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ABSTRACT

This paper introduces a method for automatic redubbing of
video that exploits the many-to-many mapping of phoneme
sequences to lip movements modelled as dynamic visemes [1].
For a given utterance, the corresponding dynamic viseme se-
quence is sampled to construct a graph of possible phoneme
sequences that synchronize with the video. When composed
with a pronunciation dictionary and language model, this pro-
duces a vast number of word sequences that are in sync with
the original video, literally putting plausible words into the
mouth of the speaker. We demonstrate that traditional, one-
to-many, static visemes lack flexibility for this application as
they produce significantly fewer word sequences. This work
explores the natural ambiguity in visual speech and offers in-
sight for automatic speech recognition and the importance of
language modeling.

Index Terms— Audio-visual speech, dynamic visemes,
acoustic redubbing.

1. INTRODUCTION

Redubbing is the process of replacing the audio track in a
video. This paper focuses on redubbing speech, which in-
volves substituting an utterance with another that, when com-
posited with the original video, appears to be in sync with
the movements of the visible articulators. The primary appli-
cation of speech redubbing is translating movies, television
shows and video games for audiences that speak a different
language to the original recording. It is also common to re-
place speech with different dialogue from the same language.
For example, a movie may be edited for television by redub-
bing offensive phrases. A more restricted approach aims to
generate speech that is perfectly in sync and consistent with
the visual speech. Typically, the new dialogue is meticulously
scripted in an attempt to select words that approximate the
lip-shapes in the video, and it requires skill on the part of the
voice actor to ensure their new voice recording actually syn-
chronizes well with the existing movements of the lips, so this
is a challenging task.

Automatic speech redubbing is an unexplored area of
research. It shares similarities to automatic recognition of
visual speech reading in that it involves decoding word se-

quences from a visual speech signal. However, the goal of
this work is to suggest visually consistent alternative word
sequences rather than predict the original speech. This pa-
per proposes a novel method for automatic speech redubbing
using dynamic visemes to represent the relationship between
visible articulator motion and the underlying acoustic units.
Dynamic visemes capture distributions of phonemes, so are
a more accurate and richer source of information than the
traditional, static visemes. A phoneme graph is constructed
from the dynamic viseme sequence of an utterance, which is
searched for word sequences. The word sequences are ranked
using a language model. We compare this approach to using
traditional, static visemes for redubbing.

2. REPRESENTING VISUAL SPEECH

2.1. Visemes

Until recently, visemes (“visual phonemes”) were proposed
as the units of visual speech [2]. They were identified by
grouping phonemes based on their visual similarity such that
phonemes that are produced with a similar visible articulator
configuration formed a single viseme class. Typical viseme
groupings include the closed mouth class, /p, b, m/, and the
lower lip tuck class, /f, v/. See Table 1 for some example
viseme mappings. Viseme classes are formed either subjec-
tively [2–9] or objectively [10–14] using a range of different
speakers, stimuli, and recognition/classification tasks. How-
ever, no unequivocal mapping from phonemes to visemes
exists in terms of both the number and composition of the
classes. This is because there is no simple many-to-one map-
ping from phonemes to visual speech. Visemes defined as
phoneme clusters do not account for visual coarticulation,
which is the influence of neighboring speech on the position
of the articulators. Coarticulation causes the lip pose for the
same sound to appear very different visually depending on the
context in which it is embedded and at times the articulation
of some sounds may not be visible at all. For this reason, the
traditional definition of a viseme functions as a poor unit of
visual speech.



2.2. Dynamic Visemes

A better model of visual speech is dynamic visemes [1]. Dy-
namic visemes are speech movements rather than static poses
and they are derived from visual speech independently of
the underlying phoneme labels. Given a video containing
a talking face, dynamic visemes are learned as follows: 1)
Track the visible articulators and parameterize into a low-
dimensional space. 2) Automatically segment the parameter-
ization by identifying salient points to give a series of short,
non-overlapping gestures. The salient points identified in
this step are visually intuitive and fall at locations where the
articulators change direction, for example as the lips close
during a bilabial, or the peak of the lip opening during a
vowel. 3) Cluster the speech gestures identified by Step 2 to
form dynamic viseme groups, such that movements that look
very similar appear in the same class. More details can be
found in [1]. Identifying visual speech units in this way is
beneficial as the set of dynamic visemes describes all of the
distinct ways in which the visible articulators move during
speech. Additionally, dynamic visemes are learned entirely
from visual data and no assumptions are made regarding the
relationship to the acoustic phonemes.

