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Abstract— In this paper a state observer for a distributed
parameter system (DPS) with nonconstant parameter functions
is presented. The DPS describes the freezing of foodstuff in
vertical plate freezers and is a nonlinear heat equation. The
observer is based upon the Extended Kalman Filter, meaning
that the nonlinear heat equation has been discretized in the
spatial domain before designing the observer. We show that the
observer is robust with respect to perturbations of parameter
functions and noisy measurement signals and that the inner-
domain temperatures can be correctly estimated.

I. INTRODUCTION

In order to prevent foodstuff from spoiling while trans-
porting over long distances or storing during long periods,
freezing has shown itself superior to many other preservation
techniques. This especially holds for fish products, as it is a
foodstuff that has a quite short shelf life. Extending shelf
life by iced storage is temporally limited, whereas other
techniques, like salting or drying have impacts on taste and
texture. Therefore gentle freezing and thawing techniques
that preserve quality (appearance, taste and odour) are of
high interest for the fishing industries worldwide in order to
obtain a safe and high quality product.

Freezing time denotes the time it takes to freeze the ‘worst
point’ (the point hardest to affect - depending on geometry
and freezing method) down to the safe temperature (mostly
−18 ◦C). In theory it should suffice to remove a ‘theoretical’
amount of energy which is defined by the difference between
initial and desired temperature plus latent heat of fusion. But
as the cold front propagates throughout the spatial domain,
the removal of this ‘theoretical’ amount of energy will not
lead to a uniform distribution of temperature. In fact the
temperature of the ‘worst point’ will be higher than the
desired temperature. Due to the laws of thermodynamics the
overall temperature will uniformly converge to the desired
temperature (without disturbances acting on the systems,
meaning perfect insulation). However, this procedure is not
allowed by some authorities, e.g. the ‘regulation of deep-
frozen foodstuff’ (Forskrift om dypfryste næringsmidler) of
the Norwegian Ministry of Health and Care Services states
that before being transported to the storage freezer, the goods
must be −18 ◦C at the warmest point.
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Analytical and numerical models for the freezing of food-
stuff have been described by a whole range of publications,
see for example [8], where an overview is given about
different techniques. Analytical methods deliver freezing
time predictions and are often based on Plank’s equation1,
see [15]. In [13] freezing time predictions for rectangular
blocks of foodstuff are described, whereas [12] introduces an
extension of Plank’s equation for simple shapes. Analytical
functions to predict freezing and thawing times for regular
and irregular shapes are presented in [6] and [7], respec-
tively. Numerical modelling methods have been described in
various publications. A finite-difference scheme for freezing
foodstuff is introduced in [14], while [5] presents results for
freezing and thawing time prediction by numerical methods.
These numerical methods mostly rely on temperature pre-
dicting models described by partial differential equations.

Due to the fact that freezing time estimation is often
done by simplified analytical means and prior-to-freezing-
calculations, the freezing time is often ‘overestimated’. Since
energy-efficiency has become a big topic in the last two
decades due to the finiteness of primary energy carriers
as well as their impact on the climate, it is important to
gain more knowledge of energy-consuming processes, such
as freezing processes. In that sense a better estimation of
freezing time could help terminate the freezing process
even before the above mentioned analytical methods would
suggest.

As computational power has grown significantly in the last
decades, it makes sense to introduce real time monitoring
and estimation of freezing time; that is, to design state-
observers which provide estimates of the non-measurable
temperature field in the interior of the good’s volume. With
this knowledge the freezing time can be estimated. Many
observer design methods exist; the most well-known of these
is undoubtedly the Kalman Filter for discrete-time systems
defined by ordinary differential equations. The Kalman-
Bucy-Filter (KBF) is the continuous-time version of the
Kalman Filter. Both of these designs rely on linearized sys-
tem equations and added white Gaussian noise to compensate
for modeling and measurement errors. Furthermore there
exist so called Extended Kalman Filters (EKF), which utilize
the same principle as the aforementioned filters, but instead
of linearizing around a fixed setpoint, the linearized system
matrix gets updated with full state information at each time-
step. In addition, nonlinear observer design methods have
been developed in the recent years, as for example [1].

1Note that in literature both versions of the name, Plank and Planck, are
used; the correct full name is Rudolf Plank, however.



