
On the Structure of Algorithm Spaces

Adam Peterson, Tony Martinez and George Rudolph

Abstract— Many learning algorithms have been developed to
solve various problems. Machine learning practitioners must
use their knowledge of the merits of the algorithms they
know to decide which to use for each task. This process often
raises questions such as: (1) If performance is poor after
trying certain algorithms, which should be tried next? (2) Are
some learning algorithms the same in terms of actual task
classification? (3) Which algorithms are most different from
each other? (4) How different? (5) Which algorithms should
be tried for a particular problem? This research uses the COD
(Classifier Output Difference) distance metric for measuring
how similar or different learning algorithms are. The COD
quantifies the difference in output behavior between pairs of
learning algorithms. We construct a distance matrix from the
individual COD values, and use the matrix to show the spectrum
of differences among families of learning algorithms. Results
show that individual algorithms tend to cluster along family
and functional lines. Our focus, however, is on the structure
of relationships among algorithm families in the space of
algorithms, rather than on individual algorithms. A number
of visualizations illustrate these results. The uniform numerical
representation of COD data lends itself to human visualization
techniques.

I. INTRODUCTION

Several machine learning algorithms and algorithm fam-

ilies have been specified and developed by the machine

learning research community. These include algorithms like

neural networks, decision trees, instance based learners, rule

based systems and belief networks. Each algorithm makes

some assumptions about the problems to which it is applied.

Each algorithm performs most effectively on problems where

those assumptions are more or less satisfied, and poorly on

others. These assumptions bias the algorithm towards one

solution or another, and this bias is a necessary part of

learning [1].

When we choose an algorithm to solve a problem, and

the algorithm performs poorly, we then must decide what

algorithms to try next. We may want to try an algorithm that

is similar, but differs in some respect, or we may want to try

a completely different algorithm. When the performance of

one or more algorithms is known, we can use this to estimate

the performance of other algorithms on our task. This is

most convenient if it can be done without having to train

and execute these other algorithms first. Performance can

be used to help guide learning algorithm selection without

having to measure the performance of every algorithm on

the target task.

Adam Peterson is with Adobe Systems, Orem UT, 84097, USA (email:
adam@axon.cs.byu.edu). Tony Martinez is with the Department of Com-
puter Science, Brigham Young University, Provo, UT, 84602, USA (email:
martinez@cs.byu.edu). George Rudolph is with the Department of Mathe-
matics and Computer Science, The Citadel, Charleston, SC, 29409, USA
(email: george.rudolph@citadel.edu).

The classical measure of algorithm performance is accu-

racy. Accuracy measures how well an algorithm generalizes

on a task. Two algorithms with similar accuracy may give

different answers, however. It is these differences that pro-

vide fertile ground for improving algorithm performance,

and therefore accuracy alone is an insufficient measure of

performance.

Peterson [2] proposed the COD distance metric, which is

a method that quantifies the behavioral differences between

algorithms. We use COD data to compute and visualize the

relationships among learning algorithms as an aid to increas-

ing our understanding of the machine learning problem space

and algorithm space. As we discuss COD concepts, we give a

method for visualizing regions of disagreement. To explore

differences and similarities among algorithms, we selected

seventeen machine learning algorithms, representing eight

different families, and we chose thirty tasks from the UC

Irvine Machine Learning Repository [3]. A distance matrix is

constructed from the individual pairwise COD values. When

viewed as a dissimilarity matrix, statistical techniques like

multidimensional scaling algorithms [4] (MDS) can scale the

data to two or three dimensions. This enables us to generate

visualizations that encode positional data, like a scatterplot,

and analyze the results. A two-dimensional plot is used here

because it is convenient for black-and-white printing where

the user is not able to interact with, nor filter the data.

Three dimensional and interactive visualizations are more

productive when using a computer.

These visualizations show that members of many learning

algorithm families, such as decision trees, tend to cluster

near each other. Other algorithm families, such as support

vector machines, group much more loosely. We can also

see which learning algorithm families fall near each other.

