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ABSTRACT The Internet of Things (IoT) represents a mean to share resources (memory, storage
computational power, data, etc.) between computers and mobile devices, as well as buildings, wearable
devices, electrical grids, and automobiles, just to name few. The IoT is leading to the development of
advanced information services that will require large storage and computational power, as well as real-time
processing capabilities. The integration of IoT with emerging technologies such as Fog Computing can
complement these requirements with pervasive and cost-effective services capable of processing large-
scale geo-distributed information. In any IoT application, communication availability is essential to deliver
accurate and useful information, for instance, to take actions during dangerous situations, or to manage
critical infrastructures. IoT components like gateways, also called Fog Nodes, face outstanding security
challenges as the attack surface grows with the number of connected devices requesting communication
services. These Fog nodes can be targeted by an attacker, preventing the nodes from delivering important
information to the final users or to perform accurate automated actions. This paper introduces an Anomaly
Behavior Analysis Methodology based on Artificial Neural Networks, to implement an adaptive Intrusion
Detection System (IDS) capable of detecting when a Fog node has been compromised, and then take the
required actions to ensure communication availability. The experimental results reveal that the proposed
approach has the capability for characterizing the normal behavior of Fog Nodes despite its complexity due
to the adaptive scheme, and also has the capability of detecting anomalies due to any kind of sources such
as misuses, cyber-attacks or system glitches, with high detection rate and low false alarms.

INDEX TERMS Anomaly behavior, cyber security, fog computing, IoT, neural networks.

I. INTRODUCTION
The growth in the use of mobile computing, social media
technologies, cloud and pervasive computing, and the explo-
sive growth and acceptance of Software as a Service (SaaS)
has derived into the development of next-generation of Inter-
net services that are pervasive and touch every aspect of
modern life, as it is the case of the Internet of things. It is
projected that there will be 75 billion IoT devices connected
to the internet globally by 2025; making IoT technology a
7.5 trillion dollar market [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhui Yuan .

The advent of Fog computing has led the computation host-
ing services to be moved to the network edge, reducing the
latency induced by communication. Fog computing allows
IoT services to become the key technology for the develop-
ment of smart cities enabling a revolution in the way business
is done, health services are provided, critical infrastructure is
managed, resident safety and security is maintained, educa-
tion is provided, etc. [2], [3].

Although this use of Fog computing and IoT application
has led to the growth of Smart Infrastructures, Smart Build-
ings and Smart Cities [3]–[5], it has also led to an increase
in attack surfaces that attackers can target to exploit vulner-
abilities. IoT usage has exposed devices and applications to
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attackers at a scale like never before. IoT devices, designed to
work in isolated environments, are now connected to a wider
area network to satisfy particular requirements (e.g., remote
administration requirements). This increases the attack sur-
face of IoT systems, making them vulnerable to attacks that
might lead to the delivery of inaccurate information to the
end-users, resulting in catastrophic consequences when these
users respond to this incorrect information, e.g., the Stuxnet
attack [3], or face service outages wherein the user is unable
to control his IoT device or Fog nodes [4]. The authors in [4]
highlight the relevance of using a resilient Data Distribution
algorithm to avoid data to be lost during connectivity outage
periods caused by issues like regular maintenance, hardware
constraints (e.g. buffer size), or cyber-attacks.

Diverse strategies about fog computing and IDS have been
reported. Sohal et al. in [6] present a literature review of
different network devices employed in Fog computing includ-
ing routers, switches, and hubs. The authors present an IDS
that make use of Virtual Honeypot Devices together with
Markov models with the goal of identifying compromised
edge devices in a fog environment. Another intrusion detec-
tion effort has been reported by Shafi et al. [7]. The authors
developed a fog-assisted software design networking (SDN)
solution through a computational arrangement with IoT net-
work elements. The proposed system was able to identify
attacks at the right time by employing four machine learning
classifiers automatically detect attacks. Intrusion detection
has been also possible by analyzing IDS log statistics in the
fog nodes with a query-based strategy plus uncertainty tests to
calculate the degree of a potential threat. This approach was
tested for fog radio access networks (F-RANs) [8]. A different
approach reported an IDS architecture for edge computing.
To deal with the limitations in edge nodes, the solution han-
dled a multilayer dominant and max-min fair (MDMMF)
allocation of resources to improve IDS computational and
storage efficiency [9].

