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ABSTRACT With various developments, the concept of the smart city has attracted great attention all over
the world. To many, it is a good intelligent response to the needs of people’s livelihoods, environmental
protection, public safety, etc. A weather-smart grid is an important component of the smart city, and the
health of the weather-smart grid will directly affect the health of the smart city. Efficient and accurate
predictions about air quality levels can provide a reliable basis for societal decisions, safety for smart
transportation, and weather-related disaster prevention and preparation. To improve the time performance
and accuracy of prediction with a large amount of data, this paper proposes an improved decision tree
method. Based on an existing method, the model is improved in two aspects: the feature attribute value
and the weighting of the information gain. Both accuracy and computational complexity are improved. The
experimental results demonstrate that the improved model has great advantages in terms of the accuracy
and computational complexity compared with the traditional methods. Additionally, it is more efficient
in addressing classification and prediction with a large amount of air quality data. Moreover, it has good
prediction ability for future data.

INDEX TERMS Smart city, weather-smart grid, predictive modelling, air quality, decision tree, discretiza-
tion, weighting.

I. INTRODUCTION
Smart city design involves many aspects of the urban eco-
logical environment, including a weather-smart grid, trans-
portation, medical treatment, intelligent buildings, etc. [1].
A weather-smart grid is essential for a smart city. A weather-
smart grid applies big data, machine learning and artificial
intelligence technology to make more accurate weather fore-
casts. It improves the overall understanding of the environ-
ment, the ability to prepare for extreme weather, climate
and water events and provides decision support for disaster
reduction and prevention. A weather-smart grid has a large
impact on a smart city [2]. The use of cloud computing,
the internet of things (IoT), mobile interconnections, big data
and intelligent control technologies to keep weather forecasts
accurate and intelligent needs to be focused.

Urban air pollution is a common problem. It seriously
affects human health, and is accompanied by the emergence
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of various diseases, such as lung cancer [3], [4]. Some other
serious environmental problems may also be caused by air
pollution, such as acid rain and greenhouse gas effects. Thus,
air pollution is currently one of the most alarming concerns.

Currently, high-precision air sensors are mostly used to
monitor air quality. This allows for the collection of more
accurate data. From these data, air prediction and analysis can
be generated in advance for scientific decision support as well
as clustering and classification [5]–[7].

The problem of air pollution can be fundamentally
addressed only by taking effective measures to prevent and
control pollution before it occurs. Therefore, it is very impor-
tant to establish an effective model for evaluating and predict-
ing air quality in a timely manner.

According to the air quality index (AQI) used in China,
ambient air pollutants are concentrations of particulate matter
(PM10 and PM2.5), sulphur dioxide (SO2), nitric oxide (NO),
nitrogen dioxide (NO2) and other nitrogen oxides (NOx).
Previously, the traditionally derived AQI was used to predict
the degree of air pollution. According to the proportion of
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various components in the air, the monitored air concentra-
tion was simplified to a single conceptual index. It classi-
fied the degree of air pollution and air quality status and
was suitable for expressing the short-term air quality status
and the changing trends in a city [8], [9]. With advance-
ments in technology and research, many alternative methods
have been proposed that use big-data and machine-learning
approaches [10]. However, these air quality models are lim-
ited by the computational costs. Traditional machine-learning
methods focus on the accuracy of classification, which makes
it difficult to reduce the cost of calculation. To improve the
time performance, a novel algorithm is needed.

Among all techniques, machine-learning algorithms are
the most widely used to for classification of air quality
evaluation. Muhammed et al. noted that machine-learning
algorithms were best suited for air quality prediction [11].
With the rise of artificial intelligence in recent years, tra-
ditional machine learning and deep learning have also been
successfully applied in the field of air quality prediction and
have achieved good results [10]–[14]. For example, the deci-
sion tree method has been used with common decision tree
algorithms, such as ID3, C4.5 and CART [15], [16]. In
addition, the k-nearest neighbour algorithm has also been
used [17], [18]. Later, with the development of ensem-
ble learning, random forests were also applied in this
field [19], [20]. Random forests followed a technique as
per [21], where several decision trees were built based on
subsets of data, and an aggregation of the predictions was
used as the final prediction. In recent years, big data, neural
networks and in-depth learning have been gradually applied
to this field. For example, the earliest artificial neural net-
work (ANN) was used to process time-series data, and then,
a recursive neural network (RNN) was used to predict future
air quality changes by using concentration changes in NO2,
CO2, SO2, PM2.5 and other air pollutants from the previous
period [22], [23]. Later, a long-term and short-term memory
model (LSTM) was developed, which could retain longer
time intervals and eliminated the problem of partial gradient
disappearance. This model had good application prospects
for air quality prediction [24]. Almost all the related studies
focused on achieving better accuracy, but little attention was
paid to the complexity of the algorithms.

