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ABSTRACT Twitter sentiment analysis provides valuable feedback from public emotion concerning certain
events or products. Current research has been focused on obtaining sentiment features from vectorized lexical
and syntactic feature from tweets, without further context. In this paper, we demonstrated how vectorized
location information could be combined with word embeddings to produce a hybrid representation, which
has resulted in an improvement on a tweet sentiment classification task. The location information of the
geo-tagged tweets provided further context, which was useful for a sentiment classification task. The tweets
investigated contained a set of geo-tagged tweets. The word embeddings of these tweets were combined with
the geo-tagged tweets’ vectorized location features to form a sentiment feature set of geo-tagged tweets. The
sentiment feature set was incorporated into a convolution neural network and a bi-directional long short-
term memory network for the tasks of training and predicting of sentiment classification labels. This hybrid
representation is compared with the baseline GloVe model through a few experiments, and the results have
shown that the incorporation of vectorized location information has resulted in improvement of the accuracy
for the twitter sentiment classification task.

INDEX TERMS Deep learning, geo-tagged tweet, information representation, location intelligence, multi-

modal fusion, pattern recognition, sentiment classification.

I. INTRODUCTION

Twitter is the standard micro-blog platform that has been
analysed by researchers due to the large user base of over
319 million active users [1]. The short limits of words
(280 characters) for tweets allows for the concise expression
of objective and opinionated content. Despite adding more
disambiguation, the short sentences in tweets have eased the
analytic process for sentiment analysis, especially if the con-
text to the tweet is incorporated. Geo-tagged tweets contain
location information which has added context to the content
of the tweet. Research has shown that sentiment classification
accuracy that uses location as a feature has outperformed
sentiment classification, which only uses text [2].

Sentiment analysis is a general term while the most popular
task being polarity detection [3]. The term polarity detec-
tion and sentiment analysis are used interchangeably due to
the limited definition of sentiment analysis as the Natural
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Language Processing (NLP) task that categorizes a text as
being positive or negative.

Recent approaches to polarity detection were focused on
deep learning neural networks with word vector represen-
tations [4]. Deep learning has gained popularity for NLP
tasks due to the convenience of automated feature extraction.
In traditional NLP approaches, lexical and syntactic features
of the text are specified explicitly. In contrast, automatic
feature representation and extraction are performed using
deep learning techniques perform, and this approach has often
led to a better outcome [5].

In this article, the convolution neural network (CNN) and
bidirectional long short-term memory (BiLSTM) network
were used to perform sentiment classification on a geo-
tweet Twitter dataset. Geo-tagged tweet is a tweet containing
geographic coordinate (latitude, longitude) that indicates the
location where the tweet was generated.

The global vectors for word representation [6] were first
used to transform the text into word embeddings. Subse-
quently, the category of locations which are nearby each geo-
tagged tweet is treated as being representative of the tweet’s
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location information. This approach is inspired by Firth’s
assertion that “you shall know a word by the company it
keeps” - and inspired us to consider that perhaps we can know
a geo-tagged tweet by the company it keeps as well [7].

The categories of nearby locations for each geo-tagged
tweet was vectorized using one-hot encoding and frequency-
count encoding. The nearby location for each geo-tagged
tweet was also vectorized as an ego network. The word
embeddings subsequently were then concatenated with the
vectorized location and fed into a CNN and a BiLSTM net-
work to train and classify the sentiment labels of the tweet.
The experimental results have shown that our approach has
resulted in improved classification performance when com-
pared to using word embeddings alone.

The rest of the paper is organized as follows. In Section I,
a review of related work is shown. Section III discusses
the geo-tagged twitter dataset which was used in this study.
Section IV presents the methodology used for deep learning
twitter text classification. Section V describes the archi-
tecture of the CNN and BiLSTM models with concate-
nated word embeddings and vectorized location features.
Section VI describes the experiments performed in this study.
Section VII discusses the experiment results. Finally, conclu-
sions and future works are presented in Section VIIIL.

Il. RELATED WORK

In this section, a review of related works is performed. The
motivation for performing this study is presented, followed
by a discussion on twitter text classification, as well as word
embeddings models and deep learning models used for sen-
timent analysis.

A. LOCATION AND SENTIMENT

There is a fundamental link between feelings and space:
locations have an aura that can elicit powerful and varied
emotions in people. Places able to trigger feelings such as
boredom, attraction, relaxation, frightening or threatening.
The loss of a place do affect emotional feelings [8].

A study of sentiment in New York City [9] have shown
that public sentiment is most positive at public parks and is
most negative at the transportation hub. Cemeteries, medical
centres, jails, and sewage facilities are shown to be asso-
ciated with a strong sentiment as well. Public opinion can
vary across fine-grained locations in public places, where
locations with significant litter or exposure to a travelling
community were associated with strong negative sentiments.
At the same time, well-kept natural surroundings elicited
strong positive sentiments [10].

There is a correlation between urban metrics and sentiment
analysis. Generally, people had the opinion that shrinking
cities exhibited more negative sentiment as compared to
growing cities, however, in reality the pattern of sentiment
exhibited in both shrinking and growing cities are the same
[11]. Loss in population did not contribute to negative senti-
ment, as this was attributed to poor infrastructure. In another
study, the sentiments exhibited by different income-level
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groups were studied. By analyzing urban outdoor images,
the high-income group generated more positive sentiment.
In contrast, medium-income and low-income group gener-
ated more negative sentiment [12]. In another study, tweets
related to city features and transportation activities were ana-
lyzed to create a polarity city features map [13]. Through
this map, the travellers can avoid the areas associated with
negative sentiments, thus improving the satisfaction level of
travellers.

Spatial correlation with sentiments, especially for posi-
tive sentiments, is also demonstrated in research performed
using the United States Geo-tagged data [14]. The evidence
for relating location to sentiment can be shown even on a
country-level, with research showing that different areas in
the same country have different sentiment towards the same
topic [15], [16].