A type of threat for fog computing who has gained impor-
tance is the Distributed Denial of Service (DDoS) attack. This
type of invading agent illegally appropriates resources of the
fog node. A solution is to modify a traditional IDS to gen-
erate a fog computing intrusion detection system (FC-IDS)
framework. An et al. [10] proposed a hypergraph clustering
model based on inferred decisions. Data mining work was
carried out to study the type of link between the DDoS and
the fog node under attack.With this knowledge and additional
information provided by another fog node, a description of
the attack could be obtained to respond with an adequate
security action plan.

In this paper, we introduce a methodology to protect IoT
Gateways and Fog devices against cyber-attacks. The aim of
the proposed methodology is the assurance of Fog devices
availability, despite the origin of abnormalities such as cyber-
attacks, human errors and regular churn conditions, to name
few. The benefit of applying the proposed ABA-IDS at fog
level instead of applying it at cloud or end-devices level is the
fact that Fog Nodes at the edge of the network, are necessary

to communicate end-devices, which are constrained in mem-
ory, with the Cloud, where more sophisticated detection sys-
tems can be applied. Pacheco and Hariri in [11] presented
an approach to develop a threat modeling methodology to
recognize vulnerabilities in each of the four layers in IoT
device architecture: devices, network, services and applica-
tions, and present countermeasures to mitigate each of the
vulnerabilities. In [11] authors present a technique to detect
anomaly behavior on compromised sensors. They developed
a threat model that identifies attacks against end nodes, net-
work, service and application layers. However, their approach
is developed under the premise that the amount of sensors is
limited; if this condition is not fulfilled, then data association
is required in order to track signals of several classes. To deal
with such scenario, fog computing and adaptive schemes
based on machine learning are more appropriate. The adap-
tive properties of neural networks are incorporated to rein-
force the ABA-IDS methodology proposed in [11], in order
to address the data association requirement where a large
amount of sensor is presented. In this paper, the methodology
presented in [11] is extended to the design and development
of an adaptive Anomaly Behavior Analysis Intrusion Detec-
tion System (ABA-IDS) using Artificial Neural Networks
(ANN) [12], [13] to model the normal behavior of Fog and
IoT devices. The performance of the approach was measured
against attacks like the Replay, Flooding and DoS attacks
on an IoT testbed, developed in the Center for Cloud and
Autonomic Computing (CAC), at the University of Sonora.
The results obtained demonstrate that the proposed ABA-IDS
methodology can be used to deploy security methods capable
of protecting the normal functionality of IoT Gateways and
Fog devices. The approach was successfully able to detect
known and unknown abnormalities such as cyber-attacks
applied to IoT end nodes exhibiting high detection rate (up
to 93%) with low false alarms (less than 3.3%) while intro-
ducing low overhead (up to 13% execution time overhead).

The rest of the paper is organized as follows. Section II
offers the required information about basic concepts of fog
computing, cyber security for the IoT, intrusion detection
based on abnormal behavior, and the threat model applicabil-
ity. Section III exposes the proposed security framework that
can be used for IoT applications. Section IV focuses on the
description of the ABAmethodology. In section V, the exper-
imental setup is described along with a brief discussion of the
obtained results. SectionVI concludes the paper summarizing
the findings and providing potential research directions.