In this paper, the computational cost and execution effi-
ciency of the algorithm are considered in the case of a large
amount of data. This paper tries to reduce the computational
cost and execution efficiency of the algorithm asmuch as pos-
sible while guaranteeing a certain accuracy. Hence, a novel
algorithm of improved decision tree C4.5 is proposed for air
quality prediction. The model is improved in two aspects:
the feature attribute value and the weighting of the informa-
tion gain. Both accuracy and computational complexity are
improved. It is based on the attribute partition principle of
the information gain rate of C4.5. To improve the efficiency
of the algorithm execution as much as possible, we discretize
the data before computing the information entropy. The infor-
mation gain rate of N attribute values at the boundary points

is calculated, and the attribute value with the greatest infor-
mation gain is selected as the optimal segmentation threshold
to divide it, replacing the information gain rate obtained
by traversing all the attribute values in the traditional C4.5
algorithm. In addition, a weighted coefficient w is introduced
to calculate the increment rate of each attribute to consider
the extent of the impact of various pollutants on the air and
improve the accuracy of the new algorithm. The indicators
used for evaluating the classification prediction models are
the receiver operating characteristic (ROC) curve, precision-
recall (PR) curve, confusion matrix, etc. The improved algo-
rithm has great advantages in accuracy and computational
complexity. It is more efficient in dealing with classification
and prediction given a large amount of air quality data.

The paper is organized as follows. In Section II the related
work is discussed including the issue of using other algo-
rithms. Then, the new improved algorithm is introduced in
detail in Section III. The experimental settings are described
in Section IV. Section V provides the analysis and experimen-
tal results. We conclude with the contribution of our work in
Section VI.

II. RELATED WORK
Air quality evaluation is an important way to monitor and
control air pollution. Faced with a deteriorating atmospheric
environment, there are many research papers that focus on
classification in air quality evaluation. Many various methods
are constantly derived, and many achievements have been
made in the efficiency and accuracy of the related algorithms.

In the field of air quality evaluation, there are many pre-
diction methods. The most direct and efficient method is
to calculate the air pollution index (API) according to the
concentration value of designated air pollutants. Air quality is
directly obtained through the analysis of the pollution index.
This method is suitable for the analysis of air quality status
and changing trends in the short term [25].

Air quality evaluation has been conducted using conven-
tional approaches for many years. The traditional approaches
for air quality prediction use mathematical and statistical
techniques [26]. In these techniques, a physical model is
initially designed, and data is coded with mathematical
equations. However, these are complex mathematical cal-
culations. In addition, these methods provide limited accu-
racy. More recently, alternatives to traditional methods have
been proposed; these alternatives use big-data and machine-
learning approaches [10]. Many researchers have developed
or used big-data-analytical models and machine-learning-
based models to conduct air quality evaluation to achieve
better accuracy in evaluation and prediction. There are several
common algorithms used for air quality evaluation, such as
the air quality index method, clustering analysis, the artificial
neural network model, the decision tree model, the random
forestsmodel, the least squares support vectormachinemodel
and the deep belief network.

The clustering algorithm is simple and not difficult to
implement, but its stability is poor, and it is very sensitive
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to the selection of initial clustering centres. The cluster-
ing process often has difficulty in converging due to the
improper selection of clustering centres and can fall into a
situation of a dead cycle or a local optimum, which was
unacceptable to us. When the sample data are large and the
distribution of attribute values is complex, the clustering cen-
tres need to be updated frequently; thus, the time efficiency of
the algorithm is low. Based on these shortcomings, clustering
analysis may not be a good choice for air quality evaluation.

