
JOINT TRANSACTION TRANSMISSION AND CHANNEL SELECTION IN COGNITIVE RADIO
BASED BLOCKCHAIN NETWORKS: A DEEP REINFORCEMENT LEARNING APPROACH

Nguyen Cong Luong1, Tran The Anh1, Huynh Thi Thanh Binh2, Dusit Niyato1, Dong In Kim3, and Ying-Chang Liang4

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam

3School of Information and Communication Engineering, Sungkyunkwan University, Korea
4Center for Intelligent Networking and Communications, University of Electronic Science and Technology of China, China

ABSTRACT

To ensure that the data aggregation, data storage, and data
processing are all performed in a decentralized but trusted
manner, we propose to use the blockchain with the mining
pool to support IoT services based on cognitive radio net-
works. As such, the secondary user can send its sensing data,
i.e., transactions, to the mining pools. After being verified by
miners, the transactions are added to the blocks. However, un-
der the dynamics of the primary channel and the uncertainty
of the mempool state of the mining pool, it is challenging for
the secondary user to determine an optimal transaction trans-
mission policy. In this paper, we propose to use the deep rein-
forcement learning algorithm to derive an optimal transaction
transmission policy for the secondary user. Specifically, we
adopt a Double Deep-Q Network (DDQN) that allows the sec-
ondary user to learn the optimal policy. The simulation results
clearly show that the proposed deep reinforcement learning
algorithm outperforms the conventional Q-learning scheme in
terms of reward and learning speed.

Index Terms— Cognitive radio, blockchain, IoT, channel
access, deep reinforcement learning

1. INTRODUCTION

Cognitive radio has been adopted to support IoT data trans-
mission from IoT devices to a centralized server or the
cloud [1]. Specifically, the IoT devices act as the Secondary
Users (SUs) accessing idle spectrum of the Primary Users
(PUs), improving the IoT performance and enhancing PUs’
spectrum utilization. Generally, the IoT data to support IoT
services and applications involves multiple stakeholders in-
cluding devices owners, service providers, and users. Hence,
the traditional approach of maintaining the IoT data by a sin-
gle entity, e.g., an IoT provider, has shown many limitations.
Firstly, it lacks transparency and traceability, i.e., the data can
be modified arbitrarily by unknown persons and applications.
Secondly, security is limited as it has to rely on a single entity
which can be an easy target of cyber attacks. Thirdly, effi-
ciency, speed, and reliability are low because of a bottleneck

and a single point of failure. This calls for a novel solution of
the data management.

To overcome the limitations, we propose to use the
blockchain [2] for collecting, storing, and processing the
sensing data from the SUs. The first reason is that the
blockchain is considered to be a decentralized database,
i.e., a ledger [3] in which transactions, i.e., the sensing data,
are recorded and processed by a number of nodes over the
whole network instead of a centralized authority. The sec-
ond reason is that the blockchain enhances the security and
guarantees the data integrity since the transactions must be
agreed and verified by the nodes before they are recorded
[4]. Therefore, the blockchain can be combined with the cog-
nitive radio to constitute a new framework called cognitive
radio based blockchain network. The framework allows the
SUs to use idle channels from the PUs to transmit their sens-
ing data to the blockchain. The SU transmission is likely to
be “localized” because of inherent Device-to-Device (D2D)
transmission, which is well matched to P2P connection based
blockchain network. Then, the SU’s sensing data is recorded
and processed in the blockchain in a decentralized but trusted
manner.

However, under the dynamics of the primary channel and
the uncertainty of the blockchain system, it may be challeng-
ing for each SU to make optimal decisions, i.e., transmit deci-
sion and channel selection, that maximizes the number of suc-
cessful transaction transmissions. To address the challenge,
we propose to use the Deep Q-Learning (DQL) technique pre-
sented in [5], i.e., the combination of Deep Neural Networks
(DNNs) and the Q-Learning (QL) [6], that enables the SU
to learn the optimal policy without requiring the prior infor-
mation from the network environment. We first formulate an
optimization problem for the SU that maximizes the number
of successful transaction transmissions while minimizing the
channel cost and transaction fee. Then, we adopt the Double
Deep Q-Network (DDQN) to implement the DQL algorithm.
Simulation results show that the proposed DQL outperforms
the QL in terms of the performance and learning speed. To the
best of our knowledge, this is the first work that studies the ap-
plication of DQL [5] in the cognitive radio based blockchain

ar
X

iv
:1

81
0.

