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ABSTRACT

Automatic music transcription has primarily focused on tran-
scribing audio to a symbolic music representation (e.g. MIDI
or sheet music). However, audio-only approaches often strug-
gle with polyphonic instruments and background noise. In
contrast, visual information (e.g. a video of an instrument be-
ing played) does not have such ambiguities. In this work, we
address the problem of transcribing piano music from visual
data alone. We propose an end-to-end deep learning frame-
work that learns to automatically predict note onset events
given a video of a person playing the piano. From this, we are
able to transcribe the played music in the form of MIDI data.
We find that our approach is surprisingly effective in a variety
of complex situations, particularly those in which music tran-
scription from audio alone is impossible. We also show that
combining audio and video data can improve the transcription
obtained from each modality alone.

Index Terms— visual music transcription, automatic music
transcription, music information retrieval, deep learning

1. INTRODUCTION

Automatic music transcription (AMT) describes the process
of automatically transcribing raw data – typically audio in-
formation – into a symbolic music representation (e.g. mu-
sic notation or MIDI data). Such technology can be used
to transcribe music when improvising or deliberately com-
posing, making it easily reproducible. However, AMT from
audio alone is challenging in multiple situations, such as in
the presence of multiple notes or instruments or when there
is background noise. While digital instruments automatically
transcribe music using sensors rather than audio (e.g. a digi-
tal piano uses keypress sensors to write MIDI data), acoustic
instruments are typically not equipped with such sensors.
In this paper, we propose an end-to-end deep learning ap-
proach that uses only visual information for transcribing pi-
ano music while ignoring audio cues, i.e. visual music tran-
scription (VMT). We obtain pseudo ground-truth data to train
our framework using an audio-based method.
Using visual cues alone for music transcription is possible
because simply watching a pianist play reveals information
about the notes being produced. For example, the position-

ing of the hand and keys reveals information about the keys
being pressed. Furthermore, the motion between frames pro-
vides localisation information about the onset of notes. Thus,
it is reasonable to expect that musical audio information can
be extracted from purely visual data. Using video removes
the ambiguities that arise from relying on audio alone when
multiple notes sound simultaneously. However, this is a chal-
lenging task since the fingers may move without pressing a
key and keypresses can be occluded by the hands.
Given a video of a pianist playing, we automatically predict
the pitch onset events (i.e. which and when keys are being
pressed) in each video frame. We can then stitch onset events
together to extract a music transcription for an entire video.
This enables a number of possible applications. An obvious
use case is to transcribe silent piano videos. Also, in a sim-
ilar manner to lip reading in the speech domain improving
speech recognition, note onset estimation from visual infor-
mation can improve audio music transcription compared to
using audio alone.

2. RELATED WORK

Music transcription from visual information. Most pre-
vious methods for transcribing piano music from visual data
alone are designed for constrained settings; they rely on de-
tecting pressed keys and do not make use of temporal in-
formation in terms of hand and finger motion. [1, 2] use
RGB images and require difference images between the back-
ground and current video frame to detect hands and piano
keys. This is difficult to obtain when the illumination changes
across the video or when shadows appear. [2] add an illumi-
nation correction step in their pipeline, but the authors report
limitations for drastic light changes or vibrations of the cam-
era or piano. [3] adds depth information, which enables ve-
locity prediction. [4] also use depth cameras to identify key
presses for a piano tutoring system. [5] predicts per-frame
key presses; however, their set-up is quite constrained and can
only predict a single key press per frame. Our method on the
other hand, does not require depth information or background
images and can deal with illumination, shadow changes, and
vibration of the camera or piano. A few works have tackled
VMT for other instruments (e.g., guitar [6], violin [7, 8], and
clarinet [9, 10]). [11, 12] fuse visual and audio information



Fig. 1: An overview of our network architecture. Note onset prediction from k video frames of piano playing. Our models use k = 5.
The network architecture is based on the ResNet18 architecture. The activations from k consecutive input frames are aggregated using a 3D
convolution (aggregation module). xkey is a vector that is passed into the slope module which encourages the network to preserve spatial
information at later stages.