II. BACKGROUD
A. FOG COMPUTING
Fog Computing technology extends the Cloud computing
paradigm to the edge of the computational network, enabling
a wide range of applications and services that exhibit lower
latency, better awareness for location services, mobility, and
elasticity [14]–[16]. Fog computing has been seen to be
effective in supporting IoT applications that require pre-
dictable latency. For example, in [17] the authors described
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an approach to secure fog-based systems under Byzantine
attacks while enhancing the efficiency of data processing for
IoT applications. Fog computing leverage IoT-based systems
by providing the required mechanisms to ensure confidential-
ity, integrity, and availability (CIA) to the IoT infrastructure.

B. IoT CYBER SECURITY
The IoT allows the operation and administration of a large
variety and quantity of devices that are heterogeneous,
by gathering and managing information as well as smart
objects [18]. It represents interconnected systems and devices
that comprise a large range of technologies including sensors,
actuators, communication networks, etc. [19]. The hetero-
geneity of resources and dynamic utilization of services turns
cybersecurity into a major problem because existing cyberse-
curity solutions are not necessarily appropriate for IoT-based
systems due to [18], [19]: 1) IoT spreads ‘‘internet’’ through
traditional networks, including the current Internet; 2) Most
smart objects lack computational resources required to sup-
port complex security algorithms; 3) High interconnectivity
in IoT devices, leads to multiple entry points that can be
exploited to target the network; and 4) Shared IoT devices
and services are prone to have different policies.

These issues are required to be tackled in order to build reli-
able IoT-based applications, where Confidentiality, Integrity,
and Availability must be guaranteed. Therefore, there is a
great research concern in developing novel security tech-
niques that can secure and protect IoT applications and
services [20].

C. ANOMALY BEHAVIOR ANALYSIS
The growth of cloud computing and IoT have brought their
own set of challenges in the form of increased attack surfaces
and data security. Current cyber security solutions are not
capable of stopping these threats in terms of their efficacy and
scalability [17], [21]. In addition, there is a trend in increasing
attack sophistication and speed of attack propagation as the
internet has reached a global scale, making it possible to
launch sophisticated attacks at little or no development costs
in a few seconds to target entities across the globe [20].
To address this threat, there is a need to design Intrusion
Detection Systems (IDS) that will be able to detect these
sophisticated attacks before they cause significant damage to
the target. There are two main methodologies to design IDSs:
Signature based IDS and Anomaly based IDS [22]–[25].
Signature based IDS use known attack signatures to detect
attacks, making them incapable of detecting new or modified
attacks. Anomaly based IDS use modeling techniques like
statistical modeling, machine learning, and deep learning
to model the normal behavior of the system, making them
capable of detecting not only known attacks but also new
(zero day) or modified attacks.

The key feature of the anomaly detection approach is the
capability of new attack detection. An anomaly-based IDS
first defines a model of normal characteristics of the system
through off-line training. Any activity outside this normal

behavior is labeled to be abnormal behavior (caused due to
potential attack or misconfiguration). Historically anomaly
behavior analysis has been associated with high false positive
rates. This drawback can be by performing a fine-grained
behavior analysis while modeling the system behavior as
shown by Satam et al. in [25].

D. THREAT MODELING
Developing appropriate countermeasures to mitigate threats
heavily depends on analyzing the system’s vulnerabilities and
the associated risks [26]. A threat model defines potential
threats and correlates them with associated risks. This corre-
lation helps in the analysis of glitches, as well as in the design
of mitigation strategies plans before deploying the system.
It also helps to prioritize what is required to be protected
in case the solution is not feasible. A threat model is useful
for detecting changes that need to be applied to an initial
layout/architecture to minimize possible system threats. The
general steps to create a threat model are: 1) Identification of
potential assets and their associated threats; 2) rank the risks;
3) choose strategies to mitigate the threats; and 4) develop
solutions based on the best possible strategies [26], [27]. The
listed steps will be followed to study an IoT Fog node.

FIGURE 1. IoT framework defined in multiple layers [7].

