
Blockchain-based Charging Coordination
Mechanism for Smart Grid Energy Storage Units

Mohamed Baza∗, Mahmoud Nabil∗, Muhammad Ismail†, Mohamed Mahmoud∗, Erchin Serpedin†, and
Mohammad Ashiqur Rahman‡

∗Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, USA
†Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar

‡Department of Electrical and Computer Engineering, Florida International University, FL, USA

Abstract—Energy storage units (ESUs) enable several attrac-
tive features of modern smart grids such as enhanced grid
resilience, effective demand response, and reduced bills. However,
uncoordinated charging of ESUs stresses the power system and
can lead to a blackout. On the other hand, existing charging
coordination mechanisms suffer from several limitations. First,
the need for a central charging coordinator (CC) presents a single
point of failure that jeopardizes the effectiveness of the charging
coordination. Second, a transparent charging coordination mech-
anism does not exist where users are not aware whether the CC
is honest or not in coordination charging requests among them
in a fair way. Third, existing mechanisms overlook the privacy
concerns of the involved customers. To address these limitations,
in this paper, we leverage the blockchain and smart contracts to
build a decentralized charging coordination mechanism without
the need for a centralized charging coordinator. First ESUs
should use tokens for anonymously authenticate themselves
to the blockchain. Then each ESU sends a charging request
that contains its State-of-Charge (SoC), Time-to-complete-charge
(TCC) and amount of required charging to the smart contract
address on the blockchain. The smart contract will then run
the charging coordination mechanism in a self-executed manner
such that ESUs with the highest priorities are charged in the
present time slot while charging requests of lower priority ESUs
are deferred to future time slots. In this way, each ESU can make
sure that charging schedules are computed correctly. Finally, we
have implemented the proposed mechanism on the Ethereum
test-bed blockchain, and our analysis shows that execution cost
can be acceptable in terms of gas consumption while enabling
decentralized charging coordination with increased transparency,
reliability, and privacy preserving.

Index Terms—Blockchain; decentralized system; charging co-
ordination; energy storage units.

I. INTRODUCTION

Energy storage units (ESUs), including both home batteries
and electric vehicles (EVs), present an effective mean to en-
hance the functionalities of the aging power grid. Specifically,
ESUs represent a powerful emergency backup that can be used
during electricity outage events, which in turn enhances the
grid resilience [1]. Moreover, ESUs provide an approach to
overcome the intermittent nature of renewable energy sources,
which allows for high integration level of eco-friendly energy
sources. Consequently, ESUs offer environmental benefits as
well by reducing the greenhouse gas emissions. In addition, the
stored energy in such units can be used during peak load peri-
ods, which in turn reduces the stress on the power grid during
these periods, and hence, enables effective demand response.
Furthermore, ESUs offer economic benefits by reducing the
customers’ electricity bills as the ESU owners can purchase

energy from the grid during low tariff periods and then use it
during high tariff periods.

Despite their several benefits, ESUs pose several challenges
that need to be addressed for efficient integration in the power
grid. In specific, a simultaneous mass scale uncoordinated
charging of ESUs may lead to lack of balance between the
charging demands and the energy supply resulting in instability
of the overall resilience of the grid [2]. In severe cases, this
could lead to a mass blackout. In order to mitigate such
consequences, there is a substantial need for a charging coor-
dination mechanism to avoid stressing the distribution system
and prevent power outage [3]. In a charging coordination
mechanism, ESUs should report data such as the time-to-
complete-charging (TCC), the battery state-of-charge (SoC),
and the amount of required charging. Then, then a trusted party
i.e a charging controller define ESUs with highest priorities to
charge and defer others to another time slot.

