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ABSTRACT In this paper, a multi depots capacitated electric vehicle routing problem where client demand
is composed of two-dimensional weighted items (2L-MDEVRP) is addressed. This problem calls for the
minimization of the transportation distance required for the delivery of the items which are demanded
by the clients, carried out by a fleet of electric vehicles in several depots. Since the 2L-MDEVRP is an
NP-hard problem, a heuristic algorithm combined variable neighborhood search algorithm (VNS) and space
saving heuristic algorithm (SSH) is proposed. The VNS algorithm is used to solve the vehicle routing
problem (VRP) sub-problem, and the SSH algorithm is used to solve the bin packing problem (BPP) sub-
problem. We propose the space saving heuristic to find the best matching solution between the next loading
item and the feasible loading position. The SSH-VNS algorithm is tested by using benchmark instances
available from the literature. The results show that the SSH-VNS algorithm has better performance compared
with other published results for solving capacity vehicle routing problem (CVRP) and two-dimensional
capacity vehicle routing problem (2L-CVRP). Some new best-known solutions of the benchmark problem
are also found by SSH-VNS. Moreover, the effectiveness of the proposed algorithm on 2L-MDEVRP is
demonstrated through numerical experiments and a practical logistic distribution case. In the last section,
the managerial implications and suggestions for future research are also discussed.

INDEX TERMS Vehicle routing problem, two-dimensional loading, electric vehicle, variable neighborhood
search, space saving heuristic.

I. INTRODUCTION
Vehicle routing problem (VRP) is an important and typical
distribution optimization problem in which a fleet of vehi-
cles is required to deliver items demanded by clients at a
minimized total cost [1]. Since the complexity in an actual
environment, the objectives and constraints encountered are
highly variable. Dantzig and Ramser [2] pioneered the study
on ‘‘truck dispatching’’ problems. Clarke and Wright [3]
were the first to incorporate more than one vehicle in the
problem formulation. This was considered one of the first
studies in VRP literature. Other versions of the VRP emerged
in the early 1970s for different types of problems and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

subjects, among all the above variants, researchers have
been particularly interested in the CVRP which is the
combi- nation of VRP and bin packing problem (BPP).
The research of CVRP has far-reaching practical signifi-
cance, because only by taking both loading and routing into
consideration can we make sure the delivery route is the
most economic and the items are completely and reasonably
loaded into the vehicles. In recent years, some attention
has been paid to 2L-CVRP, in which client demands are
defined as sets of non-stackable rectangular weighted items,
such as furniture, home appliances, or breakables. The 2L-
CVRP was first presented by Iori and Vigo [4]. There are
mainly four variants of the 2L-CVRP, namely, 2L-sequential
oriented loading (2|SO|L), 2L-sequential non-oriented
(rotated) loading (2|SR|L), 2L-unrestricted oriented loading
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(2|UO|L), and 2L-unrestricted non-oriented (rotated) load-
ing (2|UR|L). Leung et al. [5] studied the two-dimensional
loading heterogeneous fleet vehicle routing problem (2L-
HFVRP), wherein clients were served by a heterogeneous
fleet of vehicles and proposed a simulated annealing with
heuristic local search (SA-HLS). Zhu et al. [6] addressed a
multi depot CVRP wherein the client demands comprised of
two-dimensional items (2L-MDCVRP). Dominguez et al. [7]
considered a realistic extension of the classical vehicle rout-
ing problem wherein both the delivery and pickup demands
comprised non- stackable items. They presented a hybrid
algorithm that integrated biased-randomized versions of vehi-
cle routing and packing heuristics into a large neighbor-
hood search metaheuristic framework. The 2L-CVRP in an
uncertain environment was also studied [8]. With another
meta-heuristic for solving 2L-CVRP, Zachariadis et al. [9]
proposed the promise routing-memory packing (PRMP).

Recently, more and more researches have been dedicated
to the electric vehicle routing problem (EVRP) since con-
cerns have been raised about the related technology and
development of electric vehicles for the international auto-
mobile market with the global financial crisis, environmen-
tal degradation, and energy depletion problems [10]–[13].
Electric vehicles have been used extensively for city dis-
tribution logistics. The driving distance of electric vehicles
has improved significantly since the development of battery
technology, yet not rapidly to meet the demand of large
city distribution. Therefore, at current state, changing battery
or recharging in public fast-recharging stations are the best
feasible solutions to extend the driving distance of electric
vehicles. Artmeier et al. [14] studied the most economical
one in terms of the energy consumption. This was considered
the first attempt to introduce electric vehicles. Later, Conrad
and Figliozzi [15] proposed a rechargeable vehicle routing
problem with time windows, which became the basis for
the studied EVRP with time windows. Schneider et al. [16]
studied a vehicle routing problem with intermediate stops
considering necessary visits at intermediate locations as the
EVRP required.

In recent years, studies have focused on various EVRPs.
Sassi et al. [17] addressed a vehicle routing problem with
a mixed fleet of conventional and heterogeneous electric
vehicles, denoted as VRP-MFHEV, and proposed amulti start
iterated Tabu Search (ITS) based on the large neighborhood
search (LNS). Desaulniers et al. [18] considered four variants
of the EVRP with time windows. They found that allowing
multiple as well as partial recharges helped in reducing rout-
ing costs and the number of employed vehicles, com- pared
to variants with single and with full recharges.

