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Nonlinear Filters for State Estimation of UV Flash Processes

Tobias K. S. Ritschel and John Bagterp Jørgensen

Abstract— We describe four algorithms for state estimation
of stochastic differential-algebraic equations. We consider the
extended Kalman filter, the unscented Kalman filter, the particle
filter, and the ensemble Kalman filter. The differential-algebraic
equations that we consider are in a semi-explicit index-1 form.
Models of dynamic UV flash processes are in such a form. The
UV flash is relevant to rigorous models of many chemical phase
equilibrium processes because it is a mathematical representa-
tion of the second law of thermodynamics. State estimation
is relevant to model predictive control, model identification,
fault detection, monitoring, and prediction. State estimation
of UV flash processes is therefore important to safe and
economical operation of processes such as flash separation,
distillation, multiphase flow in pipelines, and oil production.
We compare the accuracy and efficiency of the four filters
using a numerical example that involves a UV flash separation
process. Furthermore, we demonstrate that the filters can be
used as soft sensors that estimate the vapor-liquid composition
of the separation process based on temperature and pressure
measurements.

I. INTRODUCTION

State estimation is concerned with the reconstruction of
state variables based on measurements and a model of the
relevant process. State estimation is important to model pre-
dictive control, model identification, monitoring, prediction,
and fault detection of chemical processes [1]. State estima-
tion has been applied for many chemical processes including
stirred tank reactors [2]–[4], batch reactors [5]–[8], plug-
flow reactors [9], [10], fermentation [11], [12], distillation
columns [13]–[15], oil and gas flow in pipes [16], and oil
production [17]. Many chemical processes involve thermo-
dynamic equilibrium between fluid phases. The phase equi-
librium conditions are derived from the second law of ther-
modynamics, i.e. the entropy of a closed system is maximal
when it is at equilibrium. The UV flash is a key component
in rigorous models of dynamic phase equilibrium processes.
The UV flash has been used to model flash separation [18]–
[20], distillation [21], and computational fluid dynamical
processes [22], [23] . It is possible to formulate the UV flash
problem as an equality-constrained optimization problem
[24]. The optimization variables are temperature, pressure,
and vapor-liquid composition (in moles). The optimization
problem involves constraints on the internal energy, U , the
volume, V , and the total amount of moles of each chemical
component, n. The solution to the optimization problem
maximizes entropy while satisfying the equality constraints.
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with the Department of Applied Mathematics and Computer Science & the
Center for Energy Resources Engineering (CERE), Technical University of
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The corresponding phase equilibrium conditions are the first-
order optimality conditions of the optimization problem.
Therefore, the phase equilibrium conditions are a set of
algebraic equations. Consequently, it is natural to model dy-
namic phase equilibrium processes with differential-algebraic
equations (DAEs). Dynamic optimization algorithms for UV
flash processes have recently been developed [25], but state
estimation in such systems has not been addressed yet.

Many processes are nonlinear. There exist a number of
state estimation algorithms (filters) for nonlinear systems,
e.g. the extended Kalman filter (EKF), the unscented Kalman
filter (UKF), the particle filter (PF), and the ensemble
Kalman filter (EnKF) [26]. The EKF linearizes the nonlinear
model and applies the original Kalman filter equations. This
linearization can cause the EKF to be imprecise for highly
nonlinear systems. The UKF uses deterministic samples to
improve the accuracy compared to the EKF. However, the
UKF can also suffer from limited accuracy for severely
nonlinear systems. The PF uses a set of random samples
to approximate the distribution of the states. It can therefore
be more precise than the EKF and the UKF. The number of
samples in the UKF is fixed whereas the number of samples
in the PF is a tuning parameter. The EnKF is a specific parti-
cle filter that uses the Kalman filter equations. It has gained
attention in oceanography and oil reservoir characterization
[27]–[29] where large-scale models are common. There
exist alternatives to the above filters, e.g. moving-horizon
estimation [30], and algorithms based on neural networks
[31]. State estimation algorithms were originally developed
for stochastic difference and stochastic differential equations.
However, it is natural to model many processes with DAEs.
That is because algebraic equations often arise when a
fast process is approximated as a quasi-steady-state process.
For instance, it is common to assume that systems reach
thermodynamic phase equilibrium instantaneously. Recently,
authors have developed the EKF [32]–[34], the UKF [35]–
[39], PFs [40], [41], and the EnKF [42] for DAE models.

