
SIGNATURES FOR NETWORK CODING

DENIS CHARLES, KAMAL JAIN, AND KRISTIN LAUTER

Abstract. This paper presents a practical digital signature scheme to be used in conjunction with network
coding. Our scheme simultaneously provides authentication and detects malicious nodes that intentionally

corrupt content on the network.

1. Introduction

Following the important work of Ahlswede et al
and Li et al ([ACLY00, CLY03]), network coding
([CJW03, CJL05, GR05]) has been established as a
viable alternative to the store and forward mecha-
nisms used in peer-to-peer networks. However, net-
work coding is inherently vulnerable to pollution
attacks by malicious nodes in the network. The pol-
lution of packets spreads quickly since the output of
(even an) honest node is corrupted if at least one
of the incoming packets is corrupted. The question
of how to prevent pollution attacks in the network
coding scheme remained open and was the subject of
the paper by Krohn et al [KFM04] in the generalized
setting of rateless erasure codes (see also [GR06]).
They show that a construction based on homomor-
phic hashing works to detect the polluted packets.
This scheme, however, assumes that there is a sep-
arate secure channel which is used to transmit the
hash values of the packets to all the nodes.

In this paper we propose a different solution to the
problem of detecting pollution attacks. We design
a new homomorphic signature scheme for use with
network coding. The homomorphic property of the
signatures allows nodes to sign any linear comination
of the incoming packets without contacting the sign-
ing authority. At first glance one might think that
this is a weakness of the signature scheme. This is
not so, in our scheme it is computationally infeasi-
ble for a node to sign a linear combination of the
packets without disclosing what linear combination
was used in the generation of the packet. Further-
more, we can prove that the signature scheme is se-
cure under well known cryptographic assumptions of
the hardness of the Discrete-Log problem and the
computational co-Diffie-Hellman problem on elliptic
curves. Our scheme has a three-fold advantage over
the scheme based on homomorphic hashing: Firstly,

we do not need to securely transmit hash values of
the packets that the source transmits; secondly, since
our scheme is based on elliptic curves smaller security
parameters suffice and this translates to improved ef-
ficiency since the bit lengths involved are smaller; fi-
nally, our scheme provides authentication of the data
in addition to detecting pollution of packets.

2. Background on elliptic curves

In this section we briefly review some facts about
elliptic curves over finite fields, the reader should
consult Chapters III and V of [Sil86] for proofs of the
number theoretic claims.

Let Fq be a finite field where q is a power of a prime
relatively prime to 2 and 3. An elliptic curve E over
Fq (sometimes abbreviated as E/Fq), is a projective
curve in P2(Fq) given by an equation of the form

Y 2Z = X3 + AXZ2 + BZ3

with A,B ∈ Fq and 4A3 + 27B2 6= 0. The curve has
two affine pieces: the piece with Z 6= 0 has the affine
form y2 = x3 + Ax + B (obtained by setting x = X

Z

and y = Y
Z); and the piece with Z = 0 which has

only one (projective) point namely (0 : 1 : 0) which
we denote O. Let K be a field (not necessarily finite)
that contains Fq, the set

E(K) = {(x, y) ∈ K ×K : y2 = x3 + Ax + B}
∪ {O}

can be given the structure of an abelian group with
O as the identity of the group. Moreover, the group
operations can be efficiently computed. In particular,
if P and Q are points on E with coordinates in Fq,
then P + Q and −P can be computed in O(log1+ε q)
bit operations for any ε > 0. Hasse’s theorem gives a
tight estimate for the size of the group E(Fq):

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.
1

The Schoof-Elkies-Atkin algorithm ([BSS99] Chap-
ter VII) is a deterministic polynomial time algorithm
that computes #E(Fq).

2.1. The Weil pairing. Let E/Fq be an elliptic
curve and let Fq be an algebraic closure of Fq. If
m is an integer such relatively prime to the charac-
teristic of the field Fq, then the group of m-torsion
points, E[m] = {P ∈ E(Fq) : mP = O}, have the
following structure:

E[m] = Z/mZ× Z/mZ.

There is a map em : E[m] × E[m] → F∗
q with the

following properties:
(1) The map em is bilinear:

em(S1 + S2, T) = e(S1, T)e(S2, T)

em(S, T1 + T2) = e(S, T1)e(S, T2).

