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ABSTRACT Traditional Recommender Systems (RS) use central servers to collect user data, compute user
profiles and train global recommendation models. Central computation of RS models has great results in
performance because the models are trained using all the available information and the full user profiles.
However, centralised RS require users to share their whole interaction history with the central server and in
general are not scalable as the number of users and interactions increases. Central RSs also have a central
point of attack with respect to user privacy, because all user profiles and interactions are stored centrally.
In this work we propose DARES, an distributed recommender system algorithm that uses reinforcement
learning and is based on the asynchronous advantage actor-critic model (A3C). DARES is developed
combining the approaches of A3C and federated learning (FL) and allows users to keep their data locally on
their own devices. The system architecture consists of (i) a local recommendation model trained locally on
the user devices using their interaction and (ii) a global recommendation model that is trained on a central
server using the model updates that are computed on the user devices. We evaluate the proposed algorithm
using well-known datasets and we compare its performance against well-known state of the art algorithms.
We show that although being distributed and asynchronous, it can achieve comparable and in many cases
better performance than current state-of-the-art algorithms.

INDEX TERMS Recommender systems, reinforcement learning, distributed learning, click through ratio.

I. INTRODUCTION
Recommender Systems (RS) have lately attracted increased
attention for their ability to provide personalised services
to users in many domains such as movies, music, hotels,
restaurants, jokes, news, health and fitness. RS applications
use machine learning techniques to train recommendation
models. However, the training is traditionally performed on
centralised servers. Training of these global models is per-
formed using as input rich user profiles, which are com-
puted from users’ data and interactions. When new items
are added into the system or new data are produced through
the continuous interaction of users with the system, existing
models have to be retrained with great effort to improve
their performance. In most case, this is very complex and
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time consuming activity which becomes more complex as the
number of users and items increases through time.

Centrally computed RS models are usually able to achieve
high accuracy because they are trained with all the available
interaction information. Additionally, the centralised systems
have a global view of the profiles of all users which helps
accuracy. However, centralised RSs suffer from both scala-
bility and privacy issues [29], [39]. When serving recommen-
dations, the centralised server has to serve all requests for
recommendations and send out all recommendations from a
central point. Themodel’s computational effort also increases
non-linearly with the number of users, i.e., as having larger
state and action space [15]. This increases the time between
refreshes of the recommendations served, so the harder it is
for the RS to provide ‘‘fresh’’ recommendations for trending
items.

Privacy is also an issue with centralised RSs because all
user profiles and the whole history of user interactions are
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centrally stored and exploited to build the global recommen-
dation models [38]. This information can be hacked from
the outside or inappropriately accessed from within the RS
service provider. For example, by analysing the news articles
that a user reads, an intelligent system can predict the political
views of that user. This also contradicts with the European
Union’s recent General Data Protection Regulation (GDPR),
which introduces strict new regulations on the collection
and processing of user data, mandating i.e. ‘‘data minimisa-
tion’’ and ‘‘collection limitation’’. Perturbing users’ ratings
or using sophisticated cryptographic tools may resolve the
problem [6]. However these approaches are limited either
because they can reveal the interaction between users and
items or they require a high degree of cooperation among
users [38].

The need for distributed, scalable and privacy-enhanced
recommendation models represents a new opportunity for RS
research, by highlighting the need for going beyond tradi-
tional approaches [6], [38]. In this work we address the issues
of recommendation latency, bias towards more trending items
and the central storage of data. We propose a distributed
asynchronous deep reinforcement learning (RL) based rec-
ommender system (DARES). The asynchronous nature of
the proposed framework lies in the asynchronous advantage
actor-critic model (A3C) [27], while it also borrows concepts
from federated learning (FL) [8], [20], [26].

The proposed algorithm uses a combination of on-device,
local recommendation models and a complementary global
model similar to A3C (See Figure 1). Inspired by ideas from
Federated Learning (FL), the local recommendation models
are copies of the global model. The local models are used
for computing the gradients of the losses using the user-item
interactions of a single user which are locally stored on the
user’s device. In contrast to FL which computes the global
model by averaging the model parameters received from the
users, in DARES the global recommendation model is actu-
ally trained on the server, by applying the loss gradients which
are asynchronously communicated from the local devices.
We demonstrate that our DARES model can deliver recom-
mendation results that outperform the current state-of-the-art
centralised and distributed algorithms. This work is an exten-
sion of the work [37] presented in the RecSys 2020 REVEAL
workshop, presenting more details about the method and
more results to prove the performance of the model.

In the remainder of this paper, we discuss the technical
details of our approach and argue its benefits compared to
alternative approaches. Furthermore, we demonstrate how
these benefits are available without compromising perfor-
mance. We make use of standard test datasets to compare our
model against a number of benchmark algorithms. Finally,
we argue that the approach is well suited to challenging,
dynamic, high-throughput recommendation settings, such
as news recommendation, where users have diverse and
dynamic interests and where the half-life of a recommended
item can be significantly truncated compared to more con-
ventional domains.

FIGURE 1. Overview of the privacy-preserving distributed deep
reinforcement learning (DARES) framework.

II. RELATED WORK
We explore the related work in three domains:
1. Reinforcement Learning-based recommender algorithms,
2. Distributed and federated learning-based recommender
algorithms and 3. privacy preserving recommender algo-
rithms, and comparison of DARES algorithm with A3C
and FL.