Neural network-based algorithms fall near logistic regression

algorithms. On the other hand, instance-based algorithms are

farther from Naı̈ve Bayes.

COD can be used to compare individual algorithms,

however the focus of this paper is on the structure of the

algorithm space–that is, showing the relationships among

algorithm families. One feature of the COD method is that

the uniform numerical representation lends itself to human

visualization techniques, machine meta-learning techniques,

to the search for new algorithms where current algorithms

perform poorly, and to analyzing theoretical underpinnings

like the No Free Lunch Theorem [5]. This paper focuses on

the first of these four areas.

The rest of the paper is organized as follows: Section

II discusses basic concepts and definitions. Section III

overviews related work. Sections IV and V describe the COD

method and the tasks and data used. Section VI gives results

Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011

978-1-4244-9636-5/11/$26.00 ©2011 IEEE 658

and analysis. Section VII briefly discusses other factors that

may affect similarity. Section VIII is the conclusion.

II. CONCEPTS

A learning task is an interesting problem that someone

wants to solve. We call the set of interesting problems PI ,

to distinguish it from the universe of all possible problems.

Problems in PI exhibit some kind of regularity that we can

observe and attempt to model.

A hypothesis is an executable model that attempts to

solve a task with acceptable accuracy. A learning algorithm,

or simply algorithm, is a procedure that, when given a

learning task, produces a hypothesis. In this paper, the terms

hypothesis and classifier will be used interchangeably. We

use h0 to denote “the perfect classifier” hypothesis that gives

the correct output for every input pattern. The distance metric

is called Classifier Output Difference because all of the al-

gorithms studied thus far are classifiers. It is straightforward

to apply the COD method to other kinds of algorithms, but

that is a subject for future work.

When considering how to construct a model of the struc-

ture of the algorithm space, a number of approaches could be

taken to compare learning algorithms. One approach would

be to compare the types of decision surfaces employed by

one learning algorithm as opposed to another. A second

approach would be to evaluate the capacity for one learning

algorithm to simulate, or mimic, another. This would be

problematic when dealing with learning algorithms that are

capable of shattering, or arbitrarily dichotomizing, any set of

consistent patterns and therefore capable of simulating any

other hypothesis.

The COD method takes a different approach. First, it

provides a way to measure the distance between two hy-

potheses. The distance for a task is calculated by counting the

number of patterns for which two hypotheses give different

output values, and dividing by the total number of patterns

presented. The result estimates the probability that they

disagree on the classification of patterns, or the frequency

that the hypotheses disagree with each other. More than

comparing aggregated accuracy values, this metric looks at

the pairwise output behavior on each instance from the task.

The COD distance between two algorithms is the expected

distance between the hypotheses produced by the respective

algorithm on a task.

The distance between two learning algorithms over a

collection of learning tasks is estimated by averaging the

distance between the algorithms over each individual task.

The data may be aggregated in other ways as well. The

distances for each task across all algorithms can be obtained

by averaging the values for each algorithm on a given task,

for example.

This research attempts to improve our understanding of

learning algorithms and where they exhibit qualitative behav-

ior differences. If two learning algorithms behave similarly

on learning tasks, their internal differences in the way they

compute their answers are less important, since from a

functional perspective the algorithms essentially perform the

same task.

III. RELATED WORK

The COD measure defined by Peterson in [2] is used in this

paper. Kuncheva surveyed other diversity measures [6]. The

COD measure is similar to the Disagreement Measure, in the

concept learning (two output classes) case, but different in the

multiclass case. Some of the surveyed metrics could also be

used to measure algorithm similarity at the hypothesis level.

The COD metric focuses directly on difference in output

behavior, whereas these other measures use accuracy at the

pattern level. Some of Kuncheva’s metrics also correlate

negatively with behavior difference.

Quantifying distances between learning algorithms has tie-

ins with meta-learning, where machine learning strategies

are applied at more than one level in the problem solving

process. This idea is used in Pfahringer’s landmarking [7].