More recently, Sweda et al. [19] studied the problem of
finding an optimal adaptive routing and recharging policy for
an electric vehicle in a network=. They developed algorithms
for finding an optimal a priori routing and recharging pol-
icy and then presented solution approaches to an adaptive
problem that was built on the priori policy. Subsequently,
they presented two heuristic methods for finding adaptive

policies, one with adaptive recharging decisions only and
another with both adaptive routing and recharging decisions.
Barco et al. [20] proposed a model based on the longitudi-
nal dynamics equation of motion and estimated the energy
consumption of each Battery Electric Vehicle (BEV) with
a case study of an airport shuttle service scenario used to
demonstrate the feasibility of the proposed methodology.
Montoya et al. [21] extended current EVRP models to con-
sider nonlinear recharging functions. They proposed a hybrid
metaheuristic that combined simple components from litera-
ture and components specifically designed for this problem.
They found that neglecting nonlinear recharging could lead
to infeasible or overly expensive solutions.

As discussed above, studies on EVRP only focused on
the routing optimization. Few researches are conducted in
the combination of EVRP and BPP. Nevertheless, an overall
consideration given to loading and routing will contribute
to a more comprehensive and reasonable logistics optimiza-
tion. Besides, there are two main differences between elec-
tric vehicle distribution and conventional gasoline vehicle
distribution. First, the effect of items’ weight on the bat-
tery consumption should be considered in the electric vehi-
cle distribution. As a client is served, the items’ weight is
reduced, and the battery consumption decreased accordingly.
Therefore, it is not reasonable to set the battery consumption
between two clients as a fixed value. Second, electric vehicles
need to go to recharging stations for recharging or for battery
replacement during the distribution considering mileage lim-
itations. Thus, it is very important to decide when and where
to charge or replace the batteries in the distribution. However,
according to our observation, relatively few studies have been
conducted on these issues, which is the primary motivation of
this research.

The remainder of this paper is organized as follows. The
model development in the next section introduces the for-
mulation notations, constraints and complete mathematical
model of 2L-MDEVRP. Section 3 introduces a heuristic
algorithm combining variable neighborhood search algo-
rithm (VNS) and space saving heuristic algorithm (SSH)
for solving the 2L-MDEVRP model. Section 4 introduces
three groups of experiments based on benchmark instances
including multi deports CVRP, EVRP and 2L-CVRP.
Section 5 presents a case study of SH company. In the last
section, the key contributions of this research are discussed
along with the related managerial implications.

II. MODEL DEVELOPMENT
Considering the characteristics of electric vehicle for distri-
bution, we propose a model for multi depots electric vehicle
routing problem with two-dimensional loading constraints.
In this problem, the distribution tasks are executed by the
same type of electric vehicles. The electric vehicles belong
to several depots in different locations. Each electric vehicle
is subject to capacity constraint and electricity constraint.

An example of the routing solution and loading solution
of 2L-MDEVRP is shown in Fig. 1. Fig. 1(a) illustrates
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FIGURE 1. Illustration of 2L-MDEVRP.

the 2L-MDEVRP that includes two depots D1 and D2, two
recharging stations C1 and C2, nine clients and twenty-three
items. It can be seen from Fig.1(a) that there are two routes
in this example: (D1-1-2-C1-3-D1) and (D2-6-7-8-9-C2-
P4-5-D2). After serving clients 1 and 2, the vehicle from
depot D1 has to charge in recharging station C1 to continue
serving client 3 and subsequently return to depot D1. Simi-
larly, the vehicle from depot D2 has to enter the recharging
station C2 for recharging. Fig. 1(b) shows two feasible load-
ing solutions for the above two routes, respectively.

A. FORMULATION NOTATIONS
The following notations are used in the model presented in
this paper:

INDICES
t ∈ VT → Depots
p ∈ VP → Recharging stations
n, n′ ∈ VN → Clients
h ∈ Ht → Electric vehicles
i, i′ ∈ V → Nodes
k ∈ In → Items

SETS
VT → Set of depots
VP → Set of recharging stations
VN → Set of clients
V → Set of nodes, V = VT ∪ VP ∪ VN
Ht → Set of electric vehicles belonging to depot t
In → Set of items belonging to client n

PARAMETERS
G →Weight capacity of electric vehicle
Q → Battery capacity of electric vehicle
M → Unloading weight of electric vehicle
S → Area of loading surface of electric vehicle
L → Length of loading surface of electric vehicle
W →Width of loading surface of electric vehicle
v → Constant velocity of electric vehicle
cii′ → Distance from node i to node i

′

mn → Demanded quantity of client n
dn → Demanded weight of client n
sn → Demanded area of client n
α → Virtual coefficient
η → Virtual coefficient

CONTINUOUS VARIABLES
Qinthi → The battery capacity of vehicle h belong-

ing to depot t when entering node i
Qout thi → The battery capacity of vehicle h belong-

ing to depot t when leaving node i

INTEGER VARIABLES
xnk → The x-coordinate of front-left corner of item

k belonging to client n
ynk → The y-coordinate of front-left corner of item

k belonging to client n
gthi → The weight of all items loaded in electric

vehicle h belonging to depot t when entering
node i

BINARY VARIABLES
athii′ (= 1) → if the electric vehicle h belonging to

depot t travelling from node i to node i′

bthi (= 1) → if the electric vehicle h belonging to
depot t visiting node

unk (= 1) → if the item k belonging to client n is
rotated

B. CONSTRAINTS
The 2L-MDEVRPmodel considered in this paper is based on
some constraints which can be classified into two categories:
routing constraints and loading constraints.