together for guitar and piano transcription respectively.
Our work is most similar to [13] and [12], both of which use
learning-based approaches to VMT. [13] presents a multi-step
pipeline that requires significant preprocessing: given a pro-
cessed crop of a single key, their Convolutional Neural Net-
works (CNNs) predict whether it has been pressed. [13] relies
on key presses that are clearly visible from video frame dif-
ferences. This is not the case when there is video jitter, instru-
ment vibrations, low-resolution video data, or video recorded
from directly above the keyboard. We cannot compare our
method on [13]’s data as their provided MIDI and video in-
formation is not aligned. However, we evaluate our data on
more challenging and varied music pieces and settings. [12]
present a deep learning approach that uses both audio and vi-
sual information to detect key presses. They only demonstrate
their method on high-quality videos (recorded at 60 fps) and
simple pieces (e.g., piano exercises that have at most one note
per hand at the same time). We compare our visual only per-
formance to [12]’s on their data in the experiments.
Music transcription from audio information. [14] provides
a detailed review of AMT methods, including those for piano.
We use [15]’s Onsets and Frames framework to obtain pseudo
ground-truth to train our networks.

3. NETWORK ARCHITECTURE

In this section we introduce a spatio-temporal model architec-
ture (see Fig. 1) for performing VMT. The model is tasked to
predict note onsets (a note onset is the start of a note – for pi-
ano playing this coincides with the pressing of a piano key). It
uses temporal information by way of the aggregation module
and maintains spatial information through the slope module.
Overview. Our model is based on the ResNet18 architecture
[16]. Given 5 consecutive grayscale video frames, the model
is tasked to predict all note onsets occurring within ±32ms
around the middle video frame. For a video frame rate of 25

fps, 5 frames cover 0.2s. The 5 input frames are each passed
through the first ResNet18 block (with shared weights).

Aggregation module. This module allows the model to make
use of temporal information (e.g. the motion of the hand be-
tween frames) to determine whether a note is being pressed
down (an onset). The output features of size 64 × 73 × 400
(d× h× w) from the first ResNet18 block are aggregated by
stacking them and passing them through a 5×1×1 3D convo-
lution, resulting in a channel-wise temporal weighted average
of the activations corresponding to the input frames.

Slope module. Classification CNNs are designed to be in-
variant to spatial positioning. However, in our case spatial
localisation is essential, as the location of the hand within
the image gives a large amount of information as to the oc-
tave and thereby the actual note being played. To allow the
network to preserve spatial information, we also pass as an
input a slope vector xkey ∈ [0, 1]88, which contains 88 lin-
early spaced valued between 0 and 1 to represent the relative
position of a key on the keyboard. This constant slope vec-
tor xkey is passed through two 1D convolutional layers, with
filter size 3 and padding of 1, expanded to size 64× 10× 50
before being concatenated to the output of the third ResNet18
block of size 256 × 10 × 50. The concatenated activations
are then passed through another convolutional layer with fil-
ter size (3 × 3) and padding of 1 resulting in features of size
256 × 10 × 50 before being passed through the rest of the
ResNet18 model.

Loss function. The outputs of the final fully-connected layer
for our model are 88 probabilities, one for each of the MIDI
notes that the piano covers. The models are trained by min-
imising a binary cross-entropy loss function for each note.



4. DATASETS AND TRAINING

4.1. Datasets

We curated two new datasets of piano playing (PianoYT and
MIDI test set) for training our model and to test its generali-
sation capabilities. We also test our models on the Two Hands
Hanon test set from [12].
PianoYT: This dataset contains over 20 hours of piano play-
ing videos uploaded to YouTube. All videos are recorded
from a top view. We split the data into 209 training/validation
videos and 19 test videos. 172 of the training videos and all
test videos were recorded by Paul Barton1. We obtain pseudo
MIDI ground-truth from the audio in the video using the On-
sets and Frames framework [15].
MIDI test set: In order to evaluate how robust our method is,
we also test on 8 recorded videos of an amateur pianist that
does not appear in the training set. For this, we recorded data
with actual MIDI ground truth using a phone camera. The
MIDI was recorded with a digital piano and then aligned with
the audio of the recorded video. It consists of a variety of
piano pieces (e.g. BWV 778, Schumann Op.15 No.1, Hanon
exercises 1 and 5).
Two Hands Hanon test set: The third evaluation dataset is
the Two Hands Hanon test set in [12] (i.e. Hanon exercises
1 and 5). This dataset contains less challenging pieces with
fewer chords and the notes are within a smaller range than
those in the MIDI test set.

