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ABSTRACT This paper proposes a multi-objective Slime Mould Algorithm (MOSMA), a multi-objective
variant of the recently-developed Slime Mould Algorithm (SMA) for handling the multi-objective opti-
mization problems in industries. Recently, for handling optimization problems, several meta-heuristic and
evolutionary optimization techniques have been suggested for the optimization community. These methods
tend to suffer from low-quality solutions when evaluating multi-objective optimization (MOO) problems
than addressing the objective functions of identifying Pareto optimal solutions’ accurate estimation and
increasing the distribution throughout all objectives. The SMA method follows the logic gained from the
oscillation behaviors of slime mould in the laboratory experiments. The SMA algorithm shows a powerful
performance compared to other well-established methods, and it is designed by incorporating the optimal
food path using the positive-negative feedback system. The proposed MOSMA algorithm employs the same
underlying SMA mechanisms for convergence combined with an elitist non-dominated sorting approach
to estimate Pareto optimal solutions. As a posteriori method, the multi-objective formulation is maintained
in the MOSMA, and a crowding distance operator is utilized to ensure increasing the coverage of optimal
solutions across all objectives. To verify and validate the performance of MOSMA, 41 different case studies,
including unconstrained, constrained, and real-world engineering design problems are considered. The per-
formance of the MOSMA is compared with Multiobjective Symbiotic-Organism Search (MOSOS), Multi-
objective Evolutionary Algorithm Based on Decomposition (MOEA/D), and Multiobjective Water-Cycle
Algorithm (MOWCA) in terms of different performance metrics, such as Generational Distance (GD),
Inverted Generational Distance (IGD), Maximum Spread (MS), Spacing, and Run-time. The simulation
results demonstrated the superiority of the proposed algorithm in realizing high-quality solutions to all
multi-objective problems, including linear, nonlinear, continuous, and discrete Pareto optimal front. The
results indicate the effectiveness of the proposed algorithm in solving complicated multi-objective problems.
This research will be backed up with extra online service and guidance for the paper’s source code
at https://premkumarmanoharan.wixsite.com/mysite and https://aliasgharheidari.com/SMA.html. Also, the
source code of SMA is shared with the public at https://aliasgharheidari.com/SMA.html.

INDEX TERMS Constrained,multi-objective optimization problems,multi-objective slimemould algorithm
(MOSMA), real-world problems, slime mould algorithm (SMA), unconstrained.
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I. INTRODUCTION
In any real-world case, a large set of solutions need
to be determined precisely and estimated to minimize
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(or maximize) several objectives at hand. Such problems
often happen when we need to advance a decision-making
model [1], [2]. These kinds of models and instances are
not only limited to function optimization, but practition-
ers face them in any discipline, especially fuzzy optimiza-
tion [3], location-based services [4], traffic management [5],
neural networks [6], wireless sensor networks [7]–[9], hon-
eynet potency [10], monitoring [11], [12], computer-aided
design [13], and Internet of things [14]. Real-world engineer-
ing design problems require optimization algorithms to be
utilized and find the best possible solutions [3]. Optimization
problems appear in many fields, and in most real-world cases,
it is required to optimize several objectives together [15].
These problems can be multi-objective [16] or later; they can
have many objective forms [17], [18]. Before the popularity
of computers, researchers used to make many trials and errors
to find optimal solutions for such problems. Human involve-
ment was essential but compromised the accuracy of the over-
all problem-solving process. Using computers to automate
this process has always been a priority to mitigate manual
optimization and design risk. In the area of computer-aided
design [13], [19], [20], computers assist practitioners in
solving optimization problems. Therefore, designers need to
focus on the setup and preparation of the problem more than
the optimization process itself. This way of problem-solving
is inherently faster and less prone to human errors. However,
preparing the problem in a format readable and solvable by
the machine requires relevant expertise.

In the optimization field, algorithms are designed and
developed as ’recipes’ for computers to solve problems [21].
They can be divided into two classes: deterministic [1] and
stochastic [23]. Deterministic methods find the same solu-
tion in each run but suffer from trapping in locally optimal
solutions. However, stochastic approaches find different solu-
tions in each run due to the use of stochastic mechanisms.
This assists them in avoiding sub-optimal solutions better.
Most heuristic and meta-heuristics algorithms belong to the
latter class. It is possible to generally classify meta-heuristic
optimization methods into two types, such as single-objective
and multi-objective. Single-objective methods aim to provide
an optimal solution after improving the primary objective
function. Some of the well-regarded algorithms are Genetic
Algorithm (GA) [42], Differential Evolution (DE) [22],
Particle Swarm Optimization (PSO) [48], Whale optimizer
algorithm with Nelder-Mead [23], Harris hawks optimiza-
tion algorithm with Nelder-Mead [24], spotted hyena opti-
mization [25], Seagull optimization algorithm [26], Henry
gas solubility optimization algorithm [27], Mine blast algo-
rithm [28], and Butterfly optimization [29].

