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ABSTRACT Scheduling decisions are of certain cachet in production and operations management. Many
extensions are developed to help address different scheduling industrial situations, one of which, the Mixed-
Blocking Permutation Flowshop Scheduling Problem (MBPFSP), has gained recent recognition due to its
wide industrial applications both in manufacturing and service sectors. Given the complexities of MBPFSPs,
effective heuristics are needed to help generate dependable solutions for industrial-scale applications. This
article proposes an Extended Simulated Annealing (ESA) algorithm to minimize total completion time (TCT)
in MBPFSPs, which is the first study in the literature of MBPFSPs considering a measure that helps improve
the system’s average response time. Through extensive computational experiments, it is shown that the ESA
outperforms the best existing solution algorithms proposed for solving the MBPFSPs. Given the freshness of
the topic, this research facilitates MBPFSP’s wide range of industrial applications to narrow the gap between

scheduling theory and practical applications.

INDEX TERMS Scheduling, permutation flowshop, mixed-blocking, metaheuristics.

I. INTRODUCTION

Introduced by [1], flowshop scheduling is one of the
well-established optimization problems in production and
operations management. The problem helps determine the
best ordering of a set of required jobs, to be processed on
available machines, so that the desired performance mea-
sure can be obtained. In many industrial situations, there
is the same pre-ordering of jobs in all machines, making
the permutation flowshop scheduling problem (PFSP) one
of the most frequently applied scheduling problems. There
are different varieties to the well-known PFSPs, the major-
ity of which sought to enhance the original model through
addressing practical situations with different industrial-scale
applications. Assuming infinite storage capacity before each
machine is a prime example of the situation where the
traditional PFSP does not fit in the industrial application.
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Limited or zero buffer capacity causes blockage of preceding
machines before the availability of a machine to receive the
work-in-progress (WIP) item [2]. The blocking criterion may
vary from one machine/procedure to another. Mixed block-
ing situations are prevalent in large-scale production indus-
tries [3], however, they have been predominantly assumed
identical in the scheduling literature. This short-coming was
recently addressed in Mixed Blocking Permutation Flowshop
Scheduling Problem (MBPFSP) through which heteroge-
neous blocking situations are considered [4]. This extension
of the PFSP simultaneously considers different blocking con-
straints, relaxing the assumption of identical waiting criteria
between successive machines in a zero-buffer (no-wait) pro-
duction system.

Given the importance of blocking constraints in just-in-
time production, and more particularly in Kanban systems
[5], [6], MBPFSPs help narrow the gap between schedul-
ing theory and its industrial applications. The complexities
involved in MBPFSPs, nevertheless, exacerbate NP-hardness
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of this category of scheduling problems, making it hard to
put them in industrial-scale practice. A handful of heuristics
are available to solve the simple-blocking PFSPs [7]-[12].
However, studies in MBPFSPs, and more particularly solu-
tion approaches, are quite limited. Of the existing stud-
ies, [4] were the first to propose a mathematical model,
and a heuristic solution algorithm, to optimize the MBPEFSP.
Reference [13] applied an improved bee colony optimization
approach that outperformed the solution method proposed
by [4] concerning solution quality. The enhanced scatter
search algorithm presented by [3] was the next effort to
propose a solution approach to MBPFSPs that outperformed
the two earlier algorithms. Finally, reference [14] developed
the most recent MBPFSP’s solution approach that overtook
all the existing methods; in their research, a constraint-guided
local search (CGLS) was integrated with an exhaustive neigh-
borhood generation strategy and an extension of the well-
known Nawaz, Encore, and Ham (NEH; [15]) heuristic as
the initialization method. To the best of our knowledge,
CGLS is the best-performing algorithm in MBPFSP literature
when considering makespan as the objective function. Our
review of the limited MBPFSPs studies suggests that there
is room for further improving solutions quality to facilitate
industrial-scale applications of this emerging scheduling
problem, especially concerning the performance measure of
total completion time (TCT).

In this paper, we propose an extension to the renowned sim-
ulated annealing (SA), as well as two Iterated Greedy (IG)-
based algorithms, to minimize TCT in MBPFSPs. To the best
of our knowledge, this paper is the first study in MBPFSP lit-
erature extending to minimize TCT, which is essential when
considering the system’s average response time as the target
for improvement. Contributing to the limited literature of
MBPFSPs, extensive numerical test instances are performed
to evaluate the effectiveness and robustness of the proposed
approaches. It is shown in our study that the developed algo-
rithms outperform the existing best-performing approach,
CGLS, yielding better solutions in all of the benchmark
instances.

The remainder of our paper starts with a detailed descrip-
tion of the MBPFSP, accompanied by preliminaries and math-
ematical formulation. The proposed solution approaches are
then elaborated in section 3. Section 4 provides exhaustive
computational analysis, including parameter calibration and
numerical results, and statistical investigation between the
algorithms’ performance. Finally, the study is concluded by
offering directions for deeper research into modeling and
managing PFSPs considering mixed-blocking constraints.

