2010 Second International Conference on Future Networks

An Intelligent Learning Approach For Information Hiding In 3D Multimedia

Rakhi Motwani, Mukesh Motwani, and Frederick Harris, Jr.,
Department of Computer Science and Engineering
University of Nevada, Reno USA
{mukesh, rakhi, fredh}@cse.unr.edu

Abstract—This paper presents a new watermarking algo-
rithm for 3D triangular mesh models that is based on surface
curvature estimation and supervised learning. A feedforward
backpropagation neural network is adopted for selecting ver-
tices for watermark insertion. A variety of 3D models with
varying degrees of surface curvature are used to train and
simulate the neural network. An array of neural networks
is used for vertices with different valences to achieve higher
watermark embedding capacity. A gray scale bitmap image
is used as the watermark. The watermark extraction pro-
cess is informed and needs the original watermark and 3D
model. Experimental results evaluate the embedding capacity,
imperceptibility and robustness of the proposed algorithm and
simulate various attacks including noise addition, smoothing
and cropping.

Keywords-watermarking; 3D models; surface curvature; su-
pervised learning;

I. INTRODUCTION

The medical industry makes extensive use of 3D models
for surgeries [1] and computational modeling [2]. The high
sensitivity for the integrity of medical data being modeled
demands tamper-proofing mechanisms. Information hiding
techniques are used as a means to protect digital data against
tampering by embedding copyright information into the
digital content. The embedded hidden information, referred
to as the watermark, serves as proof of original ownership
and authenticates the digital content. However, the water-
mark insertion process must maintain visual integrity of
the digital data and should not introduce any perceivable
artifacts that distort or interfere with the original content.
This requires identifying those regions of a 3D model for
watermark insertion, where the human visual system is the
least sensitive to distortions.

Research on 3D model watermarking has employed var-
ious approaches [3] to achieve imperceptibility. Some of
these techniques involve changing the order of the 3D data
in the model’s file format to encode the watermark, re-
triangulating parts of the 3D triangular mesh, changing
positions of vertices according to their local moments, using
masking functions to add the watermark, hiding information
in the heights of the triangles of the mesh, altering the dis-
tance between vertices of the model and the center of gravity
of a given reference triangle for each selected interval,
modifying the length ratio between edges of a triangle, and
algorithms that are based on the local mean and Gaussian

978-0-7695-3940-9/10 $26.00 © 2010 IEEE
DOI 10.1109/ICFN.2010.104

447

curvatures to identify appropriate regions for watermark
insertion. The approach in this paper is an extension of our
previous work [4]. The proposed technique computes the
local curvature of a 3D surface and trains an artificial neural
network to classify regions with varying levels of watermark
embedding strengths.

The remainder of this paper is structured as follows: In
Section 2, we briefly outline the structure and functionality
of an artificial neural network. Section 3 describes the
training process for artificial neural network, the watermark
insertion and the extraction algorithm. Section 4 provides
the experimental results. Final remarks and conclusions are
drawn in Section 5.

II. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) [5] are an algorithmic
modeling of biological neural systems. An ANN is a layered
network of neurons (Fig. 2). The neuron, which is the basic
component of an ANN, upon activation fires an output signal
corresponding to a set of input signals. A neuron receives
input signals p; and aggregates these signals into a net input
signal n by multiplying each input signal with corresponding
numerical weights w; and summing up all of these computed
numerical values along with a bias b, as shown in Fig. 1.

Activation

Inputs _
Function

Qutput

X 2

W lb
LR
R

P
a=finp+b)

I =

[

> f

'.a

p
P
P

W

Figure 1. Neuron [6] - The Building Block of a ANN

The output signal a is computed by an activation function f
that takes n as the input. An activation function can be linear
or non-linear in nature. The most commonly used activation
functions, such as sigmoid and hyperbolic tangent, map n to
a in a non-linear way. The neuron transmits an output signal
only when it is activated i.e. the net input signal falls within
the working range of the activation function. The bias is used
to change the threshold at which a neuron activates and is
adjusted by the learning phase of the ANN. The weights w,

IEEE
@ computer
socle

ty

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 23,2010 at 03:57:21 UTC from IEEE Xplore. Restrictions apply.

that control the strengths of the input signals, are very critical
in defining the behavior of the ANN and evolve during the
learning phase as well. The goal of the learning phase of
ANN is to determine the best values for w and b from a given
set of data and adjust these values until a certain criterion
is satisfied.

In supervised learning, the neuron is provided with a
training data set consisting of input vectors and a target (de-
sired output) associated with each input vector. A supervised
learning ANN uses the target vector to determine how well
it has learned, and to guide adjustments to weight values to
minimize the overall error between the real output of the
neuron and the target output.

