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ABSTRACT In this paper we propose a novel regression based RGBD crowd counting method. Compared
with previous RGBD crowd counting methods which mainly exploit depth cue to facilitate person/head
detection, our approach adopts density map regression and is more robust to severe occlusion under
dense crowded scenarios. We develop a cascaded depth-aware counting network that jointly performs head
segmentation and density map regression. Our network explicitly feeds depth map at each stage so that
depth cues are sufficiently exploited. The multi-task strategy allows the network to explicitly attent to
foreground regions of a crowd scene and improve density regression. To generate the ground truth of head
segmentation and density map, we propose a head scale estimation method according to the basic geometric
assumption and camera projection function. Experiments on two public RGBD crowd counting benchmarks,
ShanghaiTechRGBD dataset and MICC dataset show that the proposed method achieves new state-of-the-
art on both datasets. Further, our method can be easily extended to RGB datasets and achieves comparable
performances on WorldExpo’10 dataset and UCF-QNRF dataset.

INDEX TERMS Crowd counting, depth map, density estimation, head segmentation.

I. INTRODUCTION
Single image crowd counting aims to estimate the overall
person number in a crowded image. It has attracted signifi-
cant attention in computer vision community during the past
years [3]–[6]. Accurately estimating crowd counts of a scene
has many applications in real-world scenarios [7]–[9]. For
example, the statistics of passenger flow in subway stations
are important for scheduling subway trains. The crowd count
in a busy street plays an important role in public safety and
pedestrian management.

Conventional crowd counting methods [6], [10]–[12] usu-
ally estimate crowd counts from RGB images or videos. The
RGB crowd counting methods can be categorized into detec-
tion based methods [13]–[16] and regression based methods
[3], [4], [17]–[19]. The first one treats each human instance
in the crowd as an individual object and exploits object detec-
tion framework to tackle this problem; while the second one
usually extracts low-level features of the scene and applies
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regressors to regress overall crowd counts or density maps.
Although recent progress [11], [20], [21] shows significant
improvement in RGB crowd counting, the problem itself is
still challenging due to severe occlusion, perspective distor-
tion and complex scene backgrounds. During the past years,
depth sensors are becoming increasingly popular. Many peo-
ple propose to exploit depth information to improve crowd
counting [2], [22]–[25]. Most existing RGBD crowd count-
ing methods utilize depth information to facilitate detection.
However, detection based crowd counting methods are less
robust to dense crowded scenarios with severe occlusion, and
usually lead to underestimation when the people’s heads are
tiny/small [2]. To tackle this problem, Lian et al. [2] proposed
a density map regression guided detection method. They first
utilize a regressor to estimate a density map, which is used
as a probability prior to facilitate detection. Although their
results show that density map indeed improves detection,
the proposed method suffers from several drawbacks. First,
the depth cues are not explicitly fed into the regression net-
work, which restricts the performance of density regression,
and further affects the detection performance. Second, despite
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FIGURE 1. RGB images (a) and their corresponding depth maps(c) in ShanghaiTechRGBD dataset. Depth maps are not perfect and contain invalid
regions. We generate a bounding box for a head using depth map if a head has valid depth value, as suggested by [1], [2]. As shown in (a), many heads
are not assigned with valid depth values(yellow boxes). These heads usually locate at the far regions of an image and hence they are small and dense,
so the overall number is large. We enlarge those head regions with null depth values in (b).

the guidance of density map, detecting crowd instances is
still challenging. The results of [2] show that crowd counting
performance of its detection network is worse than its simple
regression network.

In this work, we propose a simple but effective method
for regression based RGBD crowd counting. Inspired by the
pose estimation methods [26], [27], we propose a cascaded
network for RGBD crowd counting. To sufficiently exploit
depth information, we explicitly feed the depth map into the
network multiple times. In addition to density map regression
at each stage, we also predict a segmentation mask of crowd
heads. The segmentation mask indicates foreground regions
that the density regressor should attent to. Finally we utilize
the depth map to generate the ground truth of density and
segmentation. In this way, depth information is used in the
input of the network and also the ground truth generation,
and hence is sufficiently exploited.

Specially, we develop a cascaded depth-aware counting
network (Cascaded-DCNet) to jointly estimate the segmen-
tation mask and density map. Our network consists of two
stages. The first stage takes image and depth map to estimate
an initial segmentation and density map, and the second stage
fuses the features, depth map and initial predictions to con-
duct refinement process. By explicitly predicting foreground
mask, our network is able to focus on head regions and
estimate density better.