Il. PROBLEM DESCRIPTION AND FORMULATION

This section presents the MBPFSP considered in this study.
We first describe the mixed blocking constraint that is the
main feature distinguishing the problem at hand from the
well-known PFSPs. Preliminaries and mathematical formu-
lation will follow to set the foundations for our study.
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A. MIXED-BLOCKING CONSTRAINT

The majority of the PFSPs assume unlimited buffer capacity
before each machine. In real-world scheduling situations,
however, the WIP storage space is limited, or there is no
buffer space. Either way, the current machine cannot release
the processed job until the next machine is ready to receive it.
This availability criterion can be different from one machine
to another. The extant blocking PFSP literature assumed an
identical availability situation while this is not always the
case. The following blocking conditions, inspired by real-
world industrial practices, are identified to extend blocking
PFSP.

The most prevalent blocking situation, Release when Start-
ing blocking (RSb), occurs when the job k 41 in the machine
Jj can be processed only when the machine j + 1 starts pro-
cessing the job k. A second blocking situation arises when a
new job, k + 1, can be started in the machine j only after the
machine j + 1 releases job k for processing in the machine
Jj + 2. This blocking situation is named Release when Com-
plete blocking (RCb). Alternatively, there can be RCb* situa-
tions when the machine j can start the job k£ + 1 immediately
after the machine j 4 1 releases job k, regardless of the job
k’s state. MBPFSP accounts for all the mentioned blocking
norms, along with the situation where there is no blocking
constraint (Wb). An illustrative example of the MBPESP is
presented in Figure 1.
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FIGURE 1. An illustrative example of the mixed-blocking situation.

The following assumptions are sought to solve MBPFSP.
First of all, it is assumed that jobs are independent, and
available when they are scheduled; the jobs will be processed
without interruptions. Besides, the processing times of jobs
are known before having them scheduled. On the other hand,
we assumed that machines are always available; that there is
no shutdown or break down is allowed, and each machine can
only process one job at a given time.

B. PRELIMINARIES

Let assume n jobs should be processed in m machines
with deterministic processing time, pj; Vj € {1,2,...,m},
k € {1,2,...,n}. Assuming that the machines are labeled
in a fixed order, there is no buffer capacity between two
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consecutive machines, j and j+ 1, hence, no room for keeping
WIP items after each process until the next process can begin.
A machine can process items one at a time and the next
process can be started if and only if the current job is already
completed; the same condition is true for the jobs, where each
job can be processed in one machine at a given time.

Makespan and TCT are the most widely used measures
in scheduling theory. Makespan — the maximum completion
time among all jobs — is an indicator of the systems’ through-
put; minimizing makespan values results in the more efficient
assignment of jobs to the resources, i.e. machines. Although
maximizing throughput is an ultimate goal for many produc-
tion systems, it increases the average response time of the
system [16], making the makespan measure unfit for certain
industrial applications. In this situation, TCT is of higher
relevance to measuring systems performance. TCT — summa-
tion of the completion times of all jobs — is prevalent when
stable utilization of resources, rapid turn-around of jobs,
or minimization of WIP inventory costs is the operational
improvement target [17]. Given the absence of MBPFSPs
with TCT and the above justification, our study considers this
performance measure to investigate this variety of schedul-
ing problems in application areas where improving average
response time is the major focus. Therefore, the problem is to
find a permutation of n jobs, 1, to be processed in m machines
so that TCT of all machines is minimized.

The problem is denoted as Fp, |mixed, blk|)_ C;, the
well-known three-filed «| 8|y notation suggested by [18],
throughout the paper. The following notations including
indices, parameters, and decision variables are considered
before proceeding to the mathematical formulation;

Indices

j Machine, j € {1, 2, ..., m}

jobixy  The job situated in the position [k] of the
sequence 1

Parameters

m Number of available machines

n Number of jobs to be processed

pjik) The processing time of jobj on the
machine j

B; The blocking type of the machine j, where
Bj = {RSb, RCb, RCbx, Wb}

Decisionvariables

Si k) Starting time of jobyx) on machine j
Ciixy Completion time of the jobyx) on the machine j

C. MATHEMATICAL FORMULATION

Given the defined indices, parameters, and decision vari-
ables, the F,, |mixed, blk| ZCj problem is formulated as
a mixed-integer programming (MIP) model presented in
the following. For the sake of brevity jobjx) is replaced
by [k].
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The MIP formulation of the problem is now presented.

