
Received April 3, 2020, accepted April 22, 2020, date of publication April 24, 2020, date of current version May 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990278

Key Performance Indicators of the Reference
6TiSCH Implementation in Internet-
of-Things Scenarios
MALIŠA VUČINIĆ 1, (Member, IEEE), TENGFEI CHANG 1, BOŽIDAR ŠKRBIĆ2, (Member, IEEE),
ENIS KOČAN 2, (Member, IEEE), MILICA PEJANOVIĆ-DJURIŠIĆ 2, (Member, IEEE),
AND THOMAS WATTEYNE 1, (Senior Member, IEEE)
1Inria, 75012 Paris, France
2Faculty of Electrical Engineering, University of Montenegro, Podgorica 81000, Montenegro

Corresponding author: Mališa Vučinić (malisa.vucinic@inria.fr)

This work was supported in part by the European Commission through the H2020 Fed4Fire+ Project and its SODA Open-Call Experiment.

ABSTRACT Tens of thousands of wireless industrial monitoring deployments exist today, loggingmore than
18 billion operating hours. These solutions have been around for over a decade and are based on standards
such as WirelessHART and ISA100.11a to provide performance guarantees to the applications. The new
trend in industry deployments is the convergence of operational and information technologies happening
through the Industrial Internet of Things (IIoT) paradigm. The challenge is to bridge the performance of these
well-proven industrial standards with the interoperability of IP-based systems. The Internet Engineering
Task Force (IETF), the organization behind most of the technical solutions of the Internet, has produced a
set of specifications with this requirement in mind. The output of this effort is the 6TiSCH protocol stack
based on open standards, such as those that have played a key role in the Internet’s ubiquitous adoption.
The standardization of 6TiSCH is done. The state-of-the-art research work focus is on important, but niche,
optimizations and performance evaluations of the 6TiSCH stack. This paper takes a different approach –
it evaluates the performance of the standards-compliant 6TiSCH solution from the end user point of view.
It does so on two experimental testbeds, in typical IoT test scenarios based on a well-defined experimentation
methodology. We provide a set of Key Performance Indicators (KPIs) useful for the end user to decide
whether the 6TiSCH technology is a good fit performance-wise for a particular use case. We demonstrate
reliability of a vanilla open-source implementation of 6TiSCH above 99.99%, upstream latency on the order
of a second and radio duty cycle well below 1%.

INDEX TERMS Internet of Things, 6TiSCH, experimentation, testbed repeatability, reproducibility.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) introduces the con-
vergence of operational and information technologies in the
industry deployments. It facilitates their integration with
novel web-based systems through the usage of interoper-
able solutions. The de-facto wireless communication tech-
nology in industrial applications is Timeslotted Channel
Hopping (TSCH), used for more than a decade in stan-
dards such as WirelessHART and ISA100.11a. Through the
work of the Internet Engineering Task Force (IETF) and

The associate editor coordinating the review of this manuscript and

approving it for publication was Tie Qiu .

its 6TiSCH working group, TSCH technology is now ready
to be used in IPv6 networks. The result of this effort that
spanned several years and a mix of academic and indus-
trial participants is the 6TiSCH protocol stack. The 6TiSCH
stack bridges the performance of existing industrial standards
while benefiting from the Internet’s IPv6 interoperability.
The stack is based on open standards, such as those that
have played a key role in the Internet’s ubiquitous adop-
tion. The goal of this paper is to define Key Performance
Indicators (KPIs) of the 6TiSCH stack, a methodology for
their collection, and to present the results of an exten-
sive experimentation campaign using a reference 6TiSCH
implementation.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79147

https://orcid.org/0000-0002-7700-9121
https://orcid.org/0000-0001-9589-7794
https://orcid.org/0000-0003-2852-209X
https://orcid.org/0000-0003-2950-8097
https://orcid.org/0000-0002-3695-9315
https://orcid.org/0000-0003-2324-2523


M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

FIGURE 1. Overview of the OpenBenchmark functionality.

The 6TiSCH protocol stack is based on a modular archi-
tecture. A key component influencing the performance of
the stack is the ‘‘Scheduling Function’’ (SF). The 6TiSCH
working group standardized one example of a scheduling
function called Minimal Scheduling Function (MSF) [1] that
is suited for best-effort traffic. A wide variety of schedul-
ing functions have been proposed in the academic litera-
ture [2]–[6], each tailored to different application
requirements.
With many SFs available, how can one compare the perfor-

mance in the context of different application requirements?
While there are many academic papers published on

6TiSCH, they typically discuss niche optimizations and their
related performance improvements. While often very thor-
ough, such evaluations fail to give a high-level view of the
performance of the technology. The end users, e.g. product
designers, are then left with a scattered view before decid-
ing on whether to use a given technology. It is hard to
find unbiased performance benchmark results for other IoT
technologies either, although there is a plethora of academic
proposals and evaluations available. We therefore approach
the problem of an unbiased performance evaluation of the
6TiSCH protocol stack, as it was standardized by the IETF.
We do not propose new optimizations, but rather evaluate
the standards-compliant solution. We produce the KPIs that
an industrial user would expect before deciding whether a
technology suits its requirements.

To achieve this, we design a novel software-based platform
calledOpenBenchmark,1 which uses a black-box approach
to benchmarking a 6TiSCH implementation. The concept of
the platform is that the user should not worry about network
specifics, but rather obtain high-level KPIs of a 6TiSCH
implementation. The black-box approach facilitates the use
of the platform by users that are not experts in low-power net-
working and firmware design. The user uploads the 6TiSCH
firmware image, selects the test scenario and launches the
experiment (see Fig. 1). The platform takes care of testbed

1The article is an extension of the paper [7] published in the INFOCOM
2019 CNERT workshop. This version complements with the produced KPIs
through an extensive experimentation campaign performed using the Open-
Benchmark platform.

resource provisioning, firmware programming, data collec-
tion and processing, and presents the user with a set of KPIs.