A. REINFORCEMENT LEARNING-BASED
RECOMMENDERS
Significant effort has been directed to the application of RL
techniques to make better recommendation models that are
appropriate for online recommendations [21], [59]. There
are two families of RL-based recommendation algorithms.
The Multi-Armed Bandit (MAB) models and the Markov
Decision Process (MDP) models. The former methods, such
as [21], [43]–[46], [51], consider only the reward of the cur-
rent iteration, but not of future iterations. The latter methods
model an RS as an MDP with a finite set of states and
actions, aiming to find an optimal policy which gives the
best action to be performed for each state. MDP methods,
such as [12], [13], [25], [32], [35], [42], [57], [59], aim
to increase the overall reward by considering both current
and future rewards. Recent RS methods adapt state of the
art MDP-based RL methods to make recommendations in
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various domains, such as retail [13], [47], [54], [57], [58],
[60], [62], movies/videos [11], [12], [14], [23], [24], [61],
advertisements [52], [53] and news domains [59].

One of the key challenges for RL algorithms in the rec-
ommendation domain is that there are often a large number
of items to recommend [52], [56]. Another challenge is the
dynamic nature of the system where new items are added
as recommendation targets when old ones are deleted or
become stale. In order to solve this problem, Dulac et al. [15]
introduced a new policy architecture and extended the
Deep Deterministic Policy Gradient (DDPG) algorithm [22],
Choi et al. [14] introduced a bi-clustering technique which
models the RS as a grid-world game and Chen et al. [12]
adapted the REINFORCE algorithm [49] for top-k rec-
ommendation for a system with extremely large action
and state spaces, e.g., Youtube. Chen et al. [11] proposed
Tree-structured Policy Gradient Recommendation (TPGR)
algorithm to improve recommendation performance and to
avoid inconsistency of DDPG related to the continuous rep-
resentation of discrete actions. Zheng et al. [59] proposed
DRN, which adapts Deep Q-Learning (DQN) [28] algo-
rithm for news recommendation, and modelled the states
and actions as the feature representations of the users and
items respectively, which enables the system to scale up
and learn more effectively. Chen et al. [13] proposed Robust-
DQN, which applies stratified sampling replay and approx-
imates regretted reward to improve the reward estimation
in dynamic environments. They evaluated their RL method
on a commercial tip recommendation system which has a
highly dynamic environment. Zhao et al. [57] proposed their
DEERS framework which uses DQN and integrate both
negative and positive items to their RL-based RS method.
They evaluated their method on a commercial real-world RS
system. They also have explored making list-wise [58] and
page-wise [54] recommendations using RL on a commercial
real-world RS system. Also, they proposed DeepChain [55]
which is a multi-agent RL approach that jointly optimises
multiple recommendation strategies while sharing the same
memory of users’ historical data.

Zou et al. [60] proposed FeedRec which utilised RL for
RS and evaluated their proposed method on a commercial
platform. Their proposed framework consists of an LSTM
based network for learning the user behaviours, i.e., policy
learning, and a network to simulate the environment. The
simulation network is used to assist the first network and
to avoid the instability of convergence in policy learning.
Later, they proposed Pseudo Dyna-Q (PDQ) [62] which is
based on Dyna-Q [30], [40]. PDQ contains an environment
simulator (i.e., world model) which is constantly updated
as the recommendation policy is updated. The purpose is
to avoid instability of convergence and high computational
cost and to provide unlimited (simulated) user interactions.
Liu et al. [24] proposed DRR which adapts DDPG algo-
rithm and aims to explicitly model the interactions between
users and items. They represent the states in three differ-
ent ways which are combinations of the user representation

and selected items’ representations. Liu et al. [23] proposed
End-to-end Deep Reinforcement learning based Recommen-
dation (EDRR) framework. EDRR defines RL frameworks
in three modules which include an embedding component,
a state representation component and a policy component
and supervised learning is used to guide the update of the
embeddings and proposed three ways of incorporating these
embeddings with the other two components. Additionally,
there are RL-based recommendation methods which focus on
other aspects of recommendations, such as Wang et al. [47]
focus on explainable recommendations and Zou et al. [61]
focus on diversification of recommendations.

The research on MDP-based RL methods for RS mainly
focuses on how to apply existing methods in RS and how
to overcome the state-action space explosion. Most of those
methods make use of synchronous techniques. Recently,
the Asynchronous Advantage Actor-Critic (A3C) [27] model
has been proposed. A3C is an MDP-based RL method which
executes in a distributed and asynchronous manner. A3C has
been shown to be significantly faster to train in comparison
to DQN in [27]. We use ideas from A3C in our proposed
DARES framework, because its distributed asynchronous
nature best fits to the distributed training scenario that we
address.

B. DISTRIBUTED AND FEDERATED LEARNING-BASED
RECOMMENDERS
Federated Learning (FL) [8], [20], [26] is a recently proposed
approach to training a centralised model where the training
data is distributed over a large number of devices (i.e., user
mobile devices, clients). During each round in FL, the server
selects a subset of clients, and each of these clients uses
its local data to update the model. The clients then send
model updates to the server, and the server aggregates these
models (typically by averaging) to construct an improved
global model [20]. This means that the learning process is
not asynchronous, since the global server waits for the model
updates from sampled clients for a pre-set time and then
executes the model aggregation. When model aggregation
is complete, the updated global model is sent to all clients
simultaneously. Even though it is possible to relax the core
FL assumptions and adopt new approaches [18], in this paper
we used the standard FL definitions.