Investigation on the impact of location information on
sentiment classification can result in better decision support.
Research has shown that sentiment indications will improve
performance of POI recommendation [17]. Rating of a busi-
ness and rating of its geographical neighbourhood have a
weak positive correlation. The incorporation of geographi-
cal neighbourhood influence like category of the business,
its popularity, and the content of review from customers
can further improve the business rating prediction accuracy.
The geographical distance between a business and a user
adversely affects the prediction accuracy in point of inter-
est (POI) recommendation and prediction [18].

From the literature reviewed, there is strong evidence that
sentiment can be affected by location or spatial factors. While
spatial and temporal analysis of geo-tagged tweets has been
performed, there has been little work which has explored
the incorporation of location information as a feature for
performing geo-tagged tweet sentiment classification.

B. TWITTER TEXT CLASSIFICATION

Sentiment analysis is treated as a text classification prob-
lem that classifies an opinionated document as expressing a
positive or negative opinion which aims to find the general
sentiment of the author in an opinionated text [19]. The text
classification process is composed of the following elements:
(1) data acquisition, (2) data analysis and labelling, (3) feature
construction and weighting, (4) feature selection (5) model
training, and (6) solution evaluation [20]. Fig 1 shows a text
classification process workflow. The text representation and
classifier components of the process is discussed in Sec-
tions C and D.

Most of the past research work performed on social media
analysis research has been performed using Twitter data [21].
This could be due to Twitter’s social network rules, where
any user can follow any other user as well as access to its
data. Twitter’s application programming interface (API) has
provided access to almost 100% of its data, which is an access
rate unrivalled by other social network platforms [22].

As a result of this, Twitter sentiment analysis is applied
in many research to improve the understanding of people’s
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1. Data acquisition

2. Data analysis and labelling

Labelled dataset

3. Feature construction and weighting

Data representation

| 4. Feature selection and projection |

5. Training of a classification model |

|
|

6. Solution evaluation |

FIGURE 1. Text classification process with state-of-the-art element [20].

view on particular business and social issues [23]. Twitter
sentiment analysis is applied on multiple domains, namely
holiday season analysis [24], nuclear power generation [25],
patient reactions to medicines [26], primary election [27],
product brand [28], product sales [29], public health and
epidemic outbreaks [30], stock market movements [31] and
supreme court decision [32].

The myriad forms of Twitter sentiment analysis research
have been performed using many different methods. Of the
many methods used, recent sentiment analysis has been per-
formed using machine learning [33], particularly supervised
machine learning. Widely used machine learning algorithms
which has been used for sentiment analysis includes rule-
based algorithms [34], decision trees [35], support vector
machines (SVM) [36], artificial neural networks [37], deep
learning [38], ensembles [39], and statistical models such as
the Hidden Markov model (HMM) [40] and the Gaussian
mixture model (GMM) [41]. Table 1 shows a brief explana-
tion for each supervised machine learning technique.

C. WORD EMBEDDINGS

Traditional text representation approaches like Bag-Of-
Words (BOW), and Part Of Speech (POS) tagging have been
surpassed by machine learning approaches, especially deep
learning as deep learning has better classification accuracy
[42]. Most deep learning models have focused on using word
embeddings, which helps the learning algorithms to achieve
better performance by grouping similar words [43]. Words are
represented using word embedding based on their similarity
in a corpus of relationships. There are two types of word
embeddings, namely static [6], [44] and dynamic [45], [46]
word embeddings.

1) STATIC WORD EMBEDDING

Static word embedding is considered static as these embed-
dings do not change with the context once it has been learned.
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TABLE 1. List of supervised machine learning algorithms and how they
work.

Rule-based
use IF-THEN rules to perform classification

Decision tree
uses a tree-like graph structure to perform classification

SVM ‘

finds a separation between hyperplanes of data class

ANN
attempts to imitate human neurons to perform classification

Deep learning
uses learnt data representation to perform classification

Ensemble
combine multiple learning algorithms to perform classification

Statistical model - HMM
assume that the observed variables is dependent on the unknown variables
and use this assumption to do the prediction

Statistical model - GMM
allocate data points to multivariate normal for clustering

Although static word embeddings are considered efficient,
static word embeddings do not solve polysemy problems
well, since the meaning of a polysemous word depends on
its context [47].

Word2Vec (w2v) is an example of a static word embedding.
It is implemented by using two-layer neural networks to
create word representations. A large corpus of words is used
in w2v, using either the Continuous Bag-Of-Words (CBOW)
method which predicts the target word from surrounding
words, or the Skip-Gram method which predict surrounding
words from target word to generate word representations.
Words that have similar context are located close to each
other in the word representation vector space. However, w2v
accounts only for local contexts [44].

Global Vectors for Word Representation (GloVe) is another
static embedding method. A GloVe model is created as a
log-bilinear regression model that has incorporated both the
feature of global matrix factorization and the feature of
local context window to create word representations. GloVe
has improved on w2v by incorporating global word co-
occurrence statistics of a corpus to generate word representa-
tions. In that way, GloVe can create word representation that
captures meaning in the word vector space [6].

2) DYNAMIC WORD EMBEDDING

Text representation which is changed by context is known
as contextualized embeddings, which are also known as
dynamic word embeddings. These word embeddings are
more effective in solving the polysemy problem as compared
to static word embeddings [48].

One example of a dynamic embedding model is the
Embeddings from Language Models (ELMo) [45]. BILSTM
is used in ELMo to create word representation. The entirety
of the text is used when by ELMo when creating word repre-
sentations, instead of considering every character in a text.
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The BiLSTM used in ELMo allows it to distinguish word
ambiguity well.