In this work, we present the EKF, the UKF, the PF, and the
EnKF for state estimation of dynamic UV flash processes.
We model the UV flash processes with semi-explicit index-
1 stochastic DAEs. We compare the accuracy of the four
filters with a numerical example that involves flash separation
of a hydrocarbon mixture. In the example, the states are
estimated based on temperature and pressure measurements.
Furthermore, we demonstrate that such state estimates can
be used for soft-sensing of the vapor-liquid composition of
the mixture.

This paper is structured as follows. We describe the semi-
explicit index-1 stochastic DAE form that we consider in
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Section II. In Section III, we describe the numerical solution
of stochastic DAEs in such a form. In Section IV, we
describe the EKF, and in Section V, we describe the UKF.
We describe the PF in Section VI and the EnKF in Section
VII. In Section VIII we describe the model of the UV
flash separation process, and in Section IX, we present the
numerical example. We present conclusions in Section X.

II. STOCHASTIC SEMI-EXPLICIT INDEX-1 DAE SYSTEMS

In this work, we consider stochastic DAEs in the form

G(x(t),y(t), z(t)) = 0, (1a)
dx(t) = F (y(t), u(t))dt+ σ(y(t), u(t))dω(t). (1b)

x(t) is a vector of state variables, y(t) is a vector of algebraic
variables, and z(t) is a vector of adjoint algebraic variables.
The algebraic equations (1a) are formulated such that they
can represent phase equilibrium conditions. The stochastic
differential equations (1b) are formulated such that they can
represent conservation equations. We assume knowledge of
the manipulated inputs, u(t), and the initial distribution of
the states, x(t0) ∼ N(x0, P0). ω(t) is a standard Wiener
process, i.e. its incremental covariance is Idt. It is possible
to solve the algebraic equations (1a) for y(t) and z(t) when
x(t) is specified. We obtain measurements, ym(tk), of the
outputs, zm(tk), at discrete times, tk:

zm(tk) = H(y(tk)), (2a)
ym(tk) = zm(tk) + v(tk). (2b)

The measurement noise, vk = v(tk), follows a normal
distribution, i.e. vk ∼ N(0, Tk).

III. NUMERICAL SIMULATION

In order to solve the stochastic DAE (1), we discretize
the stochastic differential equations with a semi-implicit
scheme. We discretize the deterministic and stochastic part
with Euler’s implicit and explicit method, respectively. We
split the time interval between the k’th and the k + 1’th
measurement into Nk time steps. For each time step, we
solve the residual equations, Rk,n+1 = 0, for wk,n+1 =[
xk,n+1; yk,n+1; zk,n+1

]
where the residual function is

Rk,n+1 = Rk,n+1(wk,n+1)

= Rk,n+1(xk,n+1, yk,n+1, zk,n+1)

= Rk,n+1(xk,n+1, yk,n+1, zk,n+1;xk,n, yk,n, uk)

=

[
Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk)

G(xk,n+1, yk,n+1, zk,n+1)

]
, (3)

and

Dk,n+1 = Dk,n+1(xk,n+1, yk,n+1;xk,n, yk,n, uk)

= xk,n+1 − F (yk,n+1, uk)∆tk,n

− σ(yk,n, uk)∆ωk,n − xk,n. (4)

The increments, ∆ωk,n, are sampled from N(0, I∆tk,n). We
use Newton’s method to solve the residual equations:

wl+1
k,n+1 = wl

k,n+1 + ∆wl
k,n+1. (5)

We compute the Newton step by solving

M∆wl
k,n+1 = −Rk,n+1(wl

k,n+1). (6)