(2) Alternating: em(T, T) = 1 and so em(T, S) =
em(S, T)−1.

(3) Non-degenerate: If em(S, T) = 1 for all S ∈
E[m] then T = O.

Let E/Fq be an elliptic curve such that the m-torsion
points on E have coordinates in Fq. Then there is a
probabilistic algorithm that can evaluate em(S, T) in
O(log2+ε q) bit operations for all S, T in E[m]. If it
is clear from the context we may drop the subscript
m when writing em. The algorithm for computing
em was proposed by Miller in [Mil86]. See the pa-
per by Eisenträger et al ([ELM04]) for a description
of Miller’s algorithm and also a deterministic variant
for computing the square of the Weil pairing.

3. The signature scheme

3.1. Network Coding. We briefly describe the
standard network coding framework for content dis-
tribution ([CJW03, GR05, CJL05]). Let G = (Ṽ , Ẽ)
be a directed graph. A source s ∈ Ṽ wishes
to transmit some data to a set T ⊆ Ṽ of the
vertices. One chooses a vector space W/Fp (say
of dimension d), where p is a prime, and views
the data to be transmitted as a bunch of vec-
tors w1, · · · ,wk ∈ W . The source then creates
the augmented vectors v1, · · · ,vk by setting vi =
〈0, · · · , 0︸ ︷︷ ︸
i−1 zeros

, 1, · · · , 0, wi1, · · · , wid〉 where wij is the j-th

coordinate of the vector wi. One can assume without
loss of generality that the vectors vi are linearly inde-
pendent. We denote the subspace (of Fk+d

p) spanned
by these vectors by V . Each outgoing edge e ∈ Ẽ
computes a linear combination, y(e), of the vectors

entering the vertex v = in(e) where the edge origi-
nates, that is to say

y(e) =
∑

f : out(f)=v

me(f)y(f)

where me(f) ∈ Fp. We consider the source as hav-
ing k input edges carrying the k vectors wi. By in-
duction one has that the vector y(e) on any edge
is a linear combination y(e) =

∑
1≤i≤k gi(e)vi and

is a vector in V . The k-dimensional vector g(e) =
〈g1(e), · · · , gk(e)〉 is simply the first k-coordinates of
the vector y(e). We call the matrix whose rows are
the vectors g(e1), · · · ,g(ek), where ei are the incom-
ing edges for a vertex t ∈ T , the global encoding ma-
trix for t and denote it Gt. In practice the encoding
vectors are chosen at random so the matrix Gt is in-
vertible with high probability. Thus any receiver, on
receiving y1, · · · ,yk can find w1, · · · ,wk by solving

y′1
y′2
...

y′k

 = Gt


w1

w2

...
wk

 ,

where the y′i are the vectors formed by removing the
first k coordinates of the vector yi.

3.2. The homomorphic signature scheme. Let
p be a prime number and q a power of a differ-
ent prime with p � q. Let V/Fp be a vector
space of dimension d + k and let E/Fq be an elliptic
curve such that R1, · · · , Rk, P1, · · · , Pd are (distinct)
points of p-torsion on E(Fq). We can define a func-
tion hR1,··· ,Rk,P1,··· ,Pd

: V → E(Fq) as follows: for
v = 〈u1, · · · , uk, v1, · · · , vd〉 ∈ V

hR1,··· ,Rk,P1,··· ,Pd
(v) =

∑
j

ujRj +
∑

i

viPi.

The function hR1,··· ,Rk,P1,··· ,Pd
is a homomorphism

(of additive abelian groups) from the vector space V
to the group E[p] of p-torsion points on the curve.

Suppose the server wishes to distribute the aug-
mented vectors v1, · · · ,vk ∈ V . The server chooses
s1, · · · , sk and r1, · · · , rd which are secrets in Fp, then
signs the packet vi by computing

hi = hs1R1,··· ,skRk,r1P1,··· ,rdPd
(vi).

The server also publishes R1, · · · , Rk, P1, · · · , Pd, Q,
sjQ for 1 ≤ j ≤ k and riQ for 1 ≤ i ≤ d. Here
Q is another point of p-torsion on the elliptic curve
distinct from the others such that ep(Rj , Q) 6= 1 and
ep(Pi, Q) 6= 1 for 1 ≤ j ≤ k and 1 ≤ i ≤ d.