Bidirectional Encoder Representations from Transformers
(BERT) [46] uses transformer to create word representations.
Strong feature extraction and contextual expression ability
are demonstrated in BERT. It fixes the overfitting problem
by using masked language model (MLM). With MLM and
next sentence prediction mechanism, it can generate good
sentence representation.

In this article, we did not consider the usage of dynamic
word embedding models, as we wanted to investigate how
location information can provide additional context to the
geo-tagged tweets. The ability of dynamic embedding models
to provide dynamic context would have obscured the effect of
concatenating location information to word embeddings.

D. DEEP LEARNING MODELS FOR SENTIMENT ANALYSIS

Popular deep learning models which have been used for
sentiment analysis includes the CNN [49] and the RNN [50].
While it is difficult to come to a definitive conclusion as to
which of the models perform better for sentiment analysis
tasks, RNN has recorded a better performance in general [51].

1) CONVOLUTIONAL NEURAL NETWORK

CNN is composed of convolution layers with a feedforward
neural network. Local features are extracted by the one-
dimensional convolution layer as this layer has restricted the
receptive fields of prior hidden layers [52]. Between neurons
of adjacent layers, a local connectivity pattern is enforced
to achieve spatially local correlation which is useful for text
classification [53].

2) RECURRENT NEURAL NETWORK

Past input in an RNN is processed with the current input
to result in a form of temporary memory which is effective
at processing sequential information. A long sequence in
RNN, however, is difficult to be processed due to short-term
memory. Short-term memory is expressed as a difficulty to
propagate information from earlier time steps to later ones.
Short-term memory is caused by backpropagation through
time (BPTT). The vanishing gradient problem is experienced
by an RNN during backpropagation.

When a gradient value becomes extremely small, it does
not contribute to much learning. Small gradient updates to
layers in RNN will cause an RNN to stop learning. As a
result of non-learning layers, RNN can ‘forget’ what it has
seen in longer sequences, thus having a short-term memory.
To overcome the shortcomings of RNN, researchers have
developed more variants of RNN which includes the Bidirec-
tional Recurrent Neural Network (BRNN) and Long Short-
Term Memory Network (LSTM) [53].

3) BIDIRECTIONAL RECURRENT NEURAL NETWORK

BRNN [54] consists of two stacked RNNs. One layer pro-
cessed the input in its original direction, while the other
layer processed the input sequence in reversed direction. The
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hidden state of both RNN is then connected to form one
output. Future input information is thus reachable from the
current state. This increases the amount of input information
available and solves the problem of RNN that the future input
information cannot be reached from the current state.

4) LONG SHORT-TERM MEMORY NETWORK

Gates that can regulate the flow of information are found in
LSTM [55]. Relevant information throughout the processing
of the sequence is propagated through a LSTM. As a result,
information from the earlier time steps can be propagated to
later time steps, avoiding the vanishing gradient problem and
reducing the short-term memory effects.

5) BIDIRECTIONAL LONG SHORT-TERM MEMORY
NETWORK

Bidirectional Long  Short-Term Memory Network
(Bi-LSTM) combine the benefits of BRNN and LSTM.
LSTM solve the vanishing gradient problem but only retain
information from the past due to its input being one way.
BiLSTM has both past (backward), and future (forward) input
as it run inputs in two-way, one from future to past and one
from past to future.

Ill. DATASET

A dataset with text and location categories is used to evalu-
ate the performance of the discussed approach. The dataset
is adapted from the public dataset hosted at the Carnegie
Mellon University which contains 377616 English-only mes-
sages from 9475 geo-located microblog users approximately;
within the United States; over one week. It contains five
variables which are the anonymized user ID, time of tweet,
latitude, longitude, and the tweet messages itself [56].

The latitude, longitude and text columns from this collec-
tion of geo-tagged tweets were used as the dataset. After the
text is cleaned, rows with empty text or have a length of fewer
than five characters is removed. The text data is pre-processed
as follows [57]:

1) remove Unicode strings

2) convert URL (www, http...) to a token ‘URL’

3) remove username and retweet

4) remove punctuation, number, and special characters
5) remove duplicated character that exceeds 3

6) remove additional white spaces

After the pre-processing steps has been completed,
the dataset was labelled with a sentiment polarity label
using the Valence Aware Dictionary and sEntiment Reasoner
(VADER) [58]. VADER takes advantage of regulatory mod-
elling approaches to develop an innovative sentiment analysis
system that does not require training data and integrates a
crowdsourcing methodology that enhances the lexical charac-
teristics of candidates. VADER has exceeded the performance
of individual human raters during sentiment analysis testing
and performed more favourably across contexts for eleven
state of the art sentiment benchmarks.
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VADER includes a collection of ratings that include the
positive score, neutral score, negative score, and the compos-
ite score. The compound score is a useful one-value metric
calculating the sum of all standard lexicon ratings. Although
VADER claimed to outperform human raters in predicting
sentiment, another four other sentiment analysis libraries
were tested to reduce the bias in this study.

The four sentiment analysis libraries which were tested
were textblob [59], polyglot [60], IBM Watson natural lan-
guage understanding [61] and senticnet [62]. Table 2 shows
the findings after the evaluation process of each sentiment
analysis library. Senticnet was excluded because it only works
on a word-level rather than on a sentence-level. Polyglot and
IBM Watson were excluded as these libraries required the
input to be proper, i.e. these libraries cannot recognize short-
form text, which is not suitable for twitter text.

TABLE 2. Libraries to predict sentiment polarity.

textblob
Works on sentence but the polarity not accurate

vader
Works on sentence

polyglot
Works on sentence but language must be proper

ibm watson natural language understanding
Input must exceed 15 characters and language must be proper

senticnet
Only can work with word not sentence

After the evaluation process was completed, the conclusion
was drawn that VADER is the most suitable library as it
returned more accurate sentiment polarity score as compared
to textblob. This conclusion was drawn after an assessment of
five randomly sampled tweet was performed using VADER,
textblob and human raters. Table 3 shows five rows of tweets
with three sentiment outcomes. The human sentiment is
author’s opinion on the tweet, which is same as the result of
VADER. Textblob has a different outcome, shown at row 4,
which is bolded. From this assessment, VADER is a better
choice for sentiment labelling as compared to textblob.