Taylor et al. [1] found that dynamic visemes are a good
unit of visual speech for generating realistic speech anima-
tion. Furthermore, they showed that the same sentences
spoken at different speeds are transcribed into essentially the
same (traditional) visemes even though the underlying lip
shapes used to produce the speech are very different [15].
This paper uses dynamic visemes to look at the problem of
redubbing. For the remainder of this paper static visemes
refers to traditional units formed by clustering phonemes
(Section 2.1) and dynamic visemes refers to those described
in this section as defined by Taylor et al. [1].

2.3. The Many-to-Many Relationship between Phoneme
Sequences and Dynamic Visemes

There is a complex many-to-many mapping between phoneme
sequences and dynamic visemes. Different gestures that cor-
respond to the same phoneme sequence can be clustered
into multiple classes since they can appear distinctive when
spoken at variable speaking rates or in different contexts.
Conversely, a dynamic viseme class contains gestures that
map to different phoneme strings. A valuable property of
dynamic visemes is that they provide a probabilistic map-
ping from speech movements to phoneme sequences (and
vice versa) by evaluating the probability mass distributions.
Fig. 1 shows sample distributions for three dynamic viseme
classes. The work described in this paper takes advantage of
this property by sampling the phoneme string distributions
for a known sequence of dynamic visemes.
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Fig. 1: A sampling of the phoneme string distributions for
three dynamic viseme classes.

ae+ ae- hh ah l p+ p- f uh+ uh- l iy+ iy- f+ f- l eh+ eh- t

m- ey+

ey- b+ b- iy+ iy- n+ n- k l ow+ ow- z+ z- d uh n+ n- dh ah l+ l- eh t er+ er-

98 148 69 97 14 116 20 101 24 97 110 81 19 125 145 110 68

76 90 56 115 14 133 84 140 10 99 124 12 145 115 14 28 84 140 10 61 35

ae hh+ hh ah l p p f f uh l iy iy f f l l eh t m m ey ey b b iy n n k l l ow ow z z d uh uh n dh dh ah ah l l eh eh t t er er

     ae        hh     ah  l        p            f        uh        l             iy           f             l        eh             t             m       ey        b         iy            n            k       l           ow            z       d   uh   n      dh  ah      l             eh        t         er 

DV

DV

AAM Parameter 1 AAM Parameter 2 AAM Parameter 3

AAM Parameter 1 AAM Parameter 2 AAM Parameter 3

     ae        hh     ah  l        p            f        uh        l             iy           f             l        eh             t             m       ey        b         iy            n            k       l           ow            z       d   uh   n      dh  ah      l             eh        t         er PH

Fig. 2: Phonemes (PH) and dynamic visemes (DV) for the
phrase “a helpful leaflet”. Note that PH and DV boundaries
need not align, so phonemes that are intersected by the DV
boundaries are assigned a context label.

2.4. Phonetic Boundary Context

A dynamic viseme class represents a cluster of similar visual
speech gestures, each corresponding to a phoneme sequence
in the training data. Since these gestures are derived indepen-
dently of the phoneme segmentation, the visual and acous-
tic boundaries need not align due to the natural asynchrony
between speech sounds and the corresponding facial move-
ments. Taylor et al. [1] found that 90% of the visual speech
gestures spanned between two and seven phones or partial
phones. For better modeling in situations where the bound-
aries are not aligned, the boundary phonemes are annotated
with contextual labels that signify whether the gesture spans
the beginning of the phone (p+), the middle of the phone (p∗)
or the end of the phone (p−) (see Fig. 2).

3. DATA CAPTURE AND PREPARATION

3.1. Audio-Visual Speech Database

In this work dynamic visemes were learned from the KB-2K
dataset, which contains an actor reciting 2542 phonetically
balanced sentences from the TIMIT sentences. The video
was captured in full-frontal view at 29.97 fps at 1080p using
a Sony PMW-EX3 camera over 8 hours. The actor was asked
to talk in a neutral speaking style and maintain, as far as pos-
sible, a fixed head pose. All sentences were annotated manu-



ally using the phonetic labels defined in the Arpabet phonetic
transcription code. The jaw and lips were tracked and param-
eterized using active appearance models (AAMs) providing a
compact 20D feature vector describing the variation in both
shape and appearance at each video frame. These were auto-
matically segmented into ≈50000 visual speech gestures and
clustered to form 150 dynamic viseme classes using the ap-
proach in [1].

