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ABSTRACT

Stuttering is a speech impediment affecting tens of millions
of people on an everyday basis. Even with its commonal-
ity, there is minimal data and research on the identification
and classification of stuttered speech. This paper tackles the
problem of detection and classification of different forms of
stutter. As opposed to most existing works that identify stut-
ters with language models, our work proposes a model that re-
lies solely on acoustic features, allowing for identification of
several variations of stutter disfluencies without the need for
speech recognition. Our model uses a deep residual network
and bidirectional long short-term memory layers to classify
different types of stutters and achieves an average miss rate
of 10.03%, outperforming the state-of-the-art by almost 27%.

Index Terms— Speech, stuttering, disfluency, deep learn-
ing, residual network, LSTM.

1. INTRODUCTION

Speech disfluencies are inconsistencies and interruptions in
the flow of otherwise normal speech. Of these speech imped-
iments, stuttering is one of the most prominent, affecting over
70 million people, about one percent of the global population
[1]. 5-10% of children stutter at some point in their child-
hood, with a quarter of these children maintaining their stut-
ters throughout their entire lives [2]. Common therapy meth-
ods often involve helping the patient monitor and maintain
awareness of their speaking patterns in order to correct them
[3]. Moreover, therapeutic success rates have been reported
to be over 80%, especially when detected and dealt with in
early stages [4]. Accordingly, with the recent advances in
machine learning, deep learning, and language/speech pro-
cessing techniques, developing smart and interactive tools for
detection and therapy is now a real possibility.

In addition to interactive therapy purposes, other applica-
tions can be realized for automated stutter recognition. Fluent
speech is crucial and influential in presentations such as talks
and business communications [Sl]. There are currently a num-
ber of applications available to assist speakers in monitoring

and improving their presentation skills. For example, moni-
toring of features like volume, rate of speech, and intonation,
among others have been explored in this context [6] [[7]. How-
ever, detection and quantification of stutters has not yet been
fully explored for such applications.

Despite the many potential applications for automated
stutter detection, little research has been done in this area.
This is partially due to the fact that the notion of detecting
and classifying the type and location of stutters can be a dif-
ficult problem, especially when factoring in variables such
as gender, speech rate, accent, and phone-realization [S§].
Existing works in the area mostly rely on automatic speech
recognition (ASR) to first convert audio signals to text, and
then utilize language models to detect and identify the stutters
[9] [1O] [LL1]. While this approach has proven effective and
achieved promising results, the reliance on ASR can both
be a potential source for error, as well as an unnecessary
additional computational step.

In this paper, we propose a model that directly utilizes
audio speech signals to detect and classify stutters, skipping
the ASR step and the need for language models. Our method
uses spectrogram features to train a deep neural network
with residual layers followed by bidirectional long short-
term memory (Bi-LSTM) units to learn to locate and identify
different types of stutters. The overview of our method is pre-
sented in Figure[T} Our experiments show the effectiveness of
our approach in generalizing across multiple classes of stut-
ters while maintaining a high accuracy and strong consistency
between classes.

2. RELATED WORK

Early studies on the topic focused on the feasibility of stut-
ter differentiation, with training and testing often being per-
formed on a small set of specific stuttered words. For ex-
ample, a hidden Markov model (HMM) was used to create
a stutter recognition assistance tool [12]. Testing results av-
eraged to 96% and 90% accuracy on human and artificially
generated stuttered speech samples respectively for a single
pre-determined word [12].
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Fig. 1. Proposed stutter detection system diagram.
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A number of assumptions are often made in order to sim-
plify the problem of disfluency detection. For example, as dif-
ferent disfluencies vary heavily by nature, proposed solutions
often tackle one single type of stutter (such as interjections,
prolongations, or repetitions) at a time. In [[L3]], for instance,
sound repetition stutters were accurately detected on a small
set of trained words. Another common assumption used for
simplification has been to remove under-represented subject
classes (for example based on gender or age) [[13[], [[14]], [L1].

As ASR and natural language processing (NLP) has
evolved greatly in recent years, such methods have become
increasing popular for the problem of stutter classification
and recognition. One such method incorporated annotations
from speech language pathologist to a word lattice model,
improving the baseline method by a relative 7.5% [9]. An-
other model using Bi-LSTMs with condition random fields
(CRFs) to get an average F-score of 85.9% across all stutter
types [15]. The current state-of-the-art stutter classification
method uses task-oriented finite state transducer (FST) lat-
tices to detect repetition stutters with an average 37% miss
rate across 4 different types of [L1].

3. PROPOSED NETWORK

Our proposed method first generates spectrogram feature vec-
tors from the audio clips. The spectrograms are then passed
through a deep residual neural network, mapping the spectro-
gram matrices to a linear vector. These are then be passed
through a bidirectional LSTM to learn the extracted feature
embeddings for different types of stutters. Following the dif-
ferent steps of our proposed pipeline are described.