The tweets were then labelled according to the senti-
ment polarity score obtained using VADER, as shown in

TABLE 3. Comparison of human, vader, textblob sentiment on sampled
tweet.

textblob
sentiment

vader sen-
timent

human

text
sentiment

1 | Why some niggaz put a front like they got shit an negative
deep down not even dry shit dem nuh inna dem

batty #Fakeassniggaz

negative negative

‘ 2 ‘ why is everybody and their momma in ATL this neutral neutral

weekend

3 | smirks well if you really don t need help okay But
let me know if you DO need help I have a jack in

the truck

\ 4 \ #shoutout to for not having on all black today \ neutral neutral negative

‘ ‘ neutral ‘
positive ‘ positive ‘ positive ‘
\ \ |
| 5 | Wow Have fun | positive | | |

positive positive
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Algorithm 1. Two analytical datasets were created following
the sentiment polarity labelling process. The first analytical
dataset had multiclass (positive/negative/neutral) sentiment
polarity labels, while the second analytical dataset contained
binary (positive/negative) sentiment polarity labels.

Algorithm 1 Categorization of Tweets to Sentiment
1: if score > 0 then

2: sentiment = 2

3: else if score = 0 then
4: sentiment = 1

5: else

6: sentiment = 0

7: end if

The nearby location categories were acquired using
the GeoNames Nearby web services [63] within a radius
of 300 meters for each tweet. The tweets without nearby loca-
tion categories were removed from the dataset, resulting in the
multiclass dataset consisting of 17593 rows and the binary
dataset consisting of 11521 rows of tweets. There is a total
of 164 nearby location categories for the multiclass dataset
(with positive, neutral, and negative labels) and 153 nearby
location categories for the binary class dataset (with positive
and negative labels).

The top three nearby location categories were buildings,
churches, and schools with occurrences of 13342, 12730, and
11973 instances for the multiclass dataset and 9434, 8988,
8428 instances for the binary dataset respectively. The multi-
class and binary-class geo-tweet dataset used in this study is
collectively referred to as the Microblog dataset.

Table 4 summarize the details of Microblog dataset. Fig 2
shows that the Microblog dataset is a balanced dataset based
on the class label histogram.

TABLE 4. Summary of details of the Microblog dataset.

| Multiclass | Binary |

| Tweets number | 17593 | 11521 |
Positive 6612 6612
Neutral 6072 -
Negative 4909 4909
| Categories count | 164 | 153 |
Buildings 13342 9434
Church 12730 8988
School 11973 8428

IV. METHODOLOGY FOR TWITTER TEXT SENTIMENT
CLASSIFICATION

In this section, the text classification process using deep
learning is explained. The methodology used for performing
the baseline twitter text sentiment classification is described,
followed by a description of the deep learning architecture
used to perform the experiment.
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Geotagged Microblog Corpus data distribution

positive neutral
sentiment

negative

FIGURE 2. Distribution of data in the Microblog dataset.

' Feature
Input  —> Emlbeddmg —>{ extraction |—» Dense layer
ayer layer (output)

Deep learning model

FIGURE 3. Text classification process.

The input twitter text must be first converted from atexttoa
numeric representation. The representation is then used as an
input for a deep learning model to continue the classification
process. Fig 3 show the text classification process using deep
learning. The first layer in the deep learning model is the
embedding layer, followed by the feature extraction layer
with a final dense (output) layer.

A. EMBEDDING LAYER

The input twitter text will be integer encoded by assigning
each word to a unique integer number (by order of appear-
ance in the dataset). The integer encoded representation is
subsequently padded into an uniform length. This is then sent
through the embedding layer, which acts as a lookup table to
generate a weight matrix based on the integer encoded input.

The size of the vocabulary, output dimension and embed-
ding matrix of pre-trained GloVe model are essential to
ensure the creation of an accurate lookup table [64]. The size
of the vocabulary is the occurrences of unique words in the
dataset. The output dimension is the size of the vector space
in which words will be embedded. Lastly, the dimension of
the embedding matrix is dependent on the pre-trained GloVe
model.

The embedding layer creates embedding vectors from the
input twitter text. It compresses the input feature space into
a smaller space by finding an optimal mapping of each of
the unique words to a vector of real numbers [65]. The
embedding matrix keeps the vector size smaller, which pro-
mote efficient computation. The product obtained from this
layer forms the feature which are then passed to the feature
extraction layer.
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As CNN and BiLSTM are using different feature extraction
techniques, the feature extraction layer for CNN and BiLSTM
is discussed in Section C and Section D respectively.

B. OUTPUT LAYER

The classification process is enabled by the dense layer,
which is also known as a fully-connected layer. Activation
functions are used to determine the output of the deep neu-
ral network. The sigmoid activation function is suitable for
binary classification as the output is in zero and one, while
the softmax activation function is suitable for multiclass clas-
sification as the output is zero, one and two.

C. CNN

The CNN used in this study consists of an embedding layer,
three convolution layers, a pooling layer, a flatten layer, and
finally an output layer, as shown in Fig 4.

Embedding Convolution Pooling Flatten Output
[([T[]—
— —H—E0—0
[(ITTT]—

FIGURE 4. CNN structure used in this research.

Features from the twitter text are extracted by the con-
volution layer. The convolution layer contains a kernel or
filter that is a weight that slides through the input sentence
matrix. The output of this process is a matrix called the feature
map, which is the dot product of the input matrix and weight.
The size of the feature map is controlled by several filters,
padding, and stride, which is unit per slide.