The iteration matrix is

M ≈ ∂Rk,n+1

∂wk,n+1
=

[
I −∂F

∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]
. (7)

A. Efficient solution of the linear system

We exploit the structure of the Jacobian matrix in (7) to
solve the linear system (6) efficiently. We compute ∆xlk,n+1

directly by

∆xlk,n+1 =

(
∂F

∂y
∆tk,n

)
∆ylk,n+1 −Dk,n+1, (8)

and we compute ∆ylk,n+1 and ∆zlk,n+1 by solving the
reduced linear system,

M̄

[
∆ylk,n+1

∆zlk,n+1

]
=
∂G

∂x
Dk,n+1 −G(xlk,n+1, y

l
k,n+1, z

l
k,n+1).

(9)

The reduced iteration matrix is

M̄ ≈
[
∂G
∂y + ∂G

∂x
∂F
∂y ∆tk,n

∂G
∂z

]
. (10)

M̄ is smaller than M and is therefore cheaper to factorize.

IV. THE EXTENDED KALMAN FILTER

In this section, we describe the extended Kalman filter.
We initialize the filter with the mean and covariance of the
initial states:

x̂0|−1 = x0, (11a)
P0|−1 = P0. (11b)

The initial estimates of the algebraic and adjoint algebraic
variables satisfy the algebraic equations:

G(x̂0|−1, ŷ0|−1, ẑ0|−1) = 0. (12)

A. Measurement-update

The one-step ahead prediction of the outputs, the measure-
ments, and the covariance matrix are

ẑmk|k−1 = H(ŷk|k−1), (13a)

ŷmk|k−1 = ẑmk|k−1, (13b)

Tk|k−1 = CkPk|k−1C
′
k + Tk, (13c)

where Tk is the measurement noise covariance matrix, and

Ck =
∂H

∂x
(ŷk|k−1)

=
∂H

∂y
(ŷk|k−1)

∂ŷk|k−1

∂x̂k|k−1
. (14)

We compute the sensitivities of the algebraic and adjoint
algebraic variables by solving[

∂G
∂y

∂G
∂z

] [ ∂ŷk|k−1

∂x̂k|k−1
∂ẑk|k−1

∂x̂k|k−1

]
= −∂G

∂x
. (15)

1754



The innovation is

ek = ymk − ŷmk|k−1, (16)

and the Kalman filter gain matrix is

Kfx,k = Pk|k−1C
′
kT
−1
k|k−1. (17)

We compute the filtered state and its approximate covariance
matrix by

x̂k|k = x̂k|k−1 +Kfx,kek, (18a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k. (18b)

The corresponding estimates of the algebraic and adjoint
algebraic variables satisfy

G(x̂k|k, ŷk|k, ẑk|k) = 0. (19)

We compute the corresponding covariance matrices by

Py,k|k = Φyx(tk, tk)Pk|kΦyx(tk, tk)′, (20a)
Pz,k|k = Φzx(tk, tk)Pk|kΦzx(tk, tk)′. (20b)

We compute the sensitivities, Φyx(tk, tk) =
∂ŷk|k
∂x̂k|k

and

Φzx(tk, tk) =
∂ẑk|k
∂x̂k|k

, by solving

[
∂G
∂y

∂G
∂z

] [Φyx(tk, tk)
Φzx(tk, tk)

]
= −∂G

∂x
. (21)

B. Time-update

In between measurement k and k + 1, we propagate the
mean by solving the DAE,

x̂k(tk) = x̂k|k, (22a)
G(x̂k(t), ŷk(t), ẑk(t)) = 0, (22b)
dx̂k(t)

dt
= F (ŷk(t), u(t)), (22c)

for t ∈]tk; tk+1]. The sensitivities, Φxx(t, s) = ∂x̂k(t)
∂x̂k(s)

,

Φyx(t, s) = ∂ŷk(t)
∂x̂k(s)

, and Φzx(t, s) = ∂ẑk(t)
∂x̂k(s)

, satisfy

Φxx(s, s) = I, (23a)
∂G

∂x
Φxx(t, s) +

∂G

∂y
Φyx(t, s) +

∂G

∂z
Φzx(t, s) = 0, (23b)

dΦxx(t, s)

dt
=
∂F

∂y
Φyx(t, s). (23c)

The covariance matrix is given in terms of the sensitivities,
[33]:

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)′

+

∫ t

tk

Φxx(t, s)σ(ŷk(s), u(s))σ(ŷk(s), u(s))′Φxx(t, s)′ds.