1) ROUTING CONSTRAINTS
The routing constraints of 2L-MDEVRP are given as follows:
•Closed-tour constraints: one client must be served by

a vehicle only once; every vehicle can visit all depots or
recharging stations at most once; every vehicle must leave
from the specific node where it enters.
•Sub-tour elimination constraint: there is no sub-tour in

each tour.
•Demand non-split constraint: all items of one client

should be loaded in a single vehicle.
Routing constraints that constitute the feasible domain

of the routing solution can be widely found in many VRP
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related studies [22]. According to the characteristics of the
2L-MDEVRP, we give the mathematical formulas of routing
constraints as follows:∑

i′∈Vt
athii′ = bthi′ , ∀i ∈ V , ∀h ∈ Ht ,∀t ∈ VT (1)∑

i∈V
athii′ = bthi′ ,∀i

′
∈ V , ∀h ∈ Ht , ∀t ∈ VT (2)∑

t∈Vt

∑
h∈Ht

bhti = 1, ∀i ∈ VN (3)∑
t∈Vt

∑
h∈Ht

bhti ≤ 1, ∀i ∈ Vt ∪ Vp (4)∑
i′∈V

athii′ =
∑

i′∈V
athi′i,

∀i∈V , ∀h∈Ht , ∀t ∈VT (5)∑
i∈VN

bthi · di ≤ |S| , ∀h ∈ Ht , ∀t ∈ VT ,

∀S ⊂ V , 2 ≤ |S| ≤ N − 1 (6)∑
i∈VN

bthi · di ≤ G, ∀h ∈ Ht , ∀t ∈ VT (7)∑
i∈VN

bthi · si ≤ S, ∀h ∈ Ht , ∀t ∈ VT (8)

Equation (1) and (2) denote the conversion formulas of
variable athii′ and variable bthi′ , and the purpose of these two
equations is to simplify modeling process by increasing the
number of variables.

Equation (3) expresses that a client can be served only
once. Equation (4) expresses that every vehicle can visit
all depots or recharging stations at most once. Equation (5)
expresses that every vehicle must leave from the specific
node where it enters. Equation (3)-(5) satisfy the closed-tour
constraints. Equation (6) guarantees that no sub-tour will be
generated. The solution that satisfying the (3)-(6) constitutes
a Hamiltonian cycle.

Equation (7) expresses that the weight of items loaded
on each vehicle cannot exceed the capacity of the vehicle.
Equation (8) expresses that the area of items loaded on each
vehicle cannot exceed the area of loading surface of the
vehicle. Equation (7) and (8) guarantee that the loaded items
cannot exceed the vehicle capacity.

2) LOADING CONSTRAINTS
To ensure that all items can be loaded into the vehicles as
required, the loading constraints are introduced as follows:
•Rectangle constraint: the loading surface of each vehicle

and item can be considered as rectangle.
•Parallel constraint: all items must be loaded with their

edges parallel to the edges of the vehicles.
•Directional constraint: all items must be loaded and

unloaded straight from the rear door.
•Boundary constraint: all items are not allowed to surpass

loading surface area.
•Last-in-first-out (LIFO) constraint: items are not allowed

to be rearranged at client sites.
In order to describe the loading constraints in equations,

we need to introduce a Cartesian coordinate system which
is adopted with its origin in the container’s front-left corner,
and let (x, y) be the possible coordinates where the front-left
corner of an item can be placed. These positions along axes L

FIGURE 2. The Cartesian coordinate system and grid graph.

andW of the container belong to the sets: X = {0, 1, . . . ,L−
min(lnk ) and Y = {0, 1, . . . ,W − min(wnk ), respectively.
So, the container can be divided into many grids, as shown
in Fig. 2. If front-left corner of item k belonging to client n is
placed on point C (xnk , ynk), then the rectangle of ABCD will
be occupied.

It’s easy to find that the rectangle constraint, parallel con-
straint and directional constraint are natural satisfaction. Then
we need to address other loading constraints as following.

a: BOUNDARY CONSTRAINT
This constraint can be expressed as the coordinate occupied
by any item that cannot exceed the loading surface. If item
is not rotated, the x-coordinate of front-left corner plus the
length of item must be less than carriage length, and the
y-coordinate of front-left corner plus the width of item must
be less than carriage width. If item is rotated, the x-coordinate
of front-left corner plus the width of item must be less than
carriage width, and the y-coordinate of front-left corner plus
the length of item must be less than carriage length.

0 ≤ xnk ≤ (L − lnk) · (1− unk)+ (W − wnk) · unk , (9)

0 ≤ ynk ≤ (L − lnk) · unk + (W − wnk) · (1− unk) , (10)

when k = 1, 2, . . . ,mn, ∀n ∈ Vn.

b: NON-STACKABLE CONSTRAINT
There are four possible position relationships between two
items as shown in Fig. 3, upper, lower, left and right. The
coordinate of front-left corner of item A is (x, y). The length
and the width of item A are lA and wA, respectively. The
coordinate of front-left corner of item B is (xB, yB). The
length and the width of item B are lB and wB, respectively.
Considering that item A or item B may be rotated, we use uA
and uB to denote whether the item A or item B is rotated.