III. IoT SECURITY FRAMEWORK FOR
SMART INFRASTRUCTURES
Several IoT frameworks and architectures can be uti-
lized to establish a threat model and apply mitigation
schemes [28]–[30]. Fig. 1 illustrates the general framework
employed in this study. The framework was introduced and
extensively explained in [11] and can be used for the devel-
opment of security mechanisms in IoT-based systems. The
framework contains four layers: end devices, Network, Ser-
vices, and Applications. Fog computing is a key component
for linking end devices layer with the service layer. Cyber-
attacks and other threats can influence the functionality in
each level shown in Fig. 1. For each layer, risks are weighted
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in considering target, impact, and effectiveness of known
mitigation techniques.

In the first layer (perception layer), the information is
taken by physical devices to identify the physical world or
apply control to it [11]. The key components (targets) in this
layer are sensors, actuators, and local controllers. Any attack
targeting this layer will result in a loss of life, monetary
loss or economic loss, and loss in service providers reputa-
tion. Mitigation mechanisms include lightweight encryption,
authentication, IDS, anti-jamming, and behavior analysis.

The network layer is in charge of information exchange
from/to final devices [30]. Communication technologies such
as mobile communication networks, infrastructures for net-
working, protocols, and the Internet itself, constitute this
layer. Network security is responsible for defending against
cyber-attacks targeting infrastructures such as the Fog nodes,
and information embedded in protocols. An attack on this
layer can cause monetary loss, damage in reputation, and
excessive energy consumption. Network mitigation methods
include access control, anti-DoS, encryption, packet filtering,
congestion control, anti-jamming, and behavior analysis IDS.

The services layer provides the required computational
power by implementing Cloud services as well as Fog ser-
vices [29], [30]. In this layer, the targets are confidential infor-
mation, sensors and actuators, and monitor/control functions.
An attack on this layer will cause a loss of safety, monetary
loss, and information leakage. This layer can be secured
by the implementation of encryption, access control, period
identifiers, selective data disclosure, and behavior analysis.

The application layer presents customized services to end-
users [30]. In this layer, data sharing is an important fea-
ture and consequently, cybersecurity must address privacy,
access control, and data disclosure. The impacts could be in
unauthorized access to data, disclosure of critical information
and damage in reputation, and excessive energy consumption.
Reported mitigation techniques include data encryption, and
access control [31], [32].

A. INTERNET OF THINGS TESTBED
The Fig. 2 depicts an overview of the IoT testbed at the
CAC center at the University of Sonora. This testbed follows
the architecture in Fig. 1 and can be split into the same
four layers. In the testbed the components are sensors like
temperature, current, and water flow; actuators like electric
valves, fan, lights, door locks; and control units like PLC’s,
NI CompactRIO, and Arduino UNO as the end nodes. Ama-
zon Web Services and Microsoft Azure over wired ethernet
network andWi-Fi network form the services and the network
layers.

The shown characteristics are considered as a minimum to
deploy the proposed system with acceptable overhead. In the
case of resources constrained devices, other methodologies
such as rule-based approaches can be applied as discussed
in [11]. To demonstrate the methodology described in this
paper, a raspberry pi3 model B [33] configured as a fog
node with internet access will be used. The node is a key

FIGURE 2. IoT testbed overview.

component in the IoT testbed, it contains 4 ARMCortex-A53
cores, with 1.2GHz, 1GB LPDDR2 (900 MHz) ram memory,
and 32 GB storage. It works under Raspbian lite (Debian) for
ease of configuration.

B. IDENTIFICATION OF ATTACK SURFACE
Systems can be compromised by deploying cyberattacks
inside the operating ecosystem or by launching an attack from
an outside location [34]. Both scenarios will make use of the
system’s resources, methods, and data to initiate the attack.
In this research, the security of an IoT application is consid-
ered with respect to the local and public networks [35]. Local
networks include controllers and devices, communications
and gateways, while public networks include IoT services and
applications. From Fig. 1 an attack surface can be derived as
shown in Table 1.

TABLE 1. Attack surface for IoT architecture.