(24)

C. Numerical solution of the time-update equations

We discretize (22) with Euler’s implicit method. For each
of the Nk time steps, we solve the residual equations,[

Dk,n+1(x̂k,n+1, ŷk,n+1; x̂k,n, uk)
G(x̂k,n+1, ŷk,n+1, ẑk,n+1)

]
= 0, (25)

where Dk,n+1 = Dk,n+1(x̂k,n+1, ŷk,n+1; x̂k,n, uk) is

Dk,n+1 = x̂k,n+1 − F (ŷk,n+1, uk)∆tk,n − x̂k,n, (26)

and x̂k,0 = x̂k|k. We compute the sensitivities by solving[
I −∂F

∂y ∆tk,n 0
∂G
∂x

∂G
∂y

∂G
∂z

]Φxx(tk,n+1, tk,n)
Φyx(tk,n+1, tk,n)
Φzx(tk,n+1, tk,n)

 =

[
I
0

]
.

(27)

We exploit the structure of the system matrix in (27) as we
described in Section III-A. We approximate the integral in
(24) with a left rectangle rule:

Pk,n+1 = Φxx(tk,n+1, tk,n)τk,nΦxx(tk,n+1, tk,n)′, (28a)
τk,n = Pk,n + σ(ŷk,n, uk)σ(ŷk,n, uk)′∆tk,n. (28b)

Pk,0 = Pk|k, and the one-step ahead estimates are x̂k+1|k =
x̂k,Nk

, ŷk+1|k = ŷk,Nk
, and ẑk+1|k = ẑk,Nk

. The covariance
matrix is Pk+1|k = Pk,Nk

.

V. THE UNSCENTED KALMAN FILTER

The initial state estimate and the covariance matrix are

x̂0|−1 = x0, (29a)
P0|−1 = P0. (29b)

A. Measurement-update

We compute 2nx + 1 samples of the states by

x̂
(0)
k|k−1 = x̂k|k−1, (30a)

x̂
(i)
k|k−1 = x̂k|k−1 +

√
c
(√

Pk|k−1

)
i
, (30b)

x̂
(i+nx)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1

)
i
, (30c)

for i = 1, . . . , nx. nx is the dimension of the states. c =
α2(nx + κ), α ∈]0; 1], and we set κ to zero. We compute√
Pk|k−1 with a cholesky factorization, and

(√
Pk|k−1

)
i

is
the i’th column of

√
Pk|k−1 [43]. We introduce the weights,

W (0)
m =

λ

nx + λ
, (31a)

W (0)
c =

λ

nx + λ
+ (1− α2 + β), (31b)

W (i)
m =

1

2(nx + λ)
, (31c)

W (i)
c =

1

2(nx + λ)
, (31d)

for i = 1, . . . , 2nx, where λ = α2(nx + κ) − nx [44]. We
solve the algebraic equations for each sample,

G(x̂
(i)
k|k−1, ŷ

(i)
k|k−1, ẑ

(i)
k|k−1) = 0, (32)
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and evaluate the output:

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1). (33)

We compute the mean, covariance, and cross-covariance by

ẑmk|k−1 =

2nx∑
i=0

W (i)
m ẑ

m,(i)
k|k−1, (34a)

Tk|k−1 =

2nx∑
i=0

W (i)
c

(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
+ Tk, (34b)

Sk|k−1 =

2nx∑
i=0

W (i)
c

(
x̂
(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
.