In order for the benchmark to be valuable to industrial
users, OpenBenchmark instruments the firmware in real
time during the experiment to adhere to a given test scenario.
Test scenarios are defined to capture real-life use cases of a
technology and therefore test its applicability. Since the test
environment, i.e. a testbed, often plays an important role in
performance results, the platform allows the experiments to
be executed on different testbeds. For the purpose of this
paper, we evaluate the reference 6TiSCH implementation,
the OpenWSN stack [8], in industrial monitoring and home
automation scenarios, each on two different testbeds to give
performance insights.

In both scenarios, we observed reliability above 99%,
which depending on the test environment goes up to 99.99%.
Latency observed was on the order of a second and the radio
duty cycle is well below 1%. It is important to stress that
these results come from a vanilla open-source implementa-
tion of 6TiSCH. As each implementation can take different
choices when implementing the standard, the performance
of the implementations is likely to vary. As a consequence,
these results should not be generalized as ‘‘performance
of 6TiSCH’’. They should rather be seen as an example
of a baseline when a reference open-source implementation
of 6TiSCH is used. Furthermore, if application requirements
are known in advance, many enhancements are possible.
However, such optimizations are out of scope of this work.

The contribution of this paper is threefold:
• We obtain performance datasets of a reference 6TiSCH
implementation in two test scenarios on two different
testbeds and publish them under open-data licence2;

• We analyze the datasets and discuss KPIs of the refer-
ence 6TiSCH implementation in each case;

• We design and implement in open-source
OpenBenchmark and enable the community to
leverage it for further evaluations or comparisons.3

OpenBenchmark was developed as part of the SODA
project [9] at the University of Montenegro.

The remainder of the article is organized as follows.
Section II summarizes the related work on the subject
of 6TiSCH performance evaluation. Section III presents the
design of OpenBenchmark. Section IV details the obtained
KPIs in both test scenarios. Section V concludes this article.

II. RELATED WORK
The work on standardizing 6TiSCH is complete. Core docu-
ments [1], [10]–[13] have been published or are in the pro-
cess of becoming Request for Comments (RFCs). During the
process, 6TiSCH has sparked the interest of different commu-
nities, including open-source implementation projects, stan-
dardization and research.

2Datasets are available at https://zenodo.org/record/3472626
3As an online addition to this article, the source code of

OpenBenchmark is published under a BSD open-source license at
https://github.com/openwsn-berkeley/openbenchmark

79148 VOLUME 8, 2020



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

The reference 6TiSCH implementation used during ETSI
testing events for interoperability is the OpenWSN stack [8].
The two other major IoT open-source projects, Contiki-
NG [14] and RIOT [15], implement 6TiSCH. The 6TiSCH
simulator [16] implements a Python-based discrete-event
simulation tool focusing exclusively on 6TiSCH. Other tools
have also been developed focusing on interoperability and
conformance testing of 6TiSCH implementations [17].

The performance evaluation of 6TiSCH networks has
been a subject of interest of many academic works. The
SF is the major component influencing the performance
of the stack as it constructs the communication sched-
ule of the network. Therefore, it comes to no surprise
that the majority of the work in the literature proposes
new scheduling functions [18]. Examples are DeTAS [2],
Morell et al. [3], ReSF [4], LLSF [5], TREE [6]. Other
work focuses on optimizing the joining [19], [20], interplay
with routing [21], co-existence [22], applications [23] to
time-critical scenarios [24], [25].

Many of these works evaluate their proposals in realistic
conditions on different testbeds. While often very thorough,
in the majority of cases, each work benchmarks its particular
proposal with no common methodology and scenario fol-
lowed. One consequence of this practice is that it is hard for an
industrial user to find a comprehensive evaluation useful from
the application requirements point of view. Our article fills
this gap, by defining and following amethodology to evaluate
the 6TiSCH network in scenarios relevant to the applications.

III. OPENBENCHMARK PLATFORM
OpenBenchmark automates the experimentation and net-
work performance benchmarking on selected testbeds sup-
porting Internet of Things devices compliant with the
IEEE802.15.4 standard. OpenBenchmark instruments the
execution of an experiment in real time, following the
pre-defined test scenarios, and collects the data to calculate
the network KPIs in a fully automated manner.

Test scenarios are generic and derived from industrial
requirements. A test scenario is mapped to an executable
logic that runs concurrently with the experiment in the
testbed. OpenBenchmark sends commands to trigger the
desired actions of the firmware: configure radio transmit
power, trigger application packet. The commands are sent
to the Network Gateway, which processes and translates
them into the potentially proprietary format expected by
the firmware Implementation Under Test (IUT). The Net-
work Gateway may run at the testbed infrastructure and
be physically connected to the serial port of IUTs, or run
at OpenBenchmark premises and communicate with the
IUTs over an emulated serial port. This emulated serial port is
provided through the software component of the companion
OpenTestbed project [26], which transports the serial data
over the MQTT protocol. OpenBenchmark provides the
necessary integration and provisioning of the OpenTestbed
software on supported testbeds, such that this complexity
is hidden from the user. This allows the user to focus on

FIGURE 2. Token-based benchmarking illustration.

the protocol aspects of the firmware, while the performance
evaluation is entirely handled by OpenBenchmark through
the Application Programming Interfaces (APIs) exposed by
compliant firmware projects.