However, the existing charging coordination mechanisms
[1], [4] suffer from several limitations. First, the existing mech-
anisms rely on a single entity, namely charging coordinator
(CC), to coordinate the charging requests. In turn, this can
lead to the single server problem, i.e., if a successful denial
of service attack is launched on the CC, it will be down and
consequently a large number of charging requests could not
be coordinated. Second, most of the existing works consider
that the CC is a trusted party which is completely honest in
scheduling charging requests. As a result, the ESU owners are
not aware whether the charging schedules are computed cor-
rectly. In specific, a transparent charging coordination mecha-
nism does not exist. Third, the existing charging coordination
mechanisms require that the ESUs report some data to the CC
such as whether an ESU needs to charge or not, the TCC,
the battery SoC, and the amount of required charging. This,
in turn, reveals private information about the owners of the
ESUs, such as the location of an EV and the activities of a
house’s residents [5], [6]. For example, the charging demands
sent from an EV can reveal whether the EV’s owner is at home
and how long he/she will stay, and how often he/she drives.
Also, if a home battery is not charged for an extended period,
this can reveal that the residents do not spend time at home
because they are traveling. The aforementioned limitations
highlight the need for a decentralized, transparent, and privacy-
preserving charging coordination mechanism.

Recently, blockchains have attracted the attention of both
academia and industry across a wide range of fields. With
a blockchain in place, applications can operate in a de-

ar
X

iv
:1

81
1.

02
00

1v
2

 [
cs

.C
R

]
 2

 A
pr

 2
01

9

centralized and transparent fashion, without the need for
a central authority, while achieving the same functionality
previously attained through a trusted intermediary. In addition,
blockchains open the way to create smart contracts, which
represent a piece of code on the blockchain that performs
an action once certain criteria are met. Since it resides on
the blockhain, smart contracts can be self-executed without
the need for third parties [7]. Furthermore, the participants
in a blockchain can be represented by anonymous identities
rather than their real identities, and hence, the privacy of
the users and the data is well preserved. Hence, blockchains
can enable decentralized, transparent, and privacy-preserving
charging coordination mechanism.
Our contributions. In this paper, we propose a blockchain-
based charging coordination mechanism. A smart contract
defining the rules to coordinate charging between different
ESUs is proposed. Each ESU sends a charging request con-
taining its power demand, SoC, and TCC to the smart contract
address. To preserve privacy, each ESU has a number of
certified pseudonyms and each pseudonym is used only for
one charging request. The charging request is signed and
this anonymous signature can prevent external attackers from
sending valid charging requests. Based on the submitted data
and the maximum available grid capacity, the smart contract
will automatically determine a priority index for each ESU,
and ESUs with the highest priority can be charged using a
Knapsack algorithm [8]. To be the best of our knowledge,
this work is the first to employ the blockchain technology to
enable decentralized charging coordination mechanism with
the following features:

1) Reliability. The scheme is reliable because of running
the charging coordination mechanism does not rely on
a single server (CC) and all the computations are carried
out in a decentralized manner through the blockchain
nodes [9].

2) Privacy-preservation. Since the ESUs use anonymous
credentials, no one can link the SoC and TCC to an ESU
that sent them.

3) Transparency and verifiability. In our scheme, ESUs
can run knapsack algorithm to ensure that the charging
schedules are calculated correctly.

4) Data integrity. Once ESUs send their charging requests
with TCC and SoC to the blockchain, they can later
ensure the integrity of the requests’ data since they
have access to the blockchain, which cannot be done in
centralized approaches.

The rest of this paper is organized as follows. In Section II
we discuss some preliminaries. In Section III, we present the
system model under consideration and adversary assumptions.
Then, we introduce a temporal charging coordination ap-
proach in Section IV. The blockchain-based privacy-preserving
charging coordination mechanism is presented in section V.
The evaluations of the proposed mechanism are provided in
Section VI. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

A. Blockchain and smart Contracts

Blockchain serves as a fundamental structure of emerging
cryptocurrencies such as Bitcoin [10] to help make peer-to-
peer exchange of value without a centralized third party. A
blockchain is a distributed, immutable, and append-only data
structure formed by a sequence of blocks that are chronolog-
ically and cryptographically linked together. The network is
composed of a set of nodes called miners or validators are
responsible of keeping a trustworthy-record of all transactions
through a consensus algorithm in a trust-less environment [11].
More importantly, blockchain enable the essence of smart con-
tracts which can be defined as programs that every blockchain
node will run them and update their local replicas according to
the execution results without fraud or any interference from a
third party. A blockchain presents two key elements, namely,
transaction and addresses. Transaction is used to modify or
update the state stored in the blockchain network. Blockchain
address represents the sender of a message in the blockchain is
referred to a pseudonym. In practice, a blockchain address is
usually bound to the hash of a public key1; more importantly,
the security of digital signatures can further ensure that one
cannot send messages in the name of a blockchain address,
unless she has the corresponding secret key. Also, the program
code of a smart contract deployed in the blockchain can also
be referred by a unique address, such that one can call the
contract to be executed, by committing a message pointing to
this unique address.