10
13

9v
1

 [
cs

.N
I]

 2
4

O
ct

 2
01

8

network.
The rest of this paper is organized as follows. Section 2 de-
scribes the system model. Section 3 presents the problem for-
mulation. Section 4 presents the DQL algorithm for the joint
transaction transmission and channel selection in the cogni-
tive radio based blockchain network. Section 5 shows the per-
formance evaluation results. Section 6 summarizes the paper.

2. SYSTEM MODEL

SU

Channels

Base station

Transaction transmit

Blockchain mining pool

Mempool
Miner i

Miner

Blockchain

Trans.

adding

Fig. 1. A cognitive radio based blockchain network.

We consider a cognitive radio based blockchain network
as shown in Fig. 1. The network consists of one SU, i.e., the
IoT device, a base station, and the blockchain mining pool to
support the IoT services. The base station can be regarded as
a secondary receiver to establish a D2D connection with the
SU. At each time slot t, the SU senses and selects one of K
channels from multiple PUs to transmit a transaction to the
mining pool through a base station. Here, the channel can be
good, i.e., idle, or bad, i.e., busy, due to the transmission of the
corresponding PU. The transaction contains sensing data of
the SU and a transaction fee CT that the SU is willing to pay
the mining pool. After being successfully verified by miners
in the mining pool, the transaction is stored in a mempool of
one miner, say miner i, as an unconfirmed transaction. Note
that the mempool is able to store Dmax unconfirmed transac-
tions from the SUs in the network. The miner then adds the
certain number of unconfirmed transactions with high trans-
action fees into a new block. Thus, the probability that the
transaction of the SU is successfully added to the block at the
current time slot is high if the transaction is assigned with a
high fee [7]. The blockchain system is specifically vulnerable
to the double-spending attack [8] in which transactions in a
block can be maliciously modified. We assume that the trans-
action of the SU is attacked with a probability pa.

3. PROBLEM FORMULATION

We formulate a stochastic optimization problem for the joint
transaction transmission and channel selection of the SU. The
problem is defined by a tuple < S,A,P,R >, where S, A,
and R are the state space, action space, and the reward func-
tion of the SU, respectively. P is the state transition probabil-

ity function with Ps,s′(a) being the probability that the cur-
rent state s ∈ S transits to the next state s′ ∈ S when action
a ∈ A is executed.

3.1. Action Space

Let K denote the number of channels that the SU can choose
to transmit its transactions. Then, the action space of the SU
is defined asA =

{
0, 1, . . . ,K

}
, where a = 0 means that the

SU chooses not to transmit its transaction, and a = k means
that the SU chooses channel k to transmit the transaction.

3.2. State Space

The state space is the combination of the channel state, de-
noted by Sc, and the mempool state, denoted by Sm.

First, we define Sc. Each channel k can be in one of two
different states, i.e., good or bad, i.e., the channel is idle or
busy because of the transmission by the PU, respectively. The
channels can be considered to be correlated, and thus all the
channel states can be described as a 2K-state Markov chain
[9] with a transition matrix P. At the beginning of each time
slot, although the SU cannot observe the states of all the chan-
nels, it can infer the states from its past channel selections,
i.e., actions, and the corresponding observations. Sc is thus
defined as

Sc = {[a(t), w(t)], . . . , [a(t− L+ 1), w(t− L+ 1)]}, (1)

where w(t − l) is the observation of the channel selection at
time slot t− l. w(t− l) = 1 if the channel is good, and w(t−
l) = 0 if the channel is bad. L is the number of observations.