Observers for partial differential equations have gotten
more and more attention in the scientific community. In
general there exist two ways to attack these problems: Early
lumping and late lumping. In the former approach, the spatial
domain is discretized prior to the observer design (finite-
dimensional), whereas in the latter, the observer is designed
for the PDE itself (infinite-dimensional). An example of
an early lumping design can be found in [10], where the
observer is split up into a finite- and an infinite-dimensional
part. Examples of late lumping approaches are presented in
[16], where an infinite-dimensional sampled data Kalman
Filter is introduced and in [11], where transformations are
used to reduce the system’s complexity prior to designing
the observer by backstepping methods. For an overview over
different types of PDE observers see [9]. All of the above
mentioned designs have one thing in common, namely that
all rely on system descriptions with constant parameters,
such that transformations (e.g. gauge-transformations) can
be used to obtain simplified system structures with known
properties. As the system we are investigating is defined
by state-dependent parameter functions, however, we cannot
use the already established methods. This motivates the
subsequent investigation.

The paper is structured as follows: In Section II we will
introduce the model equations which will be used for the
observer design in Section III. Section IV presents simulation
results and Section V will end the paper with concluding
remarks and comments on the solution. The used parameters
can be found in the appendix.

II. MODEL

The model which is the basis for this observer design is a
2-dimensional parabolic partial differential equation (PDE).
The 1-dimensional version of this parabolic PDE has been
described earlier in [4], where the PDE was subject to an
optimal control problem in order to find an optimal boundary
input. Further it has been described in [2], where stability in
terms of L2- and H1-norms has been proven for classes of
input and parameter distribution functions.

The model describes the temperature distribution T =
T (t,x,y) throughout a block of fish that is frozen inside a
vertical plate freezer

ρ(T )c(T )Tt =
(
λ (T )Tx

)
x +
(
λ (T )Ty

)
y

= λT (T )
(
T 2

x +T 2
y
)
+λ (T )

(
Txx +Tyy

) (1)

where ρ(T ) denotes the density, c(T ) indicates the specific
heat capacity at constant pressure and λ (T ) describes the
thermal conductivity. Rewritten, (1) becomes

Tt = κ(T )
(
T 2

x +T 2
y
)
+ k(T )

(
Txx +Tyy

)
(2)

where κ(T ) = λT (T )
ρ(T )c(T ) and k(T ) = λ (T )

ρ(T )c(T ) .

In order to be well–posed, boundary and initial conditions
have to be defined for distributed parameter systems. For
the present case it is practical to either choose Dirichlet
or Neumann boundary conditions, representing temperature
or heat flow at/through the boundary, respectively. Initial

conditions represent the initial state of the system. Here it is
convenient to choose them evenly distributed throughout the
whole spatial domain.

The effects of the freezing medium (vaporizing liquid
ammonia) at x = 0 and x = ` as well as of exposure to
air (y = 0) are modeled by Dirichlet boundary conditions,
whereas presumed perfect insulation at the bottom of the fish
block (y = h) is modeled by Neumann boundary conditions.

The system itself is passive, meaning that the boundary
inputs at x = 0 and x = ` are not actively controlled. As
an introduction to the upcoming subsections we illustrate
in Figure 1 how the spatial domain is discretized and
furthermore which of the states are measurable (orange) and
which are not (blue). In addition Figure 1 shows how the
boundary conditions are chosen and the way they act on the
system.

DBC DBC 

NBC: perfect insulation 

DBC: exposure to air 

TM,N

T1,1 T1,N

TM,1

Tm,n

x

y

Fig. 1. DBC denotes Dirichlet boundary conditions and NBC denotes
Neumann boundary conditions

A. Parameters

The choice of parameter distribution functions k(T ) and
κ(T ) has been studied in earlier publications. In [3] the
composition of fish tissue as an alloy of different substances
is introduced. In [4] and [2] different continuous representa-
tions of the parameter functions have been defined, which
take the phenomenon of thermal arrest caused by latent
heat of fusion into account. This is achieved by defining a
temperature range ±∆T around the freezing point TF where
c(T ) is increased significantly in order to slow down heat
conduction. The parameter functions in [2] are the basis for
this paper and illustrated in Figure 2 for completeness. We
remark that ρ(T ) is assumed constant over the considered
temperature range.