A. TOKEN-BASED BENCHMARKING
The benchmarking process of OpenBenchmark is based on
random tokens. OpenBenchmark sends commands to the
System Under Test (SUT) in real time, instrumenting it so
that a node in the 6TiSCH network initiates the sending of
an application packet. The command contains a 5-byte token
that is to be transferred over the network by the originator
node. Fig. 2 illustrates the process of OpenBenchmark,
instrumenting node E to send an application packet to node
A with a random token 3424. The command is received by
the SUTGateway and translated to the format understandable
by the 6TiSCH Implementation Under Test (IUT). Upon the
reception of the command, node E prepares an application
packet and includes the token 3424 in its payload. SUT
generates an MQTT event packetSent that is handled
by OpenBenchmark, communicating the time instant at
which the packet was sent, as well as other information
necessary to calculate the KPIs. The packet is then handled
by the 6TiSCH network and upon reception at node A, a new
MQTT event is generated: packetReceived. The pair
of packetSent and packetReceived events allows to
calculate the latency of the packet and the number of hops
traversed per packet. The absence of thepacketReceived
event indicates to OpenBenchmark that the packet has
been dropped in the network, which consequently impacts the
reliability.

One deficiency of the proposed design is in non-
deterministic network delays between OpenBenchmark
and the SUT Gateway. Since the commands that trig-
ger the sending of a packet in the network are sent
in real time, non-deterministic network delays between
OpenBenchmark and the SUT Gateway do influence the
reproducibility of the platform. To overcome this challenge,
it would be necessary to implement a timestamp-based
approach, where OpenBenchmarkwould communicate the
exact timestamp at which the SUT Gateway should trigger

VOLUME 8, 2020 79149



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

FIGURE 3. Software architecture of the OpenBenchmark platform. The
System under Test (SUT) consists of the Network Gateway and firmware
Implementations under Test (IUTs).

the sending of an application packet in the network. The
implementation of such timestamp-based approach is part of
our future work.

B. SOFTWARE ARCHITECTURE
The OpenBenchmark platform consists of the following
components (see Fig. 3) [7]:
• Agent. A component running at the Network Gateway
side, translating OpenBenchmark commands to the
format that the IUT implements, and also converting per-
formance data from the IUT to the format expected by
OpenBenchmark. The Agent component acts as both
MQTT publisher and subscriber. It publishes the events
coming from the network towards the OpenBenchmark
platform, needed to calculate the KPIs. It subscribes to
the commands that the SUT should adhere to, coming
from the Experiment Orchestrator.

• Experiment Controller. A component in charge of
testbed node reservation, firmware flashing, and launch-
ing the necessary software components that run at
testbed infrastructure side. The Experiment Controller
bootstraps the testbed infrastructure by opening an SSH
connection with each embedded computer in the testbed,
and starting the execution of the MQTT publish/sub-
scribe component in charge of emulating serial ports of
the devices. The serial port emulation software (Open-
Testbed) makes the testbed nodes appear to the Net-
work Gateway as if they were physically connected. The
Experiment Controller also starts the execution of the
Network Gateway that can run either on OpenBench-

mark or user premises and of the PHP backend that runs
locally on OpenBenchmark premises.

• Experiment Orchestrator. A component in charge of
orchestrating the SUT according to the selected test
scenario. The Experiment Orchestrator interprets the test
scenario files and instruments the experiment based on
the interpreted data. The Experiment Orchestrator acts
as an MQTT publisher and publishes to the broker the
commands that the SUT needs to adhere to. The broker
then dispatches these commands to the OpenBenchmark
Agent based on the subscription to the common MQTT
topics.

• Performance Event Handler. A component in charge
of handling performance data events coming from the
SUT. Based on these events, Performance Event Handler
generates the experiment data sets and calculates the
KPIs. The Performance Event Handler acts as anMQTT
subscriber and receives events from the SUT, which it
then uses to calculate the KPIs.

• Web server. A Laravel-based (PHP) backend and
Vue.js-based frontend allowing the user to access the
OpenBenchmark platform through a graphical inter-
face. The backend serves as a bridge between the fron-
tend and the rest of the OpenBenchmark components
that are implemented in Python. The backend provides a
RESTful API that enables the use of OpenBenchmark
by 3rd party applications.

C. TEST SCENARIOS
The goal of an OpenBenchmark test scenario is to capture
real-life use cases of a technology in order to benchmark its
performance in a setting that is relevant to the end users:
companies adopting the technology for their products and
their customers. A test scenario also allows the experiment
to be fully reproducible and the results easily and fairly
comparable, desirable properties from a research point of
view.

Each scenario describes the application traffic pattern and
load, and the desirable coverage requirements in terms of
number of IEEE802.15.4 hops. At a later stage, we plan
on adding support for controllable interference generation.
The description of a scenario is generic, with testbed-specific
mappings.

1) SCENARIO DEFINITION: HOME AUTOMATION
Home automation systems typically consist of sensors mon-
itoring some physical quantity, event sensors triggered by
human action such as a button press, and different actua-
tors. They are controlled by a central Control Unit (CU).
The traffic consists of the mix of upstream and downstream
traffic. The scenario has been derived from the requirements
discussed in RFC5826 [27] and the emulated topology of a
smart house discussed in Vučinić et al. [28]. Tables 1 and 2
summarize different logical roles a node in the network can
have and the traffic pattern for each logical role.

79150 VOLUME 8, 2020



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

TABLE 1. Scenario ‘‘Home Automation’’: logical roles in the network.

TABLE 2. Scenario ‘‘Home Automation’’: traffic pattern.

TABLE 3. Scenario ‘‘Industrial Monitoring’’: logical roles in the network.

TABLE 4. Scenario ‘‘Industrial Monitoring’’: traffic pattern.

2) SCENARIO DEFINITION: INDUSTRIAL MONITORING
Industrial monitoring systems can be generalized to consist
of two types of sensors: 1) traditional monitoring sensors for
temperature, pressure, fluid flow,. . . ; 2) sensors that transmit
large quantities of data, for example vibration monitors. They
are controlled by a central Gateway. The traffic is typically
upstream. Tables 3 and 4 summarize different logical roles
a node in the network can have and the traffic pattern for
each logical role. The scenario has been derived from the
requirements discussed in RFC5673 [29].