If item B is on the right of item A(xA ≥ xB), then get
xB ≥ xA + (lA · (1− uA)+ wA · uA).
Considering the simplicity of the mathematical model,

we integrate the above four position relationships into one for-
mula. Set item A is the item k belonging to client n, and item
B is the item n belonging to client n′,

∣∣n− n′∣∣+ ∣∣k − k ′∣∣ > 0.
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Firstly, we define llkk ′nn′ and wwkk ′nn′ as follows:

ukk ′nn′ =
(
max

((
xnk + lnk · (1− unk)+ wnk · un′k ′

)
,(

xn′k ′ + ln′k ′ ·
(
1− un′k ′

)
+wn′k ′ · unk

))
−min

(
xnk , xn′k ′

))
−
(
lnk · (1− unk)+ wnk ·unk + ln′k ′ ·

(
1− un′k ′

)
+wn′k ′ ·un′k ′

)
,

wwkk ′nn′ = (max ((ynk + wnk · (1− unk)+ lnk · unk) ,

(yn′k ′ + wn′k ′ · (1− un′k ′)

+ ln′k ′ · un′k ′))−min (ynk , yn′k ′))

− (wnk · (1− unk )+ lnk · unk
+wn′k ′ · (1− un′k ′)+ ln′k ′ · un′k ′ ).

llkk ′nn′ denotes the value of the length projection on
x-axis of item A and item B minus the sum length of the two
items. wwkk ′ ii′ denotes the value of the width projection on
y-axis of item A and item B minus the sum width of the two
items. If the two items don’t overlap, then the maximal value
between llkk ′ ii′ or wwkk ′ ii′ is not less than zero. Then we get
the constraint as following:

max (llkk ′nn′ ,wwkk ′nn′) ≥ 0 (11)

when

k = 1, 2, . . . ,mn,k
′

= 1, 2, . . . ,mn′ ,

bthn = bth
n′
= 1,

∣∣∣n− n′ ∣∣∣+ ∣∣∣k − k ′ ∣∣∣ > 0,

∀h ∈ Ht , ∀t∈VT , ∀n, n
′

∈VN .

And bthn = bth
n′
= 1 express that client n and client n′ are

served by the same electric vehicle.

c: LIFO CONSTRAINT
Usual and practical request in transportation is that, the items
belonging to current visiting client can be unloaded from the
rear door of vehicle, without having to move items belonging
to successive clients along the route. This implies that the
portion of loading surface between each item of the client
being served and the opening of the vehicle must be empty.
The rear door of vehicle is exactly x-axis, as shown in Fig. 3.
According to the requirements of LIFO constraint, when

FIGURE 3. The position relations between two items.

vehicle h belonging to depot t travels from client n to client n
′

,
we can get the constraint as following:

max (wwkk ′nn′ , (xnk , xn′k ′)) ≥ 0,

k = 1, 2, . . .mn, k ′ = 1, 2, . . . ,mn′ , a
th
nn′ = 1, (12)

when ∣∣n− n′∣∣+ ∣∣k − k ′∣∣ > 0, ∀h ∈ Ht ,

∀t ∈ VT , ∀n, n′ ∈ VN .

C. MATHEMATICAL MODEL
A complete 2L-MDEVRP mathematical model includes
objective functions, routing constraints, loading constraints,
recharging-discharging constraints, and the value range con-
straints of decision variables. Routing constraints (1) - (8) and
loading constraints (9) - (12) have already been proposed in
section 2.2. With the addition of objective function and the
value range constraints, a complete mathematical model can
be formed as follows:

minZ =
∑

h∈Hi

∑
i′∈V

∑
i∈V

c′ii · a
th
ii′ (13)∑

i∈VT
athii′ = bthi′ ∀i ∈ V , ∀h ∈ Ht ,∀t ∈ VT (14)∑

i∈V
athii′ = bthi′ ∀i

′
∈ V , ∀h ∈ Ht , ∀t ∈ VT (15)∑

t∈Vt

∑
h∈Ht

bhti
= 1, ∀i ∈ VN (16)∑
t∈Vt

∑
h∈Ht

bhti
≤ 1, ∀i ∈ VT ∪ Vp (17)∑

i′∈V
athii′ =

∑
i′∈V

athi′i,

∀i ∈ V , ∀h ∈ Ht , ∀t ∈ VT
(18)∑

i∈VN
bthi ≤ |S| , ∀h ∈ Ht , ∀t ∈ VT ,

∀S ⊂ V , 2 ≤ |S| ≤ N − 1 (19)∑
i∈VN

bthi · di ≤ G, ∀h ∈ Ht , ∀t ∈ VT (20)∑
i∈VN

bthi · si ≤ S, ∀h ∈ Ht , ∀t ∈ VT (21)

Qout thi = Q, i ∈ Vp, h ∈ Ht , t ∈ VT (22)

Qinthi ≥ 0.2 · Q, i, i′∈V , h∈Ht , t ∈VT
(23)

(0 ≤xnk ≤ (L−lnk )·(1−unk )+(W−wnk )·unk ,

k = 1, 2, . . . ,mn, ∀n ∈ Vn (24)

(0 ≤ynk ≤ (L−lnk )·unk+(W−wnk )·(1−unk ),

k = 1, 2, . . . ,mn,∀n ∈ Vn (25)

max (llkk ′nn′ ,wwkk ′nn′)