Inputs Hidden Layer 1 Hidden Layer 2 Qutput Layer
ot o, d, pe 7 az 7 4
AT 7 Dl
P 1 b. /] v
/A 4
z "y o 4 -
NE] ')
o Y W
N\
oE —=
Wige
R: number of inputs, iw:input weights, lw:layver weights, S:number of nuerons

Figure 2. Multi-Layer ANN [6]

A feedforward ANN propagates the signals through all
the layers to obtain the result, which is the output of the last
layer in the network. Backpropagation is one of the various
approaches to train the ANN such that the output of the
network is an accurate approximation of the target values.
During the learning iterations, the output value of the ANN
for each training pattern is computed and the error signal
is propagated back from the output layer toward the input
layer so that the weights are revised appropriately.

For the proposed approach, described in the following
section, the neural network is used as a classifier(to predict
the class of an input vector). The objective of the employed
feedforward backpropogation ANN in this paper is to learn
the watermark embedding capacity of a vertex from a given
set of training data.

III. APPROACH

3D triangular mesh models are represented by a set of
vertices and a list of triangular faces formed by the vertices.
A vertex v; is a neighbor of another vertex v; if an edge
exists that connects v; and v; . The set of all the neighbors
of a vertex v; is called 1-ring of the vertex. The set of all
neighbors of the 1-ring neighbors of a vertex v; along with
the set of 1-ring neighbors is called 2-ring of the vertex, as
shown in Fig. 3. The number of neighbors of v; in it’s 1-ring
neighborhood is the valence of the vertex v;. Fig. 3 shows
a vertex of valence 5 (1-ring) and vertices of valence 5 and
6 (2-ring).

Figure 3. Neighborhood of a Vertex - 1-ring demonstrated by light gray
patch, 2-ring demonstrated by light and dark gray patches

The input vectors that are used to train the neural network
are derived from the 1-ring and 2-ring neighborhoods of
each vertex. The 1-ring and 2-ring neighborhoods take into
account the local geometry of the vertex. Based on analysis
of the local curvature which is estimated by the angles be-
tween surface normals of a neighborhood, a neural network
is trained such that it can appropriately choose regions from
any 3D model to embed the watermark. Fig. 4 demonstrates
the surface normals for 3D models with varying levels
of curvature. For flat surfaces, the angles between surface
normals are small in magnitude since these normals are
almost parallel to each other. For regions representing edges,
the angle between the neighboring normals is much larger in
magnitude. While smoother regions like the Mushroom top
have relatively smaller variations in orientation of the sur-
face normals. Thus, angular difference between neighboring
surface normals represents the curvature or local shape of
a region and is an appropriate input vector for training and
simulation of the artificial neural network. The neighborhood
size is restricted to 2-ring such that local details of surfaces
are not lost.

Mushroom

Hypersheet

Mannequin
\ !,

Figure 4. Curvature Estimation From Normal Vector Distribution

Fig. 5 outlines the system block diagram and the following
subsections describe the three blocks of the system - Neural
Network Training, Watermark Insertion, and Watermark
Extraction.

A. Neural Network Training

For training the neural network, 3D models with varying
degrees of surface curvature are chosen. Input vectors are
computed for vertices of valence 4, 5 ,6 and 7 from each
3D model chosen for training. Input vectors are the values of

448

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 23,2010 at 03:57:21 UTC from IEEE Xplore. Restrictions apply.

/ 3D Models

Input Vectors

8 'S Compute ¢ w Neural Network 1
4 Values Val =5
. For 1-ring — alence ™ Neural Network 2
& 2-ring Determination &‘
Neighborhood - Neural Network 3
‘ of Vertices .
v :777777777777777777777777777777777777777J Neural Network 4
§ Input Vector Extraction
K Training of Feedforward Backpropagation Neural Network Target Vectors /
Input Vector Extraction | ——» Neural Network
Output
3D Model Vectors A
Bwatemllafk Watermark Embedder | ——— k2
t
1map image Watermarked 3D Model

Watermark Insertion Process

N

»| Watermark Extractor

AN

Potential Attacks

A

Extracted
Watermark

Watermark
Bitmap Image

Statistical Comparison|—— Similarity Measure

N

Watermark Retrieval Process

%

Figure 5.

angles ¢ between the face normals and the average normal
for a 1-ring and 2-ring neighborhood of a vertex. These
¢ values are computed using the technique specified in
our previous work [4]. The limitation in the previous work
was that it considered vertices of valence 6 only and the
output vector specified whether a vertex was appropriate for
watermark insertion or not. Here we use multiple neural
networks, each trained with input vectors derived from
vertices of a different valence. We use 4 neural networks,
one each for vertices of valence 4, 5, 6 and 7. The output
of the neural network is one of four levels(1,2,3,4) used
to represent the watermark embedding strength of a vertex.
The watermarking algorithm selects vertices with levels
2,3 & 4 to embed a watermark of different strength in
each level. This approach increases the embedding capacity
of the algorithm while maintaining imperceptibility of the
watermark. To achieve rotational invariance, all permutations
of the input vectors for each vertex are added to the training
set.