The amount of data from the feature map is reduced by
the pooling layer. The pooling layer abstracts information to
improve generalization. Max-pooling has performed better
than average and minimum poling [66]. Max-pooling is a
pooling operation that calculates the largest value in each
window of the feature map.

A single long feature vector is created as input to the dense
layer. This feature vector is a result of the flatten layer, which
has converted the three-dimensional feature from the pooling
layer into a one-dimensional feature as shown in Fig 4.

D. BiLSTM

The BiLSTM used in this study consists of an embedding
layer, with one LSTM in a forward direction and one LSTM
in a backward direction and lastly an output layer, as shown
in Fig 5. One LSTM accesses past information in the forward
direction while another LSTM accesses future information in
the reverse direction. There is no need to use the Flatten layer
as the LSTM output is two-dimensional.

The component of the LSTM used in the BILSTM is shown
in Fig 6. In the forward LSTM layer, the information flow
in one direction as in Fig 6. For the backward LSTM layer,
the information flow is in the another direction.
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FIGURE 5. BiLSTM structure used in this research.
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FIGURE 6. Structure of LSTM [67].

The current input and the previous output are channelled
through the Forget gate, which contains a sigmoid layer to
decide what information is to be discarded. The output is an
either zero or one, where one is to keep, and zero is to forget.
Subsequently, a choice is made on the information that will
be stored in the cell state.

The sequence goes to Input gate which contains a sigmoid
layer decide which value to keep from tanh layer by mul-
tiplying the tanh output with sigmoid output. The previous
cell state gets pointwise multiplied by the Forget gate output.
The new output then gets pointwise addition by the Input gate
output to get a new cell state.

The next hidden state is decided by the Output gate which
contains a sigmoid layer. The hidden state contains informa-
tion about previous inputs, and it is also used for prediction.
The previous hidden state and current input are passed to a
sigmoid function. The new cell state obtained earlier is also
passed to a tahn function. Both outputs are multiplied to get
a new hidden state. The new cell state and new hidden state
is then carried over to the next LSTM unit.

V. PROPOSED METHOD TO INCORPORATE LOCATION
INFORMATION AS A FEATURE FOR TWITTER TEXT
SENTIMENT CLASSIFICATION

In this section, the method used to incorporate location infor-
mation as a feature for twitter text sentiment classification is
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presented. Two different approaches were used to represent
location information in this study, namely frequency-count
encoding and vectorized ego-network.

A. LOCATION VECTORIZATION

The purpose of this approach is to represent location cat-
egories through frequency-count encoding. As an example,
there are 164 nearby location categories in the multiclass
Microblog dataset. Frequency-count encoding is applied to
the location categories instead of one-hot encoding, resulting
in a 164-dimension matrix. Our previous study has shown that
frequency-count encoding has resulted in higher accuracy
for twitter sentiment classification as compared to one-hot
encoding [68]. The text representation matrix is concatenated
with the nearby location categories matrix as the input to the
deep learning model.

Concatenation of different feature vectors is an approach
which has been used successfully for twitter sentiment anal-
ysis, with previous efforts focusing on the concatenation
of word embeddings and n-grams features and word sen-
timent polarity score features [69]. In this study, we used
two approaches for concatenating twitter text with the nearby
location categories. Concatenation can be performed either
before the embedding layer, or concatenation occurs after
both inputs goes through the embedding layer.

1) TEXT CONCATENATED WITH LOCATION AS INPUT

To increase the location context of tweets, the nearby location
categories for each geo-coded tweet is concatenated with the
twitter text representation, as the input to the embedding
layer. As shown in Fig 7, the concatenated input passes
through an embedding layer with pre-trained word embed-
ding model weight before being used as an input for a deep
learning model.

- Deep
- 5 Embedding —_ Learning
layer model

FIGURE 7. Approach of text concatenate with location as input.

’ Text ‘ + Location

2) TEXT AND LOCATION AS SEPARATE INPUT

Rather than concatenate nearby location categories with
twitter text immediately, the twitter text representation and
nearby location for each geo-coded tweet are treated as sep-
arate inputs. As shown in Fig 8, the twitter text is passed
through an embedding layer with pre-trained word embed-
ding model weight while the nearby location information is
passed through an embedding layer with no word embedding
model. The output generated is then concatenated through a
merged layer before being used as an input for a deep learning
model.

B. LOCATION AS A VECTORIZED EGO NETWORK

Although there is an improvement in the sentiment classifi-
cation accuracy via concatenating text with nearby location
categories, it is an inefficient approach as the size of the data
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Text 5 | Embedding
layer 'l
Deep
+ —> Learning
j model
Location | —> Emlbedding
ayer

FIGURE 8. Approach of text and location as input.

increases. As the input matrix becomes sparse; the resultant
feature dimension also increases, which leads to increased
training time. To solve this problem, dimension reduction is
necessary.

As the tweets and location categories has hierarchical
pattern, a hierarchy based dimension reduction technique is
applied to it. Inspired from social network analysis, the indi-
vidual tweet is represented as an ego network, which com-
bines the perspective of network analysis with the aproaches
of mainstream social science [70]. As an example, an ego
network of a tweet that has a nearby restaurant, school and
a library is shown in Fig 9. The circle is called a node, and
the edge linked between node is called a tie. An ego (Tweet)
is connected by three nodes (location categories).

FIGURE 9. Tweets and location in graph.

Three measurements from ego networks were adopted for
the purpose of dimension reduction. The three measurements
used in our study were network density, closeness central-
ity, and degree centrality [71]. In our study, the 164 nearby
location categories from the multi-class Microblog dataset
can be reduced to three measurements, which make it con-
sistent no matter the number of nearby location categories.
Equations 1 to 3 shows the calculation for ego network related
feature vectors.

network density
. number of ties )
"~ number of node x ((number of node — 1)/2)

closeness centrality

1
= 2
sum of distance to other nodes @
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degree centrality

= number of ties that touch a node 3)

1) TEXT CONCATENATED WITH EGO NETWORK FEATURES
AS INPUT

The method used to concatenate text with ego network fea-
tures is the same as the method described in Section V.A.1,
with the difference that the nearby location feature is replaced
by the three ego-network related measurements as shown
in Fig10.