There are a number of existing application of FL to the
recommendation domain. Chen et al. [10] incorporate the
meta-learning algorithms with FL. In this approach, instead
of a model, a global algorithm (meta-learner) is shared with
local devices. After receiving the parameters of the algorithm,
the local devices performmodel training. Then they execute a
test on a query set and upload the test results to the server. The
parameter transmission from server to local devices happens
synchronously, i.e., in episodes. Experiments were performed
on various datasets, including a private, industrial recommen-
dation dataset, and the results show the efficiency of their
approach is better than the baseline FL. Ammad et al. [2]
implement a Collaborative Filtering(CF)-based RS system in
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a FL setting using implicit feedback data. On local devices,
they used an SGD-based matrix factorization method for
the calculations. The local devices execute the SGD-based
updates and calculate the gradient updates of the model
weights, which are then sent back to the server. The server
updates the global model according to the gradients col-
lected. The results show that federated CF achieves similar
recommendation performance to the standard CF method.
Jalalirad et al. [17] aim to make rating predictions for an RS
system. They use neural networks and execute training in
two-phases. In the first phase, namely global training, they
follow the classical synchronous FL setting where devices
trainmodels locally, share their parameters with global server,
the global server aggregates the parameters and sends the
updated parameters back to the local devices. In the second
phase, namely local training, the devices stop sending their
updated parameters back to global server and keep using their
locally updated models. Arivazhagan et al. [3] focus on the
personalisation aspect of users in the federated learning setup.
They propose a neural network architecture which is com-
posed of base and personalisation layers. In their approach,
the base layers are trained in the base federated learning set-
ting, in which updates from local devices are sent to the global
server, the global server aggregates the updates and sends the
updated models back to the local devices. The personalisation
layers are trained only locally, such that they are not shared
with a global server. Experiments were performed on two
datasets, one of which is a RS dataset, and show that this
approach is better at modelling the personalisation tasks over
a baseline FL approach.

Even though these methods use FL settings, none of them
are using RL ideas, such that they do not aim to consider
the long term reward instead of immediate feedback. Also,
unlike our proposed approach, DARES, the above-mentioned
methods use only synchronous updates, which may require
synchronisation between thousands or millions of devices,
something that normally is difficult to do and can induce
delays in the training process.

C. COMPARISON OF DARES, A3C AND FEDERATED
LEARNING
DARES is a combination of ideas from A3C and Federated
Learning. It uses the idea of distributed, asynchronous exe-
cution from the A3C algorithm and the idea of keeping the
data locally on each device from FL. The latter is achieved
by training a single local recommendation model for each
user separately. Both DARES and A3C are distributed and
asynchronous RL models, i.e., DARES uses A3C as the
base framework. However, in the original A3C algorithm
the workers (e.g., devices) do not keep their data locally but
receive data from a server and normally include data from
multiple users. As a result, the original A3C algorithm cannot
be directly applied to a user-based recommendation setting,
since each worker should keep only data from a single user.

Both DARES and FL use local data kept on the user’s
device. However, there are difference between these two

frameworks. Federated learning executes a user sampling
step [8], whereas in DARES there is no such sampling process
and any client can participate asynchronously as long as
she prefers. In federated learning, the global server executes
the model update/aggregation step usually by averaging the
model parameters sent by the users, and then the clients
receive the same global model for the next round of train-
ing. However, in DARES the clients send the loss gradients
(and not the model parameters) to the server, which then
applies the gradients to update the model weights. In feder-
ated learning, the execution is usually split into rounds and the
global model is sent back to clients at the beginning of each
round [8], which means that the model update/aggregation
is synchronous. As a result, for the clients to receive the
latest model update, they have to wait until the end of
the round of iteration so that the global model is averaged
and updated on the server. In DARES algorithm the model
update/aggregation is asynchronous, which means that when
a client sends its local gradients, the server updates the global
model and immediately sends the updated global model to
the related client. As a result, at any given time the clients
can request from the server and get the latest version of the
updated model, without having to wait until the end of an
iteration round.

In summary, we propose DARES framework for RS
by using the ideas from A3C and FL frameworks. As a
result, DARES is able to (i) capture the dynamic nature of
interactions between users and the recommendation agent,
(ii) always provide the latest model to the users for serving
them with the best possible recommendations, and (iii) keep
the user data locally on the devices.

III. PRELIMINARIES ON MDP-BASED REINFORCEMENT
LEARNING
Reinforcement learning (RL) can be modelled as a Markov
decision process (MDP), i.e., a tuple (S,A,T ,R, γ ), in which
S is a set of states; A is a finite set of actions; for each action
a ∈ A, Ta is a set of state transition probabilities determining
how the state updates upon action a, Ra : S × S → R
is the reward obtained when transitioning from state s to s′

upon action a; and γ ∈ [0, 1) is a discount factor. For an
MDP, we define π : S → A to be a policy which gives
the action to be performed for each state. The value of a
policy π is calculated by V π (s) = Eπ [Rt |st = s] and Rt =∑
∞

k=0 γ
krt+k , where Eπ is the expected sum of discounted

rewards under policy π , t is the current time point and rt+k is
the immediate reward at a future time step t+k . The objective
of an agent in an MDP is to find an optimal policy π∗ with
the highest value.

Reinforcement learning methods can be divided into three
categories:

(i) Value-based methods: (e.g., Q-learning [48] and Deep
Q-learning [28]) target to maximise a value function in order
to find an optimal policy π∗. Normally there are two ways to
calculate a value function:
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• using only a state s ∈ S as shown in Equation 1

V ∗(s) = max
π

Eπ
{ ∞∑
k=0

γ krt+k |st = s
}
, (1)

• using a state-action pair (s, a), as shown in Equation 2

Q∗(s, a) = max
π

Eπ
{ ∞∑
k=0

γ krt+k |st = s, at = a
}

(2)

The value function can also be approximated by a neu-
ral network with parameters θ using either Q(s, a; θ ) or
V (s; θv). For example, Q-learning directly approximates the
optimal value function Q∗(s, a) ≈ Q(s, a; θ ) and learns
the parameters by iteratively minimising a sequence of loss
functions [27].

(ii) Policy-based methods: Policy-based methods such as
Policy Gradients [41] or Proximal Policy Optimisation [34]
aim to find an optimal policyπ∗ by calculating the probability
of performing an action a when the agent is in a state s. The
optimisation of the model parameters can be done directly by
gradient ascent on the objective function J (πθ ), without using
a value function. Policy-based methods can be applied when
the action space is continuous or stochastic. The quality of
a policy is typically measured using the total rewards of the
episode.