Second, we define mempool state Sm. Sm refers to
the current number of transactions and the correspond-
ing transaction fees in the mempool. Sm is defined as
Sm = {(m1,∆C1), . . . , (mM ,∆CM)}, where ∆Ci rep-
resents transaction fee range i, and mi is the current number
of transactions that have transaction fees within the range of
∆Ci. The transition of the mempool state from time slot t to
t + 1 depends on (i) the number of transactions arriving in
the mempool, (ii) the corresponding transaction fees, and (iii)
the number of transactions that the miner adds a new block at
time slot t. Here, we assume that the number of transactions
arriving in the mempool and the transaction fee follow the
uniform distributions U [Tmin, Tmax] and U [Cmin

T , Cmax
T],

respectively. The number of transactions added to the new
block also follows the uniform distribution U [Tmin

add , T
max
add].

The state space of the SU at time slot t is thus defined as
S = Sc × Sm, where × is the Cartesian product.

3.3. Reward Function

The reward function R of the SU is composed of three com-
ponents, i.e., the positive utility Rsuccess, the channel access

cost Cc , and the transaction fee CT . The SU receives the util-
ity of Rsuccess > 0 if the transaction transmission is success-
ful and the utility of Rsuccess = 0 otherwise. The transaction
transmission is considered to be “successful” if it is added
to the new block at the current time slot and is not attacked.
Here, we introduce the double-spending attack in which the
transaction is attacked with a probability pa given by [10]:

pa =

1−
∑n

m=0

(
m+ n− 1

m

)
(pnqm − pmqn) if q < p,

1 if q ≥ p,

where n and m are respectively the numbers of blocks that
are found by the honest network and the attacker, p and q,
p + q = 1, are the probabilities that a block is found by the
honest network and the attacker, respectively.

The objective is to maximize the number of successful
transaction transmissions and minimize the channel cost and
the transaction fee. Thus, the reward function of the SU is
defined asR(s, a) = Rsuccess − Cc − CT .

To obtain the mapping from a state s ∈ S to an action a ∈
A such that the long-term accumulated reward is maximized,
the QL algorithm can be used. The algorithm finds the optimal
policy defined as π∗ : S → A by estimating Q-values of state-
action pairs, i.e., Q(s, a). Q(s, a) is the expected discounted
sum of future rewards obtained by taking an action a at state s
following the optimal policy. The Q-values are updated based
on the experience of the SU as follows:

Qnew(s, a) =(1− λ)Q(s, a) (2)

+ λ

(
r(s, a) + γ max

a′∈A
Q(s′, a′)

)
,

where λ is the learning rate, and γ is the discount factor.
After the valuesQ(s, a) are learned, the SU can determine

its optimal action from any state to maximize the long-term
accumulated reward. However, the QL suffers from large state
and action spaces of the network. Thus, we propose to use a
DQL to find the optimal policy for the SU.

4. DEEP Q-LEARNING ALGORITHM

DQL uses a DNN instead of the look-up table to represent all
the states and actions of the SU. The input of the DNN is one
of the states of the SU, and the output includes Q-values of
all possible actions. To enable the SU to map its current state
to an optimal action, the DNN needs to be trained. Train-
ing the DNN is to update its weights θ by using experiences
e =< s, a, r, s′ > of the SU to minimize a loss function.
Here, the SU can execute action a using the ε-greedy policy to
balance its exploration and exploitation. The loss function at
the current iteration is given byL = E

[
(y(t)−Q(s, a;θ))2

]
,

where y is the target value. Typically, y is defined as y =
r + γmaxa′∈AQ(s′, a′;θold), where θold are the weights of
the DNN at the last iteration. However, such definition results

in over-optimistic value estimates since the max operator in
y uses the same Q-values both to select and to evaluate an ac-
tion. To decouple the action selection from the action evalua-
tion, we propose to use the DDQN [11] which is composed of
one online DNN with weights θonline and one target DNN with
weights θtarget. The online DNN updates its weights θonline

at each iteration. The target DNN resets its weights θtarget to
θonline in everyN target iterations and keeps weights θtarget fixed
at other iterations. The online DNN updates its weights θ to
minimize the loss function defined as

LDDQN = E
[
(yDDQN −Q(s, a;θonline))2

]
, (3)

where the target value yDDQN is defined as

yDDQN = r+γQ
(
s′, arg max

a′∈A
Qi(s

′, a′;θonline);θtarget
)
. (4)

(4) shows that the selection of an action is due to the cur-
rent weights, i.e., θonline, while the weights θtarget of the target
DNN are used to evaluate fairly the value of the action.