The algorithms mentioned above can estimate the global
optimum for the optimization problem considering one objec-
tive. However, in a wide range of real-world problems, mul-
tiple objectives should be optimized simultaneously, often in
conflict [30]. The sub-field of evolutionary computation to
solve such problems is called Evolutionary Multi-Objective
Optimization (EMOO) [31], which deals with the philosophy

and submissions of multi-objective evolutionary algo-
rithms [30]–[32]. Some of the most popular algorithms in
EMOO are the Non-dominated Sorting Genetic Algorithm
(NSGA) [44], Multi-objective PSO (MOPSO) [49], and
Multi-objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) [67]. Multi-objective EMOO algorithms
can be divided into three classes based on decision-makers’
involvement: a priori, posteriori, and interactive. In a priori
method, a decision-maker provides us with preferences, and
we can use them to combine the objectives into a single
one. So, a single objective algorithm can be used in this
case. In a posteriori algorithm, decision making is done
after completing the optimization process. So, an algorithm
finds a sub-set of Pareto optimal solutions for decision-
makers. Finally, in an interactive method, decision-makers
are involved during the optimization process. Multi-objective
optimization (MOO) does not have a single solution, and
many convergences among the different objectives. The real-
ity that Pareto fronts (PF) have to come up with numerous
points for good theories on the PF is particularly dreadful to
every MOO problem [35]. Even still, it is not predicted that
the MOO strategies on the PF are uniformly distributed on
the front [36]. It is also tough to predict the solution to such
multi-dimensional issues.

A well-known principle, called No Free Lunch theory, has
claimed in this regard that there is no single algorithm to
solve optimization problems altogether [33]. Because of this
principle, there is no assurance that an optimization algorithm
has the same efficiency in different problems. According to
this fact, the multi-objective variant of a newer algorithm is
being created, which has exciting results based on evolution-
ary computation compared to the state-of-the-art techniques.
This work focuses on a posteriori algorithm by proposing the
multi-objective version of a recently-proposed metaheuristic
called Slime Mould Optimizer (SMA)1 algorithm [34]. The
algorithm is called Multiobjective SMA (MOSMA), which is
designed using non-dominated sorting and crowding distance
mechanisms. The proposedMOSMA is a popularMOO algo-
rithm that consists of a random search with good search capa-
bilities, a non-dominant sort maintains Pareto dominance, and
a crowding distance increases the solution’s diversity. The key
contributions to this study can be summarized as follows.
• An archive component is applied to the basic version of
SMA that can store all non-dominated Pareto solutions.

• The non-dominated sorting and the crowding distance
mechanism is applied to handle the Pareto dominance
and the solution diversity.

• The validity of MOSMA is verified for 41 case studies,
including real-world engineering design optimization
problems.

• The performance indicators are listed for all case studies
to prove the effectiveness of the MOSMA.

The rest of the paper is planned as follows: Section 2
describes the structure of the multi-objective optimization

1https://aliasgharheidari.com/SMA.html
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problems with its basic definitions and the related works in
solving MOO problems. Section 3 presents the basic version
of SMA and proposes the MOSMA algorithm. Section 4 rep-
resents the results/discussions/analysis of the proposed SMA.
As a final point, Section 5 provides the conclusion of the work
and future directions.

II. RELATED WORKS AND LITERATURE REVIEW
This section first introduces basic terminologies of MOO
problems and their basic definitions, such as Pareto opti-
mality, Pareto dominancy, Pareto optimality set, and Pareto
optimality front. Further, the related works in solving MOO
problems are discussed in detail.

A. MULTI-OBJECTIVE OPTIMIZATION
The structure of the multi-objective optimization problems
can be represented as a maximization/minimization problem
as follows:

Min
Max

, F (Ex) = {f1 (Ex) , f2 (Ex) , . . . , fo (Ex)}

Subject to: gi (Ex) ≥ 0, i = 1, 2, . . . ,m

hi(Ex) = 0, i = 1, 2, . . . , p

Lbi ≤ xi ≤ Ubi, i = 1, 2, . . . , n (1)

where n represent the number of design variables, o rep-
resents the number of objective functions, m represents the
number of inequality constraints, p represents the number of
equality constraints, gi represent ith inequality constraints, hi
indicates the ith equality constraints, and [Lbi, Ubi] repre-
sents the ith variable’s lower & upper boundaries. Relational
operators are no longer adequate for comparing solutions to a
problem with multiple objectives. In this case, a new operator
called Pareto optimality is used. The essential definitions in
this regard are as follows:
Defination 1 (Pareto Dominance [35]):
Assume two vectors such as: Ex = (x1, x2, . . . , xk ) and Ey =

(y1, y2, . . . , yk ). The vector Ex is said to dominate the vector Ey
(denoted as Ex ≺ Ey), if and only if:

∀i∈{1, 2, . . . , k} : fi (Ex) ≤ fi (Ey) ∧ ∃i ∈ {1, 2, . . . , k} : fi (Ex)