With the rise of artificial intelligence in recent years, tra-
ditional machine learning and deep learning have also been
successfully applied in the field of air quality evaluation and
have achieved good results [9], [10]. For example, the air
quality data are extracted and the information gain or gain
rate is calculated. Then, the optimal attribute partition point
is selected to establish the decision tree for classification.
Common decision tree algorithms, such as ID3, C4.5 and
CART, are used. Decision trees are commonly used in air
quality evaluation. Currently, many researchers propose a
variety of decision tree algorithms and have extended their
application in a variety of fields. In air quality prediction,
the research results regarding the application of decision trees
have been impressive [27]–[30]. With the increase in the
acquisition of air quality data, the value of attributes is also
increasing. Some problems will arise when using decision
trees to evaluate air quality. As the number of nodes increases,
the number of continuous attributes increases, and the value
of any attribute in the continuous attributes increases; these
increases will have a negative impact as frequent logarithmic
operations in the process of calculating information gain
seriously affect the performance of the algorithm, which will
greatly affect the efficiency of the decision tree generation.

With the development of ensemble learning, the random
forest has also been applied in this field. N decision tree clas-
sification models of the same or different types are integrated
together to form a random forest. Each sub-tree of the forest
corresponds to a decision tree classifier [31].

With the development of big data, the amount of data is also
increasing. Neural networks and deep learning have also been
gradually applied to this field. For example, artificial neural
networks were introduced for examining the concentration
of various air pollutants. Through the calculation of multiple
perceptron and excitation functions, the air quality grade was
finally classified [32]–[34]. Then, there was the emergence
of the recursive neural network (RNN), which connects and
trains multiple layers of neurons by the establishment of
weights on the connections. This network can be used to
process time-series data and predict future air quality changes
by using the changes in air pollutant concentrations (such as
NO2, CO2, SO2 and PM2.5) in the previous period [22], [23].
When there are more layers in the RNN, the gradient will
disappear. Therefore, researchers put forward the long short-
term memory (LSTM) model, which can remember longer
time intervals and eliminates the problem of partial gradient
disappearance. This model has good application prospects
for air quality prediction [35]. These methods have achieved

good results in accuracy, but they do not provide adequate
consideration of the time performance of the algorithm.

III. MATHEMATICAL MODEL
A. DECISION TREE C4.5
The ID3 algorithm is the most well-known decision tree
algorithm. It is based on information theory. The core idea is
to use the information gain as a measure of attribute selection.
The C4.5 algorithm improves it by using the information gain
rate to select node attributes, which mainly overcomes the
shortcomings of the ID3 algorithm in choosing attributes with
more values.

The main ideas of the C4.5 algorithm are as follows:
Assuming that S is a training set, the target attribute

C of S has m possible class label values, C = {C1,

C2, . . .Cm}. In training set S, the frequency of Ci in all
samples is pi(I = 1, 2, 3, . . . ,m), and then the information
entropy contained in the training set S is defined as:

Entropy(S) = Entropy(p1, p2, . . . , pm) = −
m∑
i=1

pi log2pi

(1)

Assuming attribute A is used to partition S, the information
entropy of the partitioned sample subset is as follows:

EntropyA(S) =
k∑
i=1

|si|
|s|
Entropy(Si) (2)

Assume that there are v possible values {a1, a2, . . . , av} of
continuous attribute a. If a is used to partition the sample set
S, v branch nodes will be generated. The vth branch node
contains a sample whose value is av on all attributes a in S,
which is denoted as Sv. Then, the information entropy of Sv,
Entropy(Sv), can be obtained. Considering that the number
of samples contained in different branch nodes is different,
the information gain obtained by partitioning the sample set
S with attribute a can be calculated.

Gain(S, a) = Entropy(S)−
v∑

v=1

|Sv|
|S|

Entropy(Sv) (3)

Because the information gain criterion has a preference
for attributes with more desirable values, C4.5 does not use
the information gain directly but uses the information gain
ratio to select the best partitioned attribute value to reduce
the adverse effects of the preference.

The information gain ratio normalizes the information gain
by using the split information value. The definitions are as
follows:

SplitInfoA(S, a) = −
v∑
j=1

∣∣sj∣∣
|s|
× log2(

∣∣sj∣∣
|s|

) (4)

This value represents the information generated by divid-
ing the training data set S into v partitions corresponding
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to the v outputs of the attribute a test. The definition of the
information gain ratio is:

GainRatio(S, a) =
Gain(S, a)

SplitInfo(S, a)
(5)

The attributes with a maximum gain rate are selected as the
splitting attributes.