Algorithm 1 DQL algorithm [5].
Input: A; N target; Nb;M
Output: Optimal policy π∗

1: Initialize: θonline; θtarget

2: for episode i = {1, . . . , N} do
3: for iteration t = {1, . . . , T} do
4: Execute action a according to ε− greedy policy
5: Receive reward rt
6: Store experience (s, a, rt, s′) inM
7: Sample Nb experiences (s, a, rj , s′) fromM
8: if if an episode terminates at iteration j + 1 then
9: Set yDDQN

j = rj
10: else
11: Determine amax = argmaxa′∈AQ(s′, a′;θonline)

12: Set yDDQN
j = rj + γQ

(
s′, amax;θtarget)

13: end if
14: Perform a gradient descent step on (yDDQN

j −Q(s, a;θonline))2

to update θonline

15: Reset θtarget = θonline in every N target iterations
16: end for
17: end for

Algorithm 1 shows the DQL algorithm which uses the
DDQN to find the optimal policy for the SU. Accordingly,
based on the experience e, the online DNN and target DNN
compute the optimal value Q(s′, a′;θonline). Then, the target
value yDDQN and the loss function LDDQN is calculated ac-
cording to (4) and (3), respectively. The value of LDDQN is
used to update weights θ of the online DNN. To ensure the
stability of the learning, the experience replay memoryM is
used to store experience e, and then a mini-batch of Nb expe-
riences are taken at each iteration to train the DNNs.

5. PERFORMANCE EVALUATION

In this section, we present experimental results to evaluate the
performance of the proposed DQL algorithm. For compari-

son, the QL algorithm [6] is used as a baseline scheme. Ma-
jor simulation parameters are listed in Table 1. The simulation
results for the performance comparison between the proposed
DQL scheme and the QL scheme are shown in Figs. 2, 3, 4,
and 5 depending on the varied parameters.

Table 1. Simulation parameters
Parameters Value
Number of channels (K) 4
Probability of switching good channel (pc) 0.9
Maximum number of transactions in the mempool (Dmax) 50
Channel cost (Cc) 0.2
Transaction fee (CT) ∼ U [0; 1]
Probability that a block is found by the attacker (q) 0.02
Discount rate (γ) 0.9
ε-greedy 0.9→ 0

Episode
0 1000 2000 3000 4000 5000 6000 7000 8000

R
ew

ar
d

0

100

200

300

400

500

600

QL
DQL

QL

DQL

Fig. 2. DQL scheme and QL scheme comparison.

Fig. 2 illustrates the rewards obtained by the DQL and
QL schemes. To enable the QL scheme to be run in our com-
putation environment, we reduce the state space by setting
the maximum number of transactions in the mempool to be
10. As seen, the DQL scheme converges to the reward much
higher than that of the QL scheme. Specifically, the rewards
obtained by the DQL and QL schemes are 550 and 390, re-
spectively. Moreover, the convergence speed of the DQL
scheme is faster than that of the QL scheme. The DQL scheme
converges at around 3000 episodes while the QL scheme con-
verges at 7000 episodes.

Episode
0 1000 2000 3000 4000 5000

R
ew

ar
d

100

200

300

400

500

600

700

K=2
K=3
K=4K =4

K =3

K =2

Fig. 3. Reward of DQL as the number of channels K is varied.