B. Blinded and Partially Blinded signatures

Blind signatures and Partial Blind Signatures (PBS) have
been extensively used in the anonymization of electronic coins,
and were introduced by [12]. Indeed, Blind Signature [14]
allows the sender of a message to obtain signature on this
message from another party while concealing the content of
the message. The signature requester generates a secret pair of
blinding/unblinding operations (b, b−1), and applies the blind-
ing operation b to a plaintext message m. Then, he/she sends
the blinded message b(m) to the signer who signs the blinded
message with operation s and produces a signature s(b(m)),
and returns the signature to the requester. The requester
uses the unblinding operation b−1 to the signature to obtain
b−1(s(b(m))) = s(m), that is a signature on the plaintext
message. Partial Blind Signature (PBS) on the other side is a
special case of Blind Signature where the signer can include
a common message m0 that is known to both singer and
sender, such as a time or date. The requester submits blinded
message b(m), the signer generates signature s(b(m),m0),
and returns it back to the requester. The requester applies the
unblinding operation to get b−1(s(b(m),m0)) = s(m,m0).
Note that the signer only knows the blinded message b(m),
not the plaintext message m. While the requester can unblind
a signature s(b(m),m0) to obtain s(m,m0). The requester
can further verify that s(m,m0) is indeed a valid signature on
(m,m0), but cannot forge such a signature. Also, the signer

1Through the paper, we use term public key and address interchangeably.

can not link s(m) to b(m) and by this way the signer can not
know the requester that requested the signature.

III. SYSTEM AND THREAT MODELS

In this section, we introduce the considered system model
followed by adversary assumptions.

A. System model

As depicted in Fig. 1, our scheme has three main entities:
Blockchain network, Energy Storage Units (ESUs.), and the
utility.

Blockchain network: is responsible to receive charging re-
quests from ESUs and the total power load from the utility and
schedule charging requests in a decentralized and transparent
manner. The blockchain should support the smart contracts that
is described in II-A so once requests are received, the code
(smart contract) is executed automatically and independently
on each node of the blockchain network.

Energy Storage Units (ESUs.) ESU corresponds to the owner
of the ESU (i.e, electric vehicle and batteries) that can interact
with the system through a mobile application. Each ESU
should acquire a list of certified pseudonyms before sending
charging requests to the blockchain. Also, as shown in Fig. 1,
it is not required that ESUs store a complete copy of the
blockchain. Alternatively, they can be a blockchain light
node by operating on Ethereum light client mode that allows
lightweight devices such as Raspberry Pi devices to join the
network, download block headers as they appear, and only
validate certain pieces of state on-demand as required by their
users.

The utility. is responsible for posting the maximum load profile
that ESUs in each community can charge and not coordinating
the charging requests from ESUs.

B. Adversary Model

We follow the standard blockchain threat model in [13],
blockchain in our proposed design is maintained by a set of
validators/miners, and is trusted for execution correctness of
the proposed protocol and availability, but not for privacy. In
this paper, we assume each ESU should have multiple certified
pseudonyms. In practice, a blockchain address is the hash of
the public key and due to the security of digital signatures, only
the owner of the public key can send messages in the name of
its own blockchain address. In particular the attacker cannot
reverse a one-way hash or forge digital signatures without
the private key. We assume there are global eavesdropper
including the utility that aim to passively collect some sensitive
information about the ESUs owner’s to guess the locations
of the ESU owners. For example, learning about the current
location of the EVs (if they are at home or not) with less than
30% battery. If the ESU uses its true identity (e.g., long-term
public key) to authenticate and send the charging requests, the
utility will be able to know the ESU’s location at a particular
time, which compromises the ESU’s privacy.