B. Discretization

Discretization is performed by means of finite difference
methods for the spatial derivatives only. This corresponds
with an early lumping approach and will lead to an ap-
proximation of the PDE by a set of coupled ODEs. For
discretization it is necessary to use uneven discretization
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Fig. 2. Parameter function definitions

numbers N and M in x- and y-direction, in order to be able
to define central layers for both spatial domains.

The terms Tx and Ty will be approximated by both, first
order forward and central difference methods. It is important
to mention that, in this case, the discretization direction
is not consistent with positive x- and y-directions. This
means that discretization is performed from the left/right and
from the bottom/top boundaries towards the central layers
of the spatial domain using a first order forward difference
approach, whereas a first order central difference approach is
used at the very center of the spatial domain, both regarding
x- and y-directions. The reason for this is that the boundary
conditions at x = 0 and x = ` must be imposed to the
discretized equations with the same sign (here positive),
which will not be the case with a consistent discretization
direction.

The following descretizations hold for fixed y- and x-
positions, respectively

fixed y-position at m:

Tx =


Tm,n−1−Tm,n

∆x , if n < N+1
2

Tm,n+1−2Tm,n+Tm,n−1
2∆x , if n = N+1

2
Tm,n+1−Tm,n

∆x , if n > N+1
2 ,

(3)

fixed x-position at n:

Ty =


Tm−1,n−Tm,n

∆y , if m < M+1
2

Tm+1,n−2Tm,n+Tm−1,n
2∆y , if m = M+1

2
Tm+1,n−Tm,n

∆y , if m > M+1
2 .

(4)

Note that the terms for n = N+1
2 and m = M+1

2 in (3) and
(4) are obtained by taking half of the ‘effect’ from both
neighbour blocks into account for the block at the center,
resulting in a central difference description
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2∆x
=

1
2
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∆x
+

1
2
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2∆y
=

1
2

Tm−1,n −Tm,n

∆y
+

1
2

Tm+1,n −Tm,n

∆y
.

The approximations for the terms Txx and Tyy are obtained
by using a second order central difference method. This ap-
proach can be applied by following a consistent discretization
direction, due to the fact that the boundary conditions enter
the discretized equations with the same sign. As a result
the following equations hold for fixed y- and x-positions,
respectively

fixed y-position at m:

Txx =
Tm,n+1 −2Tm,n +Tm,n−1

∆x2 , (5)

fixed x-position at n:

Tyy =
Tm+1,n −2Tm,n +Tm−1,n

∆y2 . (6)

The discrete expressions (3), (4), (5) and (6) are defined for
1 ≤ n ≤ N and 1 ≤ m ≤ M, where the values at Tm,0, Tm,N+1,
T0,n and TM+1,n represent the fictional states where the
boundary conditions enter the equations. The discretization

step sizes are ∆x =
`

N
and ∆x =

h
M

.

This discretization procedure will lead to N ×M coupled
ordinary differential equations (ODEs). In (7) a general
example for how these discretized ODEs look like is demon-
strated (for 1 ≤ n < N+1

2 and 1 ≤ m < M+1
2 )

Ṫm,n =κ(Tm,n)
[(Tm,n−1 −Tm,n

∆x

)2
+
(Tm−1,n −Tm,n

∆y

)2]
+ k(Tm,n)

[Tm,n+1 −2Tm,n +Tm,n−1

∆x2

+
Tm+1,n −2Tm,n +Tm−1,n

∆y2

]
.

(7)

C. Boundary conditions

As mentioned before, Dirichlet boundary conditions are
imposed on the system at Tm,0, Tm,N+1 and T0,n. We point
out that these boundary conditions are assumed constant
and can therefore be defined as Tm,0 = Tm,N+1 = TAmmonia
for all m (temperature of ammonia) and T0,n = TAir for
all n (temperature of air). Furthermore, perfect insulation
at the bottom of the fish block is defined by Neumann
boundary conditions at TM+1,n, leading to the expression
TM+1,n −TM,n = 0 for all n.

III. OBSERVER

The observer is designed to estimate the unmeasurable
states inside the spatial domain of the fish block. Inner-
domain measurements are neither practical nor possible for
the system setup. The estimation of the unmeasurable states
is important to predict when the desired temperature is
reached inside the inner layers of the spatial domain. Thus it
can replace simpler, approximative freezing time prediction
methods, as already mentioned in Section I.

