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Abstract

A fundamental problem in multi-view 3D face model-
ing is the determination of the set of optimal views re-
quired for accurate 3D shape estimation for a generic
face. There is no analytical solution to this problem, in-
stead (partial) solutions require (near) exhaustive combi-
natorial search, hence the inherent computational difficulty.
We build on our previous modeling framework which uses
an efficient contour-based silhouette method and extend it
by aggressive pruning of the view-sphere with view cluster-
ing and various imaging constraints. A multi-view optimiza-
tion search is performed using both model-based (eigen-
heads) and data-driven (visual hull) methods, yielding com-
parable best views. These constitute the first reported set
of optimal views for silhouette-based 3D face shape cap-
ture and provide useful empirical guidelines for the design
of 3D face recognition systems.

1. Introduction

Active sensing for 3D face model acquisition still re-
quires costly devices thus many proposed methods recover
3D face shape from 2D images or projections. Some of
these are based on a direct approach which obtains 3D loca-
tion of points on the face through dense 2D correspondence
on the images [8, 5, 9]. Other methods leverage off param-
eterized 3D face models and search for optimal parameters
which best describe the input images [3, 6]. In either case,
the number and viewpoint of input images is an important
parameter for high quality 3D reconstruction. By intuition,
the more input images taken from different viewpoints, the
higher the quality of model fitting and subsequent recon-
struction. However, this also requires more computation as
well as increased equipment costs. With theright view-
points it is possible to use smaller number of images and
obtain better results. Furthermore, it is possible that be-
yond a certain number of views, additional ones do not sig-
nificantly improve match quality. Although these questions

are quite natural in every kind of multi-view reconstruction
problem, there have been no reports in the open literature
regarding the number and location (configuration) of multi-
ple cameras for acquiring 3D face models.

Different objects will have different prototype oraspect
views[4]. However, we can envision a canonical set of opti-
mal views for specific object classes with notably high intra-
class similarity such as the human face. For example, deal-
ing with illumination, Leeet al. [7] empirically determined
an optimal configuration of 9 point sources of light which
span the generic subspace of faces under variable illumina-
tion. In this paper we tackle a similar problem but now for
pose: finding an optimal set of views that can best describe
a 3D human face by way of its projections (shape silhou-
ettes) – by analogy, “K points-of-view.”

Since no analytical formulation is possible, we adopt an
empirical approach. We discretely sample the view-sphere
and generate a finite set of view configurations. Each of
these is evaluated by way of its resulting ensemble error
on a representative dataset of individual faces. We use real
Cyberware-scanned 3D faces to simulate the multi-view
imaging of live subjects. The advantages of this (simulated)
approach are automated multi-view data generation (with
no physical costs/limitations) and the use of high-resolution
3D faces as ground truth in subsequent evaluations.

There are different reconstruction methods that could be
used in this investigative framework. Our goal is to find the
optimal view configurations for generic faces given that the
silhouettes (projections) of an object provide the simplest
and most informative clues for the shape recovery. We com-
pare two silhouette-based methods in our (near) exhaustive
optimization search. One is a model-based approach using
a boundary-weighted silhouette contour technique [6]. The
other is a data-driven visual hull construction method based
on a volume carving algorithm [10].

Due to the large number of potential views, an aggres-
sive pruning of the view-sphere is needed. Here we make
use of aspect views as proposed by Cyr & Kimia [4] for
general 3D object recognition. An aspect view is the silhou-
ette projection of the object from a viewpoint which repre-



Figure 1. Estimated 3D model from multi-views.
From L-to-R: one view, estimated shape, esti-
mated texture-map, reconstruction.

sents a range of similar nearby views in the space of uni-
formly sampled view-sphere. We use a similar technique to
reduce the size of the view space except we only have one
object class. After uniformly sampling the view-sphere and
applying high-level model-specific constraints such as fa-
cial symmetry, we generate view clusters by merging nearby
view cells using a 2D silhouette similarity metric and pick
prototypical “centroids” of each cluster as our aspect views.
Any combinatorial subset of these aspect views constitutes
a candidate multi-view configuration.