D. KEY PERFORMANCE INDICATORS (KPIs)
In the following, we give a brief summary of imple-
mented KPIs.

1) RELIABILITY
Refers to the ratio between packets received and packets sent
by the application. Therefore, this KPI indicates the end-to-

end reliability. A packet may fail a transmission on a given
link and later be re-transmitted. However, a failed packet
transmission on a given link does not influence the end-to-
end reliability if the packet eventually arrives at the destina-
tion. We present separately upstream reliability, referring to
the packets destined for the Network Gateway, downstream
reliability, referring to the packets originated by the Network
Gateway and destined for one of the nodes in the 6TiSCH net-
work, and P2P reliability, referring to the packets exchanged
between a pair of 6TiSCH nodes.

2) LATENCY
Refers to the time interval between the instant packet is gen-
erated at the application layer of the sender, and the instant the
packet is received by the application layer of the destination.
We present separately upstream latency, downstream latency
and P2P latency.

3) RADIO DUTY CYCLE (RDC)
Refers to the ratio between the cumulative time that the radio
chip is powered and the measurement period.We present sep-
arately average duty cycle, minimal duty cycle and maximal
duty cycle.

4) NETWORK FORMATION TIME
Refers to the initial phase when the network is forming. It is
an important KPI from the installation point of view. The KPI
refers to the end of the secure joining phase of the network.

E. EXAMPLE USE CASES
We envision threemain use cases of OpenBenchmark, with
different target groups: IoT industry stakeholders, research
community and firmware developers.

1) REFERENT BENCHMARK OF AN IoT TECHNOLOGY
Although there are many variants of IoT communication
stacks (e.g. 6TiSCH, WirelessHART, ZigBee, ZigBee IP,
Thread), it is quite challenging to point to a document that
gives a fair and industry-relevant performance comparison
among them. We designed OpenBenchmark to be used to
tackle this challenge.

2) RESEARCH PROPOSAL BENCHMARKING
The research community also benefits fromOpenBenchmark.
We hope to attract researchers to use our benchmarking
service for the evaluations of their research proposals.
OpenBenchmark facilitates the extraction of experiment
data by hiding the unnecessary testbed complexity. More-
over, it also leads to the increased confidence in the results:
OpenBenchmark is in its entirety open source and can be
reviewed and improved by the community.

3) CONTINUOUS DELIVERY BENCHMARKING
Firmware always evolves. Updates to the standards, newly
discovered security vulnerabilities in the code, new features,

VOLUME 8, 2020 79151



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

all require the firmware development community to con-
stantly update the code base of different IoT open-source
projects. The best practices of continuous integration test-
ing are already in place for the popular repositories. How-
ever, unit and functional testing do not indicate whether a
software patch introduces unwanted performance loopholes.
Does the proposed patch improve or degrade existing perfor-
mance? In what conditions was the ‘‘existing performance’’
measured couple of years ago when we first merged that
feature? To answer such questions, OpenBenchmark is
designed to provide a ‘‘continuous delivery benchmarking’’
service to firmware developers. We are working on inte-
grating OpenBenchmark with the continuous integration
procedures of the OpenWSN firmware project, the referent
implementation of the 6TiSCH protocol stack. This allows
the code maintainers to run automated nightly experiments
and assess the performance of the latest patches, before their
release.

IV. PERFORMANCE EVALUATION
A. METHODOLOGY
The two test scenarios defined in III-C were instantiated and
executed in order to collect data on two testbeds: Fed4Fire’s
w-iLab.t [30] in Ghent and Inria’s OpenTestbed [26] in Paris.
The data collection procedure was as following. Each sce-
nario was instantiated for a total of 30 nodes in a generic set-
ting including the root of the network. Then, a mapping was
provided for each testbed, consisting of the testbed node_id
to use, as well as the radio transmission power that is to
be configured by OpenBenchmark. Listing 1 illustrates an
example scenario instantiation and its mapping on w-iLab.t
testbed.

The duration of each scenario execution was set to 3 hours
and 30 minutes, with 30 minutes of allowance time for
the network to form and stabilize before the benchmark-
ing process would begin. We executed the two scenarios
on w-iLab.t’s Datacenter deployment using nodes nuc28
to nuc43, each equipped with a pair of Zolertia Re-motes
Rev. B. On OpenTestbed, we executed the scenarios using
30 OpenMote-B nodes in Building A of Inria-Paris deploy-
ment. In both cases, each scenario was executed using
the same nodes, allowing us to compare: 1) performance
across scenarios; 2) performance across different testbeds
and radio propagation conditions. We used the vanilla Open-
WSN open-source project, with main parameters specified
in Table 5.
We present KPIs in a tabular form, except for the network

formation time that is presented as a Cumulative Distribution
Function (CDF). For each KPI, we present the mean value,
minimum, maximum and the 99th percentile (P99%, i.e. the
value below which 99% of observations can be found) of at
least 10 experiment runs. For example, if the discussed KPI is
average latency, we present the mean, minimum, maximum
and P99% values over the experiment runs, where each mea-
surement is the average latency in the network.

TABLE 5. Default parameters of the OpenWSN stack used for evaluation.

FIGURE 4. Network formation time CDF for different testbeds.

B. NETWORK FORMATION TIME
All the scenarios were executed using the same radio transmit
power. As a consequence, due to the fixed physical topologies
in the testbed, network formation time KPI is common across
the scenarios. The plotted CDF (see Fig. 4) contains node join
times across different scenarios.