< fi (Ey) (2)

Defination 2 (Pareto Optimality [35]):
A solution Ex ∈ X is called Pareto-optimum if and only if:

@ Ey ∈ X |F (Ey) ≺ F (Ex) (3)

Defination 3 (Pareto optimal set [35])
The set of all Pareto-optimal solutions is called the Pareto

set as follows:

Ps = {x, y ∈ X |∃F (Ey) � F(Ex)} (4)

Defination 4 (Pareto optimal front: A set containing the
value of objective functions for Pareto solutions set [35]):

Pf = {F (Ex) | Ex ∈ Ps} (5)

For solving a MOO problem using a posteriori method,
we have to catch the Pareto optimal set. This set is the
group of solutions on behalf of the Grade A trade-offs among
objectives. This is illustrated in Fig. 1, inwhich the parametric
space and objective space are visualized. The image of two
solutions in both spaces is compared that clearly shows the
circle is a better solution than the rectangle since it dominated
the rectangle considering all objectives.

FIGURE 1. Parameter space and objective space in multi-objective
optimization.

B. RELATED WORKS
A multi-objective optimization methodology was introduced
to evolutionary algorithms by Schaffer in 1984. The idea
behind this was to use Pareto dominance operators, and
optimum Pareto set instead of relational operators that
give a single optimum solution. In the area of EMOO’s
famousmulti-objective optimizers, the literature isMOEA/D,
NSGA-II, MOPSO, Pareto Archived Evolutionary [36], and
Prato-frontier Differential Evolution (PDE) [37]. As dis-
cussed above, such algorithms are divided into three classes:
aggregation (a priori) method [38], a posteriorimethod [39],
and interactive methods [40].

In aggregation-based, multi-objective problems can be
converted into single optimization using different weights
assigned to objectives. After converting the problem into
one objective, an optimal solution can be found using a
single-objective algorithm. The main advantage of a priori
methods is that they do not require modifications in the
algorithm. However, the disadvantage of a priori methods
is the applicability to only convex parts failure in finding
Pareto optimal solution in non-convex regions of the Pareto
fronts [35]. There are several improvements in such tech-
niques (e.g. [40]), but similar issues still exist. On the other
hand, a posteriori approach does not need to convert themulti-
objective problem into a single objective instead of an a priori
approach. Such optimizers can get Pareto optimal front and
solutions in one run, but they have to address multiple, often
in conflict, objectives.

From detailed literature, it is observed that priori methods
are faced with specific problems in tackling multi-objective
difficulties, trapped in local optima, having high compu-
tational time, and problems emerging from priori method
structures [41]. As a result of the initiative to establish various
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approaches, Posteriori approaches have been developed. The
multi-objective meta-heuristic algorithms (MOMHAs) are
among the posteriori techniques, and it has an essential
feature, such as reduced computing time and good results
irrespective of the nature of the problem. Each candidate
solution produces a reliable solution based on its closeness
to PF and the spread (diversity) on PF while analyzing the
MOO problems with MOMHAs. Throughout the evaluation
of parents and the choice of the solutions that survive, such
results are used. For counting, there are three fundamental
methods used [40]:

• Pareto-based
• Indicator-based
• Decomposition-based

Pareto-based - Goldberg [42] first suggested in 1989, it
was possible to use the Pareto-dominance principle to eval-
uate the optimal solution. Many MOMHAs also introduced
several frameworks, motivated by this concept, that uses the
Pareto-dominance principle to rate the proximity of optimal
PF solution. For instance, Deb et al. rated the optimal solu-
tion using NSGA-II non-dominated-ranking mechanism [43,
44]. Multi-objective Seagull Optimization Algorithm [45],
MOEAs [46], NSGA-III [47], bare-bones multi-objective
particle swarm optimization [48], MOPSO [49], multi-swarm
cooperative multi-objective particle swarm optimizer [50],
MOWCA [51], incremental learning hybridized with adap-
tive differential evolution [52],MOSOS [53], and cooperative
co-evolutionary optimization [54] are among the well-known
Pareto-based MOMHAs in the literary works.

Indicator-based - A large number of quality metrics have
been reported in the literature to measure the degree to which
in terms of convergence and distribution, the PF achieved
by a MOMHA for a problem shows the entire PF. A few
of the indicators only measure the convergence performance
(GD [53], etc.) or the diversity (Spacing [53], Spread [53],
etc. of the PF collected, while others improve the impact of
both convergence and diversity (Hyper Volume (HV) [54],
IGD [55], etc.).