Landmarking works to locate learning tasks in the space

of all learning tasks. Problems exist in a space of learning

tasks, and their relative positions are estimated by evaluat-

ing the success of simple learning algorithms on the task.

Landmarking is, in some respects, the inverse approach of

COD. In landmarking, learning tasks are measured relative to

some simple learning algorithms. COD measures distances

between learning algorithms and hypotheses by using their

performance on learning tasks.

Zheng [8] has a simpler approach to learning task similar-

ity. This approach uses several simple metrics to categorize

learning tasks, such as number of inputs and whether all

inputs are real-valued, for example.

Brodley [9] advocates using the different strengths of

different algorithms to follow a hybrid approach. Brodley’s

research categorizes algorithms into “model classes” based

on the form. Each model class represents a hypothesis

that is used for generalization. It supports automatic model

selection by searching through model classes, and also sug-

gests constructing hypotheses with heterogeneous mixes of

representations.

Displaying data, particularly data that changes, requires

careful planning. Visualization is commonly described as

a seven-stage process [10]: Acquire, parse, filter, mine,

represent, refine, interact. The COD method fits mainly in

the acquire and mine stages. However, there is important

work to do in the represent and interact stages to further our

understanding of machine learning algorithms. With regard

to appropriate representations, recent studies indicate that

visualizations that use position are preferred over other forms

for comparative numeric data such as COD produces [11].

In particular, line graphs, bar charts and scatterplots are

preferred. In experimenting with different visualizations, it is

useful to keep in mind that the two most important aspects of

visualizations are what question is being answered, and how

a user/reader is expected to interact with the data. Otherwise,

it is easy to get caught up in the views for their own sakes.

Drummond[12] describes cost curves as a technique to

visualize the performance of classifiers based on the distri-

659

Fig. 1. (Left:) An artificial example of a classification learning task with
two real-valued input features and three output classes. (Right:) A grayscale
sampling of the three classes plotted with three different monikers.

bution of classes and the cost of misclassifying outputs. By

“performance” they mean the expected cost of misclassifying

inputs. COD, on the other hand, measures expected dissimi-

larity, or the probability that two classifiers will give different

outputs for the same input pattern. A misclassification by one

algorithm is only significant if it means the output is different

from other algorithms. Cost curves and COD measure and

visualize different aspects of algorithm behavior.

IV. THE COD DISTANCE BETWEEN CLASSIFIERS

The objective of COD is to measure an estimate of

the frequency that two hypotheses, and by extension two

learning algorithms, will behave differently on a task or set

of tasks. For the distance between two individual hypotheses,

we would ideally like to integrate over all possible inputs

the difference between the output of the two hypotheses,

weighted by the input probability. The ideal COD distance

metric over a learning task would be computed something

like this:

D(h1, h2) =

∫
x∈X

|h1(x)− h2(x)| · P(x)dx (1)

where x is each possible input from the input space X , the

quantity |h1(x)− h2(x)| is 1 when hypothesis 1 outputs a

different value from hypothesis 2 and 0 otherwise, and P(x)
is the probability of input x occurring for the task.

Consider the artificial classification problem given in fig-

ure 1. It has two real-valued input features, and three output

classes. The output classes are normally distributed in space.

The left figure is in color, while the right figure is an

equivalent grayscale version.

The decision regions for two decision tree hypotheses

trained on this problem are given in figure 2.

The region of the input space over which the hypotheses

disagree is shown in figure 3. The proportion of the input

space covered by this region then forms the basis for the

COD metric, after weighting the covered region by the

probability of each input occurring, as shown in figure 4.

The integration given above is impractical, or in most cases

impossible, for at least two reasons:

1) In most cases, the input space X is of large dimension

and/or contains a large (or infinite) number of possible

Fig. 2. The decision surfaces for two different hypotheses (generated by
two different decision tree learning algorithms) on the problem given in
figure 1.

Fig. 3. The region where the two hypotheses from figure 2 disagree.

inputs for each feature. Tasks where this is not the

case tend to be academic in nature. Although they are

properly part of PI , they form a relatively small portion

even when taken together.