Target vectors, for a set of input vectors, are derived from
original and watermarked models using the algorithm in [7]

System Block Diagram

with the parameter for embedding capacity set at 100%(this
ensures that all the vertices are modified). Subtracting ver-
tices of the original model from the watermarked model
gives the value of the watermark embedded into each vertex.
The minimum and maximum value of the strength of this
watermark is determined and the difference between the two
values is divided into four intervals. The watermark values
lying in these four ranges are assigned levels of 1,2,3,or 4.
This level serves as the target vector for a set of input vectors
corresponding to a vertex.

Input vectors and the corresponding target vectors are
used to train the 4 neural networks such that the aggregate
neural network can classify new input vectors by associating
an appropriate output vector for each vertex. Fig. 6 illustrates
the architecture of the feedforward back propagation neural
networks used for the implementation.

The artificial neural network has 1 hidden layer with R=4,
5,6 or 7 inputs and 1 output layer with S* inputs. The hidden
layer uses a hyperbolic tangent sigmoid transfer function(f)
while the output layer uses a linear transfer function(f2).
The hidden layer has S' = 20 neurons and the size S% = 1

449

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 23,2010 at 03:57:21 UTC from IEEE Xplore. Restrictions apply.

Output Layer

al = FL(IWLip+b1) a2 = F2(LW21 at+b2)

Figure 6. Neural Network Architecture [6]

of the output layer is determined by the target vector. LW
denotes the layer weight matrices, IW represents the input
weight matrices. 3D models different from those used in
the training session are used for network simulation. Mean
square error is used as the performance function to compute
the error between the network outputs and the target vectors.

B. Watermark Insertion Process

For a given 3D model that needs to be watermarked, the
input vectors are computed for vertices of different valences
and used to simulate the artificial neural network. The output
of the artificial neural network specifies the watermark
embedding capacity level of the vertex corresponding to
the input vector. The watermark embedder selects vertices
with level 2, 3 and 4 for watermark insertion. The algorithm
perturbs a vertex by using a scaling factor for the watermark
to be embedded. A scaling factor of K7 = 0.25 % 107 is
used for vertex of level 2, K5 = 0.5 % 10~* is used for
vertex of level 3 and K5 = 10~* is used for vertex of level
4. A gray scale bitmap image is used as a watermark. For
each co-ordinate of a vertex selected to be modified, the
modification to the vertex is determined by the following
equation:

Vg,y,z = v;,7y,72, + KW (1)
where, v = Original Vertex,
v’ = Watermarked Vertex,
K = Scaling Factor,
W = Watermark Data (image pixel value between 0-255).

Fig. 7 shows the 3D models that are to be watermarked.

Cow 3D Model

Figure 7.

The output vectors for vertices with varying degrees of
watermark embedding capacity are shown in Fig. 8. Level 1

represents the least embedding strength and level 4 indicates
that a vertex can accommodate a higher value for insertion.
Toolbox Graph [8] in Matlab has been used to generate the
figures.

Figure 8. Watermark Embedding Strengths for Vertices of Cow 3D Model
The cyan regions in Fig. 9 denote the vertices selected for
watermark insertion.

Watermarked Original

Figure 9. Regions Selected for Watermark Insertion indicated in cyan

The watermarked models are shown in Fig. 10

Figure 10. Watermarked Cow 3D Model

C. Watermark Retrieval Process

The watermark extractor is non-blind and requires the
original 3D model along with the watermarked model to re-
trieve the watermark. The values of the extracted watermark
are rescaled by factor K, which was used in Eq. 1, such that
the pixel values of the watermark image are restored to their
original values. The indices of vertices with level 2, 3 and 4
are saved during the insertion process to assist the rescaling
of the retrieved watermark. The pixel values of this image
are then compared against the originally embedded image to
determine the measure of similarity between the embedded
and retrieved watermark. If this measure is above 80% the
3D model is declared to be authentic. A similarity measure
below 80% indicates that the model has been tampered with.

450

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 23,2010 at 03:57:21 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTS

This section evaluates the capacity, visibility and ro-
bustness of the watermarking algorithm. The capacity is
determined by the size of the payload that is hidden in the
3D model. A gray scale bitmap image of size 32x32 pixels
is used as payload for our experiments. 3D models with
embedding capacity higher than 32x32 use the same image,
in whole or parts, repetitively until the entire embedding
capacity is utilized. To evaluate the visibility of the wa-
termarking process, the vertex signal-to-noise ratio(VSNR)
measure determines whether the distortion caused to the
watermarked model is perceptible or not. VSNR is computed
by Eq. 3.