A first choice for a practical observer design is often a
Kalman Filter based design. Due to the fact that a Kalman
Filter is a well-established observer in engineering practice,
it is often used as a benchmark in order to compare other



observer designs with regard to performance. The Kalman
Filter has certain robustness properties which are based on
the fact that modeling and measurement errors are introduced
to the system model by adding up white Gaussian noise
signals w and v to the state derivatives and the outputs,
respectively. Here we will investigate the possibility of
implementing an Extended Kalman Filter (EKF).

A. Design

As can be seen in Fig. 3 the design relies on a nonlinear
model running in parallel to the plant. Both, plant and model
base on the same spatially discretized equations of the PDE
(2) and are fed with the same inputs, namely the boundary
conditions at x = 0, x = ` (TAmmonia) and y = 0 (TAir). The
boundary conditions at y = h are directly embedded in the
spatially discretized equations of the plant and the model.

Plant 

Model 

Jacobian Riccati 
Solver 

- 

1/s

1/s

C

L · C

×

Ṫ = f1(T )

˙̂
T = f2(T̂ )

u

TAir

A(T̂ )

T̂

T

Fig. 3. Design schematic

In contrast to standard designs, the Jacobian A(T̂ ) = ∂ f2
∂ T̂

is only used as an input to the Riccati equation and thus to
compute the observer feedback gain L. Note that in order
to calculate A(T̂ ), the nonmeasurable states are taken from
the model, whereas the measurable states are taken from the
plant.

B. Linearization

One of the basic principles of an EKF is that the nonlinear
system has to be linearized, but not around a fixed set-
point (equilibrium) like the Kalman-Bucy-Filter, but around
changing setpoints defined by the solutions to the (linearized)
ODEs. Thus the system matrix A(T̂ ) represents the linearized
system’s behavior at particular points in state-space and
changes as the system is progressing in time.

We define the state vector as

T =
[
T1,1 · · · T1,N T2,1 · · · T2,N · · · TM,N

]T
.

By linearizing the discretized version of (2) we obtain
a sparse matrix A(T̂ ) with a regular pattern of diagonal
and side-diagonal entries. Note that the system matrix can
be subject to change due to the definition of the chosen
parameter functions and also to the discretization scheme.

C. Measurements

It is assumed that no in-domain measurements are avail-
able, thus it is only possible to measure temperatures at the
boundaries. This means that the output is

y =
[
T1,1 · · · T1,N T2,1 T2,N · · · TM,1 TM,N

]T
which results in an output matrix on the following form

C = blockdiag
[
C1 C2 · · · CM

]
where C1 = I(N×N) and Ck =

[
1 0(1×N−1)

0(1×N−1) 1

]
for 2 ≤

k ≤ M.

D. Riccati equation

In this setup we use the matrix Riccati differential equation
in the form

Ṗ = A(T̂ )P+PAT (T̂ )−PCT R−1CP+Q (8a)

L = PCT R−1 (8b)

where R and Q represent the noise-covariance matrices of
the signals w and v, respectively. These matrices typically
have entries exclusively on the diagonals, as a correlation
among states and among outputs are neglected. Furthermore,
we assume no correlation between single states and outputs.
As P is a function of A(T̂ ), the feedback gain is actually a
function of time, L = L(t).

IV. SIMULATION

Simulations have been conducted for a non-standard case,
where white Gaussian noise was added to the measure-
ments in order to investigate how the observer handles this
phenomenon. The white noise was normed by its largest
value, such that values between ±1 K were added to
the measurements. This corresponds (to some degree) with
the specifications of measurement equipment, such as e.g.
thermocouples2. Furthermore, to illustrate robustness, the
parameters of the observer differ from those of the plant.
In fact we chose the area of thermal arrest to be double the
size for the observer, ∆TEKF = 2∆TSys, and the observers’
parameter functions are 2 times larger than those of the
system, meaning kEKF = 2kSys and κEKF = 2κSys.