To conduct multi-task learning on head segmentation and
density map regression, we need to generate ground truth.

An ideal ground truth of head segmentation may need the
accurate label of each pixel indicating whether it belongs to a
head. However, labeling each pixel for head segmentation is
labor-intensive and not practical since many small/tiny heads
only consist of few pixels. As the original annotation of the
crowd counting tasks consists of pixel position of each head’s
center, we may want to estimate the scale of each annotated
head, and then put a circle-like mask at the head center to
generate head segmentation. In a pinhole camera system,
each person’s head radius is roughly inverse proportioned
to its depth [1], [2]. This means if we can get the depth
of each annotated head, then we are able to estimate the
corresponding scale. However, we notice that this is usually
not practical in real world scenarios since depth maps are
not perfect. As shown in Fig. 1, many pixels around heads
have invalid depth values. In ShanghaiTechRGBD dataset,
the statistics show that there are 38.9% of the annotated heads
have no valid depth values. To address this issue, we propose
a head depth refinement method that takes the geometric
assumption that all the heads of a crowd are on a 3D plane
and leverages camera projection function to refine the depth
values at those annotated head pixels, which are further used
to estimate head scales.

We utilize the estimated head scales to generate a seg-
mentation mask of each person’ head. Then the segmenta-
tion masks are fused to generate a union segmentation of
heads, which indicates the foreground regions of a crowd
image. We also utilize the estimated head scale to generate
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a scale-aware density map, in which each head’s location is
convolved with a scale-aware gaussian kernel. The density
map encodes perspective information which captures scale
variance of heads of the crowd scene.

We evaluate our approach on two public RGBD crowd
counting benchmarks, ShanghaiTechRGBD dataset [2] and
MICC dataset [22]. The results show that our method
achieves new state-of-the-art on both datasets and validate
the effectiveness of our proposed method. We further extend
our method to RGB datasets. Results on WorldExpo’10
dataset [28] and UCF-QNRF dataset [29] show our method
achieves comparable performances. We summarize our con-
tributions as follows:
• We propose a new cascaded depth-aware counting net-
work for regression based RGBD crowd counting. The
depth map is explicitly fed into the network multiple
times to extract depth information sufficiently.

• We propose a multi-task learning strategy for head seg-
mentation and density map regression. Our network first
estimates a head segmentation and then regresses den-
sity map based on the estimated segmentation. In this
way our network is able to focus on foreground regions
and estimate density better.

• We propose a novel ground truth generation method for
head segmentation and density map. We first refine the
depth values of the annotated heads according to camera
projection function and basic geometric assumption, and
then utilize the refined head depth map to estimate head
scales, which are further used to generate head segmen-
tation and scale-aware density map.

• Our method achieves new state-of-the-art on two public
RGBD crowd counting benchmarks.

II. RELATED WORK
A. RGB CROWD COUNTING
Existing RGB crowd counting methods are mainly divided
into detection based crowd counting and regression based
crowd counting.

1) DETECTION BASED CROWD COUNTING
Detection based methods assume that a crowd is composed
of some individual objects and treat crowd counting as
an object/person detection problem. Early works [13]–[16]
design hand-crafted features to perform person detection,
but they are not robust to the severe occlusion or large
scale variation on clustered environments or dense crowded
scenes. Although recent deep network based object detectors
[30], [31] show impressed performance on object detection,
they still perform worse then regression based method on
crowd counting [2].

2) REGRESSION BASED CROWD COUNTING
Starting from pre-deep learning era, regression based meth-
ods [17]–[19], [32]–[34], usually first 6segment foreground
regions and extract various low-level features, and uti-
lize a regression model, such as ridge regression [18],

Gaussian process regression(GPR) [17] to estimate crowd
count. In deep learning era, people formulate the crowd
counting problem as a density map regression problem [11],
[21], [35]–[39]. Zhang et al. [28] proposed to utilize a patch
based crowd counting method by CNN. Zhang et al. [4]
first proposed a multi-column CNNs, in which different col-
umn CNNs tackle heads with different sizes. Sam et al. [3]
improved MCNN and propose a switchable module to clas-
sify the crowd density of each patch and assign it to cor-
responding regressor. Sindagi and Patel [12] proposed a
top-down and bottom-up multi-level fusion mechanism to
fuse features for crowd counting. CSRNet [21] stacks dilated
convolutions after VGGNet [40]. Yan et al. [41] proposed
a novel convolution operator that based on estimated per-
spective map. Our method follows density map regression
methods. Previous density regression based works [12], [21],
[39], [41] usually first extract image/patch features using
a backbone network(e.g. VGG16 [40]), and then perform
density regression. Ourmodel has similar structure. However,
the input of our network has two sources: RGB image and
depth map. The cascaded architecture and multi-task strategy
also make our method different from most regression based
methods [12], [21], [36], [41].