Ego network > Embedding > Deep learning

Text + features layer model

FIGURE 10. Approach of text concatenated with ego network features as
input.

2) TEXT AND EGO NETWORK FEATURES AS SEPARATE
INPUT

The method used to concatenate text with ego network fea-
tures as separate features is the same as the method described
in V.A.2 with the difference that the nearby location feature
is replaced by the three ego-network related measurements as
shown in Figure 11.

Embedding

layer _1

+ >

Ego network > Embedding 1
features layer

Text —>

Deep learning
model

FIGURE 11. Approach of using both of text and ego network features as
input.

VI. RESULTS

In this section, the result of empirical experiments is pre-
sented. These experiments were performed to evaluate the
outcome of our method which concatenates location infor-
mation with text as a feature to be used in a twitter sentiment
classification task.

Our preliminary study [68] which had incorporated loca-
tion information for sentiment classification tasks have
shown an improvement in the classification accuracy. The
frequency count of nearby categories approaches led to
higher accuracy as compared to one-hot encoding for vec-
torized nearby location categories. The best accuracy result
is achieved using a pre-trained GloVe model trained on 27B
Twitter data with 200 vector dimension on the embedding
layer.

Each experiment in this study was conducted using Python
3.6 in Linux Mint 19.1 with a seed value of 7. The dataset
is loaded using pandas [72]. Data processing is done using
NumPy [73] and Keras [74] with a Tensorflow backend [75].
The dataset is split into training and test set with the train-
test split ratio of 7:3 [76]. The final accuracy is the average
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TABLE 5. Experiment result of binary classification on CNN.

TABLE 6. Experiment result of binary classification on BiLSTM.

Accuracy Loss Training Accuracy Loss Training
time time
| Input | Max | Min | Mean | Max | Min | Mean | (seconds) | | Input | Max | Min | Mean | Max | Min | Mean | (seconds)
| Text | 08124 | 08061 | 0.8108 | 1.6597 | 0.6317 | 1.3623 | 41.08438 | | Text | 0.8862 | 08642 | 0.8769 | 0.6963 | 03391 | 0.5599 | 345.1042
Text 0.8547 | 0.8258 | 0.8511 1.4708 | 0.7871 1.2503 361.2392 Text 0.8828 | 0.8487 | 0.8627 | 1.4536 | 0.3287 | 0.9365 1109.945
concatenated concatenated
with  location with nearby
categories location
Text and loca- | 0.8518 | 0.8311 | 0.8447 | 14555 | 0.6843 | 12104 | 4167792 categonies
tion categories Text and | 0.8854 | 0.8568 | 0.8625 | 1.2299 | 0.3524 | 0.9637 1321.12
as separate in- nearby location
put categories  as
separate input
Text 0.8471 | 0.8366 | 0.8449 | 1387 | 0.6989 | 1.1528 | 109.8327 separate inpu
concatenated Text 0.8776 | 0.8434 | 0.8564 | 1.5074 | 0.3499 | 1.0296 260.7753
with ego concatenated
network with ego
measurements network
Text and | 0.8447 | 0.8248 | 0.8398 | 1.6431 | 0.8281 | 1.4249 | 162.5174 measurements
ego  network Text and | 0.8791 | 0.8431 | 0.8552 | 1.5132 | 0.3794 | 1.0394 373.6193
measurements ego  network
as separate measurements
input as separate
input

accuracy over 20 runs. The maximum length for text is 30,
while the location length depends on the experimental setting.
Experiment with text-only input is considered the baseline
experiment; while validation of our approach is achieved
upon the achievement of an improvement in terms of accu-
racy for subsequent twitter sentiment classification tasks per-
formed using the concatenated location-text features. Other
measures used to compare the performance of the concate-
nated features are model training time and loss.

The architecture of the deep learning model used in this
study is described as follows: The CNN starts with three
convolution layers; each has 100 filters with ReLU activation
function and a kernel size of 5, 4, 3, respectively. Next is
the max-pooling layer with a pool size of 2. There is a
flatten layer followed the output layer with the activation
function of sigmoid for binary classification and softmax for
multiclass classification. The BILSTM has LSTM layer with
100 neurons and 0.5 dropout rate. The output layer is the same
as CNN settings.

Adam is used to optimize the deep learning model. Loss
is calculated using binary cross-entropy for binary classi-
fication and sparse categorical cross-entropy for multiclass
classification. Validation split of 7:3 and 20 epochs was used
in training the model. Early stopping is set to stop training
upon reaching three epochs without improvement to prevent
overfitting.

A. BINARY CLASSIFICATION USING CNN

Table 5 shows that all input method exceeds the baseline
accuracy for binary classification performed using CNN. The
highest accuracy achieved was 85.11% using text concate-
nated with nearby location categories as input. The accu-
racy is improved by 5.1% as compared to baseline accuracy,
however, it takes 6 minutes to train. The overall best input
method is text concatenated with the ego network measure-
ments which have the second-highest accuracy of 87.57%
and the lowest loss of 1.1528, and it takes only 1.8 minutes
to train.
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B. BINARY CLASSIFICATION USING BilLSTM

Table 6 shows that adding location categories to text actually
reduced the classification accuracy, which suggest that text
only features is most useful for achieving high accuracy for
binary classification of twitter text performed using BiL-
STM. Although the classification accuracy did not improve,
the time to train the model is reduced by using text concate-
nate with ego network measurements as compared to using
text concatenated with nearby location features.