Simulation parameters can be found in the Appendix.
The observer parameters were tuned by simulations and the
initial conditions of the plant and the observer differ by
3 K. The values for N and M present a trade-off between
accuracy and performance, as spatial resolution is limited
by computational power. In addition, temperature variations
along the y-coordinates for fixed x-positions are small, but
not negligible. This justifies to choose M quite small, but
bigger than 1 (M = 1 represents a 1-dimensional PDE).
Figure 4 shows plots for different x-coordinates at a fixed
y-position (top layer of the fish block). The boundary layer
can be seen in the top left, followed by the top right, bottom
left and bottom right as we move along the x-axis towards

2The standard EN 60584 defines three accuracy classes, where the first
allows deviations of maximal ±1.5 K.
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Fig. 4. Observer states (red), real states (blue) and noisy measurement
signals (green) at m = 1 and n = 1,2,4,5

the center of the domain. The center is shown in the plot
in the bottom right. The area of thermal arrest is illustrated
by the two gray areas (dark corresponds with ∆TEKF , light
with ∆TSys). The observer states are displayed in red, whereas
the plant’s states are shown in blue. The noisy measurement
signal is illustrated in green.
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Fig. 5. Zoom of observer state (red), real state (blue) and noisy measure-
ment signal (green) at m = 1 and n = 5

In Figure 5 a zoom into the bottom right plot in Figure 4
is illustrated. Due to the fact that the state can be measured,
the observer state is following the real state quite accurately,
even in the presence of white Gaussian noise.

Figure 6 presents plots for different x-coordinates at the
center of the y-coordinate (m = 3). Only the top left plot
includes the noisy measurement signal, as it is the only
measurable state in the set of illustrated states. As can be
seen the observer follows the real states quite satisfying.

Figure 7 shows a zoom into the bottom right plot in
Figure 6. Comparing this to Figure 5, one can see that now
in the absence of measurement, the observer doesn’t follow
the real state as accurately.
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Fig. 6. Observer states (red), real states (blue) and noisy measurement
signals (green) at m = 3 and n = 1,2,4,5
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Fig. 7. Zoom of observer state (red) and real state (blue) at m = 3 and
n = 5

Fig. 8. Observer error at m = 1

In Figures 8 and 9 the error between real and observed
state is shown along the x-coordinate for a fixed y-position



Fig. 9. Observer error at m = 5

(top and bottom of the block, respectively). It can be seen that
the error is brought back to zero for both cases, even in the
presence of noisy measurements and diverging parameters.

V. CONCLUSION

In this paper we presented an observer design for a
distributed parameter system (DPS) describing the freezing
of foodstuff, in particular fish, in vertical plate freezers.
The DPS is a partial differential equation (PDE) in the
form of a nonlinear heat equation. The observer is based
upon an Extended Kalman Filter (EKF) with the purpose
of estimating the temperature distribution inside the inner
spatial domain of the fish block.

The results presented in Section IV show that the non-
measurable states in the inner domain get estimated quite
accurately, even in the case of differing parameter func-
tions chosen for the observer and the plant, respectively.
Furthermore the presence of white Gaussian noise in the
measurement signals is handled well by the observer. Thus
it can be concluded that the design is robust to parameter
variations and noise.
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APPENDIX
` 0.1 m
h 0.5 m
N 9 [-]
M 5 [-]
TF 272 K

Tinit,EKF 280 K
Tinit,Sys 283 K
∆TEKF 1 K
∆TSys 0.5 K
δT 0.1 K

TAmmonia 235 K
TAir 278 K
cs 2200 Jkg−1K−1

cl 3800 Jkg−1K−1

ci 283000 Jkg−1K−1

ρ 950 kgm−3

λs 1.8 Wm−1K−1

λl 0.5 Wm−1K−1

C =


Γ 0 0 0 0
0 Ψ 0 0 0
0 0 Ψ 0 0
0 0 0 Ψ 0
0 0 0 0 Ψ



R = 10


Γ 0 0 0 0
0 Σ 0 0 0
0 0 Σ 0 0
0 0 0 Σ 0
0 0 0 0 Σ



Q = 10


Γ 0 0 0 0
0 Φ 0 0 0
0 0 Φ 0 0
0 0 0 Φ 0
0 0 0 0 Φ


with Γ = I(9×9), Ψ =

[
1 0(1×8)

0(1×8) 1

]
, Σ =

[
10 0
0 10

]
and

Φ = diag(
[
1 10 10 10 1 10 10 10 10

]
).