Decomposition-based - A Pareto-optimal response may
be an appropriate choice to a scalar function obtained by
integrating all of a multi-objective optimization problem’s
cost function. Therefore, a Pareto-optimal front can be bro-
ken down into various scalar optimization problems [54].
To enhance the decomposed fitness function created by the
same weight vectors, decomposition-based strategies use this
basic principle. Many decomposition-based algorithms are
reported, and the following are the three optimizers adopting
the proposedMOEA/D [67], MOMH/D [55], decomposition-
based archiving approach [56], and Dynamic interval multi-
objective optimization problems [57]. Therefore, in this work,
a posteriori approach is applied in the SMA algorithm based
on the elitist non-dominated approach similar to NSGA-II.

The next section first signifies the model of the SMA
technique. Then, the novel multi-objective SMA is developed
in this research.

III. MULTIOBJECTIVE SLIME MOULD ALGORITHM
(MOSMA)
A. SLIME-MOULD ALGORITHM
The Slime Mould Algorithm [34] (SMA), proposed by
Li et al. (2020), is a novel population-based metaheuristic
inspired by the oscillation behaviors of slimemould in nature.
The SMA algorithm is designed by incorporating the opti-
mal food path using the positive-negative feedback system.
According to the quality of food slime mould dynamically
adjust their search path. The SMA algorithm mimics three
fundamental principles, such as grabble, wrap, and approach
phenomena. The grabble phenomena that avoid the collision
among the slime mould while hunting for food. The wrap
phenomena show the velocity matching of slime mould.
Moreover, the approach phenomena, which states the learning
of slime mould towards the food centre.

The SMA approach starts with a randomly generated pop-
ulation within its upper and lower boundary, where ’N’ popu-
lation size (i.e., slime mould) and ’dim’ is the dimension of a
problem. Next, the population is evaluated using an objective
function. In the following stage, the population is updated
by grabbling, wrapping, and approaching phenomena in each
iteration. Moreover, the SMA algorithm’s progression is con-
trolled by various parameters such as fitness weight (W ) of
slime mould that can provide faster convergence and avoid
local solutions. The vibration parameter (Vb) ensures early
exploration or later exploitation accuracy of individual slime
mould. The detailed stepwise process of the SMA algorithm,
which includes grabbling food, wrap food, and approach
food, which can be mathematically detailed as below [34]:

−→
X∗ = rand · (Ub− Lb)+ Lb, if (rand < 0.03)
−→
X∗ =

−−−→
Xb (t)+

−→
vb

·

(
W ·
−−−→
XA (t)−

−−−→
XB (t)

)
, if (r < p)

−→
X∗ = −→vc ·

−−→
X (t), if (r ≥ p)

(6)

where,

−−−−−−−−−−−−→
W (SmellIndex (i))

=


1+ r · log

(
bF − S (i)
bF − wF

+ 1
)
, condition

1− r · log
(
bF − S (i)
bF − wF

+ 1
)
, others

SmellIndex = sort (S)
−→
vb = [−a, a]

a = arctanh
(
−

(
t

Max_t

)
+ 1

)
p = tanh |S (i)− DF |

(7)

where
−→
vb is vibration parameter, t represents the current iter-

ation, EX represents the location of slime mould, EW represents
the weight of slime mould. DF represents the best fitness
obtained in all iterations, S (i) ranks first half of the popula-
tion, r denotes the random value in the interval of [0, 1], bF
denotes the optimal, wFdenotes the worst fitness, SmellIndex
denotes the sequence of fitness values sorted (ascends in the
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minimum value problem, Lb andUb denote the lower and
upper boundaries of the search range, rand and rdenote the
random value in [0,1]. The vibration parameter Evb and fitness
weight EW balances between exploration and exploitation. The
procedure of the SMA is given in Algorithm-I.

Algorithm 1 Pseudocode of SMA
Initialize the parameters population size and Maximum
number of iterations
Initialize the positions of slime mould, Xi(i = 1, 2, . . . , n);
While (t ≤ ÜMax_t)

Calculate the fitness of all slime mould
Update best fitness, Xb
Calculate theW by Eq.(7);

For each search portion
Update p, vb, vc;
Update positions by Eq.(6);

End For
t = t + 1;

End While
Return the best fitness, Xb

A detailed description of the SMA algorithm is given
in Fig. 2. In the SMA optimizer’s leading paper, it has
been proved that this algorithm solves different real-world
problems effectively and is competitive compared to the
existing algorithms. This motivated us to design a new
multiple-objective version of the slime mould optimizer in
the following subsection.

B. MULTI-OBJECTIVE SLIME MOULD ALGORITHM
(MOSMA)
The proposed MOSMA algorithm uses an elitist non-
dominated sorting and a diversity preserving crowding dis-
tance mechanism [36]. Non-dominated sorting includes the
following steps:
• First, calculating the non-dominated solution
• Second, applying non-dominated sorting (NDS)
• Calculating non-dominated ranking (NDR) of all non-
dominated solutions.

Fig. 3 presents the non-domination ranking (NDR) pro-
cess, in which two fronts are given. The solutions in the
first front give the index of 0 since they are not dominated
by any solutions, while the solutions in the second front are
dominated by at least one of the solutions in the first front.
Such solutions’ NDR is equal to the number of solutions
that dominate them. The crowding distance mechanism is
shown in Fig. 4 used tomaintain diversity among the acquired
solutions. Crowding distance (CD) as follows.