MinZ= Y Gy 1)
je{l,2,...,m}

Subject to:

Sik1=0, Ci =0, i<lVi>mVk<lVk>n (2)

Cii=Sii+ Py Viell,2,...,m},

k] €{1,2,...,n} 3)
Sim=Ci—1,; Vief2,..,m} 4
max{Cj—1,[k], Sj+1,k—11}, Bj=RSb

S = max{Cj—1,[k), Sj+2,k-11},  Bj=RCb

” max{Cj_1 k), Ci+1,;k-11}, Bj=RCb*
max{Cj_l,[k], Cj,[k—l]}s BjZWb

«Vjiell,2, ..m, kell,2 ... n 5)

Si1» Gk € Z7,

Vie(l,2, ..m},VIkl € {1,2,....n) 6)

The objective is to minimize TCT, shown in Equation (1);
it comprises the duration for completing all jobs until the job
in the last machine is done. Equation (2) sets one index out
of range by assigning zero value to the respective decision
variable. Equation (3) calculates the completion time of the
Jjobyk on the machine j which is the summation of respective
starting and processing times. According to Equation (4),
the first job’s start time on each machine is equal to the com-
pletion time on the previous machine; it obviously excludes
the first machine. Start times are calculated using equation
(5), considering different blocking situations. Finally, the last
constraint allows the time decision variables to accept posi-
tive integer numbers.

Ill. SOLUTION METHODS

The literature of MBPFSP is relatively new and understudied.
Of the existing literature, few have been devoted to devel-
oping effective solution algorithms, making it hard to put
MBPFSPs in industrial-scale practice. As the main part of
its contribution, this study put forward a solution approach,
the ESA algorithm, to bridge the mentioned gap and help
narrow the gap between scheduling theory and practical
applications. Besides, two Iterated Greedy-based algorithms,
one with constant destruction number (IGCD), and the other
one with variable destruction number (IGVD) are included in
numerical analysis to enrich our analysis.

This section continues with a brief introduction to SA
and elaborates on the steps to solve the F, |mixed, blk|>_ G
problem using this adapted algorithm. It is then followed by
a brief explanation on IGCD and IGVD algorithms.

A. A BRIEF INTRODUCTION TO SIMULATED ANNEALING
Developed by [19], [20], SA is a stochastic local search
algorithm best suited for solving large scale combinato-
rial problems. SA is applied by researchers in various
fields, among which, [21] were the first to investigate SA
applications in scheduling.
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SA is inspired by the physical annealing process of met-
als. Slow cooling, from the annealing concept, has been
interpreted as slowing down the probability of accepting
weak individuals in a search procedure that seeks for find-
ing low-energy, -objective value, solutions. Starting with
a random initial solution, SA applies various neighbor-
hood methods to generate new solutions in each iteration.
The probability-based acceptance of the weaker solution
enables SA to avoid being trapped in the local minima.
In so doing, SA guides the search procedure to find the
(near-)optima until certain conditions, stopping criterion, are
met. Different extensions are proposed to the original SA
among which acceptance criterion and the neighborhood
search methods are more prevalent; these concepts are now
explained.

1) ACCEPTANCE CRITERION

The desire for reaching out to a low-energy state is a funda-
mental rule of physics. Inspired by this rule, the move towards
an optima state forms the optimization search algorithm [19].
f(E1) and f(E>) are the objective function, energy, values of
the best current and new solutions. The difference between
the objective function values,AE = f(E>) — f(E1), at any
stage of the search procedure, triggers the move towards bet-
ter solutions. A new solution will be accepted, and considered
as the current solution, if AE < 0. Otherwise, the Boltzmann
probability function, e(=2E/T) helps make the acceptance
decision. In this function, k is the Boltzmann constant, and
T is the system temperature. Given a random number uni-
formly distrusted between O and 1, ¢, a weaker solution
can be accepted only if ¢ < eTAE/KT) This acceptance
approach enables the search algorithm to explore less likely
solution areas, and, consequently, reduces the prospect of
being trapped at local optima [22]. The Boltzmann proba-
bility function approach works well when the algorithm is
executed for a large number of iterations [19].

2) NEIGHBORHOOD SEARCH METHOD

There is a handful of neighborhood search procedures in
the literature, each of which is developed for use in specific
domains. Suggested by [23], Swap, Insertion, Inversion, and
Scramble methods are suitable for the sort of PFSPs. A
roulette wheel selection (RWS) mechanism could help select
one of the above-mentioned basic procedures at each search
step.

Using two randomly selected positions from the cur-
rent solution, these methods apply different basic proce-
dures to generate neighborhood solutions. The swap method
exchanges the corresponding elements to x and y positions.
The Insertion method inserts the x position element next to
the y element. The inversion method reverses the sequence
between x and y. Finally, the scramble method randomly dis-
places the elements that are located between x and y positions.
The illustrative examples in Figure 2 show the mentioned
procedures.
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Swap

Before: et =1, [2) 3, 4.5, (6] 73
Afer: =g fel 3 45,2 73
Insertion

Before: et =1, [2) 3, 4,5, o], 73
Afier: n™ =13 4,516l 2.7}
Inversion

Before: et = (1, 2, ’ 73
Scramble

Before: rinemmbent — 12 [3,4,5,6], 7}
After: =12 53647}

FIGURE 2. A generic local search procedure of the ESA.