2. Multi-View 3D Face Modeling

In previous work [6], we introduced a model-based
shape-from-silhouette method for capturing 3D face mod-
els using multiple calibrated cameras. Figure 1 shows one
such 3D model obtained from a novel subject inside a spe-
cial multi-view rig (dome). In this case, the “right” cam-
era configuration was found after some trial and error
and using our “intuition” as to which views are infor-
mative for shape capture. In this paper, our goal is to
essentially remove the guess-work from the view selec-
tion process and determine the optimal geometry (view
configuration) for a given number of cameras (here we fo-
cus on estimation of 3D shape only). Our optimization
framework allows the user to easily incorporate exist-
ing physical constraints into the optimal view selection
problem. In this section we briefly review our 3D model-
ing methodology (for further details the reader is referred
to [6]).

For model building we used the USF “HumanID” dataset
[1] of 3D Cyberware scans of 97 male and 41 female adult
faces of various races and ages. The number of points
in each face mesh varies from approximately 50,000 to
100,000. All faces in the database were first resampled to
obtain point-to-point correspondence and then aligned to a
reference face to remove any pose variation and/or any mis-
alignment (during the scan). We then perform PCA on the
database of aligned 3D faces to obtain the eigenvectors of
our shape model and their associated eigenvalues (the vari-
ances of their implicit Gaussian distribution). This decom-
position can be used to reconstruct a new or existing face
through the linear combination of “eigenhead” basis func-

tions [2].
An inspection of the PCA eigenvalue spectrum and the

resulting shape reconstructions indicated that the first 60
eigenheads were quite sufficient for capturing most of the
salient facial features of the subjects in our database. The
correspondingαi shape coefficients were therefore our opti-
mization parameters. Specifically, letM(α) be any arbitrary
face model which produces a polygon mesh given a param-
eter vectorα = {α1,α2, · · · ,αn}. Let Sk

input,k = 1..K bekth

input silhouette image. Also, letT be a similarity transfor-
mation that aligns a reference model face to the real 3D face.
Then,Sk

model(α) is a silhouette image rendered by project-
ing T(M(α)) onto an image plane using the pose informa-
tion appeared in thekth silhouette image.

The parameter vectorα is estimated by minimizing the
total penalty

E(α) =
K

∑
k=1

f (Sk
input,S

k
model(α)) (1)

where the cost functionf measures the difference between
two binary silhouettes. For the cost functionf in Eq.(1) the
simplest difference metric between two (binary) silhouettes
is the number of ‘on’ pixels when a pixel-wise XOR opera-
tion is applied. But in order to prioritize matching the right
pixels (on the occluding contours) and to promote unique-
ness sof has a global minimum, we must impose ahigher
penalty for any mismatch near theboundarypixels of the in-
put silhouette.

f (Sk
input,S

k
model(α)) =

H

∑
i

W

∑
j

c(i, j) (2)

c(i, j) =

{

0 if Sk
input(i, j) = Sk

model(α)(i, j)
d(i, j)−2 otherwise.

d(i, j) = D(Sk)(i, j)+D(S̃k)(i, j),

whereD(S) is the Euclidean distance transform of binary
imageS and S̃ is the inverse image ofS. Note thatd rep-
resents a distance map from the silhouette contour and can
be computed once in a preprocessing step. We call this cost
functionboundary-weightedXOR, which provides a simple
and effective alternative to precise contour matching. Con-
sequently, there is no need for expensive correspondences
with edge-linking, curve-fitting and distance computations
between contours. Furthermore, the (weighted) XOR oper-
ations can be performed in hardware. Given the inherent
complexity (and nonlinearity) of the cost function (and no
analytic gradients) we used a probabilisticdownhill simplex
method to minimize Eq.(1).

To illustrate our 3D shape modeling accuracy, we chose
50 real faces from the database and an additional 50 syn-
thetic (novel) faces generated by randomly sampling the im-
plicit Gaussian prior distribution of the PCA model. In this



Figure 2. Originals (top) and reconstructions
(bottom) for minimum (left), median (middle) and
maximum L2 error (right).

case, 11 virtual cameras were then positioned in the front
hemisphere around the subject. The input silhouette images
were acquired by rendering each of the sample faces in the
image planes of the 11 virtual cameras. Figure 2 shows a
visualization of the distribution of reconstruction errors ob-
tained. The selected faces in the figure correspond to the
minimum, median, and the maximumL2 error among all
100 (real and virtual) samples. The important thing to note
is that our silhouette-based technique captures the most im-
portant facial features with relatively high accuracy evenin
theworst-casescenario (3rd column).