(iii) Hybrid (Actor-Critic) methods: Hybrid RL meth-
ods are developed as a combination of value-based and
policy-based approaches. The hybrid model (which is usually
a neural network) is keeping both a policy and an estimation
of the value function. The policy π(at |st ; θ ) controls the
action that the model chooses, while the estimate of the
value function V (st , θv) (also called the ‘‘Critic’’) provides
a measure of the quality of the policy at any given time.
An example of the Hybrid methods is the Actor-Critic model,
in which the ‘‘Actor’’ is the policy and the ‘‘Critic’’ is the
estimate of the value function. TheActor-Criticmodels train a
critic to learn the approximation of the value function at each
stage of the episode and do not use the global reward of the
episode contrary to the policy based methods. By doing so,
it reduces the variance in the training examples, and makes
the learning more stable than pure policy based methods,
however it introduces bias from value function methods [4],
[19], [33].

Asynchronous Advantage Actor-Critic (A3C) [27] is
an Actor-Critic method, which maintains both a policy
π (at |st ; θ) (i.e., the Actor), that controls how the agent
behaves, and an estimate of the value function V (st ; θv) (i.e.,
the Critic), that measures how good an action is. It utilises an
Advantage Actor-Critic objective function, i.e., A(st , at ) =
Q(st , at )−V (st ), which calculates the difference between the
value of taking an action at a certain state and the value of
being in a certain state. In A3C, the Q values are not calcu-
lated directly, instead Rt is used as an estimate of Q(st , at ),
i.e., A(st , at ; θ, θv) = Rt − V (st ; θv). It is Asynchronous,
because it trains multiple agents in parallel, where each agent
has its own copy of the model and the environment that it

FIGURE 2. The DARES neural network structure.

interacts with. The workers asynchronously share gradients
with the central server and their local neural networks are
used for thee target task, e.g., prediction, recommendation.

IV. ASYNCHRONOUS DISTRIBUTED DEEP
REINFORCEMENT LEARNING FOR RS
In our proposed method, DARES, we adapt the A3C algo-
rithm to the item recommendation scenario while keeping the
data locally on devices, inspiring from FL. In DARES we
execute two steps:
• First, we create a state/action representation that is
amenable to the constant creation of new items and
removal of old items that is encountered in the recom-
mender system world.

• Second, we introduce an Actor-Critic deep neural net-
work (DNN) that can efficiently handle new users and
new items.

The overview of the proposed system architecture is given
in Figure 1. The local devices get the latest version of the
model from the server, propose recommended items to the
user, analyse the user feedback and create the model loss
gradients which are then sent back to the central server for
the model update. More details are given in the sections that
follow.

A. PROBLEM STATEMENT
We model the recommendation problem as a classification
problem. In its binary setting, our model predicts the class
(relevant or not relevant) associated with an item, given a
user-item pair. For example, in a recommender system sce-
nario, the binary setting will have two actions for an item:
recommend or not recommend. In an explicit rating context,
our system can associate the itemwith one ofmultiple classes,
i.e. five classes corresponding to the points on a 5-star rating
system. Hence, we model an action as the classification of
a given item for a given user and states to correspond to
user-item pairs (Figure 2).
The goal of DARES is to learn a global RL model

using the information from the local devices. In order to
do so, the framework consists of a global deep neural net-
work (DNN) that exists on a central server and a local DNN
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(which is a copy of a version of the global model) on each user
device. The local deep neural models on the devices may use
as input all the available information on the user device, i.e.
the interactions of the user or extra information about the user
herself (i.e. gender) or the interaction (i.e. location, time/day).
This information is used to compute the gradient losses of the
local model with respect to the latest model that was received
from the server. These gradient losses are then sent to the
central server which trains the global model and updates its
weights. Then, a new version of the global model is sent back
for the next session of the training. Contrary to FL, due to the
asynchronous nature of the proposed model, every user will
get a (slightly) different version of the global model when
they start their local training process. This ensures though that
they will have the latest version of themodel at any given time
and theywill always exploit the accumulated knowledge from
all the users.

B. THE PROPOSED MDP COMPONENTS
We cast the recommendation problem as a MDP-based
RL problem and adapt the A3C algorithm with single-user
data per worker, aiming to simulate the distributed training
scenario with one user per device. The target for our RL
algorithm is to maximise a reward function based on the
cumulative feedback of users over time. MDP-based RL
systems are known to suffer from state space explosion,
i.e., as the number of candidate items increases, the number
of states increase exponentially and transition data becomes
sparser, leading to scalability issue [15]. Inspired by [59], as a
solution, we introduce a state-actionmapping and let the local
recommendation agent to choose to recommend (or not) a
single item to the target/local user. This setting avoids the
curse of dimensionality issue and is thus more scalable in
production.

We model the MDP components as follows:
States: A state s is represented as a concatenation of user

features, user profile history and target item features. More
specifically, we use features including user demographic
information (e.g., gender, age), item features (e.g., title,
description), context features for interactions (e.g., time, loca-
tion) and user-item similarity features, as shown in Figure 2.

For user, item and context features, we directly used the
information provided in the dataset. In order to construct a
user history profile, we average the values of the features
of the past items they have interacted with. Then, we create
the user-item similarity features by computing the cosine
similarity of the values of user history profile with the values
of the features of the item at hand. In our experiments, for
creating the initial user profile history, we select randomly
3 items from the user rating profile and exclude them from
training. Each new item that is used for training is then added
to the history of the user and the user profile is updated
accordingly.