To increase the chance of selecting the best basic proce-
dure at each neighborhood search, one should refer to the
sum of the fitness values recorder from the previous iter-
ation. The procedure resulting in the highest improvement
in the previous iteration should be applied in the current
iteration. Given the fitness values fiv;, the sum of fitness
values can be calculated by Sfy = Z?:l fvr; the correlate
fitness value of each neighborhood search is calculated using
Cfv; = (Z?Zlfvi)/va formula when ¢ = {1, 2, 3, 4}. In this
definition, Cfv; refers to the likelihood of each basic proce-
dure taking place in the next neighborhood search. To apply
the RWS mechanism, a random number probys from [0, 1]
interval will be generated at each stage. Given probys and
Cfv; values, the neighborhood search basic procedure can
be selected. Once a procedure is applied, the corresponding
fitness value must be added by one, if the new neighborhood
solution is improved (fi; = fv; + 1), or subtracted by one
(fvy = fvr — 1), otherwise. Replicating the same procedure
may result in being trapped in one locality; to avoid it, the last
fitness value should be set to a minimum value (ex., 10)
once the same neighborhood search procedure is applied; this
is to ensure that the underperforming neighborhood search
procedures can also be tried with a small probability.

B. EXTENDED SIMULATED ANNEALING

This study proposes the Extended Simulated Anneal-

ing (ESA) algorithm to solve the F, |mixed, blk| C; prob-

lem. Figure 3 is a brief illustration of the solution procedure.
We now delve deeper into these steps and procedures.

1) SOLUTION INITIALIZATION

Similar to other heuristics, the first step to the ESA algorithm
is to randomly generate the initial solution(s). For this pur-
pose, a new NEH-based method, named NNEH, is applied
to ensure that the initialization is in an acceptable quality.
This method was initially proposed by [3], where two variants
of NEH-based methods, NEH-Raj [24] and NEH-WPT [25],
are combined to sort the initial list of NNEH. The procedure
consists of the following steps:
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ESA algorithm pseudocode
(1) Initialize T, A4,1,,,, =0, and fv =25;

iter>
(2) Generate the initial solution & ;

(3) Let nb@:t = nincumbcm = ninitia/ and f(nbm) _ f(nmcumbcnt) — _f(nmma[);
(4) while (termination creiterion not satisfied) do

(5)  Calculate Cfy, = (XL, fi)/ (Zi, fv,) of every NS;

(6) Generate a number probyg ~ U(0,1);

(1) if (Cfy < probys <CR,) then

8) Excute NS,, obtain a new solution & with /' (z""); [ =1+1;
©) if f(@"") < f(x"") then

(10) o, =, +1

(1 1) nbe.?[ = nnew; ninaumbent = "new;

12 @)= f@): @ = f( )

(13) @SS @) < f (@) then

(14) S =+

(15) Jor =+l

(l 6) nnwumbent = nnew;

a7 f(mimewmbenty _ ¢ (gnewy).
(18) elseif (fv, >10) then

(19) fV,=th—l;
@0)  if U=1,,) then
21 T =AT;

2) I1=0;

(23) Calculate e *F'7;

(24)  Generate a number y ~ U(0,1);
25) if (r<eET) then

(26) 7Tincumbem = n_m’w;

@n  f@"emny = f@;
(28)  goto (4);

(29) endwhile

(30) return n**'
(31) end

FIGURE 3. A generic procedure of the ESA algorithm.

Step 1.1. Calculate A[k] for each job, using Equation (7).
m .
AR = x (3 On=j+1) X pjw)
m
td—ax Y piw D)

In this equation, pj [x] is the processing time of the job [k]
on the machine j, and o € (0, 1) is a parameter. As suggested
by [3], a coefficient rate « = 0.1 is used to calculate the A[k]
values in our experiments. It is worthwhile mentioning that
the computational time increases when p; x] gets larger.

Step 1.2. Arrange the jobs in a non-decreasing order of A[k]
to form the initial list 1 = {m(, 3, ..., T,}.

Step 1.3. Given the first two jobs from m, find the best
partial sequence, 8, which accounts for smaller TCT, and set
k to 3.

Step 1.4. Select the kg, job form & and insert it into all
possible positions in g without changing the relative position
of the already assigned jobs. Then find the sequence with the
best, smallest, TCT.
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Step 1.5. Repeat Step 1.4. until n # k; otherwise, stop the
initialization process. ! should be now attained consid-
ering the smallest TCT.

2) NEIGHBORHOODS SEARCH TO FIND NEW SOLUTIONS
Step 2.1. Set the best and incumbent solutions equal to the
initialized solution obtained in Step 1 (/¢! sincumbent
n_im'tial ).

Step 2.2. Calculate f(m™mbent) the objective function
value associated with gr#cumbent

Step 2.3. Apply the roulette wheel selection mechanism
to randomly select a neighborhood search procedure among
Swap, Insertion, Inversion, and Scramble methods mentioned
in subsection 3.1.2.

Step 2.4. Calculate f(x""), the new solutions’ objective
function value.