B. RGBD CROWD COUNTING
To better estimate crowd counts, several works have explored
the RGBD crowd counting. Most of these works focus on
exploiting depth information to improve person/head detec-
tion of a crowd scene. Bondi et al. [22] utilized the depth
information to estimate a crowd segment and further localize
head candidates. However, the system is not end to end.
Song et al. [42] proposed a detection proposal network for
depth image based on Faster RCNN [30]. Zhang et al. [23]
proposed an unsupervised method to estimate locations of
heads based on depth image with vertical view. However,
the method assumes the head regions are always clos-
est to the camera compared with other body parts, and
hence cannot be generalized to general crowd scenarios.
Fu et al. [24] proposed to detect head-shoulder jointly
based on template matching to improve robustness. However,
in a dense crowd scenario, a person’s shoulder is usually
occluded. Xu et al. [25] utilized depth map to segment the
image into two regions: a far-view region and a near-view
region. A density regression module is used to tackle far-view
crowd counting and an object detection module is used
to tackle near-view crowd counting. However, depth infor-
mation is not explicitly used for each region’s estimation.
Lian et al. [2] proposed a density map guided detection
network for joint crowd head detection and density map
regression. However, the performance of their detection mod-
ule does not surpass the regression module. Meanwhile,
the depth map is not explicitly fed into the regression module
and hence it is not sufficiently used. In contrast, our model
leverages cascaded architecture and explicitly fuses depth
map twice. We further adopt multi-task learning strategy on
head segmentation and density regression, and both of them
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FIGURE 2. Overview of our proposed cascaded depth-aware counting network. The first stage takes the RGB image and depth map to generate an initial
segmentation probability and density map, and the second stage combines the depth map, estimated predictions and their features to refine the
estimations. We feed the depth map at each stage to sufficiently exploit depth cues. The multi-task learning on head segmentation and density map
regression allows the network to attent to foreground regions of heads and improve density regression. Each convolution has a kernel size 3× 3,
a dilated convolution has dilation rate = 2. Each max pooling has a kernel size = 2× 2 with stride = 2. Density maps and segmentation masks are 1/8 of
original resolution due to pooling operations.

are supervised by depth guided ground-truths. By exploiting
depth information sufficiently, our method is more robust to
large scale variation and heavy occlusion under dense crowd
scenarios.

III. OUR METHOD
A. FORMULATION
Given an image I ∈ RH×W×3 with N heads annotated at
x = {x1, . . . , xN }, where xi ∈ R2 denotes pixel location
of i-th head. We denote the depth map as D ∈ RH×W , and

aim to design a network F that does the mapping {I ,D}
F
−→

N . As directly predicting N is highly non-linear, following
prior regression based methods [3], [4], we first predict a
density map d ∈ Rh×w indicating person densities at each
pixel and then do the integration over the image/RoI, where
h and w are downscaled height and width due to downsam-
pling operations. In addition to density map, we also leverage
our network to estimate a head segmentation which indicates
foreground mask of a crowd image. The overall problem
formulation becomes:

{d, s} = F2(I ,D), (1)

where s ∈ [0, 1]h×w denotes estimated head segmentation
probability, F is our network and 2 denotes the parame-
ters. In the following subsections we will first describe our
network architecture, and then introduce the ground truth
generation of density map and segmentation mask. Finally

we describe our loss function. In the following equations, the
‘+’ denotes the element-wise addition operation, and
‘*’ denotes the convolution operation, ‘·’ denotes scalar
product.

B. NETWORK ARCHITECTURE
Fig. 2 shows an overview of our proposed cascaded network
which consists of two stages. The first stage takes original
image I and its corresponding depth map D to generate
initial segmentation probability and density map; the second
stage combines the depth map, estimated predictions and
their feature to refine the estimations. Both stages feed depth
cue as their inputs and exploit depth information sufficiently
through learned convolution filters. Below we will describe
each stage in detail:

