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A MARKOV POINT PROCESS MODEL FOR WRINKLES IN HUMAN FACES

Nazre Batool, Rama Chellappa

Computer Vision Laboratory, Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, USA

ABSTRACT

In this paper we present a new generative model for wrin-
kles on aging human faces based on Markov Point Processes
(MPP) where wrinkles are considered as stochastic spatial ar-
rangements of sequences of line segments. The model is then
used in a Bayesian framework to localize the wrinkles in im-
ages. In aging human faces, wrinkles mostly appear as dis-
continuities in surrounding grayscale texture. The intensity
gradients due to wrinkles are enhanced using filters and used
as data to detect more probable locations and directions of line
segments. Wrinkles are localized by sampling MPP using the
Reversible Jump Markov Chain Monte Carlo (RJMCMC) al-
gorithm. Experiments on images obtained from uncontrolled
acquisition conditions are presented.

Index Terms— Wrinkles, Markov Point Process, Re-
versible Jump Markov Chain Monte Carlo, stochastic geo-
metrical model

1. INTRODUCTION

Wrinkles and fine lines are important but subtle features of ag-
ing human faces. Localization/detection of wrinkles is a chal-
lenging problem due to physical properties of skin and image
acquisition conditions. Wrinkles can be viewed roughly ei-
ther as textures or edges depending on their appearances. Nor-
mally wrinkles create appearance of texture on skin. How-
ever, when looked at high resolution, wrinkles do not depict
any specific repetitive/homogeneous texture pattern. Wrin-
kles cannot be described as boundaries between multiple tex-
tures as well. However, a wrinkle can be described as an
artifact or a discontinuity in a surrounding inhomogeneous
skin texture. Considering these specific characteristic appear-
ances of wrinkles, we propose a novel generative modeling
approach for wrinkles, based on intensity gradients and in-
corporating geometric properties of wrinkles as well.

Many applications in skin aging depend on the analysis
of wrinkles as texture [1]. Some attempts have been made to
evaluate wrinkles as edges for age detection. Kwon and Lobo
[2] used active contour models to localize wrinkles in high
resolution images. Recently, Cula et al. [3] reported work
on localization and assessment of severity of facial wrinkles.
The approach is based on enhancement of intensity gradients

due to wrinkles using Gabor filters and subsequent thresh-
olding of filter response. Our work follows the approach of
the above mentioned methods by analyzing wrinkles as edges
and is closest to the work by Soitca et al. [4]. We propose
to incorporate semantic prior information available from typ-
ical appearance of wrinkles on human faces. The properties
of wrinkles (angle, length, proximity) as prior information al-
low us to select edges that have higher probability of being
wrinkles. The MPP model represents wrinkles as a stochastic
spatial process of ’line segments’ and uses prior knowledge to
impose geometric constraints on line segments in a Bayesian
framework.

2. MARKOV POINT PROCESS

A point process is defined with respect to Poisson measure
(The interested reader is referred to [5] for details on MPP).
A ’mark’, which is a set of random parameters describing ge-
ometric properties, can be attached to a point. In this work, a
point with a mark represents a line segment. Let a marked
point (line segment) be denoted byw i = (si,mi) where
si = (xi, yi) ∈ S ⊂ R

2 is the location of center of seg-
ment andmi = (li, θi) ∈ M is the mark consisting of two
parameters denoting length and orientation of the segment
respectively. The continuous space for parameters is given
by M = [lmin, lmax] × [θmin, θmax]. The line segment se-
quences{w = wi, i = 1, ..., n} can be considered as realiza-
tion of MPP on spaceS×M . The probability density of MPP
can be represented by the Gibbs distribution.

f(w) = cβn(w) exp(−U(w)) (1)

f(w) = cβn(w) exp−(UP (w) + UD(w)) (2)

wherec is the normalizing constant,β is the intensity of point
process,n(w) andU(w) are the number of line segments and
total energy for the realizationw respectively. The total en-
ergy is the sum of two energy termsUP (w) andUD(w) cor-
responding to the prior model for interaction of line segments
and data likelihood term respectively.