3. Methodology

We now present the experimental protocol used to find
optimal views for an arbitrary number of camerasK (up to
5). We illustrate how to prune the space of all possible views
obtained by uniform tessellation of the view-sphere based
on clustering adjacent view cells using a metric for silhou-
ette similarity (shape projections). The selected set ofas-
pect viewsis then investigated using both our model-based
approach and a data-driven visual hull method.

3.1. Silhouette Generation

The silhouettes of a resampled face in our database are
quite different from the silhouettes captured from actual
subjects (due to the missing portion of the head/torso).
To simulate silhouette images of actual subjects with our
database, we use a fully scanned 3D head as our prototype
head/torso, shown in Figure 3. We align the facial region of
the prototype head to a resampled face (by smooth defor-
mations) and then “stitch” the two together to synthesize a
“virtual” test subject complete with full head and shoulders.
In this way, we can generate complete silhouette images
with the same exact face shapes as those in the database
yet maintain the proper geometry of actual (complete) sub-
jects.

Figure 3. Synthesizing a (full) subject using a
prototype head.

Figure 4. Uniform tessellation of view-sphere
(left). Remaining view cells left after imposing
practical imaging constraints (right).

3.2. View-sphere Tessellation

We first tessellate a view sphere uniformly using a sub-
division from a dodecahedron around the subject. This pro-
cedure yields 120 triangles (we call them view cells) whose
vertices are on the surface of the view sphere as shown in
Figure 4. We discard all the view cells in the rear-half of
the view-sphere since the face is occluded from their van-
tage point. We further discard the view cells which are too
high/low in elevation, since these are unlikely and/or im-
practical physical locations for a real camera. Furthermore,
from such oblique views it is hard to capture facial con-
tour due to the occlusion (and confusion) by the subject’s
hair and shoulder. In our case we restrict the elevation of
view cells within±45◦. Finally, assuming (rough) vertical
symmetry of human faces, we discard the entire left-half of
the remaining view cells and are left with the 44 view cells
shown in Figure 4 (right).

3.3. Clustering Views

The 44 view cells still result in too many combinations
to find a subset of optimal views. For example, if we want
to find 11 optimal views from those 44 views by an exhaus-
tive search, it yields approximately 7× 109 combinations
to search through. Assuming each reconstruction takes 1
minute, this problem becomes quite intractable. Therefore,
we need to reduce the search space further. Our observa-
tion is that the silhouette images of two neighboring view



Figure 5. The 10 silhouette clusters and their
corresponding aspect views shown on the view
sphere surrounding a test subject.

cells may be quite similar. Therefore, we measure the sil-
houette difference and merge the view cells within a cer-
tain distance and represent the merged view cells with one
view. Note that we consider only the silhouette difference
around the critical facial area since the face shape recov-
ery is not affected by the silhouette difference of the other
areas (head/shoulders).

For clustering, we first build a lookup table (D) that con-
tains the partial or face-restricted XOR distance between ev-
ery two view cells in the search space. Initially, every view
cell is considered a cluster and the aspect view of the clus-
ter is the view cell itself. We define the distance of two clus-
ters by the distance of their aspect views and that infor-
mation is pre-computed and stored inD. We find the two
neighbor clusters that have the minimum distance among
all the other neighbor clusters and merge them. After merg-
ing two clusters, we compute a new aspect view for the new
merged cluster. The new aspect view is the view cell which
has the minimum value for the maximum distance to all the
other view cells in the same cluster. We repeat this pro-
cess until the desired number of clusters remain. Figure 5
shows 10 clusters and their aspect views obtained using this
clustering procedure. Note that the resulting aspect views
are not necessarily geometric centroids of clusters, but the
view cells with minimum silhouette distance to other cluster
members. To circumvent any subject-dependency and gen-
eralize this clustering, all the entries in our lookup tableD
were created by averaging the pair-wise view cell distances
for 50 different synthesized heads in our database. Table 1
gives the coordinates of the aspect views wherein azimuths
of {−90◦,0◦,+90◦} correspond to{left, front, right} direc-
tions in a head-centered reference frame.