CDij =
f i+1j − f i−1j

f maxj − f minj

(8)

where, f minj andf maxj are theminimum andmaximumvalues of
jthobjective function. The schematic representation of a non-
dominated sorting-based algorithm is depicted in Fig. 5.

The pseudocode of MOSMA is shown in Algorithm-II.
Firstly, the algorithm starts with defining the controlling
parameters, including search agent/population size (Npop),
loop terminated criteria, and maximum iteration/maximum
number of generation (Max_t) to run the MOSMA algorithm.
Secondly, a random generated parent’s population Po in fea-
sible search space region S is generated, and every objective
function of the objective space vector F for Po is evaluated.
Thirdly, the elitist-based NDS and CD are applied to Po.
Fourthly, a new population of Pj, is created and merged with
Po to get population Pi. This Pi is sorted based on elitism
non-domination and the resulted data of NDR and CD. The
best Npop solutions are revised to create a new parent popula-
tion. Finally, this process is repeated until the end condition
is met. The flowchart of MOSMA is depicted in Fig. 6.

Algorithm 2 Pseudocode of MOSMA
Step I Initially Generate population (Po) randomly in

solution space (S)
Step II Evaluate objective space (F) for the generated

population (Po)
Step III Sort the based on the elitist non-dominated

sort method and find the non-dominated rank
(NDR) and fronts

Step IV Compute crowding distance (CD) for each front
Step V Update solutions (Pj) using Algorithm-I
Step VI Merge Po and Pj to create Pi=PoUPj
Step VII For Pi perform Step II
Step VIII Based on NDR and CD sort Pi
Step IX Replace Po with Pi for Npop first members

of Pi

C. COMPUTATION COMPLEXITY OF MOSMA
The computation complexity of the proposed MOSMA is
given in terms of space complexity and time complexity.
As discussed earlier, the proposed MOSMA uses the same
operators of NSGA-II. Since the NDS and CD assignment
of MOSMA are adopted from NSGA-II, the computational
space complexity of MOSMA is O(MN2

pop), where M is
the total number of objective functions, and Npop is the
number of search agents/population size. The computa-
tional time complexity of the MOSMA is presented for
each iteration. For the first iteration, the computational time
complexity is equal to O(dim∗Npop+Cost(fobj)∗Npop). After
the first iteration, the computational time complexity is
equal to O(dim∗ Npop+Cost(fobj)∗Npop+(NDS+CD)∗dim).
In addition, the overall computational time complexity of
the MOSMA is given for the maximum number of itera-
tion which is equal to time=O(M)|M=(dim∗Max_t∗Npop+
Cost(fobj ∗Max_t∗Npop +(NDS+CD)∗(Max_t-t)∗dim+
(NDS+CD)∗(Max_t-t)∗Cost(fobj)). Where, current iteration
is denoted as t , maximum number of iterations is denoted as
Max_t, the objective function is represented by fobj, cost of the
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FIGURE 2. Step by step approach of the slime-mould optimizer.

objective function is denoted as Cost(fobj), and the number of
variables in objective function is denoted as dim.

IV. RESULTS AND DISCUSSIONS
In this section, the performance validation of the proposed
MOSMA is discussed. In order to prove the validity of
the MOSMA, a comprehensive set of benchmark functions,
including constrained, unconstrained, and real-world prob-
lems are considered.

A. EXPERIMENTAL SETUP
The case studies used to benchmark the performance of
MOSMA are as follows:

• Unconstrained ZDT & CEC-2009 benchmarks with
2-objectives (ZDT1-ZDT4, ZDT6) & (UF1-UF10)
[58]–[68].

• Constrained benchmark with 2-objectives (TNK, KITA,
CONSTR, OSY & SRN) [69]–[73].
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FIGURE 3. Diagram of non-dominated sorting.

FIGURE 4. Diagram of crowding distance approach.

• Real-world highly nonlinear constraint, discrete, con-
tinuous & mix-integer design MOO problems, includ-
ing 2-bar truss design, 3-bar truss design, 4-bar truss
design, disk brake design, CNC machine tool design,
discrete-gear train design, bar vessel design, welded
beam design, I-beam design, C-beam design, multiple
disk clutch brake design, car crash design, car side
impact design, metal cutting tool design, rolling element
bearing design, helical spring design, satellite heat pipe
design, speed reducer design, BLDC motor design, and
isolated safety transformer design [74]–[86].

The authors established an environment that ensures fair-
ness, reliability, and justice among the methods we compared
to avoid any accidental bias toward a better condition for
any algorithm. This condition is a constraint in experiments
to ensure that the superiorities are not due to the testing
advantages.

In general, the performance of all multi-objective algo-
rithms is measured using the performance indicators.
Therefore, to compare the MOSMA with other competi-
tive algorithms, the following performance indicators are

used, and the expressions for the same have been stated in
Eq. 9-Eq. 12.

