
Crowdsourcing for Top-K Query Processing over
Uncertain Data (Extended abstract)

Eleonora Ciceri, Piero Fraternali, Davide Martinenghi and Marco Tagliasacchi
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milan, Italy

Email: first.last@polimi.it

I. INTRODUCTION

Both social media and sensing infrastructures are producing
an unprecedented mass of data characterized by their uncertain
nature, due to either the noise inherent in sensors or the
imprecision of human contributions. Therefore query process-
ing over uncertain data has become an active research field.
In the well-known class of applications commonly referred
to as “top-K queries”, the objective is to find the best K
objects matching the user’s information need, formulated as
a scoring function over the objects’ attribute values. If both
the data and the scoring function are deterministic, the best
K objects can be univocally determined and totally ordered
so as to produce a single ranked result set (as long as ties
are broken by some deterministic rule). However, in applica-
tion scenarios involving uncertain data and fuzzy information
needs, this does not hold: when either the attribute values or
the scoring function are nondeterministic, there may be no
consensus on a single ordering, but rather a space of possible
orderings. To determine the correct ordering, one needs to
acquire additional information so as to reduce the amount of
uncertainty associated with the queried data and consequently
the number of orderings in such a space. An emerging trend
in data processing is crowdsourcing, defined as the systematic
engagement of humans in the resolution of tasks through
online distributed work. Our approach combines human and
automatic computation in order to solve complex problems:
when data ambiguity can be resolved by human judgment,
crowdsourcing becomes a viable tool for converging towards
a unique or at least less uncertain query result. The goal of
this paper is to define and compare task selection policies for
uncertainty reduction via crowdsourcing, with emphasis on the
case of top-K queries.

Problem formulation: Given a data set with uncertain
values and an allowed budget of posable questions, determine
the set of questions (to be posed to a crowd) that minimizes
the expected residual uncertainty of the result, possibly leading
to a unique ordering of the top K results.

II. BACKGROUND

We consider the problem of answering a top-K query
over a relational database table T containing N tuples. The
relevance of a tuple to the query is modeled as a score.
Let ti ∈ T be a tuple in the database, and s(ti) be the
score of tuple ti, computed by applying a scoring function
over ti’s attribute values. When the score s(ti) is known
for each tuple ti, the tuples in T can be totally ordered in

descending order of s(ti) by breaking ties deterministically.
Instead, if the score s(ti) is uncertain and thus modeled as a
random variable (with a probability density function (pdf) fi),
such an uncertainty induces a partial order over the tuples.
Indeed, when the pdf’s of two tuples overlap, their relative
order is undefined. Therefore, we define the space of possible
orderings as the set of all the total orderings compatible
with the given score probability functions. This space can
be represented by means of a tree of possible orderings T
(henceforth: TPO) [4], in which each node (except the root)
represents a tuple ti, and an edge from ti to tj indicates
that ti is ranked higher than tj (denoted ti ≺ tj). Each path
ω = t1 ≺ t2 ≺ . . . ≺ tN represents a possible ordering of the
underlying set of tuples T , and is associated with a probability
Pr(ω) [2]. Since processing a top-K query over uncertain data
requires computing the orderings of the first K tuples, in order
to answer such a query it suffices to build the sub-tree TK of
possible orderings up to depth K.

Given a TPO TK , we propose four measures to quantify
its level of uncertainty. These measures are based on the idea
that the larger the number of orderings in TK and the more
similar their probabilities, the higher its uncertainty.

• Entropy. UH(TK) measures TK’s uncertainty via Shan-
non’s entropy, based only on the probabilities of its leaves.

• Weighted entropy. UH(TK) is a weighted combination
of entropy values at the first K levels of the TPO.

• ORA. UORA(TK) is based on the idea of comparing all
the orderings in TK with the Optimal Rank Aggregation
(ORA) [3], which is a sort of median ordering in TK .

• MPO. UMPO(TK) refers to another representative order-
ing, i.e., the Most Probable Ordering (MPO) [3].

III. HUMANS FIGHTING UNCERTAINTY

We consider crowd tasks expressed as questions of the form
q = ti ?≺ tj , which compare ti and tj to determine which
one ranks higher. Given a crowd worker’s answer ans(q) (i.e.,
either ti ≺ tj or ti 6≺ tj), we can prune from TK all the
paths disagreeing with the answer. The goal of Uncertainty
Reduction (UR) is to find a sequence of questions the answers
to which allow pruning the TPO TK so that a single ordering
(the “real” ordering ωr) remains. A UR algorithm is optimal
if the sequence it finds is always minimal.

Theorem 3.1: No deterministic UR algorithm is optimal.

We consider two practical classes of algorithms: i) offline
algorithms, which determine the questions a priori, before ob-

taining any answer from the crowd, and ii) online algorithms,
whereby the questions are determined incrementally as the
answers to previous questions arrive. These classes reflect two
common situations in crowdsourcing markets: one where the
interaction is limited to the publication of a batch of tasks,
which is evaluated for acceptance as a whole; and one where
the employer can inspect the outcome of crowd work as it
becomes available and incrementally publish further tasks.