≥ 0k = 1, 2, . . .mn,

k ′ = 1, 2, . . . ,mn′ , b
th
n = bthn′ = 1,∣∣∣n− n′ ∣∣∣+ ∣∣∣k − k ′ ∣∣∣

> 0, ∀h∈Ht , ∀t ∈ VT , ∀i, i
′

∈ VN (26)
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max
(
wwkk′nn′ , (xnk , xn′k ′)

)
≥ 0, k = 1, 2, . . .mn,

k ′ = 1, 2, . . . ,mn′ , ann′ = 1,∣∣∣n− n′ ∣∣∣+ ∣∣∣k − k ′ ∣∣∣ > 0,

∀h ∈ Ht , ∀t∈VT , ∀n, n
′

∈VN
(27)

xnk ∈ N+, ynk ∈ N+, gthi ∈ N+, a
th
ii′ ∈ {0, 1} ,

bthii′ ∈ {0, 1} , unk ∈ {0, 1} (28)

Equation (13) is the objective function of 2L-MDEVRP
model that expresses the minimum total travelling distance
for all routes. The value range constraints of all decision
variables including continuous variables, integer variables,
and binary variables are all given in (28). The explanations
of (14) - (27) can be found in section 2.2.

III. SOLUTION ALGORITHM
In this section, we introduce the hybrid heuristic algorithm
for solving the 2L-MDEVRP model.

A. VARIABLE NEIGHBORHOOD SEARCH
VNS is a metaheuristic for solving the combinatorial and
global optimization problems based on the principle of sys-
tematic changes of neighborhoods within the search. Many
extensions of VNS have been studied for solving large scale
instances [23], [24].

In the classical implementation of VNS algorithm, four key
components should be specified: (i) method to construct an
initial solution; (ii) neighborhood structures NS; (iii) shak-
ing process; (iv) local search. The algorithm framework of
VNS is shown by Wei et al. (2015). With an initial solution,
a so-called shaking step in which randomly selects a solution
from the first neighborhood is performed followed by apply-
ing an iterative improvement algorithm. This procedure will
repeat until a new incumbent solution is found. Otherwise,
one switches to the next larger neighborhood and performs
a shaking step followed by the iterative improvement. Once
a new incumbent solution is identified, one starts with the
first neighborhood. Otherwise one proceeds with the next
neighborhood, and so forth.

1) INITIAL SOLUTION
There are many methods that can be used to construct an
initial solution, such as minimum spanning tree, random
procedure, saving algorithm and so on. However, all these
methods are not suitable for dealing with the 2L- MDEVRP
proposed in this paper since they cannot select the best time
for recharging stations to join the route. To solve this problem,
a method of generating initial solution based on scanning
algorithm is proposed. The basic idea is to set a rule to scan
nodes one by one and classify them into the current circuit as
shown in Fig. 4. The concrete implementation procedure of
scanning algorithm is as following:

FIGURE 4. Graphic illustration of scanning algorithm for initial solution.

(1) The polar coordinate is used to represent depots,
recharging stations and clients. We randomly select a depot
as the pole of polar coordinate, and draw a line connecting
the pole and any client as the polar axis.

(2) The polar axis is rotated clockwise or counterclock-
wise, and connected to the nodes scanned by the polar axis
(neglect the other depots) to generate a route that named
current route.

(3) Depending on the vehicle capacity, loading area and
battery power, it determines whether the node swept by
the polar axis joins the current route. If the swept node is
at recharging station, then it is added to the current route
directly, and the battery power of electric vehicle is set to full.

(4) If there is nomore nodes that can be added to the current
route, then we generate a feasible route, and eliminate the
clients on the current route from the polar coordinate.

Repeat step (1) to (4) until there is no client node on the
polar coordinate.

2) NEIGHBORHOOD STRUCTURES
Six neighborhoods include the 1-1 interchange (swap), two
types of the 2-0 shift, the 2-1 interchange, and two types
of the perturbation are used in this paper (i.e. k max=6).
The order of the neighborhoods is as follows: the 1-1 inter-
change is set as N1, the 2-0 shift of type 1 is set as N2, the
2-1 interchange is set as N3, the perturbation of type 1 is
set as N4, the perturbation of type 2 is set as N5, and the
2-0 shift of type 2 is set as N6. The six neighborhoods are
briefly described as follows:

The 1-1 interchange (the swap procedure): aims to identify
a feasible solution by swapping a pair of clients from two
routes. This procedure starts from taking a random client from
a random route and tries to swap it systematically with other
clients of all other routes. This procedure will not stop until a
feasible move is identified. The 2-0 shift (type 1 and type 2):
at the beginning of type 1, two consecutive random clients
from a random route are identified, and then are checked for
possible insertion in other routes. This procedure will repeat
until a feasible move is identified. Type 2 is similar to type 1
except that the two clients are considered for insertion into
two different routes. These insertion moves are performed
in a systematic manner. The 2-1 interchange: This type of
insertion attempts to shift two consecutive random clients
from a randomly chosen route to another route selected
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systematically while getting one client from the receiver route
until a feasible move is obtained.

Perturbation mechanisms (type 1 and type 2): This scheme
was first proposed by Salhi and Rand in VRP by considering
three routes simultaneously [25]. The process is to system-
atically take a client from a route and relocate it into another
route without considering capacity and time constraints in the
receiver route. A client from this receiver route is then shifted
to the third route when both capacity and time constraints for
the second and the third routes are not violated. This is the
perturbation of type 1. An extension of this perturbation is to
shift two consecutive clients from a route instead of removing
one client only. We call this as the perturbation of type 2, and
these moves are evaluated systematically.

