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ABSTRACT Sex determination of silkworm pupae is important for silkworm industry. Multivariate analysis
methods have been widely applied in hyperspectral imaging spectroscopy for classification. However, these
methods require essential steps containing spectra preprocessing or feature extraction, which were not easy
determined. Convolutional neural networks (CNNs), which have been employed in image recognition, could
effectively learn interpretable presentations of the sample without the need of ad-hoc preprocessing steps.
The species of silkworm pupae are usually up to hundreds. Conventional classifiers based on one species
of silkworm pupae could not give high performance when explored to other species that not participating
in the model building, resulting in bad generalization ability. In this study, a CNN model was trained to
automatically identify the sex of silkworm pupae from different years and species based on the hyperspectral
spectra. The results were compared with the frequently used conventional machine classifiers including
support vector machine (SVM) and K nearest neighbors (KNN). The results showed that CNN outperformed
SVMandKNN in terms of accuracywhen applied to the raw spectra with 98.03%. However, the performance
of CNN decreased to 95.09% when combined with the preprocessed data. Then principal component
analysis (PCA) was adopted to reduce data dimensionality and extract features. CNN gave higher accuracy
than SVM andKNN based on PCA. The discussion section revealed that CNN had high generalization ability
that could classify silkworm pupae from different species with a rather well performance. It demonstrated
that HSI technology in combination with CNN was useful in determining the sex of silkworm pupae.

INDEX TERMS Silkworm pupae, sex, hyperspectral imaging, convolutional neural network.

I. INTRODUCTION
China has a long history in silk production and exporta-
tion. Before crossbreeding, it is necessary to determine the
sex of silkworm pupae that finished manually. There have
several researches for automatically identifying the sex of
silkworm pupae [1]–[7]. Among these methods, the spec-
troscopy technology is promising because of its high accuracy
and effectiveness. Designing a classification model based
on spectroscopy technology to determine the sex of silk-
worm pupae of different species and seasons is challenging,
because the generalization ability of conventional classifiers
that including support vector machine (SVM), partial least
squares discriminant analysis (PLS-DA), linear discriminant
analysis (LDA), artificial neural networks (ANN) is not good.
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Hence, it is important to build a classification model to clas-
sify the sex of silkworm pupae with high performance.

Nowadays, Hyperspectral imaging (HSI) technology has
become a widespread method that simultaneously contains
the spectral and spatial data. Many studies have reported
about employing HSI technology to do the classification
work [8]–[10]. We have explored the HSI technology to dis-
criminate the sex of silkworm pupae by combing the textural
characteristics and spectra features [11]. The model reaches
high accuracy. However, the generalization ability of the
conventional classifiers is not well. Currently, chemometrics
research mainly focuses on the problem of selecting a useful
preprocessing method and feature extraction method. It can-
not be ignored that the selected methods may work well for
one dataset, but do not work when applied to another dataset
collected using a different sample matrix or experiment
setting.
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The performance for the hyperspectral spectra strongly
depends on the training set employed in themodeling process.
If the samples in the model are not representative, the classi-
fication results are bad [12]. About the maize seed classifica-
tion based on HSI, when the model was explored to classify
the seeds from the next year, the performance decreased
because new variances were introduced by changes in cul-
tivation conditions from one year to another. Guo et al. [12],
Zhang [13] and Huang et al. [14] updated the classification
model to classify the seeds from the next year. For silkworm
pupae samples, the species are up to hundreds. Previous
studies only use themodel to differentiate the sex of silkworm
pupae from the current year and the same species. No studies
have ever explored the performance of the developed model
to discriminate the silkworm pupae from the next year. Hence,
it is necessary to design a classification model based on HSI
that could differentiate the silkworm pupae from different
species and years with high performance.