3.1. Feature extraction

Spectrograms are commonly used features in speech analysis
in different applications ranging from speech recognition to
noise cancellation [[16]] [17]]. We use spectrograms as the sole
feature for our model. These features are generated every 10
ms on a 25 ms window for each 4-second audio clip.

3.2. Feature embedding layers

We utilize a residual network [[18]] in our model in order to
effectively learn the stutter-specific features while avoiding
issues such as the vanishing gradient problem. The use of
this type of network also allows a deep architecture (a depth
of 18 convolution layers) without overfitting, especially when
considering the relatively small size of the dataset. More-
over, architectures with residual components have recently
shown considerable promise in speech analysis [[19] [20]. In
our proposed solution, each group of 3 convolutional layers
is referred to as a convolutional block. Figure [2] presents the
convolutional blocks and the stacked blocks in our mode. We
used batch normalization and ReLu activation functions in the
model. Table[I] presents the hyperparameters of our network.
The detection task for each stutter is formulated as a binary
problem, with the same architecture mentioned being used
for every disfluency type.

3.3. Recurrent layers

The learned feature embeddings are provided to 2 recurrent
layers, each consisting of 512 bidirectional LSTM units [21]].
We utilized LSTM layers as they have been proven to be ef-
fective in classification when dealing with short sequential
data, and are a popular approach in speech and NLP [22].
In the context of the problem at hand, most stutters tend to be
quick and last only a fraction of the 4-second audio clip that
they are contained in. Therefore the LSTM layers don’t suf-
fer from memory issues [23]. Lastly, the use of bidirectional
LSTM:s allow the model to learn both past and future embed-
dings, providing further context for our problem. Dropout
rates of 0.2 and 0.4 are utilized after each recurrent layer.

4. EXPERIMENT SETUP AND RESULTS

4.1. Data and annotation

Speech samples were collected from the University College
Londons Archive of Stuttered Speech (UCLASS) Release
One [24] dataset, created by the Division of Psychology and
Language Sciences within the university. The dataset con-
tains samples of monologues from 139 participants, ranging
between 8 and 18 years of age, with known stuttered speech
impediments of different severity. Of these recordings, 25
unique participants were used due to the availability of their
orthographic transcriptions of the monologues.

Forced time-alignment was used on the audio and tran-
scriptions to generate a timestamp for each word and stutter
spoken [235]]. The stutter annotation approach is similar to pre-
viously used methods [26] [27]. We then manually annotated
each recording for one of 7 stutter disfluencies [28]]: sound
repetition, word repetition, phrase repetition, revision, inter-
jection, or prolongation. A description of each type of stutter
can be found in Table 2] We leave out part-word repetition
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Fig. 2. The architecture of our model.

Table 1. Our ResNet architecture and hyper-parameters.
Module Input Spectrogram (257 x T x 1) Output Size

Conv2D, 7 x 7, 64 257 x T x 64

conv, 3 X 3, 32
conv, 3 x 3, 64
conv, 3 x 3, 64
conv, 3 X 3, 64
conv, 3 x 3, 128
conv, 3 x 3, 128
conv, 3 x 3, 128
conv, 3 x 3, 128
conv, 3 x 3, 128
conv, 3 x 3, 128
conv, 3 x 3, 64
conv, 3 x 3, 64
conv, 3 X 3, 64
conv, 3 x 3, 64
conv, 3 x 3, 32
conv, 3 X 3, 32
conv, 3 x 3, 16
conv, 3 X 3, 16

128 x T'/2 x 64

64 x T'/4 x 128

Conv Module
64 x T'/8 x 128

32 x T/16 x 64

16 x T/32 x 32

8 xT/64 x 16

disfluencies as the dataset contained only few samples of such
stutters, preventing our deep learning approach from properly
learning the classification task. Each monologue recording
was segmented into 4-second samples, totalling to 800 la-
beled audio clips.

4.2. Implementation details

The model was built using TensorFlow’s Keras API [29]. It
was trained with a learning rate of 10~ over 30 epochs, with
minimal improvement in results seen in following epochs.
A root means square propagation (RMSProp) optimizer was
used, as well as the softmax loss function. An Nvidia 1080 Ti
GPU was used to perform the training.

4.3. Validation

To rigorously test our proposed model, leave-one-subject-out
(LOSO) cross validation was used: the model was trained
on the speech of 24 of the UCLASS participants, while the
last subject’s audio was used for testing. The process was
repeated 25 times, testing the model on a different subject ev-
ery time. For this dataset, accuracy (Acc) and miss rate (MR)

values have been reported in prior work. Lastly, it should be
noted that we target 6 categories of stutter disfluencies, as op-
posed to most prior work where fewer classes are considered.

4.4. Performance and Comparison

The results of our experiments for the UCLASS dataset is
summarized in Table [3] where we compare our method to
[L1]. Additionally, to evaluate the need for bidirectional
LSTM as opposed to a unidirectional LSTM, we compare
our results to a baseline model where a ResNet with LSTM
is used instead of our proposed model. The table shows that
our method outperforms the state-of-the-art in detection of
sound repetition and revisions by considerable margins (an
improvements of 41.90% and 22.14% respectively).