This work focuses on the security of a Fog node (Gateway)
implemented on a Raspberry Pi 3 configured to perform com-
munications between other Fog nodes and IoT subsystems
such as the Smart Water Testbed introduced in [35]. Fog
nodes security is crucial to develop trustworthy IoT applica-
tions and services, providing resiliency and preventing cyber
threats to be disseminated among other IoT subsystems. In the
context of this study, trustworthy service is defined as the one
capable of performing self-protection against cyberattacks
(self-protect), that can operate normally meeting required
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performance goals regardless of operational conditions (self-
optimization), and can update its configuration to comply
with new requirements (self-configuration).

IV. ANOMALY BEHAVIOR ANALYSIS METHODOLOGY
ABA aims at modeling the usual behavior of a system, such
that it is able to identify any abnormal behavior i.e. an attack
on the target system that it is modeling [5], [36]. The proposed
methodology focuses on the availability of the secure gateway
(see Fig. 1) to recognize potential threats that can affect its
functionality, preventing it to deliver the information where
required. The modeling of the Fog node is carried out by
foot-printing features like system memory, CPU usage, hard-
ware configuration, etc. Fig. 3 depicts the ABA deployment
methodology.

FIGURE 3. Anomaly behavior analysis deployment methodology.

The algorithm that explains the procedure depicted
in Fig. 3 is presented in Table 2.

TABLE 2. Anomaly behavior analysis general algorithm.

A. TRAINING PHASE (OFFLINE)
The training phase in the ABA methodology is carried out
offline and is used to characterize the normal behavior of the

Fog node. In what follows, the steps of the training phase are
explained.

1) FEATURES SELECTION
The correlation of 260 system variables or features was ver-
ified using the Pearson product-moment correlation coeffi-
cient technique [37]. The results show that 11 features are
sufficient to describe the node normal behavior, these fea-
tures are: 1) available memory (AM), 2) buffers utilization
(BU), 3) CPU utilization (CU), 4) sockets (SO), 5) processes
(PO), 6) process running (PR), 7) Active Connections (AC),
8) WLAN Reception (WR), 9) WLAN Transmission (WT),
10) Ethernet Reception (ER), and 11) Ethernet Transmission
(ET). These features will constitute the dataset after being
collected. The same features are inspected online as they
will be used to build the reference model (off-line) and later
compared with the on-line model.

2) DATASET
In the offline stage, the IoT testbed was used to create the
training dataset. For each inspection, the information (fea-
tures) is stored in a MySQL database [38] which will be
used to train the ANN-based model. Legitimate commands
were executed on the testbed to collect the data for the origi-
nal feature set (e.g. Open_Actuator_1, Read_Sensor_1, etc.).
On completion of retrieving all the information for a specific
command, the next instruction is processed. Those steps are
repeated for all available commands until the incoming traffic
shows similarity, meaning that the command has been fully
processed. The universe should be U = N∪A for all data in
the dataset, where N represents the normal behavior and A
represents abnormality. However, Equation (1) shows a more
precise description for the described method.

U = N ∪ A+ N u (1)

where N u is the non-classified normal traffic. The proba-
bility of getting false positives (false alerts) will rise as N u

increases. Therefore, the accurateness of the reference model
will strongly depend on the quality and quantity of informa-
tion in the dataset.

3) TRAINING UNIT
The training unit is the knowledge builder of the behav-
ioral analysis. Required features (recall the features selection
module), stored in the dataset, are internally taken from the
system to perform the offline training of an Artificial Neural
Networks (ANNs) cluster that will be formally defined in
subsection B. Table 3 displays the algorithm’s steps to train
one ANN.

By following the steps listed in Table 3, a cluster of
ANNs was tuned and used as the reference model. The
next step is to calibrate the ANNs to predict the trend in
the extracted features, this task is performed taking runtime
information.
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FIGURE 4. Anomaly behavior analysis deployment methodology.

TABLE 3. NN training process: prediction of series Ŷ (t) given D past
values of y(t).