Blockchain
Network

Max. charging limit

Utility

Charging Schedule
Charging Request Blockchain Full Node

Blockchain Light Node

Figure 1: Illustration for the system model under consideration.

IV. TEMPORAL COORDINATION OF ESUS’ CHARGING

This section describes a greedy algorithm that efficiently
schedules the charging of the ESUs. In the next section, we
will discuss how to implement this scheduling algorithm as a
smart contract in the blockchain.

The ESUs are deployed within a set of communities. Each
community is associated with an electric bus that presents
a loading limit of C kW. The regular load profile capacity
within a specific community can be denoted by PR kW at a
given time slot, which accounts for residential, commercial,
and industrial loads. In some cases, it is not possible that all
ESUs with charging requests can be scheduled for charging at
the present time slot due to the capacity limitation. Hence, a
priority index is calculated for each ESU and the ESUs with
the highest priorities will be charged at the present time slot
while ensuring that

∑
Pv ≤ C−PR, where Pv is the amount

of charging demand requested by an ESU . Meanwhile, other
ESUs’ charging requests can be deferred to future time slots.

To determine the ESU’s priority for charging at the present
time slot, two main components play a vital role, namely,
the TCC (Kv) and the battery SoC (Sv). Typically, an ESU
with low Sv and short Kv should have higher charging
priority than an ESU with high Sv and/or potentially long Kv .
Subsequently, for each ESU v, we specify a priority function
Uv such that

Uv = β1(1− Sv) + β2F (Kv), (1)

where β1 and β2 can be used as weights to determine the
relative significance of Sv and Kv , with β1 + β2 = 1, F (Kv)
is a decreasing function of Kv with a range of [0, 1] and
F (Kv) = 0 for long TCC and equals 1 for short TCC, and SoC
value (Sv) ∈ [0, 1) with Sv = 1 for a completely charged ESU.
To illustrate, an ESU v with low Sv value and short Kv will
have a high priority value Uv . Then, because of the limiting
capacity in the present time slot, our goal is to schedule the
ESUs that have the highest priority for charging in the present
time slot, and postpone the charging of ESUs that have lower
priorities to future time slots.

The charging schedule indicates whether a given ESU v will
be charged in the present time slot (xv = 1) with the charging

request (Pv) or not (xv = 0), where

max
xv∈{0,1}

∑
v∈V

xvUv

s,t,
∑
v∈V

xvPv ≤ C − PR,
(2)

It should be noted that a scheduled ESU can obtain its entire
charging demand (Pv) at the current time slot according to
(2). To ensure an efficient resource utilization, the remaining
capacity after the scheduling of ESUs according to (2), C −
PR −

∑
xvPv , will be assigned to the ESU with highest

priority among all unscheduled ESUs. Such an ESU which has
not fully charged at the current time slot, will be suspended to
the next slot to obtain whatever is left of its charging request.

The charging coordination problem in (2) at each time slot
can be well described as a Knapsack problem [8] where a
set of items with different values and weights need to be
packed in a knapsack of maximum capacity. The Knapsack
problem aims to select the items with the highest values while
satisfying the knapsack capacity constraint. In this context, the
ESUs are mapped to the items, the ESU priority Uv represents
the item value, the ESU charging request Pv resembles to
the item weight, and the charging limit constraint C − PR is
equivalent to the knapsack limit. Hence, in order to to schedule
ESU charging at each time slot according to (2), we have
modified a greedy algorithm for solving the Knapsack problem
in polynomial time complexity [8]. The greedy algorithm that
solves (2) sorts the ESU in a descending order according to the
ratio between their priorities and weights. Then, ESUs with the
highest orders are scheduled for charging in the current time
slot, while accounting for the capacity limit.

V. BLOCKCHAIN-BASED CHARGING COORDINATION

This section describes the proposed blockchain-based charg-
ing coordination mechanism. The proposed mechanism op-
erates in four phases, namely, acquiring anonymous creden-
tials, charging request submission, charging coordination. The
charging coordination algorithm described in Section IV is
implemented via a smart contract described in the pseudo code
of Algorithm 1. Two data types are supported in our smart con-
tract, namely, address and mapping. The address is a special
data type that is used to store the message caller, and the map-
ping resembles a hashmap that stores each ESU-related data
such as TCC, SoC, and the charging amount. The smart con-
tract described in Algorithm 1 consists of a constructor named
Charging_Coordination and the following meth-
ods (functions), namely Recieve_Charging_Request,
Knapsack, and Quick_Sort.