3) SHAKING PROCESS
Shaking is a key process in the VNS algorithm design which
aims to extend the current solution search space and reduce
the possibility falling into the local optimal solution.

We propose two parameters in the shaking procedure:
solution S, and the number of iterations k . In each iteration,
a route is chosen randomly, and then it’s part of random
length is chosen so that a swap-location is not included in the
chosen part. Then each client from the selected part is moved
to another route, keeping the feasibility and deteriorating
the current objective value as low as possible. The obtained
solution is identified as the new incumbent solution S, and
the whole process will repeat until the maximum number of
iterations (i.e., k) is reached.

4) LOCAL SEARCH OPERATOR
In a VNS algorithm, local search procedures can search the
neighborhood of a new solution space obtained through shak-
ing in order to achieve a locally optimal solution. Local search
is the most time-consuming part in the entire VNS algorithm
framework and can decide the final solution quality, so com-
putational efficiencymust be considered in the design process
of local search algorithm.

In this paper, insertion, exchange and 2-opt are used for
local search operator in order to obtain the good quality local
optimal solution in a short period.

(1) Insertion: deleting edges (vi−1, vi), (vi, vi+1) and
(vj, vj+1), then adding edges (vi−1, vi), (vj, vi) and (vi, vj+1),
as shown in Fig. 5(a).

FIGURE 5. The feasible loading position. (a) Loading position after the
fist item. (b) Loading position after four items.

FIGURE 6. Space wasting and saving of loading surface. (a) Space
wasting of loading surface. (b) Space saving solution 1 of loading surface.
(c) Space saving solution 2 of loading surface.

(2) Exchange: deleting edges (vi−1, vi), (vi, vi+1), (vj−1, vj)
and (vj, vj+1), then adding edges (vi−1, vj), (vj, vi+1),
(vj−1, vi) and (vi, vj+1), as shown in Fig. 5(b).

(3) 2-opt: deleting edges (vi, vi+1) and (vj, vj+1), then
adding edges (vj, vi) and (vi+1, vj+1), as shown in Fig.5(c).

B. SPACE SAVING HEURISTIC
The optimized routing solution can be obtained by VNS algo-
rithm given in section 4. In this section, we will discuss how
to get the feasible loading solution. The quantity and shape
loaded on each vehicle are fixed, so the packing problem
in 2L-MDEVRP is just a sub problem of traditional pack-
ing problem. There are two loading steps of 2L-MDEVRP:
determine the items order and determine the feasible loading
position list. In addition, we process the space saving heuris-
tic to find the best matching solution between the next loading
item and the feasible loading position.

1) LOADING ORDER
For a certain tour, the visiting order of all clients on this tour
is fixed. For sequential model described in section 2, other
items in the vehicle cannot be moved when items of one client
are being unloaded. So the items in a vehicle are sorted in
descending order of visit, called OV. Then the order of items
belonging to different clients is fixed, and the order of items
of same client is not fixed.

For items of one client in sequential model or items of
all clients in unrestricted model, we use two orders O1, O2,
and O3 to determine their final order. For O1, O2, and O3,
items are sorted in descending order of area lw, length l and
width w, respectively. O1 is prior to O2 unless the bottom
areas of the two items are the same, and O2 is prior to
O3 unless the lengths of the two items are the same. The
orders of the items loaded for the example of section 2 can
be identified according to the above rules:

Rout1: I52 − I51 − I41− I33 − I32 − I31− I21 − I23 − I22−
I12 − I13 − I11. Rout2: I62 − I63 − I61− I71 − I72 − I81−
I82 − I92 − I91.

2) FEASIBLE LOADING POSITION
The feasible loading position list means all positions that can
place items, which will be changed after loading an item.
Generally speaking, there will be more than one feasible
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FIGURE 7. The assignment rules for the matching fitness values.

position for the next loading item. As shown in Fig. 5(a), the
feasible loading position list is updated as positionlist {a, b}.
After several times of loading operations, the feasible loading
position list may be updated as positionlist {a, b, c, d} as
shown in Fig. 5(b). The feasible loading position a and b are
closer to the rear door than all the other loading positions.
If an item is closer to the rear door than all adjacent items,
make a straight line along the internal edge close to the rear
door, as Line1 and Line2 shown in Fig. 5(b).

3) SPACE SAVING HEURISTIC
If the loading orders of items are kept the same while the
feasible loading position list is constantly updated, it is likely
to occur space wasting, which eventually results in the failure
to load all the items into the vehicle. As shown in Fig. 6(a),
if we load the next item R1 according to the loading order,
then the loading surface N will be wasted and no item can
be loaded on it. However, if we load item R2 as Fig. 6(b)
or load item R3 as Fig. 6(c) before loading item R1, then
the waste of loading surface will be avoided. So, we propose
a heuristic matching method of loading items and feasible
loading position based on space saving.

The matching fitness values (MFV) are used to indicate the
matching degree of loading items and feasible loading posi-
tions. There are ten situations on the relationship with loading
items and feasible loading positions as shown in Fig. 7(a) to
Fig. 7(j), where the grey area denotes already placed items
and the white area denotes space. There are some independent
spaces below the dotted line enclosed by the edges of carriage
and the loaded items as shown in Fig. 7. It’s better to make
full use of these independent spaces, thereby we can avoid the
waste of space to a great extent as shown in Fig. 6.