B. NEW ALGORITHMIC THOUGHT
C4.5 enhances the function of the ID3 algorithm, but there
are still many shortcomings in the detection of air quality
using the C4.5 algorithm. As the amount of air quality data
increases, the value of attributes also increases. According
to the Taylor expansion theorem, we know that logarithmic
operations are more complex. Therefore, in the process of
calculating the information gain, frequent logarithmic oper-
ations will seriously affect the performance of the algorithm.

When discretizing continuous attributes, the C4.5 algo-
rithm inserts several segmentation points into different values
of any attribute, calculates the information gain rate of all
segmentation points and chooses the segmentation threshold
with the largest information gain rate as the best segmentation
threshold of the continuous attributes. When the number of
nodes in the decision tree is large, the number of continuous
attributes is large and the value of any attribute in the con-
tinuous attributes is large, the computational complexity of
the algorithm is considerable, which will greatly affect the
efficiency of the decision tree generation.

Using the traditional C4.5 algorithm to predict air quality
data will neglect some influence of the data itself on the
results; it will simplify the model in calculating the informa-
tion gain rate, but without consideration of the extent of the
impact of various pollutants on the air. Therefore, we need
to weigh the gain rate of each attribute, reduce the informa-
tion entropy of some attributes and provide the information
entropy of other attributes accordingly.

C. IMPROVED C4.5 ALGORITHM
The procedure for the improved C4.5 algorithm is shown in
the following figure.

After data pretreatment and discretization, a few attribute
values, which are candidate partition points, are obtained and
then classified, tested and output by the classification model.

The improved decision tree uses the attribute value with
the largest gain rate of weighted information as the parti-
tion node, generates new branches and then establishes the
branches of the decision tree nodes by recursive invocation
of this method.

The algorithm in this paper can be summarized in the
following seven steps:
(1) Read the text data and save the attributes of the air data

and the corresponding pollution level.
(2) Clean the data. Handle outliers and defaults.
In some cases, the data provided for use may lack the

values of certain attributes. In this case, it is often necessary to
estimate the missing attribute values based on other instances

FIGURE 1. The procedure flow chart of the new C4.5 algorithm.

where the attribute value is known. In this paper, the method
of average estimation is used to address the default values.
If a certain attribute value of the sample data is missing,
the average of the attribute values of all the data of the
corresponding category is calculated, and the average value
is used to estimate the default value. The specific calculation
methods are as follows:

Assume the sample set is S, and Si,j is the value of attribute
j of the ith sample. If this value is missing, the estimated value
Ei,j is calculated as follows:

Ei,j =

m∑
k=1

Sk,j

m
, i = 1, 2, . . . n (6)

Sk,j represents the same corresponding attribute values as
those of the ith sample label.M represents the amount of the
same class as that of sample I .
(3) Discretize the data values under each attribute.

In the process of discretization of continuous attributes,
the C4.5 algorithm needs to predict all the partitions, which
requires much time. How to select an optimal partition
threshold quickly has become an urgent problem to be
solved. In this paper, we use the following methods to
discretize.
(i) Finding the boundary point value
Fayyad et al. proved that no matter how many classes are

used in the data set for learning, and nomatter how the classes
are distributed, the best segmentation points of continuous
attributes always lay at the boundary points. According to
the Fayyad boundary point principle, continuous descriptive
attributes are arranged in ascending order. Assuming the
number of data attributes is n, the values of the n attributes
at adjacent class boundary points of a continuous attribute
point are a1, a2, . . . an, in which the test attribute value ai is
the maximum value in class i. The corresponding information
gain is then calculated, and the attribute value with the largest
information gain is selected as the optimal segmentation
threshold.
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(ii) Interpolation
Given sample set S and continuous attribute a, assuming

that a has n different values on S, these values are ranked from
smallest to largest and marked as {a1, a2, . . . , an}. Based on
the partition point t , S can be divided into S+t . Among them,
S−t contains samples whose S−t values are not greater than t
on attribute a, while S+t contains samples whose values are
greater than t on attribute a.
Because each set of boundary points is determined by the

number of classes, when there are few classes, the number of
boundary points is very small, whichwill lead to low accuracy
of the model and is not conducive to the generalizability of
the algorithm. Therefore, we need to interpolate the boundary
points appropriately to improve the accuracy of the model.