2

This signature hj is also appended to the data vj and
transmitted according to the distribution scheme.
Now, at any edge e that computes

y(e) =
∑

f :out(f)=in(e)

me(f)y(f)

we also compute

h(e) =
∑

f :out(f)=in(e)

me(f)h(f)

and transmit h(e) together with the data y(e). Since
the computation of the signature h(e) is a homomor-
phism, we have that if y(e) =

∑
i αivi then

h(e) =
∑

i

αihi.

Next we describe the verification process. Suppose
y(e) = 〈u1, · · · , uk, v1, · · · , vd〉 we check whether∏
1≤j≤k

e(ujRj , sjQ)
∏

1≤i≤d

e(viPi, riQ) = e(h(e), Q).

This works because if h(e) is the legitimate signature
of y(e) then by definition

h(e) =
∑

1≤j≤k

ujsjRj +
∑

1≤i≤d

viriPi,

thus

e(h(e), Q) = e
(∑
1≤j≤k

ujsjRj +
∑

1≤i≤d

viriPi, Q
)

=
∏

1≤j≤k

e(ujsjRj , Q)
∏

1≤i≤d

e(viriPi, Q)

(by bilinearity)

=
∏

1≤j≤k

e(ujRj , sjQ)
∏

1≤i≤d

e(viPi, riQ)

(again, by bilinearity).

The verification cruicially uses the bilinearity of the
Weil-pairing. Note that all the terms in the above
verification can either be computed from the vector
y(e) or from the public information.

The signature is a point on the elliptic curve with
coordinates in Fq. Thus the size of the signature
is 2 log q bits (which is some constant times log(p)
bits, depending on the relative size of p and q), and
this is the transmission overhead. The computa-
tion of the signature h(e) at each vertex requires
O(din log p log1+ε q) bit operations, where din is the
in-degree of the vertex in(e). The verification of a
signature requires O((d + k) log2+ε q) bit operations.

4. Proof of security

We preserve the notation of the previous section
here. To thwart the signature scheme an adversary
can either produce a hash collision for the function
hs1R1,··· ,skRk,r1P1,··· ,rdPd

or he can forge the signature
such that the verification goes through. Note that in
this situation the adversary has no knowledge of the
points s1R1, · · · , skRk and r1P, · · · , rdPd. We first
show that even if the adversary knew these points,
producing a collision is still as hard as computing
discrete logs. We make the claim precise next:

Problem: Hash-Collision.
Fix an integer r > 1.
Input: Given P1, · · · , Pr, points on an elliptic curve
E/Fq contained in a cyclic subgroup of prime order
p.
Output: Tuples a = 〈a1, · · · , ar〉,b =
〈b1, · · · , br〉 ∈ Fr

p such that a 6= b and∑
1≤i≤r

aiPi =
∑

1≤j≤r

bjPj .

Proposition 4.1. There is a polynomial time reduc-
tion from Discrete Log on the cyclic group of order p
on elliptic curves to Hash-Collision.

Proof : First we treat the case when r = 2. Let P
and Q be points of order p on E(Fq) that are not the
identity. Assume that Q lies in the subgroup gener-
ated by P . Our aim is to find a such that Q = aP . To
this end we apply the alleged algorithm that solves
Hash-Collision to the points P and Q. The algo-
rithm produces two distinct pairs (x, y), (u, v) ∈ F2

p

such that

xP + yQ = uP + vQ.

This gives us a relation (x − u)P + (y − v)Q = O.
We claim that x 6= u and y 6= v. Suppose that x = u,
then we would have (y − v)Q = O, but Q is a point
of order p (a prime) thus y − u ≡ 0 mod p in other
words y = v in Fp. This contradicts the assumption
that (x, y) and (u, v) are distinct pairs in F2

p. Thus
we have that Q = −(x − u)(y − v)−1P , where the
inverse is taken modulo p.

If we have r > 2 then we can do one of two things.
Either we can take P1 = P and P2 = Q as before and
set Pi = O for i > 2 (in this case the proof reduces
to the case when r = 2), or we can take P1 = r1P
and Pi = riQ where ri are chosen at random from Fp.
We get one equation in one unknown (the discrete log
of Q). It is quite possible that the equation we get

3

does not involve the unknown. However, this hap-
pens with very small probability as we argue next.
Suppose the algorithm for Hash-Collision gave us
that

ar1P +
∑

2≤i≤r

biriQ = O.