3) ACCEPT/REJECT THE NEW SOLUTIONS

For each neighborhood solution, 75, if its objective function
value is better than that of the current best solution, 7%,
ie., f(@NS) < f(mbest), accept NS and let wbe" =: xNS and
gincumbent —. NS if the associated objective function value
is better than that of the incumbent solution, s ™cwmbent that
is f(mPet) < f(@NS) < f(mincumbenty accept NS and let
gpincumbent . NS. Otherwise, use Equation (8), suggested
by [22], for the accepting measure. Given that AE > 0,
if the randomly generated number is y < e~ 2F/T replace

n,incumbent with Il'NS.

. —AE/T
p_ 1l ify <e @®)
0, otherwise

In this probability function, y is a random number uni-
formly generated between 0 to 1; AE = f(@™5) —
f (qincumbenty demonstrates the difference between objective
function values of & and mcumbent; and T is the current
temperature. In our experiments, the initial value of 7T is
calculated using 7 = > _7" | 37| pij/n x m x 10. Following
Boltzmann annealing mechanism and to ensure the search for
global optima, T is set to incline logarithmically, meaning
that the probability of accepting weak solutions decreases
by time. That is, T is decreased after running Ij, from
the previous temperature decrease, according to the formula
T < AT, where 0 < A < 1.

The above procedure continues until a prespecified termi-
nation criterion, maximum CPU time in this study, is met.

C. ITERATED GREEDY-BASED ALGORITHMS

Given the proven track record of IG-based algorithms in
solving BPFSPs [9], two variants of this algorithm, named
IGCD and IGVD, are considered to compare their perfor-
mance with that of the ESA algorithm. Proposed by [26],
the IG-based algorithms are stochastic metaheuristics that
employ solution construction methods to iteratively modify
incumbent individuals until an acceptance criterion allows
for replacing the current best solution. IG-based algo-
rithms are applied to solve a wide variety of problems,
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including PFSPs, first of which were applied by [27]. The
major elements of IG-based algorithms are now briefly
explained.

1) INITIALIZATION

An initialization method similar to that of the ESA algo-
rithm is used. Reminding from the last section, the initial job
sequence 7 ! with the objective function value f ("l
is the result of the initialization process. Therefore, the first
iteration starts with the following setting: %!, gincumbent —.

ninitial andf(n,best) zf(nincumbent) zf(n_initial)

2) DESTRUCTION AND CONSTRUCTION PHASE

Destruction phase consists of random removal of d jobs
from the s ™cmbent Jist. The resulting partial sequence, com-
prising of n — d remaining jobs, is defined as """,
while the removed jobs from the m™"°"* sequence. In
the construction phase, algorithm sequentially inserts the
jobik, k = 1,...,d, from the 7" list, into every
possible position in 77""%" until a better partial sequence,
7'M is resulted. This procedure will be continued until
’"move is empty. Eventually, the new job sequence, w"¢",
is expected to be associated with better objective function
value, f ("").

It is worthwhile mentioning that the parameter d
is the differentiating point between IGCD and IGVD,
where the former approach assumes a constant d value,
while the latter one considers a variable value. Using
two variants of the IG-based algorithm helps improve
numerical analysis by including more perturbation in the
results.

3) ACCEPTANCE AND STOPPING CRITERIA

Given n"®" from the construction phase, if the associated
objective function value is better than that of the incumbent
solution, f(r"€") < f(m™cumbenty the incumbent solution
will be replaced by &""; otherwise, an acceptance proba-
bility function similar to that of ESA will help to make the
acceptance/rejection decision.

To ensure a fair comparison in numerical analysis, includ-
ing the comparison between IGCD and IGVD, maximum
CPU time is considered as the stopping criterion for the
IG-based algorithms.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

The numerical results obtained in this study are now
compared to that of the best-performing algorithm for solv-
ing MBPFSPs. Considering TCT as the objective func-
tion, performance measure, IGCD, IGVD, and the ESA
algorithm along with the CGLS as the benchmark algo-
rithm, are all coded and compiled by the authors on the
C++ programming language. The experiments are run on
a personal computer with the following specs: Intel®Core
(TM) i7-7700 CPU, 32GB RAM, and Windows 7 operating
system.

142070

A. TEST PROBLEMS

A total of 150 test instances are considered for numeri-
cal analysis. The test instances were expanded from the
benchmark datasets provided by [28], which is broadly
accepted in the scheduling literature. The first 120 instances
comprise 12 different combinations of jobs and machines,
as following: {20, 50, 100} x {5, 10, 20}, {200} x {10, 20},
and {500}x{20}, where the former value indicates the
number of jobs, and the latter one specifies the num-
ber of machines. Each of the mentioned combinations
consists of 10 different instances. Three missing com-

binations, each of which consisting of 10 different
instances, from the original dataset, {200}x{5} and
{500} x{5, 10}, are compensated by the alternatives

generated by [29].

The Relative Percentage Deviation (RPD), Equation (9),
is used to measure the effectiveness of the algorithm both
in parameter calibration, and the comparisons in numerical
analysis.

f(x) —f ")
f(nbest)

In this equation, f (&) refers to the objective function value
for a given run using a specific test instance. In the cali-
bration process, f (") indicates the best-found function
value when different A values in the ESA, and d values in
the IG-based algorithms, are considered. In results analysis,
f(mPesty refers to the best-found solution when comparing
the ESA with CGLS, IGCD, and IGVD algorithms using the
optimum algorithm setting. In addition to RPD, average RPD
is computed to compare the effectiveness of the algorithms
overall numerical instances.