B. REFERENCE MODEL
The reference model relies on the adaptive properties of the
ANNs, whose properties are well known and described in the
literature [39]. Accurate detection of attacks and failures is
crucial for the discrimination of normal vs abnormal opera-
tions [40]. The scheme developed in this paper leans on an
ANN Cluster (ANN-C) architecture as shown in Fig. 4. The
proposed ANN-C is architected upon a) an adaptive stage, b)
a comparison stage, c) a discriminant memory, and d) a risk
management unit.

1) ANN MODELS (NNI)
Neural Networks are frequently employed for time-series
prediction in non-deterministic scenarios, they are config-
ured to calculate future values

{
yN+1, yN+2, . . .

}
given a

time-series represented by N values
{
y1, y2, yN

}
. The adap-

tive model is tuned by the training unit using healthy informa-
tion (as defined in SectionV) using a nonlinear autoregressive
model (NAR) [12], [13], as shown in Equation (2) to be
integrated with the architecture as depicted in Fig. 4.

ŷ = f (y(t − 1), . . . , y(t − d)), (2)

where d is the feedback unit represented as Delay n in Fig. 4.

2) COMPARISON STAGE
To determine the amount of drift between normal behavior
yi (t) and the NNi output, a residual signal is generated [40].

The comparison module is designed to obtain the residuals
ρi (t) defined as

ρi(t) = yi(t)− ŷi(t), (3)

where yi (t) are the data generated by the system operation
and ŷi (t) are the data predicted by the ith-NN module. The
following elements (Discriminant Memory and Risk Man-
agement Unit) are used for the runtime unit (see Fig. 3).
In what follows, the runtime unit is described.

C. RUNTIME UNIT
The runtime unit (Fig. 3) is in charge of the behavioral
classification of the system (normal or abnormal), as well as
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of ranking the impact of an abnormality. Once an abnormality
is detected and ranked, the required mitigation mechanism is
applied.

1) ONLINE MONITORING
A key ability of the ABA is monitoring in runtime. The sys-
tem’s information was monitored from files in /proc directory
(Debian Operating System). The data was retrieved with a
daemon that running independently, and automatically over-
comes from crashes. The runtime unit monitors the features
(see Equation (4)) whose output is fed into the classification
unit to build the model to be used in runtime.

y =
[
AM · · · ET

]
. (4)

2) CLASSIFICATION UNIT
Using the residuals, the following function is proposed:

µ(t) =
N∑
i

wiρi(t). (5)

which evaluates the contribution of each residual obtained
after all comparisons. As can be seen, Equation (5) describes
a Discriminant Memory (DM). The DM characterizes the
drift in the normal behavior of the system. Equation (5) is
parametrized by weighting values wi which are computed
online considering the normalized version of the LMS cost
criteria as follows:

wi =
1
σ 2N

N∑
i=1

(yi − ŷi)
2
, (6)

where wi are positive values that weigh the contribution of
the residuals to the function µ(t). Is important to remark that
in the absence of a fault condition ρi(t) = 0, the output of
the DM is only due to noise which does not affect the rule
mechanism.

3) RISK MANAGEMENT UNIT
This unit chooses the appropriate mitigation method and
prioritizes the actions to be taken. This unit provides a label
that will be used to take the required action if an alert is
triggered. It maps the output of the classification unit into an
alert code represented by a label, which is forwarded to the
action handling unit. Equation (7) shows the definition for
this unit

f (t) =


Label1 if µ (t) ≤ τ1
Label2 if τ1 < µ (t) ≤ τ2
...

...
...

LabelN if µ (t) ≥ τN−1.

(7)

whereµ (t) is the residual defined in (5); τ is a threshold value
selected by the user; LabelN is the categorical data associated
with the events and the actions to be taken by the Action
Handling Unit.

FIGURE 5. Healthy data from process.