IV. NUMERICAL EXPERIMENTS
This section presents the computational results based on the
widely used benchmark instances and some new generated

instances. The SSH-VNS algorithm was coded in MATLAB,
an all experiments were executed on Intel Core i7-8700K
4.8GHz CPU and 16GB RAM running the Windows10 oper-
ating system.

A. RESULTS FOR CVRP AND 2L-CVRP INSTANCES
To test the proposed SSH-VNS algorithm’s performance on
2L-CVRP problemwe applied it to 180 2L-CVRP benchmark
instances introduced by Iori and Vigo [4]. These instances
were derived from 36 CVRP in- stances, described by Toth
and Vigo [26], where the customer demand is expressed as
a set of two-dimensional, weighted and rectangular items.
To generate the aforementioned item sets, five classes of
the item demand characteristics are introduced [4]. Class 1
defines a single 1 1 item for each client corresponding to
basic CVRP instances, so actually there is no difference
between class 1 and CVRP instances, and the experimental
results of class 1 can be considered as experimental results
of CVRP Classes 2-5 contain in- stances with non-unit item
sizes. The item size has been randomly generated to define
‘‘vertical’’ instances (width greater than length), ‘‘homoge-
nous’’ instances (square) and ‘‘horizontal’’ instances (length
greater than width). These instances can be seen at URL:
http://www.or.deis.unibo.it/research.html. Since there is one
depot and no recharging station in the 180 instances, we set
the number of depots as 1 and set the number of recharging
stations as 0.

Average results for classes 1-5 are presented in Table 1.
Row ‘‘Num Best’’ gives the number of times a method pro-
vides the best solution and ‘‘Num Record’’ gives the number
of times the method gives a solution strictly better than all
other methods. As can be observed, the SSH-VNS algorithm
refreshes the record of 11% instances (20 out of 180) and
achieved an average 1.2% improvement of the best solutions
obtained for instances of Classes 1-5. Thus, the proposed
SSH-VNS has a good performance for 2L-CVRP, as well
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TABLE 1. Comparison of results obtained by CPLEX and SSH-VNS on the EVRP instances.

as reducing the overall distances between the depot and the
clients.

The routing solution provided in this research utilizes elec-
tric vehicles to accomplish delivery assignments. Because
of the various structure of power generation and different
levels of clean energy generation, at the moment, there are
substantial variations in the testing and calculating of carbon
dioxide emissions of electric vehicles in numerous nations
in the whole world. Based on the data from Bloomberg
New Energy Finance, the average carbon dioxide emission
of gasoline vehicles in the world is 248.5 g / mile. Meantime,

the carbon dioxide emissions of electric vehicles in China are
189 g / mile, and the carbon dioxide emissions of electric
vehicles in the United States are 147 g / mile. Besides,
the carbon dioxide emissions of Japanese electric vehicles are
142 g / mile, German electric vehicles are 140 g / mile, and
the British electric vehicles are 76 g / mile. The case analyzed
in this paper is in Beijing, China, therefore we picked
189 g / mile as the electric vehicles’ coefficient of carbon
dioxide emission factor. According to the coefficient, we con-
trast the energy consumption of complete 2L-CVRP instances
adopting electric vehicles and conventional gasoline vehicles.
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TABLE 2. Results for class 1-5 of 2L-CVRP instances.

TABLE 3. Route details of the solution for instance 0703E.

Hence, we discover that the average carbon dioxide emissions
of every instance of the electric vehicle are more than 28%.
Among them, 23.9% of the contribution arises from the elec-
tric vehicles’ lower coefficient of carbon dioxide emission,
and 4.1% of the contribution originates from shorter delivery
distances.

B. RESULTS FOR 2L-MDEVRP INSTANCE
To illustrate the optimization results of SSH-VNS for
2L-MDEVRP model, we generate a new instance named
0703E based on the instance 07 of class 03. By retaining all
the data in instance 0703, we add a new depot D2 (300, 230)
and four recharging stations C1 (250, 210), C2 (250, 260), C3
(300, 210), C4 (300, 260).

The parameters of the electric vehicle are set as follows:
Q=25, M=1000, η = 0.8, α = 0.08, β = 120. The
maximum travelling distance of the electric vehicle without
any item is about 200, and the maximum travelling distance
of the electric vehicle with full items is about 70.

The optimization results of instance 0703E are shown
in Fig. 8. There are five routes in Fig. 8, three of them are
processed through depot D1 and two of them are through
depot D2. There are two routes through recharging stations:
route 1 through recharging station twice and route 4 through

FIGURE 8. Routing solution for instance 0703E.

recharging station once. It is worth noting that although the
distances of route 4 and route 5 are very close, due to the
lower weight of loading items, so it is not necessary for route
5 to go through the recharging station. The details of the five
routes are shown in Table 3.

For the distribution lines of electric vehicles, which require
to charge the extra driving distance in and out of the charging
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station is increased. Consequently, the driving distance for the
electric vehicle is usually higher than the driving distance for
the gasoline vehicle. The best solution of instance 0703 was
given in Dominguez et al. [7]. The entire distance driven by
gasoline vehicles on the additional route of instance 0703 is
709.72. Furthermore, the total distance traveled by the elec-
tric vehicle, of instance 0703E extra route is 763.76. If a mile
is the distance unit, the carbon emissions between gasoline
vehicles and electric vehicles are 176.37kg and 144.35kg.
Moreover, the general carbon emissions of electric vehicles
and gasoline vehicles are diminished by 18.1%. It means that
even if the driving distance needs to increase due to midway
charging, the overall view is that the performance of the
electric vehicle can still notably diminish carbon emissions.