2.1. Prior Model

The prior model captures more likely geometric properties of
individual line segments (length and connectivity) as well as
the interactions among neighboring line segments. The pa-
rameters{li, θi} associated with the markmi are sampled
from a Uniform distribution.

li ∼ U([lmin, lmax]) andθi ∼ U([θmin, θmax]) (3)

Let q1(wi) andq2(wi, wj) denote the energies contributed by
properties of an individual line segmentw i and the interaction
of two segments{wi, wj}. Then the total energy for the prior
model is given by

UP (w) = −
∑

wi∈w

log q1(wi)−
∑

(wi,wj)∈w

wi∼wj

log q2(wi, wj)

(4)
wherewi ∼ wj denotes the interaction between two seg-
ments. The two individual geometric properties modeled are
length and connectivity. Line segments with larger lengths
are penalized as follows.

q1,l = exp−

(

l − lmin

lmin

)

(5)

Regarding connectivity, a segment is allowed to be connected
on either side by exactly one line segment which can result
in singly or doubly connected segments. We want to penal-
ize individual line segments with no connections at all. Let
ci ∈ {0, 1, 2} denote the number of connections for the line
segmentwi. The segments with more connections are favored
as follows.

q1,c(wi) = q(ci + 1) (6)

where:

q =
[

q(1) q(2) q(3)
]T

andq(3) ≥ q(2) ≥ q(1) (7)

The interaction between line segments is modeled through the
term q2(wi, wj). Two segments have rejection interaction if
they are overlapping or lie within radiusr of each other. This
penalizes the overlapping or congested line segments:

q2(wi, wj) = γI(wi∼wj) (8)

The parameterγ is the penalty assigned to segments with re-
jection interaction andI(wi∼wj) is the indicator function for
interacting segments. Figure 1 shows examples of interac-
tions between two line segments.

2.2. Data Likelihood

The data likelihood captures the information on where line
segments corresponding to wrinkles are more probable in the

Fig. 1. (Left) Rejection Interaction (Right) No Rejection In-
teraction

Fig. 2. LoG filter response to low resolution forehead image
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given data. The images are filtered with Laplacian of Gaus-
sian (LoG) filter to highlight intensity gradients caused by
wrinkles. LetDi denote pixels in the image correspending
to the segmentwi. The likelihood energy for the segmentw i

is given by
UD(wi) = α

∑

d∈Di

(d) (9)

Figure 2 shows results of LoG filter responses to low resolu-
tion forehead image for different values of variance. A trade
off can be observed between localization of wrinkles and am-
plitude of LoG output to wrinkle gradients. We select the
standard deviation(σ = 0.5) for LoG filters for this work.

2.3. Simulation

For MPP, the number of line segments is not known a pri-
ori and the Metropolis-Hastings algorithm cannot be used to
sample from distributions. The algorithm is changed to allow
configurations of different dimensions i.e. number of line seg-
ments. Green presented the Reversible Jump Markov Chain
Monte Carlo algorithm to jump between states in configura-
tions of different dimensions [6, 7]. Given that the statew

is changed tow′, the algorithm requires matching of dimen-
sions of two configurations. This is done using an auxilliary
random variableu, sampled from a distributiong(u), and a
bijective transformationT such thatw ′ = T (w, u). The ac-
ceptance probability is then modified by the Jacobian of trans-
formation as follows.

φ(w → w
′) = min{1, R} (10)

whereR is called acceptance ratio and given as

R =
f(w′)

f(w)g(u)

∣

∣

∣

∣

∂T

∂(w, u)

∣

∣

∣

∣

×
prob(reverse jump)
prob(forward jump)

(11)



Fig. 3. (Left) Birth of a doubly connected segment (Right)
Placement of Seed Segments

Simulated annealing is used to reach the global minimum of
the Gibbs energyU(w) in (2) where the probability density

f(w) is replaced byf(w)
1
Ti in RJMCMC algorithm andTi

denotes temperatue in iterationi. The simulation of point pro-
cess involves the following four moves among configurations
of different dimensions.

1. Birth or Death of Free Segments

2. Birth or Death of Connected Segments

Each move invovles the calculation ofg(u), T (w, u),
∣

∣

∣

∂T
∂(w,u) |

andR. For brevity, we skip the detailed derivation and present
the final expressions forR for different moves. Let{n, n c0,
nc1, nc2} denote the total number of segments and the num-
ber of segments having zero, one and two connections re-
spectively. For the birth of a free segment, letω denote the
new free segment added to the configuration and letu be the
random vector sampled from the segment parameter space
(S,M) according to uniform distribution. Thenu is given
by:

u =
[

xu yu lu θu
]T

(12)

and the density function foru denoted byg(u) is given as:

g(u) =
1

ν(S)
×

1

lmax − lmin

×
1

θmax − θmin

(13)

whereν(S) is the total measure on image spaceS. The bijec-
tive transformation for this move is selected to be:

w
′ = T (w, u) = {w′

1 = w1, ..., w
′
n = wn, ω = u} (14)