RPD = x 100% 9

B. ALGORITHM PARAMETERS CALIBRATION

Before stepping into results analysis, the ESA algorithm
settings, i, and A, and that of the IG-based algorithms,
d and Ty, need to be determined. Different levels for each
of the above-mentioned parameters are considered to design
the numerical experiments. On this basis, the calibration
test configuration, consisting of the combinations shown
in Tables 1 and 2, is conducted on nine randomly generated
test instances.

Using five replications for each of the instances comprising
n € {35, 150, 250} jobs m € {5, 10, 20} machines, and given
the combinations in Table 1, a total of 9 x 9 x 5 = 405
experiments are identified to find the best setting and tune
the ESA algorithm. Similarly, 21 possible combinations of
the IG-based algorithm parameters and five replications of
each instance results in a total of 21 x 9 x 5 = 945 runs in
the destruction phase.

Calibration results are shown in Tables 3 and 4; considering
the best values in these tables, the ESA key parameters are set
to Iier = 200 and d, while the IGCD and IGVD algorithms’
parameters are fixed at T = 0.5 and d = 3 in IGCD, and
d € [1,6] in IGVD. Besides, the termination criterion for
all of the experiments is considered equivalent and equal to
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TABLE 1. Test parameters for /;z,, and A combinations.

Combinations
Parameters (1) (2) (3) 4) (5) (6) (7) (8) ©)
1, 100 100 100 150 150 150 200 200 200
A 0.90 0.93 0.95 0.90 0.93 0.95 0.90 0.93 0.95

TABLE 2. Test parameters for d and T, combinations.

Combinations
Parameters 1 2 3 4 5 6 7 8 9 10 11
d 1 1 1 2 2 2 3 3 3 4 4
Ty 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3
12 13 14 15 16 17 18 19 20 21
d 4 5 5 5 6 6 6 [1,6] [1,6] [1,6]
T, 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
TABLE 3. Comparison results for I;;,, and A combinations (best in bold).
Combinations
Jobs  Machines (1) 20 @3 ®»W & ©® O ©® O
5 0.122  0.000 0.043 0.176  0.469 0.556 0.084 0.208 0.191
35 10 0.000 0.257 0.139 1.017 0.722 0.318 0.630 1.029 0.653
20 0.000 0.545 0.287 0.456 0.835 1.018 0.209 0.536 0.822
5 0.869 0.596 0.450 0.163 0.000 0.312 0.076  0.062 0.426
150 10 0.480 0.492 0.158 0.243 0.636 0.242 0416 0.057 0.000
20 0.485 0.053 0.343 0.278 0.366 0.647 0.369 0.621 0.000
5 0.444 1.330 1.521 0.644 1.268 0.509 0.353 0.560 0.000
250 10 0.336 0.262 0.695 1.086 0.218 1.168 0.586 0.059 0.000
20 0.022 0.027 0.750 0.909 0.706 0.155 0.132 0.243 0.000
Average RPD 0.307 0.396 0.487 0.552 0.580 0.547 0.317 0.375 0.232
TABLE 4. Comparison results for d and T combinations (best in bold).
. . Combinations
fob - machine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
5 6.905 5.997 7.492 3.668 3.218 2.771 3.693 2.073 2.934 2.953 3.639 2.545 4.261 2.843 2.533 3.094 3.388 4.124 3.058 3.265 3.563
35 10 6.693 6.430 5.474 4.432 3.537 3.264 2.853 2.520 1.882 3.218 2.536 2.834 3.460 2.706 2.758 2.883 2422 3.512 3.447 1.944 1.707
20 4374 3.082 3.497 3.228 2.791 1.092 2.094 1.494 1.404 2.113 2.230 1.839 2.078 1.604 1.816 2.294 1.768 2.121 2.256 1.821 1.820
5 3.642 3.189 2911 1.082 0.540 1.663 1.236 0.662 0.793 0.594 0.762 0.554 1.068 1.134 0.952 1.403 1.890 1.022 1.135 1.347 1.731
150 10 5.073 4231 4.394 1.223 1.491 1.607 1.703 2.045 1.878 2.382 1.826 2.526 3.472 2.844 2.742 3.088 4278 3.606 2417 2.179 2413
20 3.516 3.541 3.184 1.126 1.138 0.898 1.606 1.488 0.785 1.966 1.917 2.067 2.760 3.125 2.013 2.542 2.667 3.352 1.553 1.540 1.194
5 3.561 3.352 3.796 0.950 1.417 1.960 1.816 1.894 1.515 2.403 2.940 2455 2.935 2.837 2.862 3.828 3.871 3.694 1.562 1.260 1.721
250 10 2.142 1.985 2.017 0.568 0.551 0.614 1.076 1.196 0.636 1.748 1.089 1.814 2.085 2.358 2.421 2.613 2.678 2.741 0.853 0.893 1.447
20 2.462 2.044 2.118 1.185 1.070 0.808 1.344 1.605 1.615 1.641 1.780 2.245 2.664 2.467 2.792 3.137 2915 3.340 1.550 1.370 1.403