2) For many tasks, the likelihood of an input vector

for the task (P (x)) is not known. When it can be

estimated, such estimations rely on imperfect or invalid

assumptions. Estimation errors can easily compound

over a large integration to result in an inaccurate

distance metric.

Instead, the COD measure is calculated using differences

in the hypotheses’ output behaviors. Two hypotheses are

compared using COD by evaluating each hypothesis on

patterns that neither has seen during training, and comparing

Fig. 4. (Left:) The probability of each input occurring in the input
space (darker values are more probable). (Right:) The region from figure 3
weighted by the probability of the input occurring. The proportion of the
overall coverage of the right image against the coverage on the left is the
COD distance metric.

660

their outputs. The number of disagreements over the number

of patterns used in the comparison yields the COD distance.

Taking typical training set/testing set methodology, any test

set that is disjoint from the training set may be used to

compute the COD distance.

Assuming the test set is representative of the learning task,

the COD metric can be estimated as:

D̂T (H1, H2) =

∑
x∈T

|H1(x)−H2(x)|

|T |
(2)

where T is the test set and |H1(x)−H2(x)| is 1 where

hypothesis 1 disagrees with hypothesis 2 on the classification

of pattern x, and is 0 otherwise.

COD values will reflect differences in output behavior

due to differences in how two hypotheses generalize. The

distance is nonzero only when the hypotheses have different

observable behaviors at the output. If two hypotheses give

the same answer most of the time, the internal mechanics of

how the answers are computed are irrelevant when focusing

on output behavior. As “black boxes,” such algorithms are

equivalent. In such cases, other factors, such as speed or

simplicity, may influence the choice of algorithms. In this

paper, however, we are only concerned with output behavior.

Instead of using the basic training set/testing set method

as a base, n-fold cross-validation may also be used. The

COD metric can thus be measured between two algorithms

on a task by obtaining a pair of hypotheses, one from

each algorithm, over each partitioning of the data set and

averaging the pairwise distances between the corresponding

hypotheses. This is the method we used to generate our

results.

V. METHOD

The COD measurement has a simple method for com-

bining results on multiple learning tasks to form a single

composed measurement. We obtain an estimate of the COD

distance for tasks similar to those measured by averaging

the COD distances for algorithm pairs on several tasks. This

means the results are dependent on the learning tasks chosen

to measure the learning algorithms. This is undesirable, but

not without precedent in machine learning. For example,

measurement on a single learning task is dependent on the

particular points sampled from the task. Ideally, to obtain

accurate measurements on a task, one performs a large

unbiased sampling of the learning task. At the meta-level,

selecting the learning tasks on which to measure the COD

distance fills the same role here. It is more difficult to obtain

a large sampling and bias is more difficult to eliminate.

However, even with a somewhat biased sample the most

significant trends may still be exhibited.

Table I lists the thirty learning tasks on which the measure-

ments were performed. These tasks are an initial attempt to

sample PI , the set of interesting problems, using tasks from

the UCIMLR[3]. Ultimately, it will be desirable to obtain a

large number of tasks beyond this repository. The objective

was to select a variety of problems of different types, while

avoiding artificial data sets.

TABLE I

LEARNING TASKS FROM THE UC IRVINE MACHINE LEARNING

REPOSITORY USED IN THESE EXPERIMENTS.

Name Classes Real Enum. Enum. Patterns

inputs inputs values

ann 4 6 15 45 7200

breastw 3 0 9 99 683

bupa 3 6 0 0 345

cmuson 3 60 0 0 208

cmuvow 12 10 0 0 990

dermat 7 1 33 163 358

ecoli 9 7 0 0 336

glass 8 9 0 0 214

iono 3 34 0 0 351

iris 4 4 0 0 150

led7 11 0 7 21 200

lymph 5 0 18 78 148

musk1 3 166 0 0 476

newthy 4 5 0 0 215

pima 3 8 0 0 768

promot 3 0 57 285 106

segm 8 19 0 0 2310

sonar 3 60 0 0 208

splice 4 0 60 540 3190

staust 3 6 8 45 690

stgern 3 24 0 0 1000

stgers 3 7 13 69 1000

sthear 3 5 8 31 270

stsati 7 36 0 0 6435

stsegm 8 19 0 0 2310

stvehi 5 18 0 0 846

vowel 12 10 0 0 528

wave21 4 21 0 0 300

wine 4 13 0 0 178

zoo 8 0 16 52 90

Table II lists the algorithms used in this experiment,

along with abbreviations used in the figures. The various

algorithms represent eight different families or paradigms.