Then as long as
∑

2≤i≤r biri 6≡ 0 mod p, we can
solve for the discrete log of Q. But the ri’s are un-
known to the oracle for Hash-Collision and so we
can interchange the order in which this process oc-
curs. In other words, given bi, for 2 ≤ i ≤ r, not all
zero, what is the probability that the ri’s we chose
satisfy

∑
2≤i≤r biri = 0? It is clear that the latter

probability is 1
p . Thus with high probability we can

solve for the discrete log of Q. �

One can also conclude the above proposition from
the proof presented in [BGG94] (see Appendix A of
that paper). The proof in that paper deals with finite
fields but the argument applies equally well to the
case of elliptic curves.

We have shown that producing hash collisions in our
scheme is difficult. The other method by which an ad-
versary can foil our system is by forging a signature.
Our scheme for the signature is essentially the Aggre-
gate Signature version of the Boneh-Lynn-Shacham
signature scheme [BLS04]. In that paper it is shown
that forging a signature is at least as hard as solving
the so-called computational co-Diffie-Hellman prob-
lem on the elliptic curve. The only known way to
solve this problem on elliptic curves is via computing
discrete-logs. Thus forging a signature is at least as
hard as solving the computational co-Diffie-Hellman
on elliptic curves and probably as hard as computing
discrete-logs.

5. Setup of the scheme

We preserve the notation of section §3 here. To ini-
tialize the signature scheme we need to pick a prime
p and an elliptic curve over a field such that all its
p-torsion is defined over that field. We also need to
produce the collection of p-torsion points needed to
define the homomorphic signature. In this section we
discuss all these matters and provide an example.

We describe the outline of the steps below and then
describe the steps in detail:
(1) Pick a large prime and call it p.
(2) Pick a suitable prime ` (described in §5.1)and an

elliptic curve E over F` such that the number of
points #E(F`) is a multiple of p.

(3) Find an extension Fq of the field F` such that
E[p] ⊆ E(Fq) (here E[p] refers to the set of all
p-torsion points).

(4) Since #E(F`) ≡ 0 mod p it has p-torsion
points. Let O 6= P ∈ E(F`) be a p-torsion point
on the curve. Take Ri = aiP for 1 ≤ i ≤ k and
Pj = bjP for 1 ≤ j ≤ d where ai and bi are
picked at random from the set 1, · · · , p− 1.

(5) One of the requirements of our scheme is that Q
be a point such that e(Ri, Q) 6= 1 and e(Pj , Q) 6=
1. To ensure this, we claim that it suffices to pick
a point of p-torsion that is defined over Fq but
not over the smaller field F`. Indeed, let Q be
such a point. Then if e(Ri, Q) = 1, this would
imply that e(A,B) = 1 for any A,B ∈ E[p]
(since Ri and Q generate E[p]), which contra-
dicts the non-degeneracy of the Weil-pairing.

(6) Finally, we pick the secret keys s1, · · · , sk and
r1, · · · , rd at random from F∗

p.

5.1. Finding a suitable elliptic curve. In gen-
eral, if we have an elliptic curve E over a finite field
K, then the p-torsion points are defined over an ex-
tension of degree Θ(p2) of the field K (see [CL05]
Lemma 2.2). It is crucial for our scheme to have the
p-torsion points defined over a small degree exten-
sion field so that the operations can be carried out
in polynomial time. In this section we discuss how
one can pick a suitable field F` and an elliptic curve
over this field that has all its p-torsion defined over a
small degree extension field.

In the following paragraph we describe a construc-
tion that allows one to find an elliptic curve defined
over a finite field F` such that the entire p-torsion
is defined over F`2 . Such curves are said to have
embedding degree 2 (the construction we give also
generalizes nicely to produce other embedding de-
grees). We note that the MOV attack reduces the
discrete-log problem on the p-torsion of such curves to
the discrete-log problem in the multiplicative group
of the finite field F∗

`2 . Thus, for security considera-
tions one needs to take the embedding degree k to be
large enough so that the finite field produced by the
MOV attack is of cryptographic size. For a detailed
discussion of these issues we invite the reader to see
[MOV93, MNT01, BLS02] and also the book [BSS99].

The method we describe below, we believe, is the
method of Cocks and Pinch [CP01]. However, since
there does not seem to be a published description of
the method we find it convenient to include a detailed

4

description here.