V. CASE STUDY
SH is a medium-sized logistics enterprise in Beijing, the main
business of which is to distribute power distribution cabinets
to construction sites in the city. This logistics enterprise
has three depots and fifty-two electric vehicles for the dis-
tribution. Considering the height of the power distribu-
tion cabinets, stacking is not allowed, hence making this a
two-dimensional routing problem. When the battery power is
not enough to complete the distribution task, it is necessary
to go to the recharging station for recharging. At the end
of December 2017, there were 1771 public recharging sta-
tions in Beijing. Considering the recharging cost, recharging
matching, traffic restrictions and convenience, seven public
recharging stations are selected as the recharging nodes for
all electric vehicles of company SH. In this case, company
SH needs to deliver several power distribution cabinets to
17 construction sites. Fig. 9 shows the locations of the depots,
recharging stations, and clients. We need to design the short-
est distribution route, select the most appropriate recharging
stations, and set a loading plan for each vehicle to facilitate
the delivery services for clients in need.

FIGURE 9. The Google map for depots, recharging stations and
construction sites.

FIGURE 10. The optimization routing solution of the practical case.

Deliveries of company SH in Beijing are handled by a fleet
of electric vehicles, which use lithium battery pack as the
power source. As shown in Fig. 10, the red circles represent
the depots, the black squares represent the construction sites,
and the blue triangles represent the recharging stations.

The demands are variety types of power distribution cabi-
nets which can be seen as different sizes of two- dimensional
rectangular items since one cannot be stacked on the top of
the other one. The vehicles are identical, while they have a
weight capacity and a rectangular two-dimensional loading
surface. To reduce the real problem to 2L-MDEVRP, we do
not consider time windows and pickup of damaged cabinets
at the construction sites. The distance between any two nodes
(depots, recharging stations and construction sites) is set to
the recommended route length of Google Maps, while eleva-
tion and slope are not considered in this case.
TABLE 4. Power cabinet size.

TABLE 5. Stock of depots.

The data of this instance such as distance, demand and
item size are shown in Table 4 - Table 7. The parameters
of vehicles: empty weight 4.6t, maximum load weight 2.8t,
length 4150mm, width 3300mm, battery capacity 75kWh.

31944 VOLUME 8, 2020



X. Zhu et al.: Logistic Optimization for Multi Depots Loading Capacitated Electric VRP From Low Carbon Perspective

TABLE 6. Demands of construction sites.

TABLE 7. Distance data.

The values of the electric vehicle related to parameters
mentioned in (2) are set as: g = 9.8, f = 0.01,
CD = 0.3, A = 1.8, ρ = 1.2, ηte = 0.85, ηm =
0.85, Paccessory = 1000. There are five types of power

distribution cabinets: XL-21, XL-51, JXF1000, JXF2000 and
JXF3000. The size and weight of each type of cabinet
are shown in Table 4. The stock of each depot is shown
in Table 5, and the demand of each construction site is shown
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TABLE 8. The details of all tours of the practical instance.

in Table 6. The real distance between any two nodes is shown
in Table 7. As the distance unit applied, in this case, is kilo-
meters, the coefficient of carbon dioxide emission demands
to convert. Eventually, the converted coefficient of it is
117.44g / km.

By running the optimization algorithm, we get the optimal
solution of the practical instance which has four tours as
shown in Fig.10. As presented in Table 8, the four tours go
through four different recharging stations once in order to
complete distribution tasks. The more details of all tours are
shown in Table 8.

VI. CONCLUSION
This study investigates the 2L-MDEVRPwhich is a variant of
VRP. The main differences of the 2L-MDEVRP compared to
the VRP are: there is more than one depot; the delivery vehi-
cles are pure electric vehicles; there are several recharging
stations that can be used for recharging the electric vehicles;
the demand of clients consists of weighted, two-dimensional,
rectangular items. The aims of 2L-MDEVRP are generating
the minimum distance routes, feasibly packing items onto the
loading surfaces of the vehicles, and the order of recharging
stations on the tours.

The 2L-MDEVRP is of particular theoretical interest as
it combines two frequently studied combinatorial optimiza-
tion problems, namely the VRP and the two-dimensional
BPP which are both NP-hard problems. Spontaneously, the
2L-MDEVRP is also a NP-hard problem. To solve this
NP-hard optimization problem, this study proposes a per-
formance meta-heuristic algorithmic framework with VNS.
On one hand, this study improves a new method for the
generation of initial solution to get a better initial solution.
On the other hand, this study designs a new heuristic load-
ing algorithm named SSSH which successfully enhances
the probability of satisfying the feasible constraints. The
numerical experiment reveals that the proposed algorithm
can effectively solve the 2L-CVRP and 2L-MDEVRP. Com-
paredwith gasoline vehicles, the electric vehicles can remark-
ably decrease in carbon emissions. Moreover, this study
demonstrates the optimization process and optimized solu-
tion of a practical distribution case.

Based on the results of this research, the authors plan to
construct the model of multi depots electric vehicle rout-
ing problem with three-dimensional loading constraints and
apply the proposed new method in the future follow-up
research. In addition, the authors also consider a further

study of a new variant with one additional constraint: time
windows.
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