(34c)

The innovation is

ek = ymk − ŷmk|k−1, (35)

where ŷmk|k−1 = ẑmk|k−1. The Kalman filter gain matrix is

Kfx,k = Sk|k−1T
−1
k|k−1. (36)

The filtered state estimate and the covariance matrix are

x̂k|k = x̂k|k−1 +Kfx,kek, (37a)
Pk|k = Pk|k−1 −Kfx,kTk|k−1K

′
fx,k, (37b)

and we solve the algebraic equations for the estimates of the
algebraic and adjoint algebraic variables:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (38)

B. Time-update

We introduce ñ = nx +nω and the sets N0 = {0}, Nx =
{1, . . . , 2nx}, and Nω = {2nx + 1, . . . , 2nx + 2nω}. nω is
the dimension of the process noise. The process noise in (1)
is non-additive. We therefore compute 2ñ+1 samples of the
states:

x̂
(i)
k|k = x̂k|k, i ∈ N0 ∪Nω, (39a)

x̂
(i)
k|k = x̂k|k +

√
c̃
(√

Pk|k

)
i
, i = 1, . . . , nx, (39b)

x̂
(i+nx)
k|k = x̂k|k −

√
c̃
(√

Pk|k

)
i
, i = 1, . . . , nx. (39c)

c̃ = α2(ñ+ κ), and we introduce the weights,

W̃ (0)
m =

λ̃

ñ+ λ̃
, (40a)

W̃ (0)
c =

λ̃

ñ+ λ̃
+ (1− α2 + β), (40b)

W̃ (i)
m =

1

2(ñ+ λ̃)
, (40c)

W̃ (i)
c =

1

2(ñ+ λ̃)
, (40d)

for i = 1, . . . , 2ñ. λ̃ = α2(ñ+ κ)− ñ. We solve the DAEs,

x̂
(i)
k (tk) = x̂

(i)
k|k, (41a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (41b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt, (41c)

for i ∈ N0 ∪Nx and t ∈]tk; tk+1]. Furthermore, we solve

x̂
(i)
k (tk) = x̂

(i)
k|k, (42a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (42b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(i)(t),

(42c)

for i ∈ Nω and t ∈]tk; tk+1]. We sample the increments as

dω(i+2nx)(t) =
(√

c̃ dt
)
ei, (43a)

dω(i+2nx+nω)(t) = −
(√

c̃ dt
)
ei, (43b)

for i = 1, . . . , nω . The i’th element of the vector ei is
one and all other elements are zero. We compute the state
estimate and the covariance matrix by

x̂k+1|k =

2ñ∑
i=0

W̃ (i)
m x̂

(i)
k+1|k, (44a)

Pk+1|k =

2ñ∑
i=0

W̃ (i)
c

(
x̂
(i)
k+1|k − x̂k+1|k

)(
x̂
(i)
k+1|k − x̂k+1|k

)′
,

(44b)

where x̂(i)k+1|k = x̂
(i)
k (tk+1).

C. Numerical solution of the time-update equations
We discretize (41) with Euler’s implicit method and (42)

with the semi-implicit scheme described in Section III. For
each of the Nk time steps, we solve[

D
(i)
k,n+1(x̂

(i)
k,n+1, ŷ

(i)
k,n+1; x̂

(i)
k,n, ŷ

(i)
k,n, uk)

G(x̂
(i)
k,n+1, ŷ

(i)
k,n+1, ẑ

(i)
k,n+1)

]
= 0, (45)

where D(i)
k,n+1 = D

(i)
k,n+1(x̂

(i)
k,n+1, ŷ

(i)
k,n+1; x̂

(i)
k,n, ŷ

(i)
k,n, uk) is

D
(i)
k,n+1 = x̂

(i)
k,n+1 − F (ŷ

(i)
k,n+1, uk)∆tk,n − x̂(i)k,n, (46)

for i ∈ N0 ∪Nx and

D
(i)
k,n+1 = x̂

(i)
k,n+1 − F (ŷ

(i)
k,n+1, uk)∆tk,n

− σ(ŷ
(i)
k,n, uk)∆ω

(i)
k,n − x̂

(i)
k,n, (47)

for i ∈ Nω . The increments are

∆ω
(i+2nx)
k,n =

(√
c̃∆tk,n

)
ei, (48a)

∆ω
(i+2nx+nω)
k,n = −

(√
c̃∆tk,n

)
ei, (48b)

for i = 1, . . . , nω .