The improved algorithm can obtain a new set of candidate
partition points labelled Ta, where {a1, a2, . . . am} (m > n),
by searching for boundary points and interpolation opera-
tions. It needs to calculate only the information gain rate of
N attribute values at the boundary points, in contrast to the
traditional C4.5 algorithm, which traverses all the attribute
values. The computational complexity is greatly reduced, and
it will not increase much when the amount of data increases.
When there is a special case in which each attribute value
represents only one category, the computational complex-
ity of the improved algorithm is comparable to that of the
C4.5 algorithm.
(4) Calculate the weighted information gain rate of each

attribute value after discretization.
First, we need to calculate the information entropy. Here,

we replace the log operation with a Taylor expansion to
reduce the amount of calculation.
Taylor’s mean value theorem: If there are n+ 1 derivatives

of f (x) in an open interval (a, b) including x0, then when x ∈
(a, b), there is:

f (x)≈ f (x0)+ f ′(x0)(x − x0)+
f ′′(ζ )
2!

(x − x0)2(x ≤ ζ ≤ x)

(7)

The operation of log2(x) is expanded as above, with
f (x) = log2(x).

log2(x) =
In(x)
In2

(8)

In(x) ≈ In(x0)+
1
x0
(x − x0)−

1

2! × x20
(x − x0)2 (9)

Setting x0 = 1, we obtain the following:

In(x) ≈
2(x − 1)− (x − 1)2

2
(10)

log2(x) ≈
2(x − 1)− (x − 1)2

2In(2)
(11)

Therefore, the calculation of the information entropy is as
follows:

Entropy(S) ≈ −
m∑
i=1

pi ∗
2(pi − 1)− (pi − 1)2

2In(2)
(12)

A weighting coefficient w (0 < w < 1) is introduced,
which is determined by the decision maker according to prior
knowledge. By weighting, we can reduce the information
entropy of some attributes, and correspondingly, improve the
information entropy of other attributes.

If the weighting coefficient of an attribute is w, the infor-
mation gain ratio is calculated as:

Entropy(St )′ = mean(Entropy(Sλt ))λ ∈ {−,+} , t ∈ Ta
(13)

Here, we refer to the information entropy. S is a given
sample set. a is a continuous property. Ta is the set of attribute
partition points after the discretization operation. We classify
each partition point t into two categories: positive and nega-
tive. λ represents the classification.

wSt =
1− Entropy(St )′

m−
m∑
t=1

Entropy(St )′
(14)

The weights are calculated relative to each partition point
according to the above formula. m represents the number
of partition points. The bigger the information entropy is,
the smaller the weight is.

Gain(S, a, t) = wSt × (Entropy(S)

−

∑
λ∈{−,+}

∣∣Sλt ∣∣
|S|

Entropy(Sλt )) (15)

Gain is the weighted information gain. We adjust the value
of the information gain appropriately by a weighting opera-
tion to achieve a better effect of the model.

The information gain ratio is normalized by using the split
information value, which is defined as follows:

SplitInfoA(S, a) = −
v∑
j=1

∣∣sj∣∣
|s|
× log2(

∣∣sj∣∣
|s|

) (16)

This value represents the information generated by divid-
ing the training data set S into v partitions corresponding
to the V outputs of the attribute a test. V corresponds to
the number of partition points corresponding to the attribute.
We divide each partition point into two categories. V partition
points yield V partition results; subsequently, V information
entropy is obtained and then summed.

GainRatio(S, a, t) =
Gain(S, a, t)
SplitInfo(S, a)

(17)

GainRatio(S, a) = maxt∈TaGainRatio(S, a, t) (18)

Equation 18 is the information gain rate obtained.
(5) The attributes with the maximum weighted information

gain rate are selected as the root nodes of the subtree.
(6) If the candidate attribute value is not empty, the root

node generates a new branch node.
(7) The branch process is carried out recursively until the

candidate node is empty.
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IV. EXPERIMENTAL SETTINGS
A. DATASET GENERATION
For the same method, to test the adaptability of the algorithm,
three experiments were designed. It was from two aspects: the
change of data quantity and the prediction ability of future
data. The the data variation mainly included general data,
with missing value and a large amount of data. Experiment 1
had a general amount of data and contained missing values.
It was of universal significance to verify the effectiveness of
the algorithm. Experiment 2 had a large amount of data and no
missing values. It was used to verify the time efficiency and
performance of the algorithm in the case of a large amount
of data. Experiment 2 illustrated the advantages of the algo-
rithm. The training data and prediction data of Experiment 1
and Experiment 2 were randomly selected and allocated from
the historical data, only the unknown samples were predicted
from the known samples, and the classification by time was
not considered. To test the new algorithm for the prediction
of future data, Experiment 3 was designed. Compared with
experiment 2, the training data and test data were classified
according to the time sequence, which was more practical for
the prediction of future data.
(i) Data for Experiment 1
The air quality data of a city were selected [36]. The data

consisted of 320 records. There were default values in some
attributes of the data.