A. Acquiring Anonymous Credentials

In order to allow the smart contract to authenticate charging
requests for a group of ESUs anonymously, each ESU should
request a Partial Blind Signature (PBS) (e.g., [14]) from the
utility on public key that will be used to generate its Etherum
address during charging request submission phase as follows.
Assume that the utility has a key pair (Pτ , Sτ). Each ESU
(v) should acquire N tokens τi : i = 1, · · · , N . For each

i, the ESU generates a random secret xi and computes its
public key PKi

v , Then, it blinds each PKi
v using bv and

signs the message with its true identity (e.g., using ECDSA),
and sends: bv(PKi

v), σv to the utility, where bv(PKi
v) is the

blinded public key and σv is ESU v digital signature on the
entire message. The utility generates a partially blind signa-
ture PBSm0

Sτ
(PKi

v) where m0 = TS||IDg is the appended
common message, which is the current date and identifier of
the group or community IDg that the ESU belongs to. The
utility then returns PBSm0

Sτ
(PKi

v), σU to the ESU, where σU
is the utility’s digital signature on the entire message. Then,
the ESU verifies σU , and applies the unblinding operation b−1v
to obtain the token

τi = b−1v (PBSm0

Sτ
(bv(PK

i
v)) = PBSm0

Sτ
(PKi

v),

and verifies τi is a valid signature on (PKi
v) and m0 using

the public key Pτ . Note that in this phase, although the ESU
uses its real identity, the utility can not know the contents of
the message and this phase can occur every long period like
a week.

B. Charging Request Submission

In this phase, the ESUs submit a charging request (Rv =
Pv, Sv,Kv, TS, IDg, σ(PKv|TS|IDg)) to the blockchain.
The charging request is made as a transaction submitted to
the smart contract address on the blockchain, and cannot
be linked directly to a specific ESU. As a fundamental
concept in blockchain, the ESU address changes for each
transaction for privacy preservation reasons. The method
Recieve_Charging_Request can be called by an ESU
to submit a charging request to the smart contract. This method
calls Is_Authorized method that checks if the sender
address and the anonymous signature σ are from a legitimate
ESU, in such case the sender address and the request info
are added to the requests list of the current time slot. Since,
Ethereum does not support fixed point numbers and in order
to allow our contract to compute the priority index described
in Equation 1, we have mathematically represented β1 and β2
as numbers in the range of [0, 1000]. Then, the ESU’s priority
value is divided by the requested charging amount as shown
in Algorithm 1.

C. Charging Coordination

By the end of each time slot, a greedy algorithm for solving
the Knapsack problem is executed over the received charging
requests by triggering the method Knapsack, which first calls
the QuickSort method that sorts the ESUs in a descending
order according to the ratio of the priority index to the amount
of requested charging. Finally, each ESU will be assigned a
certain charging amount at a given time slot.

It is worth mentioning that smart contracts need to
be triggered by an external account to do some oper-
ation. In order to ensure that the Knapsack method
is executed at the end of each time slot, Aion2, which
is a smart-contract-based system deployed at address
0xCBe7AB529A147149b1CF982C3a169f728bC0C3CA at the

2https://github.com/ETH-Pantheon/Aion

Algorithm 1: Pseudocode for the charging coordination contract
1 contract Charging_Coordination

2 function Charging_Coordination(_owner, PR)
3 owner ← _owner
4 MaxCapacity ← C - PR // Charging Capacity

5 Struct ESU(Pv, TTC, SoC, Priority, xv, PScuduled)

6 mapping (address => ESU) ESUs

7 address [] ESUlist
8 function Recieve_Charging_Request(_Pv, _TTC, _SoC, σ(IDv))

// receive charging requests
9 if Is_Authorized(msg.sender,σ(IDv))