1) FIRST STAGE
We utilize three convolution layers and two max-pooling
layers to extract image features from RGB image, and utilize
another two convolution layers to extract depth features from
depth map. The image features and depth features are fused
by a concatenate operation. Such two stream strategy allows
the network to extract image cue and depth cue independently
in the shallow layers, hence it can avoid the confliction
caused by domain gap between depth distribution and RGB
distribution, and hence can be more efficient. Then we
use several convolution operations and pooling operation to
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generate initial predicting feature 00, which is used to predict
a segmentation probability s0:

s0 = g0(00), (2)

where g0 indicates a convolution operation. The segmentation
probability indicates the pixels of head regions, to which a
density map regressor should attent. Hence it can be used as
an attention to enhance features. We thus fuse s0 with 00 to
generate initial density map d0.

d0 = f0(g′0(s0)+ 00), (3)

where g′0 is a convolution layer that embed s0 to a feature
space with the same dimension as 00. f0 is a simple two
convolutional neural network.

2) SECOND STAGE
The second stage performs refinement process based on the
results of first stage. We first concatenate s0, d0 and D1/8,
where D1/8 indicates depth map at 1/8 of image resolution,
and use two convolution layers to embed the output pre-
dictions, and then add the initial predicting features 00 to
generate refinement feature.

0ref = f ′0(s0 ⊕ d0 ⊕ D1/8)+ 00, (4)

where f ′0 indicates two convolution layers, ⊕ indicates con-
catenate operation, 0ref is the refinement feature. The refine-
ment feature is fed though three dilated convolution layers to
extract second predicting feature 01. The dilation is used to
enlarge receptive field. Similar to the first stage, 01 is first
used to generate a segmentation mask:

s1 = g1(01), (5)

where g1 indicates a convolution operation. Then we fuse s1
and 01 to generate second density map d1:

d1 = f1(g′1(s1)+ 01), (6)

where g′1 is a convolution layer to embed s1 to a feature space,
and f1 is two layer convolutional neural network.

C. GROUND TRUTH GENERATION
To facilitate multi-task learning using our cascaded count-
ing network, we need to generate ground truth for density
map and head segmentation. As the annotation of the crowd
counting task only consists of locations of each head’s center,
we need to first estimate the scale of each head. For segmen-
tation mask generation, we label a pixel to foreground if its
distance to a head annotation is smaller to that head’s radius.
For density map generation, we encode the head scale into the
density map. Below we will first describe head scale estima-
tion method, and then introduce the segmentation generation
and density map generation.

1) HEAD SCALE ESTIMATION
As suggested in [1] and [2], for a fixed object with fixed
physical size(e.g. head), its image size is usually inverse
proportioned to the depth of the object due to theorem of
similar triangles. The ratio is determined by the focal length
of the camera, and we assume it is fixed across images
of an existing RGBD dataset. Hence, if we get the depth
of an annotated head, then we will get its scale. However,
although depth map is provided, it does not always have
valid/accurate values across all image pixels. For example,
in ShanghaiTechRGBD dataset, the depth map is generated
based on stereo matching, which is not very robust to simple
textures such as heads/hairs. Further more, its depth map has
a valid range of 0 to 20 meters, which does not cover the
common crowd area in an image under outdoor scenes. This
motivated us to find a way to estimate/refine the depth of
heads without valid/accurate values.

Assume there is a set of heads located at X =

{X1, . . . ,XN }, where Xi ∈ R3 indicates physical 3D coordi-
nate of i-th head under camera coordinate system. Since there
is always enough people in a crowd scene, we can simply
assume that each person has the same height and those heads
lie on a plane. We denote the height of camera to the head
plane as H ∈ R and the unit normal vector of the plane as
n ∈ R3, then we have:

nTXi = H , ∀i ∈ {1, . . . ,N }. (7)

For a standard pinhole camera, we have the projection
function:

D(xi) · xi = KXi, (8)

where D ∈ RH×W represents the depth map of the entire
image, xi ∈ R3 is the projected pixel position on the image,
denoted by homogeneous representation, K ∈ R3×3 is the
intrinsic parameter of the camera, and D(xi) ∈ R is the
normalization term indicating the depth of Xi.1 From Eq. 8
we have Xi = K−1D(xi)xi, and thus from Eq. 7 we have

1
H
nTK−1D(xi) · xi = 1. (9)

We denote W = 1
H nTK−1 ∈ R1×3 which is a fixed vector

across the image representing the relation between xi and
D(xi). We can use those {xi} with valid depth values to esti-
mate W and use the infered W to estimate those {xi} without
valid depth available. For a head located at xi with valid depth
available, we denote qi = D(xi) · xi ∈ R3. Then for N ′ heads
with valid depth available, we have

Wq1 = 1,
Wq2 = 1,
...