N
dim1 4522 + yf + Zz2
N ’ ’ ’
Yoimi (@ = @)+ (y; —wi)? + (2 — 2:)?

SNR = (2)
where,

T;, Yi, 2; are co-ordinates of vertex v; in the original 3D
model,

x;, y;, z; are co-ordinates of the same vertex in the water-
marked 3D model, and

N is the total number of vertices in the 3D model.

VSNR = 20 « Logio(SNR) 3)

Table I lists the VSNR values for different 3D models.

Model Number | Number of | VSNR
Name of Modified (dB)
Vertices Vertices
Cow 2904 883 98.75
Hypersheet 487 287 119.23
Mushroom 226 98 104.57
Mannequin 428 224 61.25
Table 1

CAPACITY AND VISIBILITY OF THE WATERMARKING ALGORITHM

To evaluate the robustness of the watermarking method,
various attacks are simulated on the watermarked models.
The proposed method is naturally resistant to rotational

3D Model Similarity Measure
Name Noise HC Smoothing Cropping
(% level) (# of steps) (# of cropped vertices)
Cow 87.66% 40.07% 67.57%
(10% level) (2 steps) (758 vertices)
Hypersheet 77.13% 30.38% 62.41%
(10% level) (2 steps) (86 vertices)
Mushroom 85.06% 42.42% 33.09%
(10% level) (2 steps) (105 vertices)
Mannequin 89.82% 56.50% 92.91%
(10% level) (2 steps) (42 vertices)
Table 11

SIMILARITY MEASURE RESULTS FOR EMBEDDED AND EXTRACTED
WATERMARKS AFTER VARIOUS ATTACKS

attacks since the neural network is trained with all per-
mutations of the input vectors that represent rotated set of
vertices. Amongst geometrical(additive noise, mesh smooth-
ing) attacks, the algorithm is only robust against low levels
of noise addition. A Gaussian noise is added to x,y,z
coordinates of the watermarked model with 10-100% of the
vertices selected randomly from the whole set of vertices in
the model. Depending on the location of the cropping plane,
experiments verified that the watermark can be retrieved
despite of cropping attacks that remove parts of a 3D model.
Table II lists similarity measure values for the various attacks
simulated on the watermarked 3D models.

V. CONCLUSION

This paper explores the use of artificial neural networks
for the watermark embedding process. An extension of our
previous work [4] on watermarking 3D triangular meshes
using artificial neural networks has been presented. Multiple
neural networks have been adopted to accommodate vertices
of different valences. The outputs of a high embedding
capacity algorithm [7] are utilized for training the neural
networks. A gray scale bitmap images is utilized as a water-
mark. Watermark invisibility is achieved through embedding
the watermark with different scaling factors in vertices with
higher embedding strengths. Experimental results show that
the presented watermarking algorithm is of higher capacity
than the formerly devised algorithm [4].

REFERENCES

[1] E. Takahashi and T. Kaneko, “Facial surgery simulation using
3D bubble mesh,” Systems and Computers in Japan, vol. 32,
2001.

[2] J. Sienz, 1. Szarvasy, E. Hinton, and M. Andrade, “Computa-
tional modelling of 3D objects by using fitting techniques and
subsequent mesh generation,” Computers Structures, vol. 78,
no. 1-3, pp. 397 — 413, 2000.

[3] J.-L. Dugelay, A. Baskurt, and M. Daoudi, 3D Object Pro-
cessing: Compression, Indexing and Watermarking. — Wiley
Publishing, 2008.

[4] M. Motwani, S. Dascalu, B. Bryant, and F. Harris, “3D
multimedia protection using artificial neural network,” in [EEE
International Workshop on Digital Rights Management, Las
Vegas, USA, 2010.

[5]1 A. Engelbrecht, Computational Intelligence - An introduction.
2nd edition, Wiley Publishing, 2007.

[6] H. Demuth, M. Beale, and M. Hagan, MATLAB Neural Net-
work Toolbox 6: User’s Guide. The Mathworks, 2009.

[71 M. Motwani, B. Sridharan, R. Motwani, and F. Harris, “Tamper
proofing 3D models,” in IEEE International Conference on
Signal Acquisition and Processing, Bangalore, India, 2010.

[8] G. Peyre, “Toolbox graph - a toolbox to perform computations
on graph,” Released Jun 2004(Updated Jul 2009).

451

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on April 23,2010 at 03:57:21 UTC from IEEE Xplore. Restrictions apply.