4. METHODS

The goal is to generate a set of visually consistent phoneme
sequences with corresponding durations that, when played
back with the original video of a person speaking, appear to
synchronize with the visible articulator motion.

4.1. Dynamic Visemes to Phonemes

Given the dynamic viseme sequence, v = v1, . . . , vn, the
goal is to produce a set of word sequences, W , where Wk =
w(k,1), . . . , w(k,m). The first step involves constructing a (di-
rected acyclic) graph which models all valid phoneme paths
through the dynamic viseme sequence. A graph node is added
for every unique phoneme sequence in each dynamic viseme
in the sequence. Edges are then positioned between nodes
of consecutive dynamic visemes where a transition is valid,
constrained by the contextual labels assigned to the bound-
ary phonemes as described in Section 2.4. For example, if
contextual labels suggest that the beginning of a phoneme ap-
pears at the end of one dynamic viseme, the next should con-
tain the middle or end of the same phoneme, and if the entire
phoneme appears, the next gesture should begin from the start
of a phoneme. The probability of the phoneme string with re-
spect to its dynamic viseme class is also stored in each node.

4.2. Phonemes to Words

The next step is to search the phoneme graph for sequences
that form complete strings of words. For efficient phoneme
sequence-to-word lookup a tree-based index is constructed of-
fline, which allows any phoneme string, p = p1, . . . , pj , as a
search term and returns all matching words. This is created
using the CMU Pronouncing Dictionary [16].

A left-to-right breadth first search algorithm is used to
evaluate the phoneme graph. At each node, all word se-
quences that correspond to all phoneme strings up to that
node are obtained by exhaustively and recursively querying
the dictionary with phoneme sequences of increasing length
up to a specified maximum. The probability of a word se-
quence is calculated using:

P (w | v) =
m∑
i=1

logP (wi | wi−1) +

n∑
j=1

logP (p | vj). (1)

P (p | v) is the probability of phoneme sequence p with re-
spect to the viseme class and P (wi | wi−1) is calculated using
a word bigram language model trained on the Open American
National Corpus [17]. To account for data sparsity, the proba-
bilities are smoothed using Jelinek-Mercer interpolation [18]:

P (wi | wi−1) = λ
C(wiwi−1)

C(wi) + V
+ (1− λ)C(wi) + 1

N
(2)

where N is the number of words in the dataset and V is the
size of the vocabulary.

A breadth first graph traversal allows for Equation 1 to
be computed for every viseme in the sequence allowing op-
tional thresholding to prune low scoring nodes and increase
efficiency. The algorithm also allows for partial words to
appear at the end of a word sequence when evaluating mid-
sentence nodes. The probability of a partial word is the max-
imum probability of all words that begins with the phoneme
substring [19], P (wp) = maxw∈wp P (w), where wp is the
set of words that start with the phoneme sequence wp, wp =
{w | w(1...k) = wp}. If all paths to a node cannot comprise
a word sequence, it is removed from the graph. A complete
word sequence is required when the final nodes are evaluated.

5. ALTERNATIVE DIALOGUE FROM STATIC
VISEMES

For comparison, the use of traditional, many-to-one static
visemes for redubbing was also explored. Each phoneme in
a sequence is substituted with another from the same static
viseme class to generate alternative word sequences. Unfortu-
nately, most phoneme-to-static viseme mappings are incom-
plete and only consider a subset of the phonemes, typically
clustering only consonants under the assumption that vowels
form their own class. Table 1 shows two (mostly) complete
but very different mappings as defined by Jeffers and Barley
(JB) [3] and Parke and Waters (PW) [20] who identified 11
and 18 viseme classes respectively. On average, mapping JB
contains 3.5 phonemes per class, and PW just 1.9. For an av-
erage 10 phoneme phrase, JB allows for≈ 2.8×105 phoneme
permutations in which to search for word sequences, whereas
PW allows for only 357 permutations, providing a more con-
strained search space. The efficacy of this approach therefore
depends highly on the phoneme-to-viseme mapping used.