WqN ′ = 1.

(10)

We denote Q = [q1, . . . , qN ′ ] ∈ R3×N ′ and E =

[1, . . . , 1] ∈ R1×N ′ , then we can find the best W that

1Here we ignore the effect of lens distortion.
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FIGURE 3. Two examples of our estimated head scales, head segmentations and density maps. First row denotes the original image and the estimated
head scales using raw depth ((a), (c)) and refined depth ((b), (d)). We enlarge the yellow boxes in the first row and show them in (e), (f), (g), (h). We can
observe that our depth refinement method refines those depth outliers and estimate depth of those heads without providing valid depth values.
(i), (k) are the generated head segmentations, covered with original image for better visualization. (j), (l) are the scale-aware density maps.

approximates Eq. 10:

W ′ = argmin
W
||WQ− E||. (11)

We have a closed form solution:W ′ = (QQT )−1QTE . As N ′

is sufficiently large for a crowd, QQT is to be invertible.
We solve W ′ in this way and for any pixel x in the image,
we have D(x) = 1/(W ′x) denoting the depth value if x is a
center of a head, and the head radius

r = α/D(x) = αW ′x. (12)

Fig. 3 shows two examples of our estimated head scales.

2) HEAD SEGMENTATION
As we have estimated head scale for each annotated head,
we can utilize it to generate a head segmentation mask by
masking a circle around the head centers. The segmentation
mask is not perfect compared with human annotated segmen-
tation but it provides the foreground regions that a network
should focus on.

We use a uniform kernel ur (x) which indicates a kernel
with all pixels equal to 1 inside a circle with radius r :

ur (x) =

{
1, |x| ≤ r,
0, |x| > r .

(13)

Then, our head segmentation mask has the form:

m(x) = min(
N∑
i=1

δ(x − xi) ∗ uri (x), 1) (14)

where ri = αW ′xi indicates head radius for i-th head.
uri (x) indicates scale-aware uniform kernel. Examples of our
head segmentation mask are shown in Fig. 3.

3) DENSITY MAP WITH HEAD SCALE ENCODING
For an image with N head annotated at x = {x1, . . . , xN }
where xi ∈ R2, we may first convolve a gaussian kernel at
each head to generate density map:

d(x) =
N∑
i=1

δ(x − xi) ∗ Gσ (x). (15)

Eq. 15 is the most commonly used density map generation
for existing regression based methods. However, this density
map generation method assumes that each person/head is
individual on the image, and does not consider the scale
variance of heads caused by perspective distortion. A better
density map may consider the scale of heads in the gaus-
sian kernel to encode the head scales in the density map,
so that a network may easily capture the head regions from
RGBD image and aligns to the density map without doing
scale normalization. For a head at xi, we have estimated its
head scale ri = αW ′xi by head scale estimation. Thus we
may encode the head scale to density map, Eq. 15 changes
to:

d(x) =
N∑
i=1

δ(x − xi) ∗ Gσi (x), (16)

where σi = β · ri = β · αW ′xi.
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D. LOSS FUNCTION
Consider a set of training samples {(I k ,Dk ,dk ,mk )} where
I k is the RGB image,Dk is the depth map, dk is our generated
scale-aware density map, mk is the segmentation mask, and
the training set hasM samples. For each sample, our network
estimated two density maps d0, d1 and two segmentation
probabilities s0, s1.
We utilize Euclidean loss for density map estimation:

Ld =
1
2M

M∑
k=1

(||dk0 − dk ||22 + ||d
k
1 − dk ||22) (17)

For segmentation, we use the average Binary Cross
Entropy loss for each pixel, we indicate

LBCE (a, b) = −
1

h · w

∑
∀p

b(p) log(a(p))

+(1− b(p)) log(1− a(p)) (18)

as the standard BCE loss for input a and target b with spatial
resolution h×w, and p indicates pixel location. Our segmen-
tation loss is:

Lm =
1
2M

M∑
k=1

(LBCE (sk0,m
k )+ LBCE (sk1,m

k )) (19)

The overall loss function is given by:

L = Ld + µLm (20)

where µ is the weight for segmentation loss to balance the
gradient of segmentation and density map estimation.

IV. EXPERIMENTS
In this section, we perform experiments to evaluate our pro-
posed method. We first describe the evaluation datasets and
evaluation method. We then report the quantitative compar-
ison on two RGBD benchmarks. We also perform ablation
studies to validate the effectiveness of our proposed compo-
nents or strategies. We then report results on RGB datasets.
We finally show some qualitative results to demonstrate the
efficacy of our framework.