GD =

√∑no
i=1 d

2
i

n
(9)

IGD =

√∑nt
i=1

(
d ′i
)2

n
(10)

Spacing(SP) ,

√√√√ 1
n−1

n∑
i=1

(
d−di

)2
(11)

Maximum Spread (MS) =

√√√√ o∑
i=1

max (d (ai, bi)) (12)

where nt is the number of true Pareto optimal solutions,
no is the number of True Pareto optimal set (Ps), diand
d ′i indicates the Euclidean distance (ED), d is the aver-
age of all di, n is the number of obtained Ps, and di =
min
j

(
|f i1 (Ex)− f

j
1(Ex)| + |f

i
2 (Ex)− f

j
2(Ex)

)
for all i, j=1,2,. . . , n,

o is the number of objectives, a and b is the maximum and
minimum value in the ith objective. The first two performance
measures quantify the convergence and the last two measures
the coverage of Pareto optimal solutions estimated by the
algorithms.

B. CONSTRAINT HANDLING APPROACH
Some potential applications of the proposed MOSMA may
also have constraints, and they are not limited to land-
slide prediction, dealing with modelling in the environmental
concerns, enhancing the target tracking systems, design of
the equipment tracking systems, supply chain management
and related multi-objective models, improving the produc-
tivity of hydrothermal systems, solving several objectives in
order-picking systems, and many applications in the image
enhancement, and image segmentation. To solve constrained
multi-objective problems, it is needed to put in place a
mechanism to avoid violating constraints. This paper uses a
static penalty approach to handle constraints in the MOSMA
algorithm because its convert constrained problem into an
unconstrained problem. In this approach, if any constraint is
violated, a large penalty (Pi) is added to the returned objective
value. The static penalty function is presented as follows:

fj (X) = fj (X)+
p∑
i=1

Pimax {gi (X) , 0}

+

NC∑
i=p

Pimax {|hi (X)| − δ, 0} (13)

fj (X) , j = 1, 2 . . . n, (Objective function to be optimized)
X = {x1, x2, . . . xm} are design variables
gi (X) 6 0, i = 1, 2 . . . p are inequality constraints
hi (X) = 0, i = p+ 1 . . .NC are equality constraints,
δ is tolerance inequality constraint
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FIGURE 5. Schematic representation of a non-dominated sorting-based algorithm.

FIGURE 6. Flowchart of Multi-objective SMA.

To observe the outcomes qualitatively, the best Pareto
optimal fronts attained by the proposed MOSMA tech-
nique on the considered case studies are demonstrated

in Figs. 7 - Fig. 9. The performance of the proposed
MOSMA is compared with the other well-known com-
petitive algorithms, such as MOWCA, MOSOS, and
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FIGURE 7. Results of Pareto optimal front realized by the MOSMO algorithm on ZDT1, ZDT2, ZDT3, ZDT4, ZDT6,
UF1, UF2, UF3, UF4, UF5, UF6, UF7, UF8, UF9, and UF10 cases.
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FIGURE 8. Results of Pareto optimal front attained by the MOSMO technique on CONSTR, TNK, SRN, OSY, and KITA benchmark functions.

MOEA/D. The control parameters of all algorithms are listed
in Table 1.

C. SIMULATION RESULTS
Based on the non-dominated sorting mechanism to illustrate
the effectiveness of the developed MOSMA algorithm, four
types of analysis are discussed in this section to evaluate the
effectiveness of the MOSMA.

The analysis-I, therefore, aims to evaluate MOSMA opti-
mizer’s convergencewithMOWCA,MOSOS, andMOEA/D,
which all concentrate on enhancing the convergence in
the NDS technique. In order to evaluate the convergence
output of MOSMA, MOWCA, MOSOS, and MOEA/D
concerning GD metrics, the simulation is carried out for
30 individual runs of all algorithms on ZDT1-6, UF1-10 and
the constrained benchmark functions, such as TNK, KITA,
CONSTR, OSY and SRN, and instead of measuring the mean
and standard deviation, the optimal GD (including both mean
and standard deviation (SD)) values are listed for all selected
problems in Table 2 and Table 7. Boldface highlights the best
outcome for each test problem. In Table 2 and Table 7, with
more than 78.57% of benchmark functions, the GD value
of MOSMA is higher than other algorithms. The GD value
of MOSMA has improved 80 % over the other algorithms,

specifically for the ZDT test problem with unimodal, convex,
and separable variables.