4.2. Training details

The models are trained on the PianoYT training set using
pseudo ground-truth MIDI. Video frames were extracted at
their native frame rate. We performed a visual registration
procedure resulting in a resized crop of 145× 800 pixels such
that the keyboard is fully visible and roughly in the same lo-
cation within the crops.
Because of the relative sparsity of onset events, we reweigh
training examples in each batch (i.e. class balancing) such that
the weight of onset events is equal to that of non-onset events.
The models are trained in PyTorch [17] using the Adam op-
timizer [18] with β1 = 0.9, β2 = 0.999, and batchsize of
24. The initial learning rate is set to 0.001 and training was
stopped when the validation loss plateaued. The classification
threshold was set to 0.4 using the validation set for all mod-
els. For data augmentation, we resize the crops to 150 × 805
and randomly crop 145 × 800 pixel regions. In addition to
spatial jitter, we jitter the brightness and add Gaussian noise
with a factor of 1% of the mean value of the image to 40% of
the training images.

1https://www.youtube.com/user/PaulBartonPiano

5. EXPERIMENTS

We evaluate our model in multiple settings. First, we demon-
strate that we can indeed extract onsets from visual informa-
tion alone (section 5.1). We then demonstrate that this is use-
ful in the case of corrupted audio (section 5.2) and that it can
be used to produce MIDI and thereby the audio corresponding
to the entire video (section 5.3).
Metrics: We report precision, recall, accuracy, and F1 scores
for the onset estimation on different test sets. For details about
the calculation of these metrics, see [19]. For the PianoYT
and the MIDI test set, we report note-level metrics. For the
Two Hands Hanon test set, we (similar to the authors of [12])
report frame-level metrics after finetuning to not just predict
onsets, but also sustained notes.

5.1. Visual pitch onset estimation

We test how well our model (ResNet + aggregation + slope)
can extract onsets from visual information alone. We also per-
form a model ablation study to demonstrate the utility of the
aggregation and slope modules by comparing to two base-
lines: (i) ResNet is a ResNet18 model that takes as input 5
frames; the network’s first layer is modified to have 5 chan-
nels. This model has neither the temporal aggregation nor
the slope modules. (ii) ResNet + aggregation is a ResNet18
model with temporal aggregation after the first ResNet block
but without the slope module.
Results: For the test set of the PianoYT dataset, the estimated
MIDI prediction is compared to the pseudo-ground truth. In
addition to that, we test our models on videos with actual
MIDI ground truth (MIDI test set). Finally, in order to com-
pare to [12], we report results on their Two Hands Hanon test
set. Results are given in Table 1.
We see that our custom additions to the ResNet18 backbone
architecture (e.g. temporal aggregation and slope module) im-
prove our model’s performance. Furthermore, there is a large
difference in results when testing on the MIDI test set as op-
posed to [12]’s Two Hands Hanon test set. The MIDI test set
contains more difficult music pieces than [12]’s Two Hands
Hanon test set, as more chords are played and a much wider
range of notes is covered. In order to bridge the domain gap
between our training data (PianoYT dataset) and [12]’s Two
Hands Hanon test set (after removing radial distortion of the
images), we finetuned our models on their training set. We
obtain a frame-level note accuracy (pressed key accuracy) of
87.43%, outperforming their best model that uses audio and
visual information. Our results demonstrate the generalisabil-
ity of our model both to unseen pianists and to more challeng-
ing pieces as compared to other methods.