4) ACTION HANDLING UNIT
This unit implements the actions requested by the risk man-
agement unit. Table 4 shows the possible measures imple-
mented by this unit. The issue may persist, for instance,
a malicious entity could trigger Event1 code each time the
connection is renewed. The Action Handling Unit employs
a log file to keep a record of each error, including its times-
tamp. Before enforcing any protective policy, the log file is
reviewed looking for the periodicity of a given error. If the
period is less than 24 hours, the unit will handle it as Event3.

TABLE 4. Actions to be taken by the action handling unit.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
Aswe are targeting availability, three variables (MA, BU, and
CU) were used to test the performance of the ANN-C. Under
DoS or flooding attacks (which target systems availabil-
ity), the most affected components are memory, processing
capacity, and internal communication [41], therefore, mem-
ory availability, buffer utilization, and CPU utilization are
critical variables when seeking for availability. The k-index is
designated to identify each variable type as shown in Table 5.
The k-index is used as a variable selector when algorithm 1 is
applied (see Table 3).
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FIGURE 6. In the first column, NN trained for MA, BU and CPU are depicted. In the second column the respective training error are shown.

TABLE 5. Variable selection (k-index).

FIGURE 7. Output from discriminant memory due to process noise when
the system is operating under normal condition.

The experimental setup consists of two phases: 1) offline
phase, to train the system, and 2) online phase to test the
NN-ABA-IDS. In the offline phase, three neural networks
were trained, each one for a variable k. The NN was trained
on 1000 samples collected while the system was operating
normally. Parameter for NN are as follows: 10 neurons in
the hidden layer; 2 delay units; one linear output neuron;
the activation function g(t) is a sigmoid symmetric function
designed as:

g(t) =
2

1+ e−2t
− 1, (8)

FIGURE 8. NN response under flood attack: memory available.

FIGURE 9. Error from NN response under flood attack: memory available.

Raw data is scaled to the [0 1] space bymeans of the min-max
method as follows

x =
x-min(x)

max(x)− min(x)
(9)

where x is the scaled value of x. Pre-processed data is shown
in Fig. 5, where healthy data is generated under normal
operative condition of the sensor, with no attacks nor anomaly
behavior affecting the system and it constitutes the baseline
data for normal operation.
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FIGURE 10. NN response under flood attack: buffers.

FIGURE 11. Error from NN response under flood attack: buffers.

B. OFFLINE TRAINING PHASE
The k-index is used to train the NN for each variable. In the
design of the NN three layers are taking in consideration
a) input layer, which is feed by the previous values of data{
yt−1, yt−2, · · · , yt−d

}
; b) output layer, which give the

estimation value of the neural network ŷt ; and c) hidden layer,
which process data between input and output layers.

In Fig. 6, the ANN estimated output is displayed; they
were trained using the Levenberg-Marquardt backpropaga-
tion algorithm. As can be seen, it exhibits an error close to
zero, which means that the ANN-C is capable of tracking the
behavior of the system.

C. ONLINE PHASE
A threat level (TL) was proposed to detect the severity from
attacks. The discriminant memory and risk management unit
implemented by Equations (4) to (7) worked together to

FIGURE 12. NN response under flood attack: CPU.

FIGURE 13. Error from NN response under flood attack: CPU.

generate an attack severity profile. The threshold τ , for the
rule mechanism, was selected as follows: 1 for τ < 0.3, 2 for
0.3 ≤ τ ≤ 0.6, and 3 for τ > 0.6. Several tests were applied
in order to evaluate the ANN Based IDS for IoT Fog Nodes
performance.

1) NO ATTACK
The first test was to investigate the performance of the
approach under normal operational conditions (no attack
condition was applied). As depicted in Fig. 7, only noise
of the overall process was present at the output of the
ABA-IDS.

2) FLOODING ATTACK
A flooding attack constituting a large stream of packets
aiming to fill the target memory [42], was performed on
the system reducing legitimate packet delivery from 90%
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FIGURE 14. Two events detected under flood attack.

FIGURE 15. Detection rate vs attack intensity for Flooding attack.

to less than 40 Fig. 8 shows the response of memory
available variable and Fig. 9 shows the error of the neural
network.