Below, we give an example of the state representation for
the ‘‘Adressa’’ dataset that we use in the experiment session.
As seen in Table 2, the user and item features are of different

types, i.e. integer, category, text. The feature extraction pro-
cess, scales integers to theur unit variance removing their
average value, creates a ‘‘one hot encoding’’ of the category
type features and creates a tf-idf (term frequency–inverse doc-
ument frequency) vector for the text features keeping themost
frequently used terms. As a result, in the ‘‘Adressa’’ example,
the ‘‘total clicks’’ and the ‘‘average active time’’ are scaled
down as integers, the ‘‘author’’, ‘‘device’’, ‘‘OS’’, ‘‘region’’
and ‘‘city’’ are one hot encoded and the ‘‘keywords’’ and
‘‘title’’ of the articles are converted to tf-idf vectors. For creat-
ing the user history profile, the vectors of the item features for
those items in the user history are averaged. For computing
the ‘‘state’’ of the model for a target interaction, the cosine
similarities of each of the ‘‘category’’ and ‘‘text’’ features are
computed and then concatenated with the ‘‘integer’’ features
of the current item and the user features.

Our state representation has two key properties:
• we use the features of users and items and not their
ids or a list of ids. Therefore, new items can easily be
incorporated into our system, as long as the items can
be represented with their features. Such modelling of
states allows us to avoid hard-coding candidate items,
which is beneficial in a dynamic environment such as
news recommendation.

• we use the similarity of user-item pairs. As explained
previously, the calculated similarity depends on the fea-
tures of the items with which the user has interacted
previously and the features of the candidate item. This
kind of representation helps us to handle the dynamic
nature of RS, where users’ preferences evolve over time,
i.e., user-item similarity features update as the user’s
preference evolve through time.

As seen in Figure 2, the states are used by the local RL
agent to find out the best policy (make recommendation or
not) for a specific user-item pair.

Actions: The recommendation agent may accommodate
either binary actions, such as recommend or not an item,
or multi-class actions, such as rating predictions at a scale
of 0 to 5. Previous works have defined actions either as
the transition among items, a list of recommendation items
or directly the items themselves. However, in this paper,
we define binary actions, a0 and a1, (i.e, recommend/not rec-
ommend), as shown in Figure 2. This kind of binary definition
supports handling a more dynamic environment, such that we
can deal more easily with cold-start (i.e., new) items, which
is a common problem in RS domain. Also defining actions
in this way allows definition of more advanced actions, e.g.,
sequences of items, which we want to utilise in our future
works.

Rewards: Each target action should get either a positive
or a negative reward from the model based on the user feed-
back. After the recommendation agent suggests an item based
on an action a and state s, the user may provide explicit
feedback in terms of an explicit rating or implicit feedback
such as an interaction with the recommended item. In other
words, if the agent recommends an item to a target user
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and the user interacts with the item, e.g., clicks or rates
the item, the recommender agent receives a positive reward.
If the user doesn’t interact with the item, then the agent
can receive either a zero reward or a negative reward as a
punishment for recommending a bad action. Similarly, if the
recommender agent decides not to recommend an item and
the user really does not interact with the item, the agent
receives a positive reward. If the user indeed interacts with
the non-recommended item, again the agent can get a zero
reward or a negative reward for punishment.

Transitions: Once the user gives her feedback, as shown
in Figure 1, the recommendation agent updates its state from
sti to sti+1 and moves on to the next round, where a new item
will be considered for recommendation. If the feedback is
positive (i.e. the user interacted with the item), then the user
profile history is updated, by adding the item to her past inter-
actions, computing a new average for the past item features
and computing the updated user-item similarity features.

In addition to classical MDP components, we make use of
user sessions which are used by the original A3C method.
We break down the interactions of the user as a sequence of
short-term interactions. As shown in Figure 1, a user may
visit our system and interact with items sequentially over
time (i.e., ti, ti+1,. . . , ti+m). Our recommender agent will then
interact with the user by recommending items or not, until
their interaction reaches a terminal state.

C. THE PROPOSED ARCHITECTURE
The DARES neural network model shown in Figure 2 learns
the probability of associating each of the possible classes
(i.e., actions) with the user-item pair. Even though the current
MDP components and DNN architecture are set for a binary
classification-like task, they can be easily set for standard
top-N recommendations, i.e., by classifying each user-item
state to its relevance class (using as a relevance score the
‘value’ of the policy action), or for rating prediction in its
multi-class setting.

Figure 3 shows the main process of the proposed DARES
algorithm. As previously explained, there are two main ele-
ments in the DARES system: Central server and local user
devices. The central server keeps a global DNN model and
the local user devices receive a local copy of a version
of the global model (local DNN) whenever they need to
start or continue the training process. The local DNN model
has input nodes related to the user features, item features,
the user-item interaction features and the context features,
as shown in Figure 3. On the local devices the process of
extracting the features from the input data, creating the state
representations and executing the local model to update the
policy and the states are taking place. The local DNN model
computes the losses and the gradients for each state and this
continues for a batch of m items or until no more items
are available. Then, the loss gradients with respect to the
latest batch are sent back to the server asynchronously so that
the server applies them to the global model and updates the
global model weights according to these gradients. The newly

trained global model is then sent back to update the local
model on the device and start the next batch of the training
process.

The devices send the gradient losses to the server after a
maximum of m time steps (interactions), or when a terminal
state is reached (e.g., user leaves the system). At that point,
the local recommendation agent computes (i) the value loss
Lv by using Equation 3, (ii) the policy loss Lp by using
Equation 4 where H (π (st ; θ )) is the entropy of the policy
that improves the model’s exploration and β is a parameter
that controls the strength of the entropy regularisation term,
and (iii) the gradients of the losses, for each step executed.