The statistical language models and task-oriented word
lattices used in other methods rely heavily on generating a
strong orthographic transcriptions for each speaker. As a re-
sult, while these methods struggle with sub-word stutters such
as sound repetition or revision, they perform well for word
repetition or prolongation. This can be observed in Table
[ as [[L1] performs better than our method by a small mar-
gin (3.2%) for word repetition. Additionally, [[11] performs
with a lower miss rate than ours for detection of prolongation
(5.92%). Since our method relies on spectrogram features
as opposed to a language model, some longer utterances can
exceed the four-second windows or suffer from alignment is-
sues, causing those stutters to be misclassified. Hence our
approach produces slightly more false negatives in classifica-
tion of prolongation.

As shown in Table [3] our classifier is able to identify in-
terjections with an accuracy of 81.4%. Many other works on
stutter classification tend to avoid interjection disfluencies as
a class, since interjection stutters tend to be more diverse and
lack the consistency of repetition and prolongation stutters,
making them more difficult to classify. While other works
such as [30,131] were able to robustly detect interjections with
mel-frequency cepstral coefficients (MFCC), small subsets of
the UCLASS dataset were used, preventing us from perform-
ing a fair comparison to our model.

The comparison between our proposed method and the
baseline approach (using LSTM instead of bidirectional
LSTM) fares similarly, with the bidirectional LSTM hav-



Table 2. Types of stutter considered.

Label  Stutter Disfluency = Description Example

S Sound Repetition  Repetion of any phenome th-th-this

w Word Repetition Repetition of any word why why

PH Phrase Repetition ~ Repetition of multiple successive words I know I know that

R Revision Repetition of thought, rephrased mid sentence I think that- I believe that
I Interjection Fabricated word or sounds, added to stall for time  um, uh

PR Prolongation Prolonged sounds whoo0000o0 is it

Table 3. The percentage miss-rate (MR) and accuracy (Acc)

for each stutter type is presented using LOSO validation.
R

S w PH 1 PR
Paper Method MR Acc MR Acc MR Acc MR Acc MR Acc MR Acc
Alharbi et al. [11] ‘Word Lat. 60 - 0 - 25 - 0 -
Ours (baseline) ResNet+LSTM 20.13  83.20 | 340 9560 | 493 9507 | 3.00 9699 | 2531 80.80 | 6.12 93.88
Ours (proposed)  ResNet+Bi-LSTM | 18.10 84.10 | 3.20 96.60 | 446 9554 | 2.86 97.14 | 25.12 81.40 | 592 94.08
Table 4. Average accuracy and miss-rate of stutter classifica- 100% 4 — ——
tion models. /
Paper Method Ave. MR Ave. Acc 5 90%-
Alharbi et al. [11] Word Lat. 37% - s
Ours (baseline) ResNet+LSTM 1045%  90.96% & 80%7 — Interjection
Ours (proposed)  ResNet+Bi-LSTM 10.03% 91.15% 2 . —— Sound Repetition
£ 70% —— Word Repetition
= —— Phrase Repetition
60% - —— Revision
Prolongation
ing slightly better or similar results for every class. This lack 5 10 51'5 \ 20 2 30
poc

of significant difference between the two LSTM variations
is most likely due to the fact that the feature embeddings
learned using the ResNet portion of our pipeline are quite
robust, accurately capturing the information required to rep-
resent different stutters. While the difference in bidirectional
and unidirectional LSTMs is marginal, we opt to use the
Bi-LSTM approach as the additional computational cost for
Bi-LSTM is not significant.

Table [4| presents the average performance of our model
compared to [11] and the baseline approach. It can be ob-
served that our model achieves an improvement of 26.97%
lower miss rate on the UCLASS dataset over the previous
state-of-the-art. Moreover, as previously shown, our method
slightly outperforms the unidirectional LSTM baseline when
averaged across all stutter types. Lastly, Figure [3| shows the
performance of our method for different stutter types against
different training epochs. It can be seen that after approxi-
mately 20 epochs, our model reaches a steady-state, indicat-
ing stable learning of disfluency-related features throughout
the learning phase.

5. CONCLUSION AND FUTURE WORK

We present a method for detection and classification of differ-
ent types of stutter disfluencies. Our model utilizes a resid-
ual network and bidirectional LSTM units trained using input

Fig. 3. Average training accuracy for the considered types of
stutter.

spectrogram features calculated from labeled audio segments
of stuttered speech. Six classes of stutter were considered in
this paper: sound repetition, word repetition, phrase repeti-
tion, revision, interjection, and prolongation. Investigations
show that our method performs robustly across all classes
and performs with very high average accuracy and low av-
erage miss rate, achieving state-of-the-art with a significant
improvement over previous the previous state-of-the-art for
stutter detection.

In future work, building upon the current model, we will
conduct research on multi-class learning of different stutter
disfluencies. As multiple stutter types may occur at once (e.g.
'l went to uh to to uh to’), this approach may result in more
robust classification of stutters.
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