Average RPD 4.263 3.761 3.876 1.940 1.750 1.631 1.936 1.664 1.493 2.113 2.080 2.098 2754 2.435 2.321 2.765 2.875 3.057 1.981 1.736 1.889

Tmax = 30 x n x mmilliseconds to ensure a fair compari- parameter values, we now proceed to the final numerical
son among the benchmark algorithms. Setting the mentioned experiments and results analysis.
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TABLE 5. Average RPD of the numerical results in all 150 instances (best in bold).

IGep IGvp CGLS ESA
Job Machine Min Ave. Min Ave. Min Ave. Min Ave.
20 5 1.250 1.843 1.077 1.810 1.110 1.397 0.000 0.343
10 1.113 1.943 1.340 2.176 1.393 1.686 0.000 0.702
20 0.794 1.257 0.976 1.447 0.856 0.943 0.030 0.678
50 5 4.280 5.423 4.714 5.841 1.910 2.187 0.000 0.614
10 4.601 5.446 4.910 6.032 2.120 2.252 0.000 0.951
20 3.431 4.374 3.695 4.603 1.270 1.382 0.000 0.677
100 5 4.928 5.717 5.759 6.396 1.611 1.648 0.000 0.452
10 6.160 7.070 6.893 7.675 1.910 2.035 0.000 0.737
20 5.725 6.575 6.421 7.152 2.209 2.302 0.000 0.584
200 5 9.184 9.794 9.551 10.252 2.395 2.441 0.000 0.286
10 10.165 10.808 10.429 11.218 2.704 2.738 0.000 0.539
20 8.592 9.467 9.068 9.802 2.547 2.576 0.000 0.672
500 5 14.151 14.723 14.532 15.127 2.757 2.757 0.000 0.188
10 13.283 13.818 13.439 14.129 1.550 1.553 0.000 0.287
20 11.002 11.521 11.108 11.701 1.249 1.252 0.001 0.304
Average RPD 6.577 7.319 6.928 7.691 1.839 1.943 0.002 0.534
TABLE 6. ANOVA analysis of the algorithm performances, considering 0.05 confidence interval.
Source Degree of Sum of Mean F-value -value
Freedom Squares Square P
Solution approach 3 5363.678 1787.893 180.117 0.000
Error 596 5916.078 9.926
Total 599 11279.755

TABLE 7. Statistical results for the algorithms pairwise comparison, considering 0.05 confidence level.

Paired differences

Mean Std. Deviation Std. Error Mean

IGep-SA  6.575 4.381 0.358
IGvp-SA  6.926 4.418 0.361
CGLS - SA 1.837 1.026 0.084

t-value Degree of Freedom Sig. (single-tailed)
18.383 149 0.000
19.197 149 0.000
21.937 149 0.000

C. NUMERICAL RESULTS

This section evaluates the performance of the ESA for
solving the F), |mixed, blk| Y C; problem. For this purpose,
a comparative analysis is conducted to compare the ESA’s
numerical outcomes with that of CGLS, IGCD, and IGVD.
Similar to the calibration phase, and for the sake of fair-
ness, a maximum CPU time of Thax = 30 x n x m
milliseconds is considered to conduct all the numerical
experiments.
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Given TCT resulting after each run, an RPD value for
every instance, and an average RPD value for ten instances in
each combination are calculated. The computational results,
considering the minimum and average of ARPD values,
are shown in Table 5. The first column indicates the mini-
mum RPD value found amongst all the 5 replications, and
the second column is the mean value for 5 replications of
each instance. The average RPD values yielded by the ESA,
CGLS, IGCD, and IGVD algorithms are 0.002, 1.839, 6.577,
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TABLE 8. Computational results, including the best-known solutions for all test instances.

Instance BFS® Instance BFS Instance BFS Instance BFS Instance BFS
20-05 50-05 100-05 200-05 500-05

1 22378 1 118278 1 498902 1 1878140 1 10583875
2 15381 2 76695 2 477403 2 1681404 2 10741643
3 19236 3 121152 3 458635 3 1826145 3 11587732
4 23086 4 123889 4 428885 4 1744602 4 10513884
5 19525 5 108996 5 414439 5 1853817 5 11368707
6 21144 6 119057 6 388698 6 1750995 6 11228023
7 22483 7 106884 7 482655 7 1736488 7 10180845
8 19534 8 105474 8 440144 8 1832597 8 11305784
9 21509 9 95310 9 423996 9 1721893 9 11395865
10 17967 10 124900 10 465027 10 1665977 10 10533874
20-10 50-10 100-10 200-10 500-10