A. DATASETS
1) RGBD DATASETS
a: ShanghaiTechRGBD DATASET
ShanghaiTechRGBD dataset [2] is a large-scale RGB-D
dataset which consists of crowd scenes of metropolitan
streets. The dataset consists of 1193 training images and
1000 test images. Each image has a fixed resolution-1920 ×
1080. Each person in this dataset is annotated, and the overall
crowd counts is 144,512. The person number of each image
varies from 10 to over 200, and is 65.9 on average. Its depth
map is generated using stereo matching algorithm, and has a
range from 0 to 20 meters. The regions outside the range have
no depth values. Readers are encouraged to refer [2] for more
information of this dataset.

b: MICC DATASE
MICC dataset [22] is a dataset of indoor surveillance video
frames. This dataset consists of three video sequences
that represent for different crowd behaviors: in ‘FLOW’
sequence, people are walking from one point to another of the
room, there are overall 1260 image frames and 3,542 crowd
counts in this sequence; in ‘QUEUE’ sequence, people are
acting as waiting in a line, and there are overall 918 frames
and 5,031 crowd counts in this sequence; in ‘GROUPS’
sequence, people are talking in a controlled area, there are
1180 images and 9,057 crowd counts in this sequence. This
dataset is a small dataset in terms of crowd counts compared
with ShanghaiTechRGDB. The average person is 5.32 in each
image. Following [2], we choose the 20% of each video
sequence as training set and the remained are used as test set.
The split is the same as [2].

2) RGB DATASETS
a: WorldExpo’10 DATASET
WorldExpo’10 dataset [28] is a standard dataset for crowd
counting. It consists of 1,132 video sequences captured
by 108 surveillance cameras with different viewpoints.
3,380 images from 103 scenes(viewpoints) are used for train-
ing and 600 images from 5 scenes(viewpoints) are used for
testing. Each image has an average count of 56. The perspec-
tive maps and Region of Interest(RoI) masks are provided
for each scene. During evaluation, only those crowd counts
within RoI will be evaluated.

b: UCF-QNRF DATASET
UCF-QNRF
dataset [29] is a large dataset consists of 1,535 images in
which 1201 images are used for training and 334 images
are used for testing. It consists of 1.25 million persons
annotated in total. The person counts, scales, backgrounds,
viewpoints and image resolutions are varying significantly
across different images, which cause this dataset very
challenging.

B. EVALUATION METHOD
Following prior work of crowd counting [4], [12], we use
Mean Absolute Error (MAE) and Mean Squared Error(MSE)
for evaluation:

MAE =
1
M

M∑
i=1

|N̂i − Ni| (21)

MSE =

√√√√ 1
M

M∑
i=1

|N̂i − Ni|2 (22)

where Ni represents the ground truth head counts,
N̂i =

∑
∀x

d(x) is estimated head counts generated by inte-

gration on estimated density map d, andM is the number of
testing images.
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C. IMPLEMENTATION DETAILS
We set gaussian parameter β = 0.25 and head radius
parameter α = 5, the loss weight µ = 5 × 10−4. For
shanghaiTechRGBD dataset, we first resize the images and
depth maps to 1280×720 to decrease computation complex-
ity. Depthmaps are normalized to 0 to 255 before feed into the
network. All the segmentation masks and density maps are
generated at 1/8 of original image resolutions. Each image
is randomly flipped for data augmentation. During training
process, we use Adam optimizer [43]. We set batch size to
4 and initial learning rate to 2×10−4. We drop the learning
rate to 2×10−5 and 2×10−6 at epoch 50 and 100, and stop
training at epoch 150.

D. RESULTS ON ShanghaiTechRGBD DATASET
Wefirst evaluate ourmethod on ShanghaiTechRGBDdataset,
and the results are shown in Tab. 1. Our final model achieves
a MAE of 4.26 and a MSE of 6.27, which is a signif-
icant improvement compared with current state-of-the-art
method [2]. RDNet [2] is a joint detection and regression
network and its regression module utilizes a VGG backbone
which requires pre-training on ImageNet. Instead, our pro-
posed network does not need pre-training. We also report
a result of CSRNet which only utilizes depth map as input
instead of RGB image, the performance are not satisfactory.
This is because the depth maps are very noisy and many
head regions have no valid depth values. Hence, only utilizing
depth maps as input is not applicable for those cluttered out-
door scenarios. Our method combines both depth information
and RGB image. It is rather simple but effective on density
map regression by utilizing depth information sufficiently.