10 ESUlist.push(msg.sender)
11 ESU.Pv ← _Pv
12 ESU.TTC ← _TTC
13 ESU.SoC ← _SoC
14 ESU.Priority ← (((500 * 1- _TTC) + (500 * _SoC)) / _Pv);
15 end

16 function Knapsack()
17 QuickSort(0,ESUlist.length-1);// call QuickSort
18 for i ← 0 to ESUlist.length-1 do
19 if ESUs[ESU_list[(i)]].Pv <= MaxCapacity
20 ESUs[ESU_list[i]].xv ← 1
21 ESUs[ESU_list[i]].PScuduled ← ESUs[ESU_list[i]].Pv
22 MaxCapacity ← MaxCapacity-ESUs[ESU_list[i]].Pv
23 end
24 end

25 function Quick_Sort(_Start, _End)
26 Start ← _Start
27 End ←_End
28 if Start = End return;
29 pivot ← ESUs[ESU_list[(Start + (End - Start) / 2)]].Priority;
30 while Start <= End do
31 while ESUs[ESU_list[Start]].Priority > pivot) do
32 Start++
33 end
34 while pivot > ESUs[ESU_list[End]].Priority do
35 End--
36 end
37 if Start <= End
38 (ESU_list[Start], ESUlist[End]) ← (ESU_list[(End)], ESUlist[Start])
39 Start++
40 End--
41 end
42 end
43 if _Start < End QuickSort(_Start, End);
44 if Start < _End QuickSort(Start, _End);

Ethereum blockchain, is employed. With Aion, transactions
of any type such as contract’s function executions can be
scheduled to be executed at specific time instants. In other
words, the charging coordination process can be carried out
in a completely automatic way (at each time slot) without any
interference from any other party.

VI. PERFORMANCE EVALUATION

A. Charging Coordination Evaluation

First, we evaluate the proposed charging coordination mech-
anism by comparing it with the First-Come-First-Serve (FCFS)
approach, in which the ESU that demands charging first
gets charged regardless of its TCC or SoC. We conduct the
experiment for 30 time slots with a battery capacity of 200 kW

and maximum capacity for charging per time slot (C − PR)
of 1000 kW. First, there are 10 ESUs that need to charge,
and a Poisson distribution with an average of λ is used to
simulate the arrival process of new charging requests at each
time slot. The battery SoC is a random number in the range of
[0, 1] that follows a uniform distribution, while the TCC is a
random number that follows a Geometric distribution with an
average of 4. The priority function, F (Kv) is set to 1, 0.5, and
0, when Kv=1, Kv=2, and Kv > 3 respectively. The results are
the average of 80 runs. We use the charging index as a metric
for performance evaluation. It is calculated by dividing the
amount of power an ESU charges by the amount of required
charging, which is a value in the range [0, 1]. Fig. 2 shows
the charging index of our mechanism at different values of λ
compared with FCFS. The figure indicates that our mechanism

10 12 14 16 18 20 22 24 26 28 30

Charging request rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

h
a

rg
in

g
 i
n

d
e

x

FCFS

Our scheme

Figure 2: Average charging index versus charging request rate.

GAS Price (ETH)

Deploy_Contract 742276 0.0044537
Recieve_Charging_Request 76981 0.0004619

Table I: Summary of execution costs.

can deliver higher charging power to the ESUs.

B. Computation Cost Analysis

The Ethereum blockchain uses the Ethereum Virtual Ma-
chine (EVM) to execute the code of smart contracts. This
EVM is quasi-Turing complete. A machine is turing complete
when it is able to solve any calculable problem given enough
space and time, and it is quasi as the EVM requires enough
GAS (Ether) units to operate. Every instruction consumes GAS
units to be executed in the EVM. For example: to add two
values from memory, 3 GAS units should be paid [9]. If a
user wants to execute a smart contract and sends a transaction
to the Ethereum network that contains the instruction to do
something, the user has to pay GAS units.

We have implemented a smart contract for Algorithm
1 in Solidity 0.4.0, which allows to design such con-
tracts with private and public methods and has a set of
basic data types. The smart contract was deployed into
the Kovan blockchain [15] in block 24,538 with address
0xf87c410e1b35a4424e764873964220818a222993.