Lv =
∑

(Rt − V (st ; θv))2 (3)

Lp = − log(π (at |st ; θ ))A(st , at ; θ, θv)− βH (π (st ; θ )) (4)

Gradients are computed by using the following update
rules:

dθ = dθ +∇θ Lp
dθv = dθv + ∂(Lv)/∂θv, (5)

θ and θv represent the parameters of policy and value.
As demonstrated in Figure 1, update and synchronisation

can happen at different time steps for the local agents and
there is no restriction that all devices have to be online at the
same time or learn at the same speed (as in other synchronised
distributed methods). This allows the server to continuously
update themodel and quickly adapt to new trends and changes
in such a dynamic environment as i.e. news recommenda-
tions. yeah

V. PRIVACY ANALYSIS
In centralised RSs, users are sending their interaction history,
preferences and profiles to central servers in order to train
the global RS models. This centralised training is considered
to increase the risk to user privacy, since all private user
information is transmitted to remote servers and stored and
processed there, being susceptible to a plethora of attacks.
On the other hand, distributed training is considered more
privacy preserving by default, since the central server does
not store any identifiable user information. The proposed
DARES algorithm is a distributed algorithm and, as such,
does not store any user information such as profiles, ratings,
etc. on a central server. DARES only makes temporary use
of the user loss gradients in order to compute the weights of
the global model. These gradients are not stored but are only
used for updating the global model on the server. However,
as has been shown in the literature [50], the loss gradients
may be used to extract some parts of the user profile in a
man-in-the-middle-attack. It is not within the scope of this
work to deal with the privacy issues of the proposed model
and how easy/difficult will be to extract user information
from the gradients. To improve the privacy, techniques such
as differential privacy can be used, as discussed in [1], [31].
However, such an analysis is deferred for future research and
is not in the scope of this work.
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FIGURE 3. The DARES process.

VI. EXPERIMENTAL EVALUATION
We compare our proposed DARES algorithm against both
centralised and distributed baseline RLmethods, andwe anal-
yse how the recommendation quality and cost is affected by
various hyper parameters. We also analyse the convergence
speed and stability of DARES, as well as the training time.
We finally discuss how the results are affected by the specific
characteristics of the datasets.

A. DATASETS
We use three public datasets in our experiments, two from
the news domain and one from the movies domain, aiming
to verify that our results are transferable across multiple
recommendation domains. We use a subset of the Smart-
Media News Adressa [16], the Outbrain dataset,1 keeping
only the publisher with id = 43 and the MovieLens100k2

(ml100k) dataset. The first two datasets contain detailed user
interaction logs of news platforms, which allow us to replay
the user click sessions offline, and the ml100k dataset is
one of the most commonly used benchmark datasets in the
recommender system domain. We pre-process the datasets as
follows:
• we extract dense subsets of the three datasets by
removing users with too few interactions. For Adressa,
we remove users with less than 3 interactions (because
our algorithm uses initially 3 items to create the user
historical profile) and for Outbrain we remove users
with less than 16 interactions.Movielens-100k is a dense
dataset so no users were removed.

1https://www.kaggle.com/c/outbrain-click-
prediction

2https://grouplens.org/datasets/movielens/100k/

TABLE 1. Statistics of the Adressa, the Outbrain dataset and the
MovieLens datasets.

• we perform an 80% − 20% temporal training/test split
of each user’s interaction data. Some statistics of the
datasets are presented in Table 1, including the Average
length of the user session, which is the average number
of rated items per user. As shown, in Adressa and Out-
brain, users interact with very few articles per session,
which makes the recommendation task a significant
challenge for all algorithms.

B. EXPERIMENTAL SETTINGS
Throughout the experiments, we use the task of predicting the
next item to be recommended to a given user. In other words,
the algorithms use a single item per user as a target item and
try to find the optimal action a for that item (recommend/not
recommend) in the current state s, in order to create the policy
π (at |st ; θ).

For simulating the recommendation task, we used Pyrec-
Gym [36], an RL environment based on the OpenAI gym [9]
which processes the data through a generalised pipeline and
simulates the agent-environment interaction process. This
environment utilises the logs of historical interactions of the
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TABLE 2. Features of each dataset used in the experiments.

users and items. For training, we use 3 random items of the
user interactions to create the initial user profile, which is
continuously updated as new interactions are being used in
the training process. The rest of the user interacted items
are the recommendation candidates, and the same number
of negative candidates are randomly sampled from the entire
item pool. We used one negative sample per user rated item.
We constructed user-item feature vectors to formulate the
states. The features that were used in the experiments are
shown in Table 2.

We used the same MDP components, i.e., states, actions,
for the baseline and proposed methods. We train the models
for all users in all three datasets and their full interaction
history. The metric that we use for evaluation is the Click
Through Rate (CTR) [5], which is the number of clicks that
the users have interacted with an item that was recommended
by the model divided by the total number of recommended
items.

For DARES, since it is asynchronous, we follow a similar
evaluation process as in [27] and we average over the best
5 models from a range of experiments using different learning
rates. On the Outbrain dataset, the learning rate was 5×10−5,
on Adressa the learning rate was 10−4, while on ml100k,
the learning rate was 5 × 10−5. For the DNN we used a
dense neural network with 100 units and a `1 regularisation
of 0.001. We also used a dropout layer of 30% and early
stopping when necessary to avoid overfitting and diverging
of the neural networks.

C. COMPARISON WITH BASELINE REINFORCEMENT
LEARNING METHODS
We compare our DARES with other popular RL techniques,
both centralised and distributed:

1) LinUCB, a MAB-based approach as presented in [21].
2) Deep Q-Network (DQN), similar to the work in [59].
3) Double Deep Q-Network (DDQN), similar to the work

in [59].
4) a distributed version of the Advantage Actor-Critic

model (A2C-D),3 A2C in its original distributed syn-
chronous setting, where the data are distributed ran-
domly at each worker.