From Fig. 4 we can see that it takes less than 20 minutes
to form a 30-node network. This time is acceptable from the
installation point of view as it does not require installers to
spend an unreasonable amount of time on-site once the net-
work is deployed. The time is consistent across the testbeds,
which is interesting due to the fact that the deployments are
quite different. w-iLab.t deployment used was the one in the
Datacenter where all nodes have line-of-sight visibility of
each other and OpenTestbed is deployed in a smart office
setting across the floor of Inria-Paris building A. Even so,
the network formed onw-iLab.t had a similar logical topology
with the one formed on OpenTestbed in terms of the number
of hops each packet would need to traverse. On w-iLab.t,
the average number of hops was 2.5 while on OpenTestbed
deployment in Paris, the average number of hops was 2.6.

C. INDUSTRIAL MONITORING
Industrial monitoring scenario consists of exclusively
upstream traffic with occasional bursts coming from bursty
sensor node types. Each scenario execution run consisted

79152 VOLUME 8, 2020



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

Listing 1. An example JSON snippet showing a test scenario instantiation (left) and its mapping to the w-iLab.t testbed (right).

TABLE 6. Upstream reliability in ‘‘Industrial Monitoring’’ scenario.

TABLE 7. Reliability of bursty traffic in ‘‘Industrial Monitoring’’ scenario.

of 10,861 packets being sent by different nodes in the net-
work.

1) RELIABILITY
Table 6 and Table 7 present the calculated reliability in the
network for upstream and bursty traffic, respectively. Dur-
ing the experiments on w-iLab.t testbed in the Datacenter
deployment, we observed four nines of reliability with some
experiment runs without any losses.

The same scenario executed on OpenTestbed showed
greater losses, equivalenting to 99.47% reliability of
upstream communication. One explanation for this result is
the radio interference present in the OpenTestbed deploy-
ment, causing higher losses on the radio channel.

We further studied the reliability of the traffic belonging
to a burst and present the results in Table 7. We can see that
during the experiment runs on w-iLab.t not a single packet
belonging to a burst has been lost, which is not the case with
the runs executed on the OpenTestbed deployment.

TABLE 8. Upstream latency in ‘‘Industrial Monitoring’’ scenario.

TABLE 9. Latency of bursty traffic in ‘‘Industrial Monitoring’’ scenario.

2) LATENCY
Table 8 presents the observed latency during the experiments,
in TSCH slots and the equivalent in seconds for the slot length
of 20ms used in the experiments. The interesting point to note
here is that the results from the two testbeds are quite similar.
This is a consequence of the logical network topologies built,
with average hop distance from the root in both cases being
less than 3 hops.

We further studied the latency of packets belonging to a
burst and present the results in Table 9. We can see that the
average latency of packets belonging to a burst is higher by a
factor of 3 due to the queuing in nodes’ buffers. Interestingly,
the observation of similar latencies on two testbeds does not
hold in the case of bursty traffic.

3) RADIO DUTY CYCLE
Radio duty cycle is an important KPI from the energy
consumption point of view as the radio transceiver typ-

VOLUME 8, 2020 79153



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

TABLE 10. Radio duty cycle (%) for the network in ‘‘Industrial
Monitoring’’ scenario.

TABLE 11. Best case (minimum) radio duty cycle (%) for the network in
‘‘Industrial Monitoring’’ scenario.

TABLE 12. Worst case (maximum) radio duty cycle (%) for the network in
‘‘Industrial Monitoring’’ scenario.

ically accounts for the majority of current drawn on an
IoT device. We present average duty cycle for the network
in Table 10 and best case and worst case observations in
Table 11 / Table 12, respectively. Best case, resp. worst
case, refers to the lowest, resp. highest, observed duty cycle
in a run.

From Table 11, we can see that the best-case result is quite
consistent across the two testbeds and amounts to approxi-
mately 0.5%. The worst-case duty cycle in the network (see
Table 12) is around 1.8% for the network formed on w-iLab.t
and around 3.2% for the network formed on OpenTestbed.
This is a consequence of the logical topology of the net-
works formed, as nodes closer to the root have more data
to forward than the leaf nodes in the network. At 5 mA
current drawn from the radio, a figure typical for state-of-
the-art radio transceivers, this results in the average current
draw from the radio at about 90uA on w-iLab.t and 160uA
on OpenTestbed. To put this number into context, consider
that a typical AA battery holds 2200mAh, so a worst-case
node would approximately have 2.8 years of lifetime on a pair
of AA batteries on w-iLab.t and 1.6 years on OpenTestbed,
disregarding the microcontroller and sensor consumption.
For comparison, the best-case node at the radio duty cycle
of 0.5%, would need over 10 years before depleting a pair of
AA batteries.

D. HOME AUTOMATION
Home automation scenario consists of a mix of upstream
and downstream traffic. Downstream traffic consists of bursts
as well as the application-layer acknowledgment packets.
Each scenario run lasting 3 hours and 30 minutes consisted
of 1272 packets being sent by different nodes in the network.

1) RELIABILITY
Observed reliability of upstream traffic in the home-
automation scenario is presented in Table 13. We can

TABLE 13. Upstream reliability in ‘‘Home Automation’’ scenario.

TABLE 14. Reliability of downstream bursty traffic in ‘‘Home
Automation’’ scenario.

TABLE 15. Upstream latency in ‘‘Home Automation’’ scenario.

TABLE 16. Latency of bursty traffic in ‘‘Home Automation’’ scenario.

see that the average observed on w-iLab.t testbed is
around 99,7%, while the same KPI observed on OpenTestbed
deployment is 98,05%. We attribute this difference to the
radio interference and different propagation conditions on the
two testbeds.

For the case of downstream bursts, reliability is presented
in Table 14. In both cases, downstream burst reliability is
around 97%. The losses are attributed to the queue overflows
due to the bursty nature of the traffic and the slow link
capacity adaptation algorithm.

Table 15 presents the observed latency of upstream traffic.
We observed average latency of 3.5 seconds on w-iLab.t and
4.8 seconds on OpenTestbed. Higher latency on OpenTestbed
is partly the result of the deeper networks formed during the
home automation scenario runs, where each packet traversed
on average 2.86 hops, while onw-iLab.t each packet traversed
on average 2.62 hops.