TABLE 1. Results on ShanghaiTechRGBD dataset.

E. EXPERIMENTS ON MICC DATASET
On MICC dataset, the depth map is generated by Kinect.
As the dataset contains indoor scenes, its depth range is
much smaller than outdoor scenes (ShanghaiTechRGBD).
However, we notice that the output depth map of kinect
sensor still has invalid regions, as shown in Fig. 4. So the
head depth refinement process is still required. As the head
count of an image in MICC dataset is much less than Shang-
haiTechRGBD, we only estimate the head plane parameters
for those images with at least 5 heads annotated. For the rest

FIGURE 4. Depth maps are noisy in MICC dataset and some annotated
head centers have no valid depth values (pointed out with red boxes).

TABLE 2. Results on MICC dataset.

images, we refine head depth by adoptingmax pooling at each
head’s local region. Our final result onMICC dataset is shown
in Tab. 2. Our network achieves a MAE of 0.836 and a MSE
of 1.031. Please note that the original MICC dataset contains
the head box annotations, and we only use the center of each
box as its dot annotation, while the current state-of-the-art
method [2] utilizes box annotations for head detection.

F. ABLATION STUDY
We perform ablation study on our method to evaluate the
effecviteness of our proposed architecture or strategies on
ShanghaiTechRGBD dataset. We first perform ablation study
on the cascaded depth-aware architecture to validate the per-
formance of cascaded strategy.We then performance ablation
study on our proposed scale-aware density map generation.
We finally performance ablation study on the joint segmen-
taton and density map regression task.

1) CASCADED DEPTH-AWARE ARCHITECTURE
We perform ablation study for the cascaded architecture, and
the results are shown in Tab. 3. Note that all the experiments
are performed using fixed gaussian kernel for density map
generation. Comparing the first row and second row, third row
and fourth row, we can observe that using depth decreases
the MAE by 0.33 and 0.19 respectively, demonstrating that
our depth fusion mechanism is helpful for crowd counting.
Comparing the first row and third row, second row and fourth
row, we can notice that cascaded architecture improves the
performance a lot.
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TABLE 3. Ablation study on Depth-aware Cascaded Architecture, ‘CNet’
denotes basic counting network, ‘DCNet’ denotes depth-aware counting
network, ‘Cascaded’ denotes the corresponding model is a cascaded
architecture.

2) DENSITY MAP GENERATION
We perform ablation study on different density map genera-
tionmethods using the Cascaded-DCNet architecture, and the
results are shown in Tab. 4. We first compare the density map
with fixed gaussian kernel and depth-adaptive density map as
proposed in [2] which utilizes raw depthmap to estimate head
scales(for pixels with invalid depth values, we pad the head
scales using nearest neighbor, as in [2]). We can see that using
depth-adaptive density map performs better than fixed kernel.
We then utilize our proposed head depth refinement method
to refine head depths and further estimate head scales, the pro-
posed scale-aware density map generation further boosts the
performance by a MAE of 0.13 and a MSE of 0.20.

TABLE 4. Ablation study on different density map generation,
‘Depth-adaptive’ denotes the adaptive-kernel using raw depth,
‘Scale-aware’ denotes the adaptive-kernel using head depth
refinement.

3) MULTI-TASK LEARNING ON SEGMENTATION AND
DENSITY REGRESSION
We perform ablation study on multi-task learning of seg-
mentation and density regression, and show the results in
Tab. 5. We use the Cascaded-DCNet architecture, and the
density map is generated by proposed scale-aware kernel.
We can see that supervising on segmentation improves the
performance by 0.27 MAE and 0.50 MSE, demonstrating
that segmentation helps the network to better localize the
foreground regions of heads.

TABLE 5. Ablation study on joint segmentation and density map
regression.

4) COMPARISON OF MODEL PARAMETERS
We also perform ablation study on model parameters to
see how the model complexity affects final performance
on ShanghaiTech RGBD dataset. The results are shown in

TABLE 6. Ablation study on model parameters on ShanghaiTech RGBD
dataset. ‘−256’, ‘−512’, ‘−1024’ denote the feature dimension of the
backbone network. ‘-addLayer1’, ‘-addLayer2’, ‘-addLayer4’ indicate the
increased number of layers in the second stage.