Figure 6 shows the silhouettes obtained from the 10 as-
pect views along with the model silhouette (in blue) and the

Table 1. Aspect View Coordinates
View # Azimuth◦ Elevation◦

1 3.4 40.4
2 7.6 -15.5
3 28.2 -17.0
4 31.4 18.9
5 40.0 0.9
6 48.3 -16.5
7 52.2 16.8
8 55.1 39.4
9 63.1 -30.2
10 85.9 17.7

Figure 6. Silhouettes obtained from the 10 as-
pect views.

critical facial area used for error evaluation (in cyan). All
L2 reconstruction errors were confined to the critical facial
area only so as to ignore extraneous input from hair/head.
We discard view #1 since from its downward angle the face
silhouette is completely hidden/confounded by the torso,
as well as view #2 since frontal views offer very little oc-
cluding contour as constraints for shape recovery (although
frontal views are preferred for capturing texture).

3.4. Finding Optimal Views

Given the remaining 8 aspect views, we must exhaus-
tively search for the optimal subset ofK ≤ 8 views which
(in each caseK) yield the closest 3D shape reconstruction
with respect to the original face, using theK silhouettes
for the shape recovery process. Currently, we have only
searched up toK = 5, although there is some experimen-
tal evidence that beyond this one may encounter diminish-
ing returns. The default reconstruction method is our model-
based (eigenhead) 3D face shape recovery method [6]. By
way of comparison, we also examined a purely data-driven
method using visual hull construction. It should be noted
that visual hulls by themselves are not at all capable of ac-
curate reconstructions (even with hundreds of views). The
goal here is to simply verify that a data-driven technique



Table 2. Optimal views based on model-based
reconstruction.

K Best Best Subject Error Error
Views Error Std. Dev. Mean Std. Dev

1 4 40.7 12.4 45.0 3.3
2 3, 10 31.9 8.6 37.6 4.3
3 3, 5, 10 28.2 6.1 33.9 3.7
4 3, 4, 9, 10 26.8 6.2 31.7 2.9
5 3, 4, 7, 8, 10 26.6 7.1 30.2 2.2

would select a similar set of optimal views.
For the optimal views to be relevant for general purpose

face modeling and recognition, they must apply forgeneric
faces of all kinds (gender, ethnicity, age). Therefore opti-
mality should be independent of the subject. To this end,
we used a representative subset of 25 individuals from our
database and based our optimal view selection on the con-
figurations that minimized thetotal or averaged error for all
25 subjects.

When we recover a 3D shape from silhouette images, we
require a metric that measures the error between the ground
truth and the reconstructed 3D geometry. Since our focus is
on the facial area of the recovered shape, we need a metric
that measures the difference in the critical facial area of the
recovered shape and the original face. The basic approach
for this error measurement is as follows: The first step is
to find a dense point set on the facial area of the recov-
ered face geometry. For our recovery method using eigen-
heads, we can easily find those facial points as described
earlier. However, it is not trivial to find such a set of facial
points on a visual hull. We use a ray casting scheme to find
the facial points on the visual hull. Since we have the orig-
inal 3D heads which we use to generate the input silhou-
ette images, from facial points on the original head, we cast
rays toward the visual hull and get the corresponding sam-
ples on the surface of visual hull. After we get the facial
points we use the same ray casting scheme to get the corre-
sponding samples on the surface of a ground truth mesh. We
measure theL2 distances of the facial points on the recov-
ered face and the corresponding points on the ground truth
and use them as the 3D error metric on facial area.

3.4.1. Model-Based Reconstruction. We performed the
exhaustive search on the 8 aspect views to find the optimal
subset of views forK = {1,2,3,4,5} cameras. To remove
the data dependency inherent in a single individual’s recon-
struction error, we used the ensemble (average) reconstruc-
tion error of 25 random subjects from the database. There-
fore, the total number of reconstructions is 25·∑5

K=1CK
8 =

5450. Based on an average reconstruction time of 30 sec-
onds, this search takes about 45 hours.

The results are presented in Table 2 which shows the
optimal views forK = {1,2,3,4,5} and the correspond-
ing minimum average reconstruction errors (refer to Table 1

Figure 7. Reconstruction errors for all view con-
figurations with 4 cameras ( K = 4) ranked by
magnitude of ensemble error. Error bars indi-
cate the standard deviation of error among the
25 subjects.

for exact coordinates). The standard deviation of the indi-
vidual errors for all 25 subjects under thebestconfigura-
tion is also shown. The average error means and average
error standard deviations (last two columns) are based on
the average reconstruction errors across allviewsand both
tend to decrease with increasingK (as expected since more
views provide more constraints). Comparing the two dif-
ferent standard deviations, we note that this method is less
view-dependent and more subject-dependent.