Table 16 presents the latency results for downstream
bursty traffic. The observed latency for packets within a
burst was 8.7 seconds on w-iLab.t while it was 12.2 sec-
onds on OpenTestbed. It is important to note here that this
result could be improved with the usage of shorter slots,
as the default slot length in IEEE802.15.4 TSCH is 10ms,
instead of 20ms used within the OpenWSN reference image.
Indeed, using 10ms slots would halve the absolute latency in
seconds.

Finally, Table 17 presents the downstream latency for
non-bursty downstream traffic. Observed latency in case of
w-iLab.t testbed was 3.96 seconds while on OpenTestbed it
was 5.2 seconds.

79154 VOLUME 8, 2020



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

TABLE 17. Latency of downstream traffic in ‘‘Home Automation’’
scenario.

TABLE 18. Radio duty cycle (%) for the network in ‘‘Home Automation’’
scenario.

TABLE 19. Best case (minimum) radio duty cycle (%) in ‘‘Home
Automation’’ scenario.

TABLE 20. Worst case (maximum) radio duty cycle (%) in ‘‘Home
Automation’’ scenario.

2) RADIO DUTY CYCLE
Table 18, Table 19, Table 20 present the observed results
of radio duty cycle in the network while application traffic
pattern is following the home automation scenario. Compared
to the industrial monitoring scenario where the traffic load is
higher, we can see that the duty cycle results are even better
in the home automation case. The worst-case duty cycle in
the network for home-automation was observed at 1.49% for
w-iLab.t, and 1.68% for OpenTestbed.

V. CONCLUSION
The article presents the design of a benchmarking plat-
form for IoT use cases OpenBenchmark and the bench-
marking results of the reference implementation of the
6TiSCH protocol stack, the OpenWSN open-source project.
OpenBenchmark is designed with end users in mind; it
abstracts network and firmware specifics from the user and
as an output presents the user with a set of KPIs relevant
from the industrial point of view. The platform is also use-
ful for evaluating research proposals using a well-defined
methodology and a common set of KPIs. The source code
of OpenBenchmark is available in open source.
We used OpenBenchmark to evaluate the performance

of the reference implementation of 6TiSCH in industrial
monitoring and home automation test scenarios. Each sce-
nario was executed in two different radio environments,
Inria’s OpenTestbed in Paris, France and w-iLab.t in Ghent,
Belgium.

From the results presented in previous section, we draw
here some key take-away in respect to the applicability
of 6TiSCH as a technology to different application domains.
We could see in industrial monitoring scenario that the
observed reliability was above 99%, with experimental runs
regularly showing 100% reliability. We observe high reliabil-
ity also in the home automation scenario where some traffic
is generated according to the Poisson distribution, mimicking
human actions. In both scenarios, the observed latency can
be up to 12 s in bursty traffic scenarios. This result can
be easily improved by using shorter TSCH slot lengths or
different scheduling approaches specifically for interactive
applications. In both scenarios, the observed radio duty cycle
below 1%, attesting of the low-power nature of the 6TiSCH
technology. While the battery lifetime is a board-level aspect
with the attached sensors and the micro-controller also play-
ing an important role, we could see that the consumption of
the radio transceiver was negligible and allowing, alone, for
a battery lifetime on a pair of AA batteries over 10 years.

Finally, it is important to note here that we used a vanilla
version of the OpenWSN firmware image of 6TiSCHwithout
any specific optimizations to a specific use case. Knowing
the application traffic patterns and load in advance, it is
straightforward to further tune the solution to find a differ-
ent trade-off between latency and energy consumption for
example.

As part of our future work, we plan on extending
OpenBenchmark to other IoT technologies and platforms.
Indeed, it would be interesting to compare results between
different IoT technologies for common application traffic
patterns, as defined by our test scenarios.

REFERENCES
[1] T. Chang, M. Vučinić, X. Vilajosana, and D. Dujovne, 6TiSCH Mini-

mal Scheduling Function (MSF), document draft-ietf-6tisch-msf (work in
progress), Internet Engineering Task Force Standard, Dec. 2019.

[2] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
‘‘Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the Internet of Things,’’ in Proc. IEEE 14th Int. Symp. ‘World
Wireless, Mobile Multimedia Netw.’ (WoWMoM), Jun. 2013, p. 1–6.

[3] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, ‘‘Label switching
over IEEE802.15.4e networks,’’ Trans. Emerg. Telecommun. Technol.,
vol. 24, no. 5, pp. 458–475, 2013.

[4] G. Daneels, B. Spinnewyn, S. Latré, and J. Famaey, ‘‘ReSF: Recurrent low-
latency scheduling in IEEE 802.15.4e TSCH networks,’’ Ad Hoc Netw.,
vol. 69, pp. 100–114, Feb. 2018.

[5] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, ‘‘LLSF: Low latency
scheduling function for 6TiSCH networks,’’ in Proc. Int. Conf. Distrib.
Comput. Sensor Syst. (DCOSS), May 2016, pp. 93–95.

[6] T. van der Lee, G. Exarchakos, and S. H. de Groot, ‘‘Swarm-based energy
efficient scheduling for wireless sensor networks,’’ in Proc. IEEE Conf.
Standards for Commun. Netw. (CSCN), Oct. 2019, pp. 1–6.

[7] M. Vucinic, B. Skrbic, E. Kocan, M. Pejanovic-Djurisic, and T. Watteyne,
‘‘OpenBenchmark: Repeatable and reproducible Internet of Things exper-
imentation on testbeds,’’ in Proc. IEEE INFOCOM-IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Apr. 2019, pp. 289–294.

[8] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, ‘‘OpenWSN: A standards-based low-power wire-
less development environment,’’ Trans. Emerg. Telecommun. Technol.,
vol. 23, no. 5, pp. 480–493, Aug. 2012.