5) Advantage Actor-Critic (A2C) in federated-liked set-
ting (A2C-F), which is similar to our proposed DARES
with each worker having all the data of each user, but
is updated in a synchronous way.

All baseline models use their best performing hyper parame-
ter values.

Figure 4 shows the global average CTR that the methods
attain during the training process and for the three different
datasets. As shown in the figure, DARES achieves compa-
rable results with the state-of-the-art algorithms, which are
either centralised (LinUCB, DQN, DDQN) or synchronous
(A2C-F, A2C-D). More specifically, we can see that in the
Adressa dataset, DARES is very close to LinUCB andA2C-F,
while it outperforms DQN, DDQN and A2C-D. On the
Outbrain dataset, we can see that DARES outperforms all
other algorithms. DARES was run with a low learning rate
(5 ∗ 10−5) to avoid divergence and it starts slow, while
LinUCB and DDQN almost immediately converge to their
final value. However, DARESmanages to have better training
CTR in the end. Similarly, on the ml100k dataset, DARES
outperforms all other algorithm and continuously improves
while other algorithms converge around 15k episodes.

Next, we evaluated the fully trained models on a
realistic testing environment, employing the One-Plus-k-
Random-Items evaluation protocol [7]. For each user, we use
the training dataset to create the initial user history profile,
and we consider for testing all the q rated items of her test
set. Then, we randomly select q × k items from the entire
candidate item (except from the ones in the historical profile)
set as irrelevant examples, and add them to the test set.We use
the fully trained models to recommend items in the test set to
users, and calculate the overall test CTR.

The performance of all methods on the three data sets, with
different values of k are presented in Table 3. The results
reveal that DARES outperforms the rest of the models on all
three datasets for all k . The LinUCB and A2C-F have a close
training CTR as DARES on Adressa dataset when k = 1, but
they fall short on the rest of the scenarios. It is very interesting
to notice that even when the negatively sampled items are
significantly more than the user interactions (k more than 50)
the performance of DARES is far superior than the rest of the
models, with A2C-F being the closest competitor.

Among the five baseline methods, we did not find a signif-
icant performance difference between centralised (LinUCB,
DQN, DDQN) and distributed (A2C-F, A2C-D) models. For
instance, A2C-F achieves similar CTR comparing to LinUCB

3https://github.com/openai/baselines
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FIGURE 4. Global average CTR vs number of training steps for (a) Adressa
and (b) Outbrain.

on Adressa, and similar to DDQN on Outbrain and ml100k.
However, between the two A2C models, federated-like ver-
sion is constantly better than the original distributed one. The
main difference is that a A2C-F worker only interacts with
one user at one time, but multiple users for a A2C-D worker.
In an interactive recommendation scenario, we believe the
federated-like setting is important, and our DARES model
also support this finding.

TABLE 3. The Click Through Rate (CTR) of the 6 methods in One Plus K
Random Items test setting on the datasets.

In the next subsections, we analyse the performance
of the proposed DARES algorithm against various hyper-
parameters.

D. COMMUNICATION COST AND ACCURACY
In this section, we analyse how the recommendation accuracy
and the communication cost (number of messages sent from
the devices to the central server) change as we vary the param-
eter m of the DARES model (which is shown in Figure 3).
This parameter is the batch size of the number of interactions
that are used to train locally themodel before sending amodel
update to the central server and is a measure of the frequency
that the local devices send the gradients to the central server.
This experiment shows how (i) the model test CTR is affected
and (ii) the number of messages sent to the server changes,
as we increase m. The experiments were run for seven m
values in the range (1− 100): 1, 2, 5, 10, 20, 50, 100.
Figure 5 shows the CTR and number of messages sent to

the server per user per each iteration as we increase them time
steps parameter. In Figure 5a, we can see that for Adressa
and Outbrain datasets, the batch size doesn’t significantly
affect the testing CTR value. When m is low, the CTR for
both datasets starts slightly lower and increases when m is
around 10, while after it that drops slightly. The results are
different in a dense dataset like ml100k, in which the CTR is
low when m is 1 or 2, and the maximum CTR is achieved
when m is above 15. This can be justified because of the
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FIGURE 5. (a) CTR and (b) number of messages exchanged between user
devices and central server vs. different values of time steps parameter m.

asynchronous nature of the algorithm and the fact that when
m is very low (i.e. 1) the users are continuously updating the
global model with a single gradient loss. This means that
the global model is not being trained properly, because it
doesn’t get an accurate representation of the users’ losses
and the global model is trained continuously by a very small
loss sample. Adressa has a very small average length session,
so the changes in CTR are minor when m is above 10, since
only a very small number of users have a training session
longer that. In Outbrain we can see a small peak when m
is between 5 and 15 and then it drops slightly. This shows
that in this dataset the algorithm overfits slightly when the
batch size is higher than the average length of the user session.
In contrast, in a very dense dataset like ml100k, the algorithm
needs a high batch size to get a good estimation of the user
profile and properly update the model. For this reason, in the
lowm values, the CTR is low, sincemodel updates with a very
few interactions won’t be correctly representing the user’s
preferences.

In Figure 5b, we can see that, as expected, the number
of messages is reduced as m increases, because the local
devices use a batch of interactions to train the local model
and only send the gradient losses to the server after m local
training steps. When m = 1 it means that the devices send

a gradient loss after each user interaction is passed in the
local model execution and only 1 gradient loss is sent. So,
for example, for Adressa and m = 1, this means that the
communication cost will be approximately 4.68 messages
per user- we calculate the cost like this: the average length
of a user session is 5.34 interactions (as seen in Table 1),
but 3 items are used for creating the user profile history,
which means that the training interactions are 2.34 per user;
for training we use one negative item for each positive, thus
the actual total number of training interactions are 4.68 per
user. When m is larger, the communication with the server is
less frequent. The change in the communication cost is more
evident in a dense dataset like ml100k, where the average
session length is much larger.