Tab. 6. We compare the parameters in two directions: fea-
ture dimension and the number of layers. We increase the
feature dimension from 256 to 512 and 1024, and observe
that the performance improves, but the improvement becomes
smaller. In the meantime, model parameters are increased
significantly from 5.03M to 21.14M and further to 84.52M.
This is because the model becomes overfitting as parameters
increase. For the number of layers, we increase the layer by 1,
2, and 4 layers. We observe that the performance are not
consistently becoming better as layer grows. We believe this
is because the model becomes overfitting easily when it has
more layers.

G. EXPERIMENTS ON RGB CROWD COUNTING DATASETS
In this paper, we propose a cascaded depth-aware network for
joint head segmentation and density map regression. How-
ever, our proposed multi-task learning strategy and cascaded
architecture can be easily extended to RGB crowd counting
datasets by removing depth input and depth-aware ground
truth generation. By estimating a segmentation mask, our
network is able to attend to foreground regions and facili-
tate density regression. We evaluate our method on World-
Expo’10 dataset [28] and UCF-QNRF dataset [29].

1) RESULTS ON WorldExpo’10 DATASET
We compare the results of WorldExpo’10 dataset in Tab. 7.
Following previous works [4], [28], we utilize the perspective

TABLE 7. Results on WorldExpo’10 dataset, measured by MAE.
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FIGURE 5. Qualitative results on ShanghaiTechRGBD dataset(first six rows) and MICC dataset(last two rows). We show all the inputs, ground truths and
the predictions of our model’s second stage. Our cascaded model exploits depth information sufficiently by multi-task learning on head segmentation
and density regression, and hence it robust to severe occlusion and large scale variance.

maps provided by WorldExpo’10 dataset to generate ground
truth density map and head segmentation mask. During test-
ing, we only evaluate the crowd counts within given Region
of Interest(RoI). We can see that our method outperforms
other methods in two scenes and achieves comparable perfor-
mance on average with current-state-of-the-art DSSINet [11],
which utilizes multi-scale images as inputs and it’s based
on conditional random fields(CRF). Our method is based on
single-scale image and its structure is simple.

2) RESULTS ON UCF-QNRF DATASET
We report the performance of UCF-QNRF dataset in Tab. 8.
As the resolutions of images vary significantly, we randomly

sample 224 × 224 patches to generate training data. Since
UCF-QNRF dataset does not provide depth maps, we utilize
k-nearest neighbor to estimate the head scales, which are
further utilized to generate ground truth segmentation and
density map. We notice that this dataset is much bigger than
the ShanghaiTechRGBD dataset, MICC dataset and World-
Expo’10 dataset. Hence we replace the backbone of first
stage(i.e. the feature extractor of 00) to the first ten layers of
VGG16 and utilize the pre-trained parameters to initialize our
model, as many state-of-the-art methods ( [11], [53]) utilize
VGG16 to extract features. Our method achieves comparable
performance with DSSINet, and outperforms other methods.
It’s worth noting that we only utilize coarse head scales
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TABLE 8. Results on UCF-QNRF dataset.

estimated by k-nearest neighbor due to the lack of depth
maps. We can expect the performance to be further improved
if depth maps are used for network input and generating more
precise head scales.

H. QUALITATIVE RESULTS
We show qualitative results of ShanghaiTechRGBD dataset
andMICC dataset in Fig. 5.We can observe that segmentation
predictions are quite reasonable. By multi-task learning on
segmentation and density regression, our cascaded model is
robust to heavy occlusion, large scale variance and variance
of crowd counts.

V. CONCLUSION
In this paper, we propose a novel cascaded depth-aware
counting network for regression based RGBD crowd count-
ing. The proposed network explicitly feeds depth map at
each stage, exploiting depth cues sufficiently. We design
a multi-task strategy that jointly estimates head segmenta-
tion and density map. Estimating head segmentation allows
the network to focus on foreground regions of heads and
improves density regression. To generate ground truth of head
segmentation and density map, we first estimate the head
scales. As in existing RGBD datasets, depth maps usually
have invalid/inaccurate regions, we thus propose a head depth
refinement approach to estimate/refine head depth at head
locations. The refined head depth map is used to estimate
head scales, and further generate segmentation mask and
density map. Experiments show that our proposed cascaded
network outperforms the single-stage network, and depth cue
indeed helps density map regression. We also encode head
scales to density map and result shows improvement. By con-
ducting multi-task learning, the results show that predict-
ing segmentation helps the network to attent to foreground
regions and improve performance. Our method achieves new
state-of-the-art on ShanghaiTechRGBD dataset and MICC
dataset. We further extend our method to RGB datasets and it
achieves comparable performances onWorldExpo’10 dataset
and UCF-QNRF dataset.
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