[9] M. Vucinic, M. Pejanovic-Djurisic, and T. Watteyne, ‘‘SODA: 6TiSCH
open data action,’’ in Proc. IEEEWorkshop Benchmarking Cyber-Physical
Netw. Syst. (CPSBench), Apr. 2018, pp. 42–46.

VOLUME 8, 2020 79155



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

[10] X. Vilajosana, K. S. Pister, and T. Watteyne, Minimal IPv6 over TSCH
Mode IEEE 802.15.4e (6TiSCH) Configuration, document RFC8180,
Internet Engineering Task Force Standard, May 2017.

[11] Q. Wang, X. Vilajosana, and T. Watteyne, 6TiSCH Operation Sublayer
(6top) Protocol (6P), document RFC8480, Internet Engineering Task Force
Standard, Nov. 2018.

[12] M. Vučinić, J. Simon, K. S. Pister, and M. Richardson, Constrained
Join Protocol (CoJP) for 6TiSCH, document draft-ietf-6tisch-minimal-
security-15 (work in progress), Internet Engineering Task Force Standard,
Dec. 2019.

[13] P. Thubert, An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4, document draft-ietf-6tisch-architecture-20 [work-in-progress],
IETF Standard, 2019.

[14] S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomo, ‘‘TSCH and
6TiSCH for contiki: Challenges, design and evaluation,’’ in Proc. 13th
Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), Ottawa, ON, Canada,
Jun. 2017, pp. 1–8.

[15] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt, ‘‘RIOT
OS: Towards an OS for the Internet of Things,’’ in Proc. IEEE Conf. Com-
put. Commun. Workshops (INFOCOM WKSHPS), Turin, Italy, Apr. 2013,
pp. 79–80.

[16] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,
K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, ‘‘Simulating
6TiSCH networks,’’ Trans. Emerg. Telecommun. Technol., vol. 30, no. 3,
p. e3494, Mar. 2019, Art. no. e3494.

[17] S. Ziegler, S. Fdida, T.Watteyne, and C. Viho, ‘‘F-Interop—Online confor-
mance, interoperability and performance tests for the IoT,’’ in Proc. Conf.
Interoperability IoT (InterIoT), Paris, France, Oct. 2016, pp. 1–9.

[18] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, ‘‘An empirical survey
of autonomous scheduling methods for TSCH,’’ IEEE Access, vol. 8,
pp. 67147–67165, 2020.

[19] B. Al Nahas, S. Duquennoy, and O. Landsiedel, ‘‘Network bootstrapping
and leader election in low-power wireless networks,’’ in Proc. ACM Sen-
Sys. New York, NY, USA: ACM, 2017, pp. 1–2.

[20] M. Vučinić, T. Watteyne, and X. Vilajosana, ‘‘Broadcasting strategies in
6TiSCH networks,’’Wiley Internet Technol. Lett., vol. 1, no. 1, Nov. 2017,
Art. no. e15.

[21] F. Righetti, C. Vallati, G. Anastasi, and S. Das, ‘‘Performance eval-
uation the 6top protocol and analysis of its interplay with routing,’’
in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), May 2017,
pp. 1–6.

[22] S. Ben Yaala, F. Théoleyre, and R. Bouallegue, ‘‘Cooperative resynchro-
nization to improve the reliability of colocated IEEE 802.15.4 -TSCH
networks in dense deployments,’’ Ad Hoc Netw., vol. 64, pp. 112–126,
Sep. 2017.

[23] A. Karaagac, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, ‘‘Time-critical
communication in 6TiSCH networks,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops (WCNCW), Apr. 2018, pp. 161–166.

[24] L. Toka, B. Lajtha, E. Hosszu, B. Formanek, D. Gehberger, and J. Tapolcai,
‘‘A resource-aware and time-critical IoT framework,’’ in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

[25] P. Štefanič,M. Cigale, A. C. Jones, L. Knight, I. Taylor, C. Istrate, G. Suciu,
A. Ulisses, V. Stankovski, S. Taherizadeh, G. F. Salado, S. Koulouzis,
P. Martin, and Z. Zhao, ‘‘SWITCH workbench: A novel approach for the
development and deployment of time-critical microservice-based cloud-
native applications,’’ Future Gener. Comput. Syst., vol. 99, pp. 197–212,
Oct. 2019.

[26] J. Munoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Walcarius,
W. van de Meerssche, and T. Watteyne, ‘‘OpenTestBed: Poor Man’s IoT
testbed,’’ in Proc. IEEE INFOCOM-IEEE Conf. Comput. Commun. Work-
shops (INFOCOM WKSHPS), Apr. 2019, pp. 467–471.

[27] A. Brandt, J. Buron, and G. Porcu, Home Automation Routing Require-
ments in Low-Power and Lossy Networks, document RFC5826, Internet
Engineering Task Force Standard, Apr. 2010.

[28] M. Vucinic, B. Tourancheau, and A. Duda, ‘‘Performance comparison
of the RPL and LOADng routing protocols in a home automation sce-
nario,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2013,
pp. 1974–1979.

[29] K. Pister, P. Thubert, S. Dwars, and T. Phinney, Industrial Routing Require-
ments in Low-Power and Lossy Networks, document RFC 5673, Internet
Engineering Task Force Standard, Oct. 2009.

[30] Wireless Testlab and OfficeLab. Accessed: Dec. 13, 2019. [Online]. Avail-
able: https://doc.ilabt.imec.be/ilabt/wilab/

[31] T. Qiu, B. Li, W. Qu, E. Ahmed, and X. Wang, ‘‘TOSG: A topology
optimization scheme with global small world for industrial heteroge-
neous Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3174–3184, Jun. 2019.

[32] N. Chen, T. Qiu, X. Zhou, K. Li, and M. Atiquzzaman, ‘‘An intelligent
robust networking mechanism for the Internet of Things,’’ IEEE Commun.
Mag., vol. 57, no. 11, pp. 91–95, Nov. 2019.