6. RESULTS

A set of short phrases ranging in length from 5 to 15 phonemes
were identified in the KB-2k dataset for which the dynamic
viseme sequence is known, and 50 of each length were sam-
pled. The number of unique word sequences generated using
the methods described in Section 4 with dynamic visemes
(DV), Jeffers and Barley’s static visemes (JB) and Parke and
Waters’ static visemes (PW) was calculated. The phoneme-
to-word search was performed with no graph pruning such



“clean swatches” 
“likes swats”
“then swine”

“need no pots”
“tikes rush”

Fig. 3: Video frames from the phrase “clean swatches” and a sample of visually consistent alternative phrases identified by the
dynamic viseme-to-word sequence algorithm.

Author Static Viseme Mapping
/p b m/ /f v/ /dh th/ /ch jh sh zh/

Parke and /s z/ /d n t/ /l/ /g k ng hh er/
Waters [20] /r/ /w uh/ /uw/ /ao/ /iy

/aa/ /ae/ /ah/ /ih y/ /eh/
Jeffers and /p b m/ /f v/ /dh th/ /ch jh sh zh/
Barley [3] /s z/ /d n t l/ /g k ng/ /aw/ /oy ao/

/er ow r w uh uw/ /aa ae ah ay eh ey ih iy y/

Table 1: Many-to-one phoneme-to-static viseme mappings
defined by Parke and Waters [20] and Jeffers and Barley [3].
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Fig. 4: The average number of word sequences retrieved
for variable length phrases for Parke visemes (red), Jeffers
visemes (green) and dynamic visemes (blue).

that a comprehensive list of word sequences could be attained
for each method. Fig. 4 shows the average number of word
sequences retrieved for variable length phrases using each
method. It is clear that DV can produce a larger number of al-
ternative word sequences than both static viseme approaches.

When using Parke and Waters’ visemes, 58% of the time
the algorithm fails to find any valid word sequences because
the search space is too small. Fail cases also occur using Jef-
fers and Barley’s mapping 17% of the time. Both mappings
contain classes which are a mixture of vowels and consonants,
increasing the likelihood of producing a linguistically invalid
phoneme sequence since replacing a vowel with a consonant
can produce a long string of consecutive consonants, which
is uncommon in the English language. This is less likely to
occur using dynamic visemes as naturally occurring phoneme
sequences are contained within the units, and boundary con-
text labels enforce valid transitions between units. Addition-

ally, the static viseme approach is limited to word sequences
with the same number of phonemes as the original speech.

To gauge how well a word sequence synchronizes with
lip motion in the video, the Festival Speech Synthesis Sys-
tem [21] is used to generate a new audio track containing the
phoneme string corresponding to the word sequence. Phone
durations are calculated by retiming the original phoneme du-
rations corresponding to the visual gestures in the training
data such that they sum to the length of the dynamic viseme
segment in the video. The audio track is composited with the
video for visualization. The lips appear to move in sync with
the audio, despite the new word sequence being completely
different to the original dialogue. For example, the phrase
“clean swatches” can be redubbed with word sequences such
as “likes swats”, “then swine”, “need no pots”, “tikes rush”
and many others (see Fig. 3). The generated word sequences
contain a variable number of phonemes and syllables yet re-
main visually consistent with the video. This demonstrates
the complex relationship between what we hear during speech
and what we see. See the supplementary video to see this ex-
ample and others.

7. DISCUSSION AND FUTURE WORK

This paper describes a method for automatically generating
alternative dialogues that synchronize with a video of a per-
son speaking. Dynamic visemes capture the many-to-many
mapping of visual to acoustic speech and are a data-driven
approach that explain this phenomena. The dynamic visemes
corresponding to a speaker’s lip movements are used to con-
struct a graph that describes a sampling of the phoneme
strings that could be produced with the articulator motion in
the video. A pronounciation dictionary is then used to find
the possible word sequences that correspond to each phoneme
string, and a language model is used to rank them. An acous-
tic speech synthesizer generates audio tracks corresponding
to the generated word sequences, which can be composited
with the original video, producing a synchronous, redubbed
video for inspection. The dynamic viseme-to-word search is
able to suggest thousands of alternative word sequences for
a video, which is far more than if traditional, many-to-one
static viseme clusters are used.

An interesting insight of this work is that it highlights the
extreme level of ambiguity in visual-only speech recognition.



A sequence of lip motions can legitimately correspond to a
vast array of phoneme strings, so recognition is highly depen-
dent on the language model and contextual information. It
suggests that better audio-visual language modeling is key to
improving recognition accuracy.

Future work will focus on investigating the effect of
higher level n-gram language modeling on the grammatical-
ity of the generated sentences, and using different training
corpuses to vary the context, style and language of the word
sequences.
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