What this table does not show, however, is the distribu-
tion of reconstruction errors across various view configura-
tions (and their individual subject variation). Figure 7 shows
the errors of all combinatorial view configurations for the
caseK = 4, ranked in ascending order of error. Each er-
ror bar represents the subjects standard deviation for that
configuration (the first error bar corresponds to the optimal
configuration and is the subject standard deviation listed in
Table 2). Other plots forK = 1,2,3 and 5 are quite sim-
ilar in nature, all showing a well-defined minimum with
the subject variation (error-bars) being lowest for the best
configuration (left most) and highest for the worst (right
most). In the next section, we will compare this graph to
the corresponding ones obtained from visual hull construc-
tion, where the global minimum is not so well-defined (due
to lack of constraints in a purely data-driven approach).

3.4.2. Visual Hull Construction. Using the same search
strategy, we now evaluate the visual hull constructions ob-
tained from the given subset of silhouette images and com-
pare them to the ground truth. Table 3 shows the optimal
views forK = {2,3,4,5} and the corresponding error val-
ues (same format as in Table 2 except that the visual hull
from a single silhouette (K = 1) has no finite volume and
is omitted). Note that a visual hull reconstruction (espe-



Table 3. Optimal views based on visual hull con-
struction.

K Best Best Subject Error Error
Views Error Std. Dev. Mean Std. Dev

2 3, 10 418.7 26.1 847.7 400.4
3 3, 9, 10 406.0 24.7 643.5 246.9
4 3, 8, 9, 10 399.9 25.8 541.0 163.3
5 3, 4, 8, 9, 10 398.3 25.5 481.2 108.9

Figure 8. Reconstruction errors for all view
configurations for the visual hull construction
method

cially one from few images) is not a very accurate repre-
sentation and we are only focusing on the optimal views
selected (regardless of their high error). Unlike the model-
based results, here the reconstruction quality is much more
view-dependent than subject-dependent. However the view
dependency decreases significantly as the number of views
(K) increases (see the error standard deviations). The graphs
in Figure 8 show the errors of all view configurations at
K = {2,3,4,5}. In all 4 graphs, we note the presence of
“plateaus” where the error is nearly constant for a large
number of configurations. Interestingly, the first plateau cor-
responding to the top “group” is all the subsets which in-
clude the profile view #10 (one of the most salient). We
can see marked similarities in the optimal views in Table 2
and Table 3. For example, both methods indicate views #3
and #10 to be the most informative. There are a few dif-
ferences but these are somewhat misleading. The best view
configurations in Table 2 are marked in Figure 8 with ar-
rows. We note that our model-based optimal views have al-
most the same errors as the best views chosen with visual
hull method and are always in the firstplateauor top quar-
tile that includes the key profile view #10.

4. Conclusion

We believe we are the first to investigate optimal views
for 3D face modeling using shape-from-silhouettes. These

findings should provide useful guidelines for designing fu-
ture 3D face recognition systems and are in agreement with
existing practice and intuition. For example, the two most
salient views (#3 and #10) correspond closely with the es-
tablished (biometric) standards of “3/4 view” (INS pho-
tos) and profile view (“mugshot” photos). We have not yet
searched forK > 5 mainly due to the computational costs,
but it appears that reconstructions do not improve signif-
icantly beyondK = 4,5 (see the best errors listed in Ta-
ble 2). One can easily incorporate additional physical and
operational constraints into our framework. For example, al-
though a frontal view is not very salient for shape, it is the
preferred view for capturing texture-maps (hence its preva-
lence in nearly all 2D face recognition systems) and can be
simply pre-selected before the search. Finally, video-based
capture – where subject motion (pose variation) provides
(virtual) views – is essentially equivalent to the static multi-
view case, and we have previously used our modeling tech-
nique (Figure 1) with monocular sequences but only with
sub-optimal poses (by guessing whichK frames to use). We
now plan to parse a video of a moving subject and automat-
ically select the optimal poses for 3D modeling.
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