MALIŠA VUČINIĆ (Member, IEEE) received the
Engineering degree from the University of Mon-
tenegro, in 2010, the joint Master’s degree (Hons.)
from the Politecnico di Torino and the Greno-
ble Institute of Technology, in 2012, and the
Ph.D. degree from the Grenoble Alps University,
in 2015. From 2012 to 2015, he was a Research
Engineer with STMicroelectronics, and was a Vis-
iting Scholar with the University of California at
Berkeley, in 2015. He is active in the IETF, where

he is the Co-Chair of the LAKE Working Group on security and leads the
security standardization work in 6TiSCH. He is a Core Developer of the
OpenWSN Project, the Reference 6TiSCH Implementation, and a Co-Lead
of the 6TiSCH Simulator. He is a Research Scientist with the EVA Team,
Inria, Paris, France. His current research interests include the intersection of
communication security and performance analysis in the Internet-of-Things
scenarios.

TENGFEI CHANG received the Ph.D. degree in
computer system architecture from the Univer-
sity of Science and Technology, Beijing, in 2017.
In 2014, he was visiting at the University of
California at Berkeley, Berkeley, CA, USA, as a
Visiting Scholar. From November 2015 to Octo-
ber 2017, he joined th EVA Team, Inria, Paris,
as a Pre-Postdoctoral Research Engineer, lead-
ing the project of OpenWSN, which is an Open
Source Project founded by UC Berkeley. In 2017,

he joined the F-Interop Project as a Postdoctoral Research Engineer, which is
an H2020 European Research Project. He is also one of the main implemen-
tors of IETF 6TiSCH standard protocol stack. He has worked as technical
support for 6TiSCH interoperability plugtest. He is a Postdoctoral Research
Engineer at Inria-EVA. He has huge interests on wireless sensor and actuator
networks, swarm robotic, and any embedded system design.

BOŽIDAR ŠKRBIĆ (Member, IEEE) received the
B.Sc. degree from the Department of Electron-
ics, Telecommunications and Computer Sciences,
Faculty of Electrical Engineering, University of
Montenegro, Podgorica, in 2015, and the Spec.Sci.
degree in computer sciences, in 2016, where he is
currently pursuing the master’s degree in machine
learning. As a Software Engineer, he was a part
of the BIO-ICT Centre of Excellence, Faculty of
Electrical Engineering, University of Montenegro,

from October 2016 to September 2018, participating in the development of
several major prototypes and software solutions. From September 2018 to
September 2019, he was a Software Developer at SODA, a project of
University of Montenegro funded by the H2020 Fed4FIRE+ Consortium.
He received the Best Student Award for his B.Sc. degree.

79156 VOLUME 8, 2020



M. Vučinić et al.: KPIs of the Reference 6TiSCH Implementation in IoT Scenarios

ENIS KOČAN (Member, IEEE) received the
M.Sc. and Ph.D. degrees in telecommunications
from the University of Montenegro, in 2005 and
2011, respectively. He has conducted part of his
Ph.D. research at the Aristotle University of Thes-
saloniki. He is anAssociate Professor with the Fac-
ulty of Electrical Engineering, University of Mon-
tenegro. He has published more than 70 scientific
articles in international journals and peer-reviewed
conferences. His research areas include digital

communications over fading channels, with particular emphasis on the
OFDM based cooperative communications, solutions for 5G networks,
the IoT wireless communication solutions, and techniques for exposure
reduction in wireless communication systems. He was a recipient of the
Best Paper Award at the International Conference on Wireless Personal
Multimedia Communications (WPMC 2013), held in the frame of the Global
Wireless Summit, in 2013.

MILICA PEJANOVIĆ-DJURIŠIĆ (Member,
IEEE) is currently a Full Professor in telecom-
munications with the Faculty of Electrical Engi-
neering, University of Montenegro, Podgorica,
Montenegro. She has published more than 200 sci-
entific articles in peer-reviewed international and
national journals and conference proceedings,
being the author of four books and a number of
book chapters. Her main research interests include
wireless communications, 5G wireless networks,

wireless IoT, cooperative and energy efficient transmission techniques,
ICT trends and applications, and the optimization of telecommunication
development policy. She has considerable industry and operating experiences
working as an Industry Consultant and the Telecom Montenegro Chairman
of the Board. She has been in charge of wireless networks design and
implementation in Montenegro and in the region of SE Europe. She has been
leading and coordinating many internationally and EU funded ICT projects
and initiatives. She is amember of IEICE, with a long engagement in the field
of telecommunication regulation and standardization. In addition to work on
national and regional levels, she has participated, in cooperation with ITU,
in a number of global missions and activities related with regulation issues,
development strategies, and new technological solutions.

THOMAS WATTEYNE (Senior Member, IEEE)
received the M.Eng. degree in telecommunica-
tions, the M.Sc. degree in networking, and the
Ph.D. degree in computer science from INSA
Lyon, France, in 2005, 2005, and 2008, respec-
tively. He is an Insatiable Enthusiast of low-power
wireless mesh technologies. He holds a research
director position at the EVA Research Team, Inria,
Paris, where he leads a team that designs, models,
and builds networking solutions based on a variety

of the Internet-of-Things (IoT) standards. Since 2013, he has been the
Co-Chair of the IETF 6TiSCH Working Group, which standardizes how to
use IEEE802.15.4e TSCH in IPv6-enabled mesh networks. He is a member
of the IETF Internet-of-Things Directorate. Prior to that, he was a Postdoc-
toral Research Lead with the Prof. Kristofer Pister’s Team, University of
California at Berkeley, Berkeley, CA, USA. From 2005 to 2008, he was a
Research Engineer with France Telecom, Orange Labs.

VOLUME 8, 2020 79157