The eight families represented are: Decision Tree (DT),

Bayesian (Bsn), Artificial Neural Network (ANN), Instance

Based (IB), Support Vector Machine (SVM), Regression

(Reg), and Rule Based (Rule). The implementations for nine

of the algorithms were taken from the Weka project [13].

The other eight were independently developed.

TABLE II

LEARNING ALGORITHMS AND CORRESPONDING ABBREVIATIONS.

Algorithm Family Marker

Decision Tree, info. gain [14] DT DTg

Decision Tree, gain ratio DT DTr

Decision Tree, ratio variant DT DTe

Naı̈ve Bayes, Gaussian [15] Bsn NB

Naı̈ve Bayes, class segmentation Bsn NBs

Naı̈ve Bayes, input segmentation Bsn NBi

Single Layer Perceptron [16] ANN SLP

Multilayer Perceptron [17] ANN MLP

Weka: J48 DT wJ48

Weka: IB1 IB w1NN

Weka: IBk (with k = 5) IB w5NN

Weka: RBFNetwork ANN wRBF

Weka: SMO -R SVM wSMOr

Weka: SMO SVM wSMO

Weka: Logistic Reg wLgstc

Weka: JRip Rule wJRip

Weka: KStar IB wKStar

On each algorithm pair and for each learning task, the

COD distance was measured ten times on ten folds which

were then averaged together. We considered using a smaller

661

experiment to illustrate the ideas presented in this paper.

However, the concepts and results are not as compelling with

fewer algorithms or fewer tasks.

VI. RESULTS AND ANALYSIS

The COD measurements between the seventeen algorithms

on thirty learning tasks are given in table III. The COD

distance is symmetric and the distance between an algorithm

and itself is zero. The COD distance also obeys the triangle

inequality. Imagine a triangle with any three of the algorithms

as the vertices, and the lengths of the sides equal to the

corresponding COD values. Any such combination obeys the

triangle inequality.

This distance matrix can be used to gain insight into

the behavioral relationships between learning algorithms

across the algorithm space. Quantifiable measurements of

similarity of learning algorithms would be useful in meta-

learning, because meta-learners are amenable to numeric

representations of the learning algorithms they manipulate.

Humans, however, are better suited to representations and

visualizations that help filter the data for meaning. Figure 5

shows a heatmap of Table III with distances grouped into

four ranges 0-15, 16-21, 22-29, 30-34, which gives a visual

representation of the numbers. The most obvious features

are that the highest distances are associated with NBs and

wSMOr, and most pairs have a distance between 16 and 21.

The groupings in the heatmap are based on a frequency

count of the distances in the table, shown in the bar graph in

Figure 6. The smallest distance is 3, between DTg and DTe,

and all other pairs less than 15 are at least 12. The largest

distance is 34, the most common distances are 19 and 20.

While these views provide basic statistical information, it

is easier to study the relationships among algorithms across

the entire space of algorithms using a view that is based on

positional information. Suppose, for example, we want to try

a number of algorithms on some task and choose the best

one. We have tried some number of tasks, and we want to

decide which algorithm to try next. Algorithm A performs

well on the task, and algorithm B performs poorly. Suppose

that algorithm C is similar to A and that algorithm D is

similar to B. Similarity suggests that algorithm C should be

tried next and that algorithm D should be discounted. Figure

7 shows a two-dimensional scatterplot of the algorithm space

for the seventeen learning algorithms tested. This figure was

produced by applying a classical multidimensional scaling

algorithm to the distance matrix, and plotting the results

with gnuplot. Suppose MLP performs well and DTe does not.