E. CONVERGENCE AND STABILITY FOR DIFFERENT BATCH
SIZES
In this experiment, we analyse the effect of the batch size m
on the convergence speed and the stability of the DARES
algorithm. Figure 6 shows the testing CTR over time for
different values of m. This experiment shows the test CTR
at different steps through the training process, with each
‘‘testing step’’ equal to 2000 training steps (users). As the
figure shows, on Adressa, the batch size doesn’t have a
significant difference in the convergence speed or stability.
This is expected due to the short average session length of
the users. On Outbrain, it is noticed that the convergence
is much faster with low values of the batch size and the
model diverges when large values are used. On the contrary,
the behaviour of DARES is opposite in ml100k. While the
model still reaches faster the maximum CTR with low values
of m, it also diverges easily. However, with large values of m,
although the model converges slower to the maximum value,
it is stable and doesn’t diverge. This result forml100k justifies
the results of Figure 5, which showed that for ml100k the
maximum CTR is achieved with high values of m. A justi-
fication for this behaviour is that because of the long average
session length of the users in ml100k and the density of the
dataset, a large m is required in order to properly update the
model with a representative model update.

F. CTR WHEN ARYING THE NUMBER OF WORKERS
In this experiment, we aim to analyse if and how the number
of workers used for training the model affects the results.
We have to note here that DARES is an extension of A3C
which distributes the training process over a number of work-
ers. In the ideal case, for simulating a real-world scenario
with one user per worker, it would require i.e. in the Outbrain
scenario to launch 22713 processes, something that is not fea-
sible on a standalone server. The experiments in the previous
sections were run with 5 workers, meaning that 5 users are
asynchronously updating the model at any given time. This
can be considered as similar to a federated learning scenario
in which we average the model over 5 selected users. The
implementation of the asynchronous updates was done using
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FIGURE 6. The testing CTR of DARES vs different values of time steps
parameter m for Adressa, Outbrain and MovieLens100k.

python multiprocessing and a redis4 queue for the exchange
of messages between the workers/users and the server. Each
worker keeps a local version of the model, which changes
when the worker trains a new user, by fetching the latest
model from the server.

As shown in Figure 7, the number of workers doesn’t
significantly affect the results. Especially for Outbrain,
the results are almost identical even with a large number

4https://redis.io

FIGURE 7. (a) The CTR and (b) the average training speedup vs. number of
workers of DARES over Adressa, Outbrain and MovieLens100k datasets.

of workers. For ml100k there is a small variance, but it is
also negligible. In Adressa, the CTR is also not affected
significantly with the number of workers, although it seems
that a small number of workers (i.e.<10) causes a small drop
in the CTR.

G. TRAINING TIME WHEN VARYING THE NUMBER OF
WORKERS
In this experiment, we analyse the training time of the
model by varying the number of workers. Figure 7 shows
the speedup in training time when the number of workers
increases compared to when the training is done only with
one worker. The speedup is measured using the following
equation:

speedupk =
training_time_single_worker
training_time_k_workers

(6)

As shown in Figure 7, for Outbrain and ml100k the
speedup is significant when the number of workers increases.
The speedup is much higher for Outbrain that has a high
number of users, but it is also quite high for ml100k. On the
contrary, the speedup is not very noticeable in Adressa and
is increases very slightly up to 50 workers, while after that it
decreases. This can be justified by the fact that because of the
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very small session length per user in Adressa, the overhead
of creating and managing a large number of users creates a
bottleneck when the number of workers is very high. The
session length is much longer in Outbrain and ml100k, which
justifies why this bottleneck is not evident in these datasets.

VII. CONCLUSION
We propose DARES, a flexible, distributed and asynchronous
RL framework for RS, that is part of an effort to adapt
recommender systems to the new challenges of providing
accurate and timely recommendations in a distributed and
decentralised environment. Inspired by A3C and federated
learning (FL) frameworks, DARES allows users to keep their
data on the devices and run their local RS model on their
devices, sharing only loss gradients with a central agent
for the purpose of training a global recommendation model.
Sharing gradients in this way offers significant benefits –
sharing loss gradients is considerably less revealing than
sharing personal user data, and the user benefits from a global
model which is trained on data from many users. Users can
have full control over their data which is only stored on
their device and never shared. Users receive model updates
asynchronously whenever they have completed a set of m
steps (interactions) or when they leave the system.

Our evaluation shows that we can achieve these important
benefits without sacrificing recommendation performance,
since DARES achieves state-of-the-art levels of CTR on three
well-known real-world datasets. We also provide compar-
isons to a number of benchmark state of the art approaches,
showing that in most cases we can outperform them. The
communication costs associated with the sharing of gradients
and synchronising the global models across user devices
can remain low, while still achieving very high CTR values.
We also demonstrate the performance speedup that we can
achieve by using multiple workers and show that the number
of workers doesn’t have a significant affect on the model
performance.

Future work in this area will cover the theoretical analysis
of the convergence of the model under various constraints and
the optimal use of early stopping to get the maximum model
performance. Future work will also focus on the effect of
using additional local training to update the local model and
analyse the effect on the global model. This will also be a step
towards personalising the local models on the user devices,
so that they provide more user-tailored recommendations.
Additionally, the privacy of the model will be investigated
in the future, analysing the potential to improve the pri-
vacy using i.e. differential privacy. Finally, the current model
requires the users to share their loss gradients, so in the future
we will modify the model to share the model weights, moving
closer to the original federated learning scenario.
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