VI. THE PARTICLE FILTER

We sample Np particles, x̂(i)0|−1, from the distribution of
the initial states, i.e. from N(x0, P0). Next, we solve the
algebraic equations for each of the particles:

G(x̂
(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0. (49)
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A. Measurement-update

For each particle, we compute the output,

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1), (50)

and the difference between the output and the measurement:

e
(i)
k = ymk − ẑ

m,(i)
k|k−1. (51)

We compute the relative likelihood that ymk is observed if
the particle output, ẑm,(i)

k|k−1, is true:

q̃(i) =
1√

(2π)nm |Tk|
exp

(
−1

2

(
e
(i)
k

)′
T−1k e

(i)
k

)
. (52)

nm is the dimension of the output, and |Tk| is the determinant
of Tk. We normalize the relative likelihoods:

q(i) =
q̃(i)∑Np

j=1 q̃
(j)
. (53)

We use systematic resampling [45], [46]. We sample a single
(scalar) uniformly distributed number, p̃ ∼ U(]0, 1]). Next
we compute:

p(i) = ((i− 1) + p̃)/Np, i = 1, . . . , Np. (54)

The resampled particles, {x̂(i)k|k}
Np

i=1, contain m(i) copies of

x̂
(i)
k|k−1 where m(i) is the number of indices, l, for which
p(l) is in the interval ]

∑i−1
j=1 q

(j);
∑i

j=1 q
(j)]. We compute

the state estimate and the covariance matrix by

x̂k|k = Wm

Np∑
i=1

x̂
(i)
k|k, (55a)

Pk|k = Wc

Np∑
i=1

(
x̂
(i)
k|k − x̂k|k

)(
x̂
(i)
k|k − x̂k|k

)′
, (55b)

where Wm = 1/Np and Wc = 1/(Np − 1). Next, we solve
the algebraic equations:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (56)

B. Time-update

For each particle, we solve the stochastic DAE,

x̂
(i)
k (tk) = x̂

(i)
k|k, (57a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (57b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(t),

(57c)

for t ∈]tk; tk+1] as we described in Section III. The one-step
ahead predictions for the i’th particle are x̂(i)k+1|k = x̂

(i)
k,Nk

,

ŷ
(i)
k+1|k = ŷ

(i)
k,Nk

, and ẑ(i)k+1|k = ẑ
(i)
k,Nk

.

VII. THE ENSEMBLE KALMAN FILTER

We sample Np particles, x̂(i)0|−1, from N(x0, P0), and solve
the algebraic equations for each particle:

G(x̂
(i)
0|−1, ŷ

(i)
0|−1, ẑ

(i)
0|−1) = 0. (58)

A. Measurement-update
We compute the output for each particle:

ẑ
m,(i)
k|k−1 = H(ŷ

(i)
k|k−1). (59)

We compute the state and output means, the covariance, and
the cross-covariance:

x̂k|k−1 = Wm

Np∑
i=1

x̂
(i)
k|k−1, (60a)

ẑmk|k−1 = Wm

Np∑
i=1

ẑ
m,(i)
k|k−1, (60b)

Tk|k−1 = Wc

Np∑
i=1

(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
+ Tk, (60c)

Sk|k−1 = Wc

Np∑
i=1

(
x̂
(i)
k|k−1 − x̂k|k−1

)(
ẑ
m,(i)
k|k−1 − ẑ

m
k|k−1

)′
.