The purpose of analysis-II is to demonstrate the efficacy
of the proposed MOSMA. In order to compare the diversity
success ofMOSMA,MOWCA,MOSOS, andMOEA/Dwith
respect to Spacing and Spreadmetrics, the study runs 30 times
individually on ZDT1-6, UF1-10, the constrained benchmark
functions, such as TNK, KITA, CONSTR, OSY and SRN,
and real-world engineering design constrained optimization
problems and then found the optimal values of Spacing,
Spread. The values are listed in Table 3, Table 4,

Table 8 and Table 9. The value of spacing/spread for the
proposed MOSMA is better than other algorithms for more
than 79.76 % of all test problems. In fact, MOSMA diversity
has increased by 39% relative to MOEA/D and over 36.5%
compared to the other two algorithms. The MOSMA Spac-
ing/Spread values are 86.66%, mostly on UF and constrained
design test problems with discrete PF, demonstrating that the
MOSMA has a substantial diversity of discrete test prob-
lems. It has a uniform solution spread in local PF on ZDT,
UF and constrained benchmarks, so it performs well in the
Spacing/Spread metric.

Analysis-III aims to demonstrate the robust output of the
MOSMA for balancing convergence and diversity compared
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FIGURE 9. Results of Pareto optimal front achieved by the MOSMO method on 2-bar truss, 3-bar truss, 4-bar truss,
gear train, pressure vessel, helical spring, welded beam, disk brake, speed reducer, CNC machine tool, tool spindle,
I-beam, cantilever beam, multiple disk clutch break, car crash, car side-impact, metal cutting tool, rolling-element
bearing, satellite heat pipe, BLDC motor, and isolated safety transformer design problems.
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FIGURE 9. (Continued.) Results of Pareto optimal front achieved by the MOSMO method on 2-bar truss, 3-bar truss, 4-bar truss, gear train,
pressure vessel, helical spring, welded beam, disk brake, speed reducer, CNC machine tool, tool spindle, I-beam, cantilever beam, multiple
disk clutch break, car crash, car side-impact, metal cutting tool, rolling-element bearing, satellite heat pipe, BLDC motor, and isolated
safety transformer design problems.

TABLE 1. Control parameters of all algorithms.

to MOWCA, MOSOS, and MOEA/D. By running 30 times
on ZDT1-6, UF1-10, and the constrained benchmark func-
tions, such as TNK, KITA, CONSTR, OSY, and SRN
independently, the IGD metric of all algorithms are listed
in Table 5 and Table 10. For each algorithm, the best outcomes
are displayed in boldface. The IGD metric is used to calcu-
late each algorithm’s quantitative efficiency, both considering

convergence, and distribution. Tables 5 and 10 show that
the proposed MOSMA ranks first, followed by MOWCA,
MOSOS, and MOEA/D.

The purpose of analysis-IV is to demonstrate the efficacy
of the proposed MOSMA in terms of run time. In order
to compare the time complexity of all algorithms concern-
ing run time metrics, the run time of all algorithms is
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TABLE 2. Results of the multi-objective algorithms (using GD) on the selected unconstrained test functions.

TABLE 3. Results of the multi-objective algorithms (using SPREAD) on the selected unconstrained test functions.

TABLE 4. Results of the multi-objective algorithms (using SPACING) on the selected unconstrained test functions.

listed in Table 6 and Table 11. For each problem, the best
run-time outcomes are displayed in boldface. The run-time
metric is used to calculate each algorithm’s quantitative effi-
ciency, considering reduced time complexity. Table 6 and
Table 11 show that MOSMA convergence speed ranks first,
followed byMOSOS,MOWCA, andMOEA/D. The obtained
Pareto front using the MOSMA optimizer is shown in Fig. 7,
and Fig. 8 are concerning the true Pareto front for ZDT1-6,

UF1-10, and the constrained benchmark functions, such as
TNK, KITA, CONSTR, OSY, and SRN.

As similar to the previous discussion, the proposed
MOSMA and other selected algorithms are applied to 21 real-
world engineering design optimization problems, such as
2-bar truss, I-beam, 3-bar truss, 4-bar truss, pressure vessel,
helical spring, disk brake, welded-beam, gear-train, speed
reducer, tool spindle, CNCmachine tool, cantilever beam, car
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TABLE 5. Results of the multi-objective algorithms (using IGD) on the selected unconstrained test functions.

TABLE 6. Results of the multi-objective algorithms (using RUN-TIME) on the selected unconstrained test functions.

TABLE 7. Results of the multi-objective algorithms (using GD) on the selected constrained benchmark functions.

TABLE 8. Results of the multi-objective algorithms (using IGD) on the selected constrained benchmark functions.

crash, car side-impact, metal cutting tool, multiple disk clutch
break, rolling-element bearing, satellite heat pipe, BLDC
motor, and isolated safety transformer.

In order to evaluate the convergence output of MOSMA,
MOWCA, MOSOS, and MOEA/D about GD metrics,
the simulation is carried out for 30 individual runs of all
algorithms on all selected real-world engineering design

constrained optimization problems, and the optimal GD val-
ues are listed for all selected problems in Table 12. The
bold letter indicates the best outcome for each problem. In
Table 12, with more than 66.66 % of benchmark functions,
the GD (including both mean and SD) value of MOSMA
is higher than other algorithms. To compare the diversity
success of all algorithms concerning Spacing and Spread
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TABLE 9. Results of multi-objective algorithms (using SPACING) on the selected constrained benchmark functions.