There were a few missing values in the collected data,
so before data mining, the default values were processed
according to the method of average estimation to fill those
missing values.

The data was divided into training and test sets with a
7:3 ratio.
(ii) Data for Experiment 2
The experimental data were obtained from a query of

the Chinese air quality historical data website [37]. For the
experiment, we selected nearly 1970 data records, in which
the training and test sets were generated with a distribution
ratio of 7:3 (1372 in the training set, 588 in the test set).
(iii) Data for Experiment 3
Data from 2014-2017 for the city of Wuhan were selected

as the training set and data from 2018 were used as the
testing set.

B. SETTING OF EXPERIMENTAL PARAMETERS
Weight calculation modification was involved in the exper-
imental process. In constructing the decision tree, the split
feature points were selected by the weighted information gain
ratio, and the weights were expressed by w. The weights of w
were calculated according to Step 4 in Section III-C.

C. RESULT EVALUATION METRICS
Computing a meaningful estimate of generalizability is a key
requirement for evaluating the performance of a classification
algorithm [38].

Three metrics were introduced to evaluate the perfor-
mance of the classification results in this paper: the ROC

curve [39], [40], the PR curve, and the confusion matrix.
These metrics are described in the following.

The first performance metric that was chosen is the ROC
curve [39]–[41].

The ROC curve relates the true positive rate (TPR) to the
false positive rate (FPR) obtained at every possible threshold.
Thus, it provides insight into the performance of a classifier
that is independent of its detection threshold.

True positives (TPs) correspond to the number of correct
matches found, while false negatives (FNs) represent the
number of correct matches not found. False positives (FPs)
denote the number of non-matches incorrectly identified as
matches, i.e., misinformation. True negatives (TNs) indicate
the number of mismatches rejected correctly. From these, one
can calculate the true positive rate (TPR), the false positive
rate (FPR) and the true negative rate (TNR).

TPR =
TP

TP+ FN
(19)

FPR =
FP

FP+ TN
(20)

TNR =
TN

FP+ TN
(21)

In the ROC curve, the transverse axis is the FPR, and the
larger the FPR, the more actual negative classes are predicted
as part of the positive classes. The longitudinal axis is the
TPR. The larger the TPR, the more actual positive classes are
predicted. The closer the ROC curve is to (0, 1), the better it
is to deviate from the 45-degree diagonal line. The greater the
TPR and TNR values are, the better the effect is.

The second metric is the PR curve. Assume that P is
accuracy and R is the recall rate. TP, FP, FN, and TN are as
described above for the ROC curve.

P =
TP

TP+ FP
(22)

R =
TP

TP+ FN
(23)

The third performance metric we have chosen is the con-
fusion matrix [42].

Assume that for the classification task of N -type patterns,
the recognition data setD includes T0 samples, and each type
of pattern contains Ti data. Classifier C is constructed by
some recognition algorithm. cmij represents the percentage
of the data classified by classifier C into class j patterns in
the total number of samples of class i patterns. The follow-
ing N∗N-dimensional confusion matrix CM (C , D) can be
obtained.

CM (C,D) =


cm11 . . . . . . cm1N
cm21 . . . . . . cm2N
. . . . . . . . . . . . . . .

cmN1 . . . . . . cmNN


The correct recognition rate of each pattern is described as

follows:

Ri = cmii, i = 1, . . . ,N (24)
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FIGURE 2. Decision tree generation of experiment 1.

The average correct recognition rate is described as
follows:

RA =
N∑
i=1

(cmii ∗ Ti) /T0 (25)

The error recognition rate of each pattern is described as
follows:

Wi =

N∑
j=1,j 6=i

cmij = 1− cmii = 1− Ri (26)

The average error recognition rate is described as follows:

WA =

N∑
i=1

N∑
j=1,j 6=i

(cmii ∗ Ti)/T0 = 1− RA (27)

V. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental results are presented in this section.
To assess the performance of the new improved C4.5,
the ROC curve, PR curve, run-time and accuracy were
applied. We compared the results from three aspects: (1) the
performance of different classification methods; (2) the time
and accuracy of different classification methods (the results
are described in detail); and (3) the prediction of future air
quality from historical data.