(60d)

Wm = 1/Np and Wc = 1/(Np − 1). We sample measure-
ments for each particle:

ŷ
m,(i)
k|k−1 = ẑ

m,(i)
k|k−1 + v

(i)
k . (61)

Each of the measurement noise samples, v(i)k , is drawn from
N(0, Tk). The innovation for the i’th particle is

e
(i)
k = ymk − ŷ

m,(i)
k|k−1, (62)

and the Kalman filter gain matrix is

Kfx,k = Sk|k−1T
−1
k|k−1. (63)

For each particle, we update the states:

x̂
(i)
k|k = x̂

(i)
k|k−1 +Kfx,ke

(i)
k . (64)

The state estimate and covariance matrix are

x̂k|k = Wm

Np∑
i=1

x̂
(i)
k|k, (65a)

Pk|k = Wc

Np∑
i=1

(
x̂
(i)
k|k − x̂k|k

)(
x̂
(i)
k|k − x̂k|k

)′
, (65b)

and we compute the estimates of the algebraic and adjoint
algebraic variables by solving the algebraic equations,

G(x̂k|k, ŷk|k, ẑk|k) = 0. (66)

B. Time-update
The time-update in the EnKF is identical to the time-

update in the PF. We solve the stochastic DAEs,

x̂
(i)
k (tk) = x̂

(i)
k|k, (67a)

G(x̂
(i)
k (t), ŷ

(i)
k (t), ẑ

(i)
k (t)) = 0, (67b)

dx̂
(i)
k (t) = F (ŷ

(i)
k (t), u(t))dt+ σ(ŷ

(i)
k (t), u(t))dω(t),

(67c)

for i = 1, . . . , Np and t ∈]tk; tk+1] with the approach
described in Section III. The one-step ahead predictions are
x̂
(i)
k+1|k = x̂

(i)
k,Nk

, ŷ(i)k+1|k = ŷ
(i)
k,Nk

, and ẑ(i)k+1|k = ẑ
(i)
k,Nk

.
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VIII. THE DYNAMIC UV FLASH SEPARATION PROCESS

We consider the separation of a mixture of NC compo-
nents. The mixture is separated into a vapor phase (v) and
a liquid phase (l). The two phases are in thermodynamic
equilibrium. The separator is supplied by a feed stream. The
vapor and liquid phases exit the separator from two separate
streams. Furthermore, the unit is either heated or cooled.
We model the process with 1) vapor-liquid equilibrium
conditions and 2) mass and energy conservation equations.
We use an open-source thermodynamic software, ThermoLib
[47], [48], to evaluate thermodynamic functions based on the
Peng-Robinson equation of state.

A. Vapor-liquid equilibrium

The UV flash problem is a mathematical statement of the
second law of thermodynamics, i.e. that the entropy of a
closed system in equilibrium is maximal. The internal energy,
U , the volume, V , and the total composition (in moles), n,
are specified in the UV flash. The equilibrium temperature,
T , pressure, P , and vapor-liquid composition (in moles), nv

and nl, are the solution to the optimization problem,

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (68a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (68b)

V v(T, P, nv) + V l(T, P, nl) = V, (68c)

nvi + nli = ni, i = 1, . . . , NC . (68d)

The UV flash is also called the UVn flash or the isoenergetic-
isochoric (constant energy - constant volume) flash. The
solution to (68) is characterized by the first-order optimality
conditions which the algebraic equations (1a) represent. The
optimization variables are the algebraic variables, and the
Lagrange multipliers associated with (68) are the adjoint
algebraic variables. The state variables are U and n.

B. Conservation of mass and energy

The internal energy, U , and the total mixture composition,
n, are determined by the conservation equations,

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (69a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), i = 1, . . . , NC .
(69b)

Hv
F and H l

F are the enthalpies, and fvF,i and f lF,i are the
molar flow rates, of the vapor and liquid phases of the
feed stream. Similarly, HV and HL are the enthalpies, and
vi and li are the flow rates, of the vapor stream and the
liquid stream. Q refers to heating if it is positive and to
cooling if it is negative. The inputs to the system, e.g. the
feed stream and the vapor-liquid output streams, can be
uncertain. Similarly, there can be uncertainty related to the
thermodynamic parameters. That is what we model with the
stochastic part of the differential equations (1b) [49].