The response of Buffers variable is shown in
Fig. 10 and 11. It is remarkable that the respective NN trained
for Buffer can deal with the flooding attack (Fig. 10) with
high accuracy, which is verified by the performance of the
error shown in Fig. 11. The CPU utilization response of
the NN is depicted in Fig. 12. In this case, the NN fits
with an error very close to zero (Fig. 13). From the results
depicted in Fig. 8 to Fig. 13, one can figure out that the

error of the neural network contributes in different ways to
the performance of each variable. It is possible to establish
that the performance of the NN trained for AM variable is
worst that the performance of BU and CPU. This differences
in the error (residuals) are processed by the Discriminant
Memory in Equation (5), whose output was evaluated as
indicate Table 5.

In Fig. 14, the Threat Level was obtained when the flood
attack was simulated in the process. According to Fig. 14,
two events are detected when the threshold is reached. The
TL with τ = 0.3 is tagged as Event1 by the rule mechanism
triggered by Equation (7), which indicates that a minor threat
is detected. As can be seen in Fig. 14, the dynamics of the
discriminant memory can track the behavior of the threat.
If TL overpasses the value τ = 0.6, a new event is triggered
and labeled as Event2.

3) ATTACK INTENSITY VS DETECTION RATE AND OVERHEAD
The ABA-IDS approach was tested under different intensities
for attacks. Flooding attack is established as a control subject,
sending 100 to 1000 packets per second. It is assumed that
for intensities under 100 packets per second, the node is not
compromised, as it can handle such traffic. Fig. 15 shows how
different intensities affect the detection rate. As can be seen,
the detection rate is satisfactory (more than 90%) for inten-
sities of 600+ packets per second. The node was operated
for 24 hours under no attack (in an isolated environment) to
verify false positives. After 86400 trials, the system indicated
2803 alerts (3.24% false positives).
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TABLE 6. Evaluation metrics.

The system overhead is another important parameter to be
considered when implementing intrusion detection. To verify
this parameter, the experiments were executed without the
IDS and then using it, inspecting three features: 1) time
to execute commands (time overhead); 2) memory con-
sumption; and 3) CPU usage. To inspect time overhead,
1 to 10 commands were sent in the same request. In the
worst-case scenario for the time overhead, the proposed
approach consumes 0.3milliseconds, from 2.2 without IDS to
2.5 milliseconds running the IDS, which represents 13% in
time overhead.

With 0.3 milliseconds overhead, the end-user will not be
able to notice a delay in the issued commands, however, it will
notice how the system is capable of operating even under net-
work unstable circumstances. The overhead in memory rep-
resents 0.8%, and the CPU overhead is about 0.05%, which
means that the approach can be considered as lightweight for
the fog node. Notice that the given overhead is only possible
due to the node specifications discussed in section 3. A.

Finally, metrics such as Accuracy, Precision, and Recall
were used to evaluate the performance of the proposed
approach

A =
TP+ TN

TP+ TN + FP+ FN

P =
TP

TP+ FP

R =
TP

TP+ FN
(10)

VI. CONCLUSION
In this paper, an Intrusion Detection System was introduced.
The system is based on the Anomaly Behavior Analysis
Methodology (ABA-IDS) which is in turn powered by a
cluster of Artificial Neural Networks. We demonstrated how
to apply a methodology based on the ABA-IDS to secure and
protect a fog node integrated into the IoT realm, ensuring
availability. The proposed methodology includes the use of
a profile based on features extracted from the node and
fed to Artificial Neural Networks, configured to accurately
characterize the normal operations of the node. The proposed
approach showed to be effective in detecting both known and
unknown attacks with high detection rates (more than 90%)
and low false-positive alerts (less than 3.3%), also having
insignificant overhead in terms of execution time, memory
and CPU utilization. It is important to emphasize that the
proposed methodology is meant to assure the availability of
the fog node, providing resiliency to the overall process of IoT
applications that make use of Fog computing technology.
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