TABLE 10. Results of multi-objective algorithms (using SPREAD) on the selected constrained benchmark functions.

TABLE 11. Results of multi-objective algorithms (using RUN-TIME) on the selected constrained benchmark functions.

TABLE 12. Results of the multi-objective algorithms (using GD) on the selected engineering design optimization problems.

metrics, the study runs 30 times individually on all selected
real-world engineering design constrained optimization prob-
lems and then finds the optimal values of Spacing, Spread.
The values are listed in Table 13 and Table 14. The value of
spacing/spread for the proposed MOSMA is better than other
algorithms for more than 69.04 % of all test problems. The
robust output of the MOSMA for balancing convergence and
diversity is demonstrated by finding the optimal values of the
IGD indicator.

By running 30 times on selected engineering design
optimization problems independently, the IGD metric of

all algorithms is listed in Table 15. Table 15 shows that
the proposed MOSMA ranks first, followed by MOEA/D,
MOSOS, and MOWCA. To compare the time complexity
of all algorithms for run-time metrics, the run time of all
algorithms is listed in Table 16. The results in Table 16 shows
that MOSMA convergence speed ranks first, followed by
MOSOS,MOWCA, andMOEA/D. The obtained Pareto front
using the MOSMA optimizer is shown in Fig. 9 concerning
the true Pareto front for all engineering design problems.

Inspecting the results in Table 2 – Table 16 and the opti-
mal Pareto fronts obtained in Fig. 7 – Fig. 9, it is evident

VOLUME 9, 2021 3243



M. Premkumar et al.: MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting

TABLE 13. Results of multi-objective algorithms (using SPACING) on the selected engineering design optimization problems.

TABLE 14. Results of multi-objective algorithms (using SPREAD) on the selected engineering design optimization problems.

that the proposed MOSMA can provide a relatively accurate
estimation of the true Pareto optimal solutions for all con-
strained, unconstrained, and engineering design optimization
problems. The high coverage can be seen in Figs. 7-9. Note
that NaN in all tables stands for Not a Number, which refers
to the algorithms that the results are not available for the
respective problem.

D. BRIEF DISCUSSIONS
In summary, findings and analyses demonstrate thatMOSMA
has a very high speed of convergence. This comes from
the fact that the best solution often leads significantly
to the enhancement of other solutions. This section dis-
cusses MOSMA optimizer benefits, such as high accuracy

(convergence) and high coverage on most case studies. The
former is an indication of high exploitation by MOSMA.
SinceMOSMA uses the same methodology as SMA, it inher-
ently benefits from high exploitation. However, this is not
enough for a posteriori algorithm. The MOSMA optimizer
also represents exploration positively due to the SMA’s
operator and MOSMA’s crowding distance. Sudden changes
in Eq. 1 results in high exploratory behaviour. The non-
dominated sorting mechanism and crowing distance opera-
tors also contribute to the exploration of MOSMA. The high
coverage of Pareto optimal solutions achieved by MOSMA
on many of the benchmark problems would be another find-
ing. This probably originated from the processes of leader
selection and archive maintenance.
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TABLE 15. Results of the multi-objective algorithms (using IGD) on the selected engineering design optimization problems.

TABLE 16. Results of multi-objective algorithms (using RUN-TIME) on the selected engineering design optimization problems.

V. CONCLUSION AND FUTURE DIRECTIONS
This paper introduced a multiple-objective version of the
SMA optimizer. Motivated from the main idea of NSGA-II,
a non-dominated ranking and crowding distance approach
were integrated into conventional SMA to design the
MOSMA algorithm. The proposed method was tested on
41 case studies, including unconstrained/constrained/real-
world engineering design problems. The result proves that the
MOSMA optimizer can estimate Pareto optimal solutions for

all types of discrete/continuous Pareto front problems. All the
PF obtained were highly distributed across all objectives. The
analysis of the metrics, such as GD / IGD / Spread / Spacing
/ RUNTIME, showed the superiority and balance between
the exploration phase and exploitation phase in MOSMA.
As per the obtained results and comparative study on differ-
ent optimizers, it is concluded that the MOSMA has mer-
its among the recent competitive algorithms. The proposed
MOSMA is acceptable for two and three objective problems.
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The proposed MOSMA can be directly applied to any engi-
neering design problems due to its local front avoidance and
high exploration capability.

The authors are planning to apply the proposed MOSMA
and its enhanced variants to practical problems such as devel-
oping the solar models, realizing and developing the struc-
tural health assessment, modelling wireless sensor networks
and deployment cases, and problems and concerns in power
engineering. For future works, the method’s proposal to han-
dle many objectives optimization using MOSMA is also rec-
ommended. Also, the binary and mixed-integer version on
MOSMA is worth of investigation.
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