The theory of complex multiplication of elliptic
curves can be used to generate elliptic curves over
a finite field with a certain number of points on
them. The algorithm to do this is described in many
sources [LL90, ALV02, AtMor93, Sch85]. The details
of the algorithm are not necessary for our purposes,
but its running time is important, so we describe it
next.

Suppose we wish to produce an elliptic curve E/F`

(where ` is a prime) that has exactly N points, where
N lies in the interval ` + 1− 2

√
` ≤ N ≤ ` + 1 + 2

√
`.

Write N as ` + 1 − t and set Dy2 = t2 − 4`, where
D or D/4 is squarefree (note that D is negative be-
cause of the Hasse bound). Then the algorithm to
produce such a curve runs in time |D|O(1). In our
case, we seek an elliptic curve with N equal to a
small multiple of p. This tells us that the field F`

over which we should look for such a curve must have
`+1−2

√
` ≤ mp ≤ `+1+2

√
`. The other requirement

is that t2 − 4` should have a small squarefree part,
since this determines the running time of the method
to generate such a curve. We pick a prime ` such that
4` = 4p2 − Dy2 for a small (negative) D. We also
require1 ` ≡ −1 mod p, and we set t = 2p. Thus
` + 1− t = ` + 1− 2p ≡ 0 mod p, and so the number
of points on the elliptic curve will be a multiple of p.
The time to produce such a curve will also be reason-
able since |D| is small. To produce such a prime `, we
pick a (negative) D (with |D| small) and check to see
if (p2 − Dy2

4) is prime for y = 0, 1, · · · . Since we are
only interested in primes which are congruent to −1
mod p, we perform the above check only for those
values of y such that −Dy2 ≡ −4 mod p. A conjec-
ture of Lang-Trotter ([LTr76]) tells us that there will
be many values of y that yield a prime. This is also
related to a conjecture of Hardy-Littlewood on the
prime values of quadratic polynomials.

Now the complex multiplication method produces for
us an elliptic curve E over F` that has some p-torsion
points. However, we need an elliptic curve such that
E[p] is defined over a small degree extension of F`.
This is where the additional constraint that ` ≡ −1
mod p is used. Since ` ≡ −1 mod p the order of ` in
F∗

p is 2. Now a theorem of Koblitz-Balasubramanian
(see [BK98], Theorem 1) shows that in this case the
entire p-torsion is defined over a degree 2 extension
of the base field, in other words E[p] ⊆ E(F`2). Now

we have an elliptic curve E/F` and we know that it
has all its p-torsion defined over F`2 , but how do we
find these points? This is the subject of the next
paragraph.

Remark 5.1. We remark that the theory of complex
multiplication tells us that, for each D, there is a fi-
nite list of elliptic curves E1, · · · , Eh over some num-
ber field K such that Ei mod ` satisfies our require-
ments. This is illustrated in the example in Appendix
A.

5.2. Finding the p-torsion points. Let E/F` be
the elliptic curve found using the method given above.
Then #E(F`) = ` + 1 − 2p. Let m be the largest
divisor of #E(F`) that is relatively prime to p. Let P
be a random point on the curve E(F`). If mP 6= O,
then mP is a non-trivial point of p-power torsion
(by Lagrange’s theorem). Let i ≥ 1 be the smallest
integer such that mpiP = O but mpi−1P 6= O. Then
mpi−1P is a non-trivial p-torsion point. Of course, if
mP = O, we restart with another random point P .
The probability that mP = O for a random point P
is at most 1

p , so we will find a non-trivial p-torsion
point with very high probability.

This gives us the piece of the p-torsion defined over
F`. To find the piece of the p-torsion defined over F`2

we repeat the above process over F`2 . To carry out
this process we need to know the number of points
on E(F`2). If E is defined over a finite field K, then
the number of points on E over any extension of K is
determined by #E(K) ([Sil86, p. 136]). Specifically,
#E(F`2) = `2 + 1− α2 − α2, where α, α are the two
roots (in C) of the equation

φ2 − 2pφ + ` = 0.

References

[ALV02] Agashe, A.; Lauter, K.; Venkatesan, R.; Construct-

ing elliptic curves with a known number of points over
a prime field. In High Primes and Misdemeanours: lec-

tures in honour of the 60th birthday of Hugh Cowie

Williams, Fields Institute Communication Series, 42, 1
17, 2002.