All experiments were carried out on a desktop computer
with the following configuration: CPU (Intel-i5-4210H);
RAM (8GB); operating system (Windows 10 Professional).
The experiments were executed on MATLAB 2013a.

A. RESULTS OF THE EXPERIMENTS
In these experiments, the highest height of the decision tree
was set to 6, the category was the air quality grade, and the
number of categories was 6. The six grades were excellent,
good, mild, moderate, severe and severe in turn, expressed
as I, II, III, IV, V and VI, respectively.

Here, we give the result of the decision tree in
experiment 1.

B. PERFORMANCE COMPARISON OF THE
DIFFERENT ALGORITHMS
The data of Experiment 1 were general. There was a large
amount of data in Experiment 2, which was representative of
too much data processing. To evaluate the prediction model
of this algorithm, the ROC curve and PR curve were selected

FIGURE 3. ROC curve of experiment 2.

FIGURE 4. PR curve of experiment 2.

to analyse the performance of the model. The results of
Experiment 2 are shown in Figures 3 and 4. The algorithm
was compared with ID3, C4.5 and a backpropagation (BP)
neural network.

From the ROC curve of Figure 3, we can see that the curve
of the new C4.5 model was convex at the far left. The true
positive parameter was higher, the false positive parameter
was lower, and the AUC (area under the curve) was larger
under the ROC curve. We can see that the AUC was the
largest under the new C4.5 model curve. From the PR curve
of Figure 4, we can see that the PR curve corresponding to
the new C4.5 model was convex to the far right and closest
to the coordinates (1, 1). The precision and recall were both
high, indicating that the new C4.5 model was the best.

C. RUN-TIME AND ACCURACY COMPARISON
In addition, the time spent constructing the decision tree was
greatly reduced while the accuracy of the algorithmwas guar-
anteed. Tables 1 and 2 below show the accuracy and run-time
of the algorithm and compare them with the performances
of ID3, C4.5 and the BP neural network.
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TABLE 1. Accuracy and run-time comparison on test sets of experiment 1.

TABLE 2. Accuracy and run-time comparison on test sets of experiment 2.

From Table 1, we can see that the run-time of the new C 4.5
method was approximately 10 times shorter than that of the
other methods. From Table 2, we can also see that when the
amount of data was large, the run-time of the algorithm had
obvious advantages over that of the other three algorithms.
This guarantees the time efficiency of the decision tree gen-
eration and the timeliness of the algorithm with regard to
a dramatic increase in air data in the future. From the data
in Tables 1 and 2, we can see that the algorithm not only
improved the run-time, but also demonstrated relatively high
accuracy.

It can be found from the experiments that the improved
decision tree prediction model had great breakthroughs in
accuracy and computational complexity. Compared with the
traditional decision tree algorithm and artificial neural net-
work, we can address a large amount of air quality data more
quickly by discretizing the data and introducing weighted
coefficients without affecting the accuracy.

In the past, many decision tree algorithms and artificial
neural networks paid more attention to the accuracy of the
algorithm, but did not pay much attention to the time perfor-
mance. In the era of big data, the amount of acquired air data
is increasing dramatically, and the value of attributes is also
increasing. With the increase in nodes, continuous attributes
and any attributes in continuous attributes, the efficiency of
previous decision tree algorithms will be greatly affected.
The time performance will also become an important eval-
uation index of algorithms for air quality prediction, and the
improved decision tree method in this paper provides a new
idea for air quality prediction under a large amount of data,
which will play an important role in protecting the natural
environment and preventing air pollution.

D. AIR DATA MINING IN WUHAN
We used the data from the years 2014-2017 in Wuhan as
a training set and the 2018 data as a testing set. In using
the historical data of three consecutive years to predict the

FIGURE 5. Air pollution level of Wuhan.

FIGURE 6. Confusion matrix results.

weather quality in a fourth year, the aim was to test the
prediction ability of the approach.

The statistics of the air quality data of Wuhan in 2018 are
as shown in Figure 5.

The experimental results are as follows. The confusion
matrix diagram is shown in Figure 6.