Similarity, as defined by distances between points in Figure

7, suggests that we might try wLgstc next, but discount trying

DTg next.

Some observations about the algorithm space, based on

this figure, follow. Generally speaking, the algorithms are

grouped by family. The decision trees–DTg, DTe, DTr, and

wJ48–form a group near the upper right corner, for example.

Algorithm families are arranged functionally, although this

may be a side-effect of the family grouping. Instance Based

algorithms, which tend to focus on local classification, are

DTe
DTg

DTr
NB

NBs

NBi

MLP

SLP

wLgstc

wRBF

wSMO

wSMOr

w1NN

w5NN

wKStar

wJRip

wJ48

Fig. 7. A two-dimensional rendition of the COD distance matrix.

near the bottom right. Near the center of the cluster is

the MLP, which generally functions globally but can focus

locally when needed. SLP and Logistic Regression wLgstc

are near the MLP. SLP is similar in operation to the MLP,

although not as flexible and powerful. Regression also has

functional similarities to the Neural Network approaches.

These approaches tend to focus on fitting a surface to the

task of classification.

The Bayesian algorithms, which function by using statis-

tics gathered globally, are at the top left. And again the

decision tree algorithms, which function globally in some

regions and locally in others, are in the top right.

The same MDS algorithm could be used to construct three-

dimensional representations of these relationships. Three-

dimensional visualizations give one extra degree of freedom

when dealing with multidimensional data. Thus, they are less

constrained than plotting the same data in two dimensions.

In general, three dimensional rotations may reveal planes or

structures that are obscured in two dimensions. It is also

natural to think of the COD matrix as an adjacency matrix for

a weighted graph, with each algorithm at a node. In fact, the

scatterplot can be viewed as a graph with the edges removed.

The results of experiments with graph layout algorithms

verified that the scatterplot of Figure 7 is correct.

VII. OTHER FACTORS THAT MAY AFFECT DIFFERENCES

This section adds new information to some additional

COD concepts that may affect differences as visualized

above. The basic assumption behind the COD metric is that

pairs of algorithms with a smaller COD value are similar,

and pairs with a larger COD are more different. In the

earlier paper [2], Peterson observed that some algorithms

are similar even if the COD value is large. Thus the COD

values alone may not be sufficient to determine how similar

two hypotheses or algorithms are.

One such condition is referred to as dominance. The

concept of COD Angle was developed to measure, detect,

visualize and explain dominance [2]. Given two hypotheses

h1 and h2, h1 dominates h2 to the degree that where they

disagree, h1 is correct and h2 is incorrect. The COD Angle

662

TABLE III

DISTANCE MATRIX OF COD DISTANCES (IN PERCENT) BETWEEN ALGORITHMS, AVERAGED OVER THIRTY LEARNING TASKS.

COD DTe DTg DTr NB NBs NBi MLP SLP wLgstc wRBF wSMO wSMOr w1NN w5NN wKStar wJRip wJ48