Since optimality is unattainable, we simply aim at maxi-
mizing the expected uncertainty reduction after pruning TK .
The set QK of relevant questions to ask consists of those
that compare tuples with an uncertain relative ordering, i.e.,
whose pdf’s overlap. Let B denote the maximum number of
questions (budget) that can be asked to the crowd workers.
Our goal is then to select the best sequence of questions
Q∗ = 〈q∗1 , . . . , q∗B〉 ⊆ QK that causes the largest amount of
expected uncertainty reduction (with consequent reduction of
the number of orderings in TK). An offline UR algorithm that
always does so is said to be offline-optimal.

A. Offline question selection strategies

We present an offline-optimal one, and two sub-optimal but
faster alternatives.

Best-first search offline algorithm (A∗−off). This algo-
rithm adapts the well-known A* search algorithm to explore
the space of question sets.

Theorem 3.2: A∗−off is offline-optimal.

Top-B offline algorithm (TB−off). For each question
q ∈ QK , we compute the expected residual uncertainty
Rq(TK) (i.e., the uncertainty of TK after q is asked). Then, Q∗
is defined as the set of B questions with the highest Rq(TK).

Conditional offline algorithm (C−off). This method
iteratively selects one question at a time based on the previous
selections. Let {q∗1 , . . . , q∗i } be the first i selected questions (∅
when i = 0). The (i+1)-th question q∗i+1 is selected by C−off
fromQK\{q∗1 , . . . , q∗i } so as to minimizeR〈q∗1 ,...,q∗i ,q∗i+1〉(TK),
i.e., the residual uncertainty conditioned by the choice of the
previously selected questions q∗1 , . . . , q

∗
i . The final output is

thus Q∗ = {q∗1 , . . . , q∗B}.

B. Online question selection strategies

An online algorithm can determine the i-th question based
on the answers to all the previously asked i− 1 questions.

Best-first search online algorithm (A∗−on). An online
UR algorithm that iteratively applies A∗−off B times.

Top-1 online algorithm (T1−on). The T1−on algorithm
builds the sequence of questions Q∗ iteratively: at each it-
eration, the algorithm selects the question that minimizes the
expected residual uncertainty with budget B = 1, appends it to
Q∗ and asks it to the crowd. The TPO TK is then updated to the
sub-tree that agrees with the received answer. Early termination
may occur if all uncertainty is removed with |Q∗| < B.

C. Handling noisy workers

In a crowdsourcing scenario, the collected answers might
be noisy. When a crowd worker’s accuracy (i.e., the probability

0 5 10 20 30 40 500

0.2

0.4

B

D
(ω

r
,
T
K
)

T1-on
TB-off
C-off
incr
naive
random

(a) Distance to real ordering ωr

5 10 20 30 40 500
 1e+0
 1e+1
 1e+2
 1e+3
 1e+4
 1e+5
 1e+6

B

C
P
U

T
im

e
(s
)

T1-on
TB-off
C-off
incr

(b) CPU time

Fig. 1. Performance of faster algorithms as budget B varies.

that his/her answer is correct) is less than 1, no pruning of TK
takes place, but the probabilities of the possible orderings are
appropriately adjusted so as to reflect the collected answers.

D. Incremental algorithm

The incr algorithm, builds the TPO TK incrementally, one
level at a time, by alternating tree construction with a round of
n questions and tree pruning, thereby reducing the time needed
to materialize trees containing a large number of orderings.
The number n of questions posed at each round is between
1 and B, thus incr can be considered a hybrid between an
online and an offline algorithm. Each TPO Tk, 1 ≤ k ≤ K, is
built by adding one level to Tk−1. We only build new levels
if there are not enough questions to ask. Then, we select the
best questions, pose them to the crowd, collect the answers
and apply the pruning accordingly, until either the budget B
is exhausted or the TPO is entirely built.

IV. EXPERIMENTAL EVALUATION

The proposed algorithms have been evaluated experimen-
tally against baselines that select questions either randomly or
focusing on tuples with an ambiguous order: i) the Random
algorithm returns a sequence of B questions chosen at random
among all possible tuple comparisons in TK ; ii) the Naive
algorithm avoids irrelevant questions by returning a sequence
of B questions chosen randomly from QK . We observed that
measures of uncertainty that take into account the structure of
the tree in addition to ordering probabilities (i.e., UMPO, UHw ,
UORA) perform better than state-of-the-art measures (i.e., UH).
The experiments show that the T1−on and C−off algorithms
offer a good tradeoff between performance (Figure 1(a)) and
costs (Figure 1(b)), with significant reductions of the number
of questions wrt. the baselines, and nearly as good as with
the A*-based algorithms, but at a fraction of the cost. The
proposed algorithms have been shown to work also with non-
uniform tuple score distributions and with noisy crowds [1].
Much lower CPU times are possible with the incr algorithm,
with slightly lower quality (which makes incr suited for large,
highly uncertain datasets).

REFERENCES

[1] E. Ciceri et al. Crowdsourcing for top-k query processing over uncertain
data. IEEE Trans. Knowl. Data Eng., 28(1):41–53, 2016.

[2] J. Li and A. Deshpande. Ranking continuous probabilistic datasets.
PVLDB, 3(1-2):638–649, 2010.

[3] M. Soliman et al. Ranking with uncertain scoring functions: semantics
and sensitivity measures. In SIGMOD ’11, pages 805–816, 2011.

[4] M. Soliman and I. Ilyas. Ranking with uncertain scores. In ICDE ’09.,
pages 317 –328, 2009.