Then the Jacobian of the transformation is one. LetPF,birth

andPF,death be the probabilities of choosing birth and death
of free segments respectively,PF,death/nc0 is the probability
of reverse jump of death of that particular free segment. Then,
according to (11), the acceptance ratio for the birth of a free
segment can be written as:

R =
PF,death

nc0
×
ν(S)(lmax − lmin)(θmax − θmin)

PF,birth

×
f(w′)

f(w)
(15)

where the ratiof(w
′)

f(w) = f(w∪ω)
f(w) is given as follows:

f(w′)

f(w)
= β exp(q1(ω)

∑

wi∈w

wi∼ω

q2(wi, ω) + α
∑

d∈D(ω)

d) (16)

For the birth of a connected segment, a new segment is sam-
pled and connected to a randomly selected segment, with at
least one free end, from the configuration. This move can
also result in doubly connected segments as is shown in Fig-
ure 3(a). For the death move, a singly connected segment is
selected randomly which eventually can result in the deletion
of a doubly connected segment. Let(xe, ye) be the coordi-
nates of the free end of an existing segment to connect the
new segment to. Letu = (θu, lu) be the random vector sam-
pled from mark spaceM with density function:

g(u) =
1

lmax − lmin

×
1

θmax − θmin

(17)

Then the new segmentω is given by:

ω(u) =
[

xω(xe, θu, lu) yω(ye, θu, lu) θu lu
]T

(18)

xω = xe ±
lu
2
cos(θu) andyω = xe ±

lu
2
sin(θu) (19)

Then it can be shown that the Jacobian of the bijective tran-
formation is given as

∣

∣

∣

∣

∂T (w, u)

∂(w, u)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂w′

∂(w, u)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂
[

w ω(u)
]T

∂(w, u)

∣

∣

∣

∣

∣

= 1 (20)

Let PC,birth andPC,death be the probabilities of choosing
the birth and death of a connected segment respectively, then
PC,birth/(2nc0 + nc1) is the probability of selection of a par-
ticular free end point(xe, ye) andPC,death/nc1 is the proba-
bility of reverse jump of death of a connected segment. Then
the acceptance ratio for birth of connected segment can be
written as:

R =
2nc0 + nc1

PC,birth

×
PC,death

nc1

×(lmax − lmin)(θmax − θmin)×
f(w′)

f(w)
(21)

where the ratiof(w′)
f(w) is given in (16). The acceptance ra-

tios for the reverse jumps i.e. death of a free or connected
segments are simply the inverse of acceptance ratios of birth
moves.
The connected segments connect to pre-existing segments
with free end points making the placement of first few free
segments critical in the evolution of Markov Chain in RJM-
CMC algorithm. For faster convergence towards the global
minimum, we use a favorable initial state by introducing
’seed’ segments. These segments are free segments placed in
the image at high LoG filter responses. The image sites with
highest filter responses are selected while keeping a mini-
mum distance among them. Seed segments are then placed
on these sites in the direction perpendicular to the highest in-
tensity gradient. Figure 3(b) shows an example of placement
of seed segments.



Fig. 4. (Top) Ground Truth (Bottom) localization results

α β γ log qc0 log qc1 log qc2

4000 0.005 5000 −1010 106 1010

Table 1. Parameter Values

3. RESULTS

Experiments were conducted on face images from the FG-Net
[8] dataset having various resolution and illunination settings.
Each move in RJMCMC algorithm was selected with equal
probabiliy i.e. 1/4 where one iteration performed one move
only. Table 1 shows selected values for different parameters
of the MPP model. Figure 5 shows localization results for
different subjects. It can be seen that, despite low resolution,
most of the wrinkles are detected with few false alarms. Since
the ground truth is not available, some of the images were
used to draw wrinkles by hand. Figure 4 shows the compari-
son of groud truth vs. localization results for those images. It
can be observed that the localized wrinkles closely resemble
the ground truth. However, the line sequences are broken at
some places and do not cover the original wrinkle completely.
At some locations, some overlapping of segments can also be
observed.

4. CONCLUSION

The main contribution of this work is the modeling of wrin-
kles as spatial line process to incorporate specific prior knowl-
edge about wrinkles. The experiments on images with un-
controlled acquisition conditions highlight the strength of our
modeling approach. This work can be the basis for applica-
tions based on modeling of wrinkles. In future, we plan to
extend the current work by using more sophisticated geomet-
ric model and estimation of model parameters.
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Fig. 5. Localization results
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