The convergence speed of the DQL scheme is likely main-

tained as the maximum number of transactions in the mem-
pool increases to 50 as shown in Fig. 3. In this case, the state
space becomes too large for the QL scheme to converge in the
reasonable time, and hence it is not shown in the figure. This
confirms the scalability of the DQL. Note that as the number
of channelsK is varied, the state space changes, and the DQL
scheme has different convergence speeds. However, the DQL
scheme always reaches to the same reward because it already
learns the optimal policy to obtain the maximum reward.

Episode
0 1000 2000 3000 4000 5000

R
ew

ar
d

-100

0

100

200

300

400

500

600

700

q = 0.02

q = 0.10

q = 0.20

q = 0.30

q =0.02

q =0.10

q =0.20

q =0.30

Fig. 4. Reward of DQL as the probability q is varied.

The reward obtained by the DQL scheme decreases as the
probability that a block is found by the attacker q increases as
shown in Fig. 4. The reason is that as q increases, the num-
ber of successfully transmitted transactions decreases. Simi-
larly, the reward that the SU receives decreases as the trans-
action fee CT and the channel cost Cc increase as illustrated
in Fig. 5.

Channel cost
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ew

ar
d

200

250

300

350

400

450

500

550

600

C
T

~[0;1]

C
T

~[0;2]

C
T

~[0;3]

Fig. 5. Reward of DQL versus the channel access cost Cc.

6. CONCLUSIONS

In this paper, we have presented the DQL algorithm for the
joint transaction transmission and channel selection problem
in the cognitive radio based blockchain network. Specifically,
we have developed a DQL algorithm using DDQN to solve
the problem. The simulation results show that the proposed
DQL scheme outperforms the QL scheme in terms of reward
and learning speed. This implies that the DQL enables the SU
to achieve the higher number of successful transaction trans-
missions while paying lower cost.

7. REFERENCES

[1] A. A. Khan, M. H. Rehmani, and A. Rachedi,
“Cognitive-radio-based internet of things: Applications,
architectures, spectrum related functionalities, and fu-
ture research directions,” IEEE wireless communica-
tions, vol. 24, no. 3, pp. 17–25, June 2017.

[2] O. Schrijvers, J. Bonneau, D. Boneh, and T. Rough-
garden, “Incentive compatibility of bitcoin mining pool
reward functions,” in International Conference on Fi-
nancial Cryptography and Data Security. Barbados:
Springer, May 2016, pp. 477–498.

[3] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-
based approach for data accountability and provenance
tracking,” in Proceedings of the 12th International Con-
ference on Availability, Reliability and Security. Reg-
gio Calabria, Italy: ACM, August 2017, pp. 93–98.

[4] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu,
“Blockchain based data integrity service framework for
iot data,” in IEEE International Conference on Web Ser-
vices (ICWS), Honolulu, HI, June 2017, pp. 468–475.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine
learning, vol. 8, no. 3-4, pp. 279–292, May 1992.

[7] (2018, Sept.) Explaining bitcoin transaction fees.
[Online]. Available: https://support.blockchain.com/hc/
en-us/articles/

[8] G. O. Karame, E. Androulaki, and S. Capkun, “Double-
spending fast payments in bitcoin,” in ACM conference
on Computer and communications security, Raleigh,
NC, October 2012, pp. 906–917.

[9] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari,
“Deep reinforcement learning for dynamic multichan-
nel access in wireless networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 4,
no. 2, pp. 257–265, Jun. 2018.

[10] M. Rosenfeld, “Analysis of hashrate-based double
spending,” arXiv preprint arXiv:1402.2009, 2014.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforce-
ment learning with double q-learning,” in Proceedings
of the Thirtieth AAAI Conference on Artificial Intelli-
gence. Phoenix, AZ, February 2016, pp. 2094–2100.

https://support.blockchain.com/hc/en-us/articles/
https://support.blockchain.com/hc/en-us/articles/

	1 Introduction
	2 System Model
	3 Problem formulation
	3.1 Action Space
	3.2 State Space
	3.3 Reward Function

	4 Deep Q-Learning Algorithm
	5 Performance Evaluation
	6 Conclusions
	7 References