The sentiment classification experiment performed using
BiLSTM with a binary label resulted in a mean accuracy
of 87.69% and a mean loss of 0.5599. When text is con-
catenated with nearby location categories as a feature vector,
the mean accuracy is reduced to 86.27%, and the mean loss
has increased to 0.9365.

C. MULTICLASS CLASSIFICATION USING CNN

Table 7 shows that the highest accuracy for multiclass classifi-
cation on CNN is 84.26% using text concatenated with nearby
location categories as input. This score improves by 13.8%
compared to the baseline accuracy, but it takes 9.3 minutes
to train. The overall best input method is text concatenated
with ego network measurements which have an accuracy
of 83.99%, and it takes only 2.8 minutes to train.

D. MULTICLASS CLASSIFICATION USING BiLSTM

Table 8 shows that the highest accuracy for multiclass classi-
fication on BiILSTM is 87.77% using text and nearby location
categories as separate input. This score improves by 4.1%
compared to the baseline accuracy, but it takes 37.8 minutes
to train. The overall best input method is text concatenate
with ego network measurements which have an accuracy
of 87.57%, and it takes only 7.3 minutes to train.

E. SUMMARY
From the results of the experiments, BILSTM has better
classification accuracy than CNN. On both the CNN models,
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TABLE 7. Experiment result of multiclass classification on CNN.

Accuracy Loss Training
time
| Input | Max | Min | Mean | Max | Min | Mean | (seconds) |
| Text | 07539 | 0.7202 | 0.7404 | 2.5637 | 1.0903 | 2.2236 | 59.77406 |
Text 0.8452 | 0.8246 | 0.8426 | 1.5593 | 0.8848 | 1.3451 560.4678
concatenated
with  location
categories
Text and loca- | 0.8393 | 0.8121 | 0.8365 | 1.6761 | 0.9229 | 1.4638 638.3973
tion categories
as separate in-
put
Text 0.8427 | 0.8179 | 0.8399 | 1.5998 | 0.8849 | 1.3976 168.0574
concatenated
with ego
network
measurements
Text and | 0.8352 | 0.8026 | 0.8302 | 1.7421 | 0.9479 | 1.5578 254.9599
ego  network
measurements
as separate
input

TABLE 8. Experiment result of multiclass classification on BiLSTM.

Accuracy Loss Training
time
| Input | Max | Min | Mean | Max | Min | Mean | (seconds) |
| Text | 0.8537 | 0.8264 | 0.8435 | 0.8402 | 0.4693 | 0.6844 | 578.2734 |
Text 0.8844 | 0.8587 | 0.8727 | 1.2954 | 0.3831 | 0.9825 1983.731
concatenated
with  location
categories
Text and loca- | 0.8907 | 0.8615 | 0.8777 | 1.1943 | 0.4031 | 0.9177 2271.619
tion categories
as separate in-
put
Text 0.8897 | 0.8638 | 0.8757 | 1.2777 | 0.3695 | 0.9795 435.3295
concatenated
with ego
network
measurements
Text and | 0.8825 | 0.8537 | 0.8729 | 1.3633 | 0.4131 0.992 565.137
ego  network
measurements
as separate
input

adding location has increased the accuracy and reduced the
loss, which indicates that the addition of location information
has improved the CNN model performance. The increase
of accuracy and decrease of loss can be interpreted as the
increased frequency of correctly classified labels and the
decrease of the confidence level of the model respectively.

However, the behaviour of BiLSTM is different for the
binary and the multiclass dataset. For the binary BiLSTM
experiments, the classification accuracy is high (highest
among all experiments which is 87.69%) and adding location
information to text has actually decreased the classification
accuracy and increased the loss.

Conversely, the classification accuracy and the loss of
multiclass BILSTM experiments has increased when adding
location information. The increased of accuracy and also loss
can be interpreted as the increased frequency of correctly
classified labels and subsequently the decrease of the con-
fidence level of the model respectively.

The possible reason of the experiments result could be that
the BiLSTM have more suitable feature extraction method
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TABLE 9. Comparison of SHAP values on CNN binary classification.

concatenated

text only 4,2,5,
5,1

in taking sequence data as compared to the CNN model.
Thus, the classification capability is better. More detailed
discussion of the experimental results is presented in next
section.

VII. DISCUSSION

In this section, a discussion of the impact of concatenating
nearby location information to text features is discussed.
In this study, we attempted to investigate the effect of adding
location as context for twitter text sentiment classification via
investigation of feature importance.

It is beneficial to know which feature the deep learning
model deems to be necessary. A comparison of before and
after adding the location feature to the text should give some
insights on the feature weightage. To understand the deep
learning model, SHapley Additive exPlanations (SHAP) is
used to visualize the feature. It connects optimal credit allo-
cation with local explanations using the classical Shapley
values from game theory and their related extensions [77].
The higher the mean SHAP values of a feature, the higher the
contribution of that feature to the model.

Since only the category of binary classification using BiL-
STM shows different behaviour, SHAP is applied to the
binary classification model to see the feature weight. The
input method of text-only and text concatenated with ego net-
work measurements are compared for simple visualisation as
the former have 30 features while the latter have 33 features.
The Oth feature to 30th feature are text features, while the 31st
feature to 33rd feature are location features. The first 100 data
from the training set is fitted to the SHAP explainer and is
then used on the first 100 data from the testing set to generate
the mean SHAP value.

In the binary classification CNN model, Fig 12 shows the
mean SHAP values for the model that uses text as input that
is having an accuracy of 80.21% while the model that used
text concatenated with ego network measurements as input
having an accuracy of 83.10%.

A comparison of the top mean SHAP value that has
exceeded 0.05 of the CNN model (taken from Fig 12) is
shown in Table 9. It appears that CNN did not take nearby
location categories as an essential feature as the result gener-
ated by SHAP only shows features associated with text only
features. The concatenation of nearby location categories as
a feature has resulted in a change in the feature order, which
corresponds to an increase in the classification accuracy. The
unique features on the text only model is the 6th feature while
on the concatenated model the Oth feature is unique, which
can be interpreted as model that put more weightage on the
Oth feature will result in an increase in accuracy.