1 31360 1 152364 1 550070 1 1907793 1 12197824
2 30690 2 149596 2 496069 2 1751856 2 12257349
3 25648 3 133589 3 525048 3 1994177 3 12592189
4 27583 4 148383 4 619356 4 2067546 4 12654808
5 27723 5 127443 5 548540 5 1899404 5 12583819
6 25792 6 134087 6 555549 6 1895208 6 12717512
7 26630 7 113690 7 476869 7 2097912 7 11492742
8 27314 8 141199 8 555633 8 2126058 8 12454794
9 28353 9 149768 9 566578 9 2211999 9 11773115
10 29570 10 154257 10 584665 10 2024314 10 12501227
20-20 50-20 100-20 200-20 500-20

1 39727 1 193493 1 606838 1 2396698 1 13666511
2 41516 2 177196 2 638753 2 2184037 2 13843184
3 42462 3 181835 3 646037 3 2449578 3 13934275
4 41783 4 189773 4 648467 4 2297215 4 13127729
5 41242 5 179978 5 576630 5 2333145 5 14304923
6 41358 6 187825 6 638489 6 2544550 6 15222423
7 42282 7 166945 7 634713 7 2245926 7 12551595
8 40364 8 183709 8 640119 8 2448139 8 12836705
9 43085 9 185342 9 580382 9 2522401 9 13868320
10 38617 10 186424 10 640399 10 2309391 10 13371978

BFS": Best Found Solution

and 6.928, respectively. This initial finding suggests that the
ESA algorithm performs better when compared to the other
three solution approaches.

CGLS is the best-performing algorithm in MBPFSP litera-
ture when considering makespan as the objective function.
However, the graphical demonstration of the experimental
results, Figure 4, shows that the ESA developed our study
outperforms CGLS in optimizing TCT. Besides, no signifi-
cant difference is detected amongst IG-based algorithms and
CGLS when considering small-size instances. However, and
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in contrast to CGLS that keeps a steady performance over
larger instances, the average RPD values of the 1G-based
algorithms increases sharply when medium- and large-size
instances are considered, as shown in Figure 5.

Next, analysis of variance, ANOVA, is carried out to
support numerical results in confirming the superiority of the
developed solution approach. Table 6 summarizes the statis-
tical results from the performance difference test among the
presented solution algorithms, at ace = 0.05 confidence level.
Given the negligible p-value, it can be concluded that there is
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FIGURE 4. Average RPDs for the compared algorithms.
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FIGURE 5. Average RPD of the algorithms considering the various number
of jobs.

a significant difference between the ESA’s performance and
that of the other presented algorithms.

The above assertion is unidirectional; hence, it can be
further evaluated using the one-tailed z-test. The t-test results
of the pairwise comparisons, at a « = 0.05 confidence level,
are summarized in Table 7. Evidently, it can be confirmed
that the ESA algorithm demonstrates a meaningfully better
performance when compared to CGLS, IGCD, and IGVD.

Finally, the best-found solutions for each of the 150 bench-
mark test instances are shown in Table 8. Of the best-found
solutions, 148 are obtained applying ESA; a 98 percent
success rate that proves the effectiveness of the proposed
approach when compared to the other compared algorithms.
The high yield rate, along with RPD and ARPD comparison
using ANOVA and t-test, provides sufficient evidence to sup-
port the hypothesis that the ESA outperforms the rest of the
examined solution approaches. Besides, it is shown that the
ESA demonstrates more robustness when solving medium-
and large-size MBPFSPs, making it the best existing solution
approach to solve industrial-scale problems.

V. CONCLUSION

Given the growing need for expansion of production activities
and the limited space in manufacturing plants, it is not real-
istic to assume an unlimited buffer zone in product schedul-
ing problems. Besides, cost-saving and just-in-time policies
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discourage the storage of WIP items. In this situation, various
blocking situations can result. There is not only one type of
blocking constraint, and this needs to be considered in the
optimization of scheduling problems. This study proposed to
improve the SA algorithm to solve the F), |mixed, blk| )" C;
problem, which is rather cumbersome in their industrial-scale
applications.

Comparing the proposed solution algorithm with the best
performing algorithm in the literature, CGLS, as well as two
IG-based algorithms, IGCD and IGVD, it is shown that the
ESA outperforms in medium- and large-size instances when
considering TCT. Overall, the proposed algorithms yield the
best-known solution in all instances. The proposed ESA is
particularly more robust and effective when the number of
jobs increases. The study further analyzed the results using
ANOVA, where the test results confirmed a significant dif-
ference between the algorithms considering the low p-value.

Given the limited body of the MBPFSPs’ literature, the fol-
lowing research directions can help develop new extensions
to the scheduling literature. First, applying mixed-blocking
constraints on different operating environments is a worth-
while research direction to be pursued; job-shop and open-
shop scheduling are only some examples of this possible
research direction. Second, given the significance of setup
times in the accuracy of the scheduling outcomes [30],
MBPFSP with sequence-dependent setup times is another
research direction to pursue. Finally, considering conflicting
objectives, like makespan and TCT, within a multi-objective
scheme is a promising room for extending MBPFSPs.
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