TABLE I
ACCURACY AND COMPUTATION TIMES FOR A UV FLASH PROCESS WITH

6 DIFFERENTIAL EQUATIONS AND 19 ALGEBRAIC EQUATIONS.

EKF UKF PF EnKF
Avg. NRMSD 0.0216 0.0166 0.0161 0.0199
Avg. meas. upd. CPU (ms) 1.27 12.74 2.13 3.22
Avg. time upd. CPU (ms) 8.44 161.81 773.75 805.78

IX. NUMERICAL EXAMPLE

We consider the separation of a hydrocarbon mixture in
a 0.2 m3 separator. The mixture contains 60% C1, 8% C2,
5% C3, 25% n-C7, and 2% CO2. We estimate the states
over a 72 h period with the EKF, UKF, PF, and EnKF. We
use the parameter values α = 0.1 and β = 2 in the UKF.
We sample 100 particles in both the PF and the EnKF. We
measure temperature and pressure every 30 min. All filters
take Nk = 6 time steps of 5 min between the measurements.
The separator is cooled with Q = −9 MJ/h for t ∈ [0 h; 24 h]
and with Q = −4 MJ/h for the remaining 48 h. The flow
rates of the feed, the vapor stream, and the liquid stream
are 1000 mol/h, 400 mol/h, and 600 mol/h, respectively.
The temperature and pressure measurement noises have
standard deviations of 10 K and 10−1/2 ≈ 0.3 MPa. We
consider a constant diffusion coefficient, i.e. σ(y(t), u(t)) =
σ = diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σCO2

]). The diagonal
elements are σU = 1 MJ, σC1 = σC2 = σn-C7 = 1 mol, and
σC3 = σCO2 = 0.1 mol. x0 is a steady-state of the process
(without process noise), and P0 = σσ′.

Fig. 1 shows the state estimates of the four filters together
with the true states (blue). The estimates of all four filters
are close to the true states. The root-mean-square deviation
(RMSD) of the i’th state variable is

RMSDi =

(
1

N + 1

N∑
k=0

(x̂i,k|k − xi,k)2

)1/2

, (70)

where N = 144 is the number of sampling intervals. The
state variables have different units and orders of magnitude.
We therefore compute the normalized RMSD (NRMSD). It
is NRMSDi = RMSDi/x̄i, where x̄i is the average of the
true states, xi,k, over the index k. Table I shows the average
NRMSD over the state variables for each filter together with
the average computation times for a single measurement-
update and time-update. The EKF is significantly faster than
the other filters while the PF estimates have the lowest
average NRMSD. Fig. 2 illustrates that the state estimation
algorithms can be used for soft sensing of the vapor-liquid
compositions. It shows the PF estimates of the total mole
fractions, the vapor-liquid mole fractions, and the vapor
fraction of the mixture.

X. CONCLUSIONS

We describe four nonlinear filters for state estimation of
UV flash processes, i.e. the EKF, UKF, PF, and EnKF.
We model the UV flash processes with stochastic DAEs
in a semi-explicit index-1 form. We describe a model of a
UV flash separation process and compare the accuracy and
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Fig. 1. Filtered estimates of total composition, internal energy, temperature, and pressure.
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Fig. 2. PF estimates of the total mole fractions, vapor mole fractions, liquid mole fractions, and the vapor fraction. The estimates are based on the model
and measurements of temperature and pressure. We omit the graphs of the C3 and n-C7 vapor mole fractions because they are below 1%.

efficiency of the filters with a numerical example. The PF is
slightly more accurate than the other filters in terms of the
average NRMSD of the estimates. However, all four filters
provide estimates that are very close to the true states of
the process. The EKF is significantly faster than the other
filters. Finally, we demonstrate that the algorithms can be
used for soft sensing of vapor-liquid compositions based on
temperature and pressure measurements.
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