DTe 0 3 17 24 32 20 17 21 19 19 20 33 20 19 20 19 14

DTg 3 0 18 24 32 20 17 21 19 19 20 33 20 19 20 19 14

DTr 17 18 0 25 31 21 18 21 20 20 20 34 21 20 22 21 18

NB 24 24 25 0 26 16 19 21 20 16 19 31 23 21 24 23 22

NBs 32 32 31 26 0 25 28 30 29 27 29 34 32 30 32 31 30

NBi 20 20 21 16 25 0 16 18 18 16 16 28 21 18 21 19 19

MLP 17 17 18 19 28 16 0 13 12 14 12 28 15 13 17 16 16

SLP 21 21 21 21 30 18 13 0 12 17 13 29 19 17 21 19 19

wLgstc 19 19 20 20 29 18 12 12 0 16 12 30 18 17 20 19 18

wRBF 19 19 20 16 27 16 14 17 16 0 16 30 19 16 20 19 18

wSMO 20 20 20 19 29 16 12 13 12 16 0 24 19 16 20 18 18

wSMOr 33 33 34 31 34 28 28 29 30 30 24 0 32 29 33 30 31

w1NN 20 20 21 23 32 21 15 19 18 19 19 32 0 12 13 20 20

w5NN 19 19 20 21 30 18 13 17 17 16 16 29 12 0 15 19 17

wKStar 20 20 22 24 32 21 17 21 20 20 20 33 13 15 0 21 20

wJRip 19 19 21 23 31 19 16 19 19 19 18 30 20 19 21 0 18

wJ48 14 14 18 22 30 19 16 19 18 18 18 31 20 17 20 18 0

Avg. 20 20 22 22 30 20 17 19 19 19 18 31 20 19 21 21 20

Fig. 5. (Left:) A color heatmap of Table III. (Right:) A grayscale version.

Fig. 6. A frequency count of the distances in Table III.

663

relates the COD value to the underlying error rates for h1

and h2, as a single value. This allows us to view the error

rate for a hypotheses or algorithm as the COD between that

algorithm and the ideal “perfect classifier”, h0. Recall that

h0 always classifies input patterns correctly.

These ideas, along with the fact that COD distances obey

the triangle inequality, allow us to put bounds on those

distances. Suppose h1 and h2, have respective error rates ǫ1
and ǫ2, where the error rate is one minus the accuracy. The

following are true because error rate measures the difference

between h0 and any other hypothesis:

D̂T (h0, h1) = ǫ1 (3)

D̂T (h0, h2) = ǫ2 (4)

D̂T (h1, h2) ≤ ǫ1 + ǫ2 (5)

D̂T (h1, h2) ≥ |ǫ1 − ǫ2| (6)

Inequality 5 follows from two constraints. First, any input

for which h1 and h2 give the (same) correct output cannot

contribute to ǫ1, ǫ2 or D. Second, any input for which h1

and h2 give the same incorrect output contributes to ǫ1 and

ǫ2, but not D. Reaching that upper limit requires h1 and h2

to be different for each input where either gives an incorrect

output.

Inequality 6 follows by analyzing ǫ1 and ǫ2. When ǫ1 and

ǫ2 are equal, their difference is 0. Since 0 is the smallest

possible value for D, the difference is a lower bound. When

ǫ1 6= ǫ2, either ǫ1 > ǫ2, or ǫ2 > ǫ1. Suppose ǫ1 > ǫ2.

This implies that there are some instances for which h2

gives correct output while h1 gives incorrect output. D must

include at least this difference, but may also include other

differences. The same argument can be used for ǫ2 > ǫ1. So,

ǫ1 − ǫ2 is a lower bound.

It may be useful to formalize the sources of behavioral

differences with respect to a training set T . The patterns

in a training set can be partitioned into one of five possible

sets, when we combine accuracy and output differences. Each

description is followed by a two-letter designation, which we

can refer to when discussing each set. The partitions are:

1) h1 and h2 both give the correct output (CC).

2) h1 is correct and h2 is incorrect (CI).

3) h1 is incorrect and h2 is correct (IC).

4) h1 and h2 both give the same incorrect output (IS).

5) h1 and h2 give different incorrect outputs (IX).

Patterns in CC and IS are instances where the two hy-

potheses agree on the output. These contribute zero to the

COD. Thus, the COD measures the proportion of patterns

in IC, CI and IX. When counting the differences between

hypotheses in order to calculate the COD, it may be useful to

keep track of the percentage in each partition as well. These

five additional numbers may add richness to a visualization.

That is a topic for future work.

A second condition under which two hypotheses with a

large COD distance may be similar is when knowing the

behavior of h1 allows us to predict the behavior of h2. A

simple example of this condition occurs for a task with two

output classes, in which h1 always disagrees with h2. The

COD distance is 1, but h1 is h2 inverted. In some sense, h1

and h2 are learning similar structure, but producing different

output values. Space does not permit us to go into detail

here, but we have used conditional independence to calculate

a value called expected COD (ECOD). ECOD measures

how likely it is that h1 and h2 are independent, based on

conditional prior probabilities. In the most general sense,

this is an issue of mimicry. h1 mimics h2 if there exists

some function g such that g(h1) = h2, with acceptable error.