5.2. Audio-visual pitch onset estimation for noisy audio

In Table 2, we demonstrate that using audio and visual infor-
mation together can be useful especially when the audio is

https://www.youtube.com/user/PaulBartonPiano


Model Prec Rec Acc F1-score

PianoYT test set

ResNet 61.40 67.59 50.29 63.72
ResNet+aggregation 63.86 67.87 52.20 65.26
ResNet+aggregation+slope 62.23 73.00 53.33 66.63

MIDI test set

ResNet 65.26 42.82 36.86 49.94
ResNet+aggregation 72.83 52.44 44.97 59.57
ResNet+aggregation+slope 74.76 73.08 59.59 72.91

Two Hands Hanon test set from [12]

ResNet † 92.36 86.25 80.27 88.53
ResNet+aggregation † 92.55 93.69 86.96 92.76
ResNet+aggregation+slope † 93.07 93.40 87.43 93.00
[12]‡ 2-stream w/ Multi-Task - - 75.37 -

Table 1: Precision, recall, accuracy and F1-score for pitch onset
estimation on the PianoYT test set, the MIDI test set and [12]’s
Two Hands Hanon test set for our model (ResNet + aggregation +
slope) and two baselines (ResNet, ResNet + aggregation). † fine-
tuned on the training set from [12] (after removing radial distortion).
‡ Pressed key accuracy taken from [12] for their best performing
model that takes both, audio and visual information as input.

corrupted or mixed with other sounds or noise.
The performance of the Onsets and Frames framework [15]
decreases drastically when the audio is noisy. Mixing the Pi-
anoYT test set with other piano audio with a signal-to-noise
ratio of 1 results in an F1 score of 67.52% compared to the
pseudo-ground truth obtained for the clean audio. In order
to see how we can improve the pitch onset estimation using
audio and visual information together, we train a 3-layer per-
ceptron that combines the visual and audio information. It
takes the concatenatation of [15]’s 512-dimensional final fea-
ture vector from the noisy PianoYT audio with our final fea-
ture vector (ResNet+aggregation+slope) as input. As can be
seen in Table 2, this results in a significantly improved F1

score of 81.82%, outperforming the audio-based and our vi-
sual based method which achieved an F1 score of 66.73% on
this data. This demonstrates that using our model to lever-
age visual information is clearly beneficial for obtaining note
onset information.

5.3. Producing MIDI

We combine the outputs that our model produces for every
5-frame window to re-create the audio of a full video. For
a given video, we pass all outputs from our model through a
Gaussian filter (σ = 5) to add temporal smoothing and thresh-
old the smoothed signal resulting in a binary signal for every
note which can be saved as MIDI data. Fig. 2 shows spectro-
grams for one of the test videos in our MIDI test set computed
from the generated and the ground-truth audio (synthesized
from MIDI) respectively.
In this example, we notice that the generated audio is able to
capture the rough structure of the piece and correctly predicts

Model Prec Rec Acc F1-score

Noisy audio PianoYT test set, SNR = 1

Audio to note onsets [15] 63.10 80.12 58.93 67.52
Audio-visual MLP (ours + [15]) 87.32 78.20 71.97 81.82

Table 2: Precision, recall, accuracy and F1-score for pitch onset
estimation for the noisy PianoYT test set where the clean audio is
mixed with other piano audio. The performance of the audio to on-
set estimation suffers with added noise. Audio and visual features
are ingested by the MLP which combines visual features from our
model with audio results from [15], and results in a significant im-
provement.

Fig. 2: Spectrogram comparison for generated audio from our MIDI
prediction (right) and ground truth (left) for a test video. Our model’s
MIDI prediction captures the structure of the music piece and pre-
dicts most of the ground truth notes correctly. Note that our model
gives sparser predictions than the ground truth (e.g. darker vertical
lines appear around 1:00 min in the spectrogram on the right).

most of the notes. Yet, there remains room for improvement
as the timing of the note onsets sometimes is slightly off. Our
model was trained to only predict note onset events. However,
it tends to predict multiple onset events (e.g. not just at the
very beginning of a note) as it is not trained to learn the notion
of a note ending.

6. DISCUSSION

We proposed an end-to-end deep-learning framework to
tackle the problem of transcribing piano music from visual
data alone. Our system predicts note onset events given a top-
view video of a person playing the piano. We demonstrated
this on different test sets which vary in difficulty. Here, we
focussed on piano data but our method could be extended to
any other instrument with a spatial layout similar to the piano
(e.g. organ, harpsichord, marimba, harp, etc.). We trained
our frameworks with pseudo ground-truth data but it would
be interesting to extend our framework by training on actual
ground truth data with accurate note offset information.
Furthermore, work should be done to allow for different view-
points and to better exploit the temporal information between
distant frames.
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