In the binary classification BILSTM model, Fig 13 shows
the model that uses text as input that has an accuracy

181023



IEEE Access

W. L. Lim et al.: Sentiment Analysis by Fusing Text and Location Features of Geo-Tagged Tweets

reature « [
reatur 2 [
reature 5 |
reature ¢ [N
reature 1 [N
reature o [N
reature > [N
reature 7 [N
reature = (NN

reature 15 [N

reature 11 [N

reature 10 [N

reature 12 [N

reature 13 [N

reature 16 [NNRNEG
Feature 9 _

reature 14 [NNNNEG

Feature 17 _

reature 10 [N

Feature 21 -

m Class 0

0.00 0.01 0.02 0.03 0.04 0.0s 0.06 0.07
mean{|SHAP value|) (average impact on medel output magnitude)

(a) Text only - 80.21%

FIGURE 12. SHAP on binary classification CNN.

TABLE 10. Comparison of SHAP values on BiLSTM binary classification.

1 5,7
concatenated ,1,5,2,6

text only 0,1,2,4,
0,1,5,2

of 87.86% while the model that uses text concatenate
with ego network measurements as input have an accuracy
of 86.73%.

A comparison of the top SHAP features with mean SHAP
values exceeding 0.05 of the BiLSTM model (taken from
Fig 13) is shown in Table 10. It appears that BiLSTM
also did not take location categories as an essential fea-
ture as the result generated by SHAP only shown fea-
tures until the 19th feature. Adding nearby location feature
also swap the priority of feature that increase the classi-
fication accuracy. The findings in the CNN model shown
consistency which put more weightage on the Oth feature
and less weightage on the 6th feature, which increase the
accuracy.

From the SHAP results of CNN and BiLSTM, feature
Oth, 1st, 2nd, 4th, 5th have high weightage among all the
features. Input text has 30 features; SHAP also shows that all
model only consider feature within it. Adding nearby location
feature with text won’t let the model take it as the feature
to calculate prediction but will change the order of feature
prioritization which increase the classification accuracy. The
improvements is only applied when the model is not in opti-
mal performance.

Pearson’s correlation was performed among the three ego
network measurements to see the relationship between them.
Table 11 shows the results of Pearson’s correlation. The ego
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TABLE 11. Pearson’s correlation of ego network measurements.

| ego_density ego_closeness  ego_degree |
ego_density - 4.39¢-15 -7.32e-15
ego_closeness 4.39¢e-15 - -8.24e-01
ego_degree -7.32e-15 -8.24e-01 -

TABLE 12. Sentiment of selected location categories occurrences in the
dataset.

| positive neutral negative |
Park 2041 1801 1987
Railroad station 20 14 24
Hospital 540 405 475

density has very low positive linear correlation with the ego
closeness and vice versa. The ego density also has very low
linear negative correlation to the ego degree and vice versa.
The ego closeness has a high linear negative correlation to
the ego degree and vice versa. From the findings, the three
features are not similar and are viable to be retained as
features.

Table 12 shows the selected three location categories
occurrences and the sentiment associated. From the reviewed
studies, park and medical centres have high sentiment values
and transportation hub have low sentiment values. The dataset
used in this experiment showed this statement is true by the
occurrences of the location categories. However, there is no
one category that can be concluded to be associated with
positive or negative sentiment as the ratio of each type of
sentiment is nearly equal.
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FIGURE 13. SHAP on binary classification BiLSTM.

VIIl. CONCLUSION

Given a geo-tagged tweet that has latitude and longitude
with it, nearby location categories can be used as a feature.
To use nearby location categories with text, it can be concate-
nated with the text as an input to the predictive model. Just
by concatenating location categories with text as input can
improve the classification accuracy, however, this approach
is not viable in the long term. The input is a sparse vector that
has many columns.

As the number of nearby location categories increases,
the training time takes longer. To maintain the performance,
an approach of taking tweet and location categories as ego
network is suggested. The input vector goes through dimen-
sion reduction by using three measurements from ego net-
work analysis; as such no matter how much the location
categories increase, the result is still three columns.

The experiments were performed on four categories with
two on binary classification and two on multiclass classi-
fication. Among the four categories, only binary classifica-
tion on BiLSTM shows no improvement when concatenating
nearby location categories to text. The other three categories
show a consistency whereby the concatenation of nearby
location categories and ego network measurements of all
input methods is better than using text only as input. The
best input method is text concatenated with ego network
measurements as it yields good accuracy, and has shorter
training time. The highest accuracy method, which concate-
nates the text with nearby location categories, is taking a
long time.

When compared to concatenating text with ego network
measures, the time taken by models which concatenates
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nearby location categories to text, has resulted in training time
increasing from between 228% to 422%. When the amount
of data is increasing, the number of location categories is
likely to increase, which means the training time using loca-
tion categories is becoming longer. If using text-only already
provide an acceptable result, there is no need to add location
categories to it, unless shorter training time is needed. While
the result still can be better, with the training time into con-
sideration, the most suitable method is text concatenate with
ego network measurements as input and feed into the deep
learning model.

A. FUTURE WORK

From the literature review and implementation, we have
come out with few future research directions that are worth
considering:

1) More metrices to characterize urban typologies such as
street based metrics [78] can be investigated.

2) Use dynamic embedding on the text and make use of
the Transformer model.

3) Try other operations [79] like addition or multiplication
rather than concatenate in the merge layer of neural
network.

4) Treat the tweet, and nearby location categories
as a graph then use node embedding approaches
like node2vec and random walk to generate the
embedding.

5) Include more properties to location data such as dis-
tance between a tweet to a location.

6) Use graph neural network to perform classification.
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