Curve-fitting visualizations may be a great aid in refining

these particular concepts further.

VIII. CONCLUSION

The Classifier Output Difference distance metric quantifies

the differences in output behavior between pairs of machine

learning algorithms. We computed a COD distance matrix for

seventeen algorithms, representing eight families, on thirty

tasks. We then used the COD data to visualize and analyze

the relationships among the eight algorithm families in the

algorithm space. Although COD can be used to compare

individual algorithms, the focus in this paper is on showing

the structure of the algorithm space. A two-dimensional

scatterplot was used for this purpose. Results showed the

Multilayer Perceptron, which sometimes functions globally,

and sometimes locally, near the center. Other algorithm

families are grouped around MLP, some more loosely than

others. This raises the question of why MLP is in the center.

The uniform numerical representation that the COD

method produces lends itself to visualization techniques

and automated machine meta-learning algorithms. As we

continue to develop interactive visualizations and to explore

the algorithm space and the theoretical underpinnings of

machine learning, we expect the COD method to be a useful

aid to increasing our understanding.

REFERENCES

[1] T. M. Mitchell, “The need for biases in learning generalizations,”
Rutgers Computer Science Department, New Brunswick, New Jersey,
Tech. Rep. CBM-TR-117, May 1980.

[2] A. H. Peterson and T. R. Martinez, “Estimating the potential for
combining learning models,” in Proceedings of the ICML Workshop

on Meta-Learning, 2005, pp. 68–75.
[3] A. Asuncion and D. Newman, “UCI ma-

chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[4] J. B. Kruskal and M. Wish, Multidimensional Scaling, ser. Quantitative
Applications in the Social Sciences. Sage, 1978, no. 11.

[5] D. H. Wolpert, “The supervised learning no-free-lunch theorems,” in
Proceedings of the 6th On-line World Conference on Soft Computing

in Industrial Applications, ser. Springer Engineering Series, 2001.
[6] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier

ensembles,” Machine Learning, no. 51, pp. 181–207, 2003.
[7] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, “Meta-learning by

landmarking various learning algorithms,” in Proceedings of the Sev-
enteenth International Conference on Machine Learning, ICML’2000.
Morgan Kaufmann, San Francisco, California, 2000, pp. 743–750.

[8] Z. Zheng, “A benchmark for classifier learning,” Basser Department of
Computer Science, N.S.W Australia 2006, Tech. Rep. TR474, 1993.

[9] C. E. Brodley, “Dynamic automatic model selection,” University of
Massachusetts, Tech. Rep. UM-CS-1992-030, February 1992.

[10] B. Fry, Visualizing Data, 1st ed., 2008.

664

[11] J. Heer, M. Bostock, and V. Ogievetsky, “A tour through the
visualization zoo,” Commun. ACM, vol. 53, pp. 59–67, June 2010.
[Online]. Available: http://doi.acm.org/10.1145/1743546.1743567

[12] C. Drummond and R. C. Holte, “Cost curves: an improved method
for visualizing classifier performance,” in Machine Learning, 2006,
pp. 95–130.

[13] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques, 2nd ed. San Francisco: Morgan Kaufmann,
2005.

[14] J. R. Quinlan, C4.5: Programs For Machine Learning. Morgan
Kaufmann Publishers, Inc., 1993.

[15] K. Lang, “NewsWeeder: learning to filter netnews,” in Proceedings

of the 12th International Conference on Machine Learning. Morgan
Kaufmann publishers Inc.: San Mateo, California, 1995, pp. 331–339.

[16] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
pp. 386–408, 1958.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Parallel distributed processing:

explorations in the microstructure of cognition, vol. 1: foundations,
pp. 318–362, 1986.

665