In Figure 6, each column of the confusion matrix repre-
sents a prediction category, and the total number of columns
represents the value predicted for that category. Each row
represents the true attribution category of the data, and the
total number of data instances in each row represents the num-
ber of data instances in that category. The diagonal portion
displays the number of samples correctly predicted for this
category, and the numbers of samples incorrectly predicted
for other categories are displayed on both sides. The sum of
the diagonal percentages is the accuracy of the model on the
test sample set.

The air quality index was divided into six grades: excellent,
good, light pollution,moderate pollution, heavy pollution and
serious pollution. There was no serious pollution in Wuhan
in 2018. From Figure 6, we can see that 58 samples were
predicted in the first category; 53 samples were correctly
predicted, and 5 samples belonged to the second category and
were misclassified as the first, yielding an accuracy of 91.4%.
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There were 213 samples in the second category; 199 samples
were correctly predicted, 9 samples in the first category were
incorrectly classified into the second category and 5 samples
in the third category were incorrectly classified into the sec-
ond category, yielding an accuracy of 93.4%. There were 74
samples predicted for the third category, with an accuracy of
100%. Fifteen samples were predicted to be in Category 4,
with an accuracy of 100%. Four samples were predicted to
be in Category 5. One sample belonging to Category 4 was
misclassified into Category 5, yielding an accuracy of 80%.
There were no sample data in Category 6, so no accuracy
of Category 6 could be calculated. The accuracy of each
category was as follows: 91.4%, 93.4%, 100%, 100% and
80%. Correspondingly, the error rates were 8.6%, 6.6%, 0%,
0% and 20%. The overall accuracy was 94.5%. It can be seen
that the accuracy of the algorithm in predicting the air quality
grade was excellent and that moderate pollution needs to be
improved.

We used the 2018 air quality data of Wuhan to test the
accuracy and compare the run-time with that of four different
methods. The accuracy and the run-time data are shown
in Table 3.

TABLE 3. Accuracy and run-time comparison on test sets of experiment 3.

It can be seen that the accuracy of the improved
C4.5 method was 94.5% from Table 3, which was higher than
that of ID3, C4.5 and the BP neural network. Table 3 gives
the run-times of the four algorithms. The run-time of the
improved algorithm was the least of all the methods. Com-
pared with the neural network model, the run-time of the
improved algorithm was obviously less. It is effective and
feasible to use the improved C4.5 algorithm to predict future
data from historical data.

At the same time, the air quality grade of Wuhan
in 2018 was extracted from the experimental results, and the
changes over different years were analysed, which provides
a good means for improving the algorithm and providing air
quality prediction in the future.

VI. CONCLUSION AND FUTURE WORK
The prediction results of the air quality level could provide
useful information for safe and reliable societal decisions
regarding smart transportation and other public services.
However, currently, under a large amount of data, the time
performance and accuracy of air quality prediction are
urgent problems to be addressed. In this paper, a novel
predictive-model-based decision tree method was proposed.
The improved model was based on the C4.5 decision tree.

The improvements were mainly in two aspects: the feature
attribute value and the weighting of the information gain. The
accuracy and computational complexity were both improved.
Based on the attribute partition principle of the informa-
tion gain rate, we discretized the data before computing
the information entropy. The test attributes in the Fayyad
boundary points were determined according to the attributes
of the actual data. We selected the attributes with the great-
est information gain as the optimal segmentation threshold
to replace the information gain rate of traversing all the
attributes in the traditional C4.5 algorithm. At the same time,
considering the introduction of the weighting coefficient w,
the calculation of the gain rate of each attribute was weighted,
which reduced the information entropy of some attributes,
and correspondingly, improved the information entropy of
other attributes. We selected the ROC curve, PR curve and
run-time to evaluate the model. The experimental results
showed that the improved algorithm significantly improved
the time performance and correctness of classification, and it
had good prediction ability for future data. When compared
with other classification prediction methods, the improved
algorithm was slightly superior.

Faced with a large amount of air data, we urgently need
an efficient and accurate air quality evaluation algorithm.
The first recommended future research work is to compare
other classification prediction methods in air quality eval-
uation at different data levels. Another proposal for future
work includes better algorithm performance. The improved
algorithm is intended to be used in classification and pre-
diction. Classification based on the improved algorithm is
attractive for a large amount of data, which will provide new
ideas and methods for future analysis of air quality data,
and additional advantages of the improved algorithm can be
explored.
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