The execution costs of our mechanism can be con-
sidered as follows. The execution cost of deploying the
smart contract to the blockchain, the cost of calling
Recieve_Charging_Request method by an ESU, and
the cost of running the Knapsack method. According to
[16], the cost for 1 unit of GAS is on average 5 Gwei =
5×109 ETH. Table I shows the execution cost of deploying the
contract and Recieve_Charging_Request method. It
can be noted that the costs are relatively low. For the execution
cost of the Knapsack method, Fig. 3 shows that as the
number of ESUs sending charging requests increases, the GAS
consumption increases. Despite the reduced complexity of
the proposed coordination algorithm, using the Quick_Sort

100 150 200 250 300 350 400 450 500

Number of ESUs

1

1.5

2

2.5

3

3.5

G
a
s
 c

o
n
s
u
m

p
ti
o
n

107

Figure 3: Execution cost of Knapsack method.

method presents a complexity of |V| log |V| that incurs an
increase in the expected cost. While smart contracts offer
a very promising way to implement protocols in a privacy-
preserving as well as transparent manner without the need to
rely on a single centralized coordinator, it is still in its early
evolving stage, and some limitations need to be addressed such
as the scalability of number of operations made by the EVM.

C. Security/Privacy Analysis

Besides the fair charging coordination feature that stemmed
from the Knapsack algorithm, our proposed mechanism
presents the following unique features:

1) Decentralized charging coordination. Since the
blockchain is responsible for executing the charging
coordination among interested parties, it is impossible
to have a single point of failure. An attacker needs to
control a massive number of blockchain nodes in order
to reach a system failure state, which is practically
impossible.

2) Privacy-preserving charging activities. In the proposed
mechanism, the privacy of ESU owners (their charging
requests including the SoC, TCC) is protected by (i)
replacing the ESU’s real identities by some placeholders
(pseudonyms) for charging requests that corresponds to
temporary public-private key pairs, and (ii) the anony-
mous credentials which are obtained using PBS without
allowing the utility to link them with the the true ESUs
identities. Every pseudonym expires once the ESU owner
send a charging request to the blockchain which ensures
unlinkabilty. Also, because of anonymous authentication
done by the blockchain, external attackers can not damage
the scheme by sending charging requests data while they
do not belong to a specific community.

3) Availability. the proposed scheme resists against Denial-
of-service (DoS) attacks. In such an attack, an attacker
targets an ESU or even the utility to prevent legitimate
transactions from appearing on the ledger, thus preventing
them from posting new charging requests. To launch this
attack successfully, the attacker will need to control the

majority of the mining power of the network, which is
practically impossible.

4) Data integrity and transparency. Since each user has an
access to the blockchain, he/she can verify the charging
request sent by him and more importantly, the results of
running the modified Knapsack algorithm can be verified
so that the user can check whether he/she has a priority
to charge or not. As a result, the proposed mechanism
offers high transparency which is not offered in case of
using centralized approaches.

VII. RELATED WORK

In [17], a privacy a ware charging coordination mechanism
is proposed. Each ESU should send a charging request to an
aggregator. The aggregator forwards the requests to a charging
controller to run a charging coordination mechanism to define
ESUs with height priorities. altthough With using several
neither the aggregator nor the CC can have access to the ESUs’
sensitive information However, the proposed scheme does not
provide transparency to users.

Recently, blockchain has been considered as one of the
rising technologies that can be used to adopt blockchain based
applications for smart grids. Inspired by bitcoin, a PriWatt
system is introduced by [18] that enables a blockchain-based
private decentralized energy trading system. The system allows
peer-to-peer energy trading without the need for a third-party
intermediary.

In [19], a smart grid monitoring system is proposed based on
blockchain and smart contracts to ensure provenance, and im-
mutability of smart metering data. In [20], a blockchain-based
dynamic pricing mechanism is proposed for EV charging. The
mechanism allows customers to find the cheapest charging
station within a previously defined region while preserving
the privacy of the customers. Different stations store their
bids for tariffs on the blockchain based on the requested
energy. Unfortunately, the existing research works do not
present a mechanism that enables decentralized, transparent,
and privacy-preserving charging coordination, which schedules
incoming charging requests in a manner that efficiently utilizes
the power grid capacity while not stressing the grid.

