may also be poor.
Further simulations will be needed to determine how robust
MDS-based algorithms can be to such errors.

As we have described it, MDS-MAP(P) builds local relative
maps and merges these smaller maps to get a larger relative
map. This is useful for applications that use relative maps.
For applications that requires absolute coordinates of nodes,
waiting until a large map has formed before transforming to
absolute coordinates may be a poor choice. Using the methods
described here, Distributed algorithms that compute absolute
coordinates of individual nodes or subnetworks independently
can be developed.

One interesting feature of MDS-MAP(P) is that it shows how
information at different length scales can be used differently.
Long distance shortest-path information is used only for rough
layout decisions while two-hop information is used to deter-
mine precise node positions. It would be interesting to develop
a framework that precisely characterizes the contribution of
each datum to the position estimation. The main question
is whether an approach based on unified statistical inference
could be as efficient as the special-purpose algorithms explored
here.

MDS-MAP algorithms can be extended by applying more
advanced MDS techniques. Instead of classical metric MDS,
other MDS techniques such as ordinal MDS and MDS with
missing data can be applied. We have done some limited
experiments with ordinal MDS (also known as nonmetric
MDS). Our results show that ordinal MDS is better than
classical MDS when the connectivity level of the network
is low, and is comparable with classical MDS when the
connectivity level is high.

VI. CONCLUSIONS

We presented a new method, MDS-MAP(P), that improves
the basic MDS-MAP algorithm significantly. It can be imple-
mented in a distributed setting and performs exceptionally well
on irregular topologies. The method builds a small relative map
for each individual node. The relative maps are usually of high
quality when connectivity is sufficiently high. For irregular
networks, local information is much more accurate than esti-
mates for distant nodes obtained using shortest path distance.
By emphasizing this local information during a refinement
step, MDS-MAP(P) obtains superior local maps. The relative
maps can then be merged together to form a global map. A
global refinement can be used to further improve the quality of
the global map, which usually leads to smaller position esti-
mation errors. The drawback of the global refinement is that it
can be more computational expensive than MDS. Comparing
the basic MDS-MAP and MDS-MAP(P), the former suffers from
long-range distance estimation errors, whereas the latter from
error propagation. A balance between the two may be struck to
achieve the best result for a given network. Our experimental
results show MDS-MAP(P) significantly outperforms existing
methods for irregular topologies, particularly when the number
of anchors is small.
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15.

Comparison of MDS-MAP(P), MDS-MAP(P,R), DV-hop, and DV-distance on 200-node random uniform networks (upper two diagrams) and

160-node random C-shaped networks (lower two diagrams), using connectivity information (left) or local distance measures between 1-hop neighbors with
5% errors (right). Four anchors were randomly selected for each case.
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