[ACLY00] Ahlswede, R.; Cai, N.; Li, S.-Y. R.; Yeung, W.;

Network Information Flow, IEEE Trans. Information
Theory, 46(4), 1204 - 1216, 2000.

[AtMor93] Atkin, A., O., L.; Morain, F.; Elliptic curves and

primality proving, Math. Comp., 61, no. 203, 29-68,
1993.

[BLS02] Barreto, P. S. L. M.; Lynn B.; Scott M.; Construct-
ing Elliptic Curves with Prescribed Embedding Degrees,

Security in Communication Networks – SCN’2002, Lec-

ture Notes in Computer Science 2576, Springer-Verlag,
263–273, 2002.

1To get embedding degree k we instead look for primes ` such that ` ≡ ak mod p where ak is an element of order k in F∗p.
5

[BK98] Balasubramanian, R.; Koblitz, N.; The Improbability
That an Elliptic Curve Has Subexponential Discrete

Log Problem under the Menezes-Okamoto-Vanstone

Algorithm, Journal of Cryptology, 11, No. 2, 141-145,
1998.

[BGG94] Bellare, M.; Goldreich, O.; Goldwasser, S.; Incre-

mental cryptography: The case of hashing and signing,
in Advances in Cryptology CRYPTO’94, Santa Bar-

bara, CA, 1994.
[BSS99] Blake, I.; Seroussi, G.; Smart, N.; Elliptic Curves in

Cryptography, Lond. Math. Soc., Lecture Note Series,

265, Cambridge University Press, 1999.
[BLS04] Boneh, D.; Lynn, B.; Shacham, H.; Short signatures

from the Weil pairing, J. of Cryptology, Vol. 17, No.

4, pp. 297-319, 2004.
[BC03] Bosma, W.; Cannon, J.; Handbook of MAGMA func-

tions, Sydney, 2003.

[CLY03] Cai, N.; Li, S.-Y. R.; Yeung, W.; Linear Network
Coding, IEEE Trans. Information Theory, 49(2), 371-

381, 2003.

[CL05] Charles, D.; Lauter K.; Computing modular polyno-
mials, Lond. Math. Soc. Journal of Computation and

Mathematics, 8, 195-204, 2005.
[CJW03] Chou, P. A.; Jain, K.; Wu, Y.; Practical network cod-

ing, in Allerton Conference on Communication, Con-

trol, and Computing, Monticello, IL, 2003.
[CJL05] Chou, P. A.; Lovász, L.; Jain, K.; Building scalable

and robust peer-to-peer overlay networks for broadcast-

ing using network coding, ACM Symposium on Prin-
ciples of Distributed Computing, Las Vegas, NV, July

2005.

[CP01] C. Cocks, R. G. E. Pinch; Identity-based cryptosys-
tems based on the Weil pairing, unpublished manu-

script, 2001.

[ELM04] Eisenträger, K.; Lauter, K.; Montgomery, P.; Im-
proved Weil and Tate pairings for elliptic and hyperel-

liptic curves, In: Algorithmic Number Theory - ANTS-
VI, Buell (Ed.), Lecture Notes in Computer Science vol.

3076, 169–183, Springer-Verlag, 2004.

[GR05] Gkantsidis, C.; Rodriguez, P.; Network coding for large
scale content distribution, in IEEE INFOCOM, Miami,

2005.

[GR06] Gkantsidis, C.; Rodriguez, P.; Cooperative security for
network coding file distribution, To appear in IEEE IN-
FOCOM, Barcelona, April 2006. (Also as Microsoft Re-

search Technical Report, MSR-TR-2004-137)
[KFM04] Krohn, M. N.; Freedman, M. J.; Maziéres, D.; On-

the-Fly Verification of Rateless Erasure Codes for Ef-

ficient Content Distribution, In the Proceedings of the
IEEE Symposium on Security and Privacy, Oakland,

CA, 2004.
[LTr76] Lang, Serge; Trotter, Hale, F.; Frobenius distribu-

tions in GL2-extensions, Lecture Notes in Math., 504,

Springer-Verlag, 1976.
[LL90] Lenstra, A. K.; Lenstra, H. W., Jr.; Algorithms in

number theory, Handbook of theoretical computer sci-

ence, Vol. A, Elsevier, Amsterdam, 673-715, 1990.
[Mil86] Miller, V.; Short programs for functions on curves,

unpublished manuscript, 1986.