VIII. CONCLUSION
In this paper, a charging coordination mechanism for ESUs

has been proposed based on the blockchain technology. First, a
temporal charging coordination mechanism is presented based
on the Knapsack problem to maximize the power delivered
to the ESUs while respecting the grid capacity limitations.
Different from the traditional centralized implementation, a
prototype implementation of the proposed coordination mech-
anism is deployed on the Ethereum blockchain so that ESUs
can get their charging demands in a decentralized, transparent,
and verifiable manner. Finally, we found that the costs for
deploying and executing the implemented smart contract in
Ethereum is reasonable for a small scale community of ESUs.
In our future work, we plan to implement our mechanism in
a blockchain technology that does not rely on cryptocurrency
to execute the application so that the coordination mechanism
can be implemented in a large scale.

REFERENCES

[1] M. Wang, M. Ismail, R. Zhang, X. Shen, E. Serpedin, and K. Qaraqe,
“Spatio-temporal coordinated V2V energy swapping strategy for mobile
PEVs,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1566–1579,
2018.

[2] E. Sortomme, M. M. Hindi, S. J. MacPherson, and S. Venkata, “Co-
ordinated charging of plug-in hybrid electric vehicles to minimize
distribution system losses,” IEEE transactions on smart grid, vol. 2,
no. 1, pp. 198–205, 2011.

[3] R. A. Verzijlbergh, M. O. W. Grond, Z. Lukszo, J. G. Slootweg,
and M. D. Ilic, “Network impacts and cost savings of controlled EV
charging,” IEEE Transactions on Smart Grid, 2012.

[4] M. Wang, M. Ismail, R. Zhang, X. S. Shen, E. Serpedin, and K. Qaraqe,
“A semi-distributed V2V fast charging strategy based on price control,”
in Proc. Of Global Communications Conference (GLOBECOM). IEEE,
2014, pp. 4550–4555.

[5] P. Akula, M. Mahmoud, K. Akkaya, and M. Song, “Privacy-preserving
and secure communication scheme for power injection in smart grid,”
Proc. of IEEE International Conference on Smart Grid Communications,
2015.

[6] NIST, “Guidelines for smart grid cyber security: vol. 3 supportive
analyses and references,” NISTIR 7628, The Smart Grid Interoperability
Panel - Cyber Security Working Group, August 2010.

[7] T. M. Fernández-Caramés and P. Fraga-Lamas, “A review on the use of
blockchain for the Internet of Things,” IEEE Access, 2018.

[8] H. Kellerer, U. Pferschy, and D. Pisinger, “Knapsack problems,”
Springer, Berlin, 2004.

[9] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[11] M. Baza, M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M. Abdallah,

“Blockchain-based firmware update scheme tailored for autonomous
vehicles,” arXiv preprint arXiv:1811.05905, 2018.

[12] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
cryptology. Springer, 1983, pp. 199–203.

[13] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[14] T. Okamoto, “Efficient blind and partially blind signatures without
random oracles,” in Theory of Cryptography Conference. Springer,
2006, pp. 80–99.

[15] Kovan Testnet, “Available: https://kovan-testnet.github.io/website/.”
[16] Etherum gas station, “Available: https://ethgasstation.info/.”
[17] M. Mahmoud, M. Ismail, P. Akula, K. Akkaya, E. Serpedin, and

K. Qaraqe, “Privacy aware power charging coordination in future
smart grid,” in 2016 IEEE Wireless Communications and Networking
Conference. IEEE, 2016, pp. 1–6.

[18] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 840–852, 2018.

[19] J. Gao, K. O. Asamoah, E. B. Sifah, A. Smahi, Q. Xia, H. Xia, X. Zhang,
and G. Dong, “Gridmonitoring: secured sovereign blockchain based
monitoring on smart grid,” IEEE Access, vol. 6, pp. 9917–9925, 2018.

[20] F. Knirsch, A. Unterweger, and D. Engel, “Privacy-preserving
blockchain-based electric vehicle charging with dynamic tariff deci-
sions,” Computer Science-Research and Development, vol. 33, no. 1-2,
pp. 71–79, 2018.