[MOV93] Menezes, A.; Okamoto, T.; Vanstone, S.; Reducing
elliptic curve logarithms to logarithms in a finite field

IEEE Trans. on Information Theory, 39, 1639-1646,

1993.

[MNT01] Miyaji, A.; Nakabayashi, M.; Takano, S.; New

explicit conditions of elliptic curve traces for FR-
reductions, IEICE Trans., Fundamentals. vol. E84-A,

No.5(2001), 1234-1243.
[Sch85] Schoof, R.; Elliptic curves over finite fields and Com-

putation of square roots mod p, Math. Comp., Vol. 44,

no. 170, 483-494, 1985.
[Sil86] Silverman, J.; The Arithmetic of Elliptic Curves, Grad-

uate Texts in Math. Vol. 106, Springer-Verlag, 1986.

Appendix A. An Example

The example provided here was produced using the
computer algebra package MAGMA [BC03]. For this
example we take D = −4. For any prime p, a suit-
able prime ` is one that satisfies 4` = 4p2 + 4y2 such
that ` ≡ −1 mod p. The congruence implies that
y2 = −1 mod p, in other words −1 should be a qua-
dratic residue modulo p. This in turn implies that
p ≡ 1 mod 4, and that values of y that we need to
search should be congruent to one of the square roots
of −1 mod p.

Let p = 2633001836857174220657463256606550
8402231508999153. We search for prime values of
p2 + y2 with

y ≡


2061101991512560361037002732224640
4729378417721286 mod p, or
5718998453446138596204605243819103
672853091277867 mod p

corresponding to the two square roots of −1 mod p.
We find that

y =1875150302622039835263003517434470
200231290230217730

yields a prime, so we take

` =p2 + (1875150302622039835263003517434470200

231290230217730)2

= 351688192729081689963486221568344816704455
675519621991572654792860046102641340797974
7354244426961070309.

The complex multiplication method tells us that the
elliptic curve

E : y2 = x3 + x (in affine form)

is a suitable elliptic curve. MAGMA tells us that
#E(F`) is

351688192729081689963486221568344816704455675519
621986306651119145697661326414284761633743996394
3072004,

6

which is indeed ≡ 0 mod p. This computation took
0.063 seconds on an AMD Opteron 252 (2.6Ghz) pro-
cessor. The number of points on E(F`2) according to
MAGMA is

123684584905047707258686141200578231465582664681
874593612259486008465018014484601426538373930078
429096341769913557802164349311875508547262692347
038857763841422688694938944680813194533367728120
36965744626464

and this is ≡ 0 mod p2, which is a necessary condi-
tion for E[p] being a subgroup of E(F`2). We show
that E[p] is indeed contained in E(F`2) by finding two
points that generate the p-torsion subgroup. Follow-
ing the method outlined in §5.2 we find two p-torsion
points, P and Q, that generate the whole p-torsion of
E(F`2)

P = (2767010499835095322341063384520824402
92711762773463732533683876759414814860205
8330843763239769722154862, 736895619074862
87044199326042836330921234195270061999902
01373312978349862216019407508187132975485

11336)

Q = (170343693342782875614389009934880452
275069084044323551866473740367532495756
4303078396992524604785250333u + 15712887
4698661854995016811716722095152507760097
7567312986377817436996986291386148589353
156799909434396, 293262979414624776596432
4029396184318939075174280958297655205533
26321029472565240814005665686795414190u

+ 28272291365284541630011849371574061637
9521916237377189328124466481421733687054

16653836715431228856385081).

Here u is a variable that gives the isomorphism F`2
∼=

F`[u]/(f(u)) for a quadratic irreducible f ∈ F`[u].
The Weil pairing of P and Q is

ep(P,Q) = 1880361802998353725465339038203546
2993205409477769908010460376604157793
59581593172656075406185808275672u + 3
1284655683961117025378938265048897550
5407147891209527580710819940254935617
1889616725860797979581965315.

Since ep(P,Q) 6= 1, the points P and Q do indeed
generate E[p].

Microsoft Research, Redmond, WA 98052
E-mail address: {cdx, kjain, klauter}@microsoft.com

7