Convolutional Neural Networks (CNNs), as one of the
most popular deep learning models, first presented by
Lecun et al. [15] in 1998, has been widely exported in image
classification and has high classification performance and
generalization ability [16], [17]. CNNs are nonlinear classi-
fiers that can identify the unseen samples without the need for
feature extraction. CNNs have been applied for classification
of two-dimensional image and three-dimensional hyperspec-
tral remote sensing data [18]. To the best of our knowledge,
unlike the conventional spectra analysis pipelines, CNN com-
bines preprocessing, feature extraction and classification in a
single architecture that is trained end-to-end without manual
tuning. The work developed by Acquarelli et al. [19] and
Liu et al. [20] are the only places where CNN is used over
1-dimensional (1D) input signals. Therefore, CNN model
could effectively to determine sex of silkworm pupa from
different species and years.

In this work, a new CNNmodel is developed in the context
of sex determination of silkworm pupae of different species
based on HSI spectra. The objectives were: (1) to develop a
CNN model; (2) to compare the performance of CNN with
SVM and KNN on the raw spectra with or without prepro-
cessing; (3) to compare the classification ability of CNNwith
SVM and KNN on the test set from different species and the
next year.

II. MATERIALS AND METHODS
CNNs are designed to extract the features from an input sig-
nal. A typical CNN includes convolutional layers and pooling
operators that effectively extract the features hierarchically.
Features determined by network training are optimal in the
sense of the performance of the classifier. The end-to-end
trainable systems of CNN offer a much better alternative to a
pipeline in which each part is trained independently or crafted
manually.

A. CNN MODEL TRAINED FOR SEX CLASSIFICATION
The input full spectra of silkworm pupae to CNN are
one dimension. Accordingly, we train the one-dimensional

FIGURE 1. The general architecture of 1D-CNN.

convolutional kernels in CNN, as shown in Figure 1.
In Figure.1, an example of 932 spectral bands was applied
to display the output size of each block. There are four main
blocks in the architecture. The first four blocks are convo-
lutional blocks, each of which consists of a convolutional
layer, Batch normalization layer, ReLU activation function
and a max pooling layer. As convolution blocks going deeper,
the number of filters is doubled (starting from 8 to 64). All
convolutional layers adopt a kernel size of 3, stride of 1 and
padding of 1. A convolutional layer has local connections to
its input and can be trained to learn local patterns. By chaining
convolutional layers together, deeper layers have connection
to large part of the raw input. Accordingly, different layers
acquire the raw input and learn features at different levels.
The last block is fully connected layer, which is applied to
learn combinations of features extracted by the convolutional
layers. Finally, an output layer includes a softmax layer and
a classification layer (2 classes, female and male). We will
present the design of each part of CNN architecture in the
following sections in details.

B. CONVOLUTION LAYER
In the convolution layer, convolutions are performed between
the previous layer and a series of filters, which are employed
to extract features from the previous layer. Then, the outputs
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of the convolutions will add an additive bias and an element-
wise non-linear activation function is applied on the results.
Here, it usually adopts the ReLU function as the nonlinear
function. The expression of convolution is shown as follows,

yj = f

(∑
i

x i ∗ k ij + bj
)

(1)

where yj is the j-th output map and x j denotes the j-th input
map, k ij is the convolution kernel, bj is the offset parameter,
∗ denotes convolution, and f (·) is the nonlinear active func-
tion. However, the sigmoid function easily leads to saturated,
which affects the convergence rate of the net in the deep
network. Hence, it usually adopts the ReLU function as the
nonlinear function in the deep network, and the expression of
ReLU function is shown as follows,

ReLU (x) =

{
x x ≥ 0
0 x < 0

(2)

d l and r l are supposed to the dimension of the final output
of each feature signal on the layer l and the length of its
corresponding kernel. The final output of the feature signal
of the next layer l + 1 is shown in below,

d l+1 =
d l − r l + 1

2
(3)

The upper layers of CNN are fully connected and followed
by the softmax with the number of outputs that is equals to
the number of classes. The softmax function is expressed as
follows,

p (z)w =
ezw∑K
k=1 e

zk
w = 1, . . . ,K (4)

where z denotes the output of CNN, w represents a class and
K is the total number of classes.

The one-dimensional kernel was adopted because each
spectrum was expressed as a one-dimensional array. After
the convolutional layer, a fully connected output layer with
the number of units equaled to the number of classes was
employed. The use of the softmax activation function on this
output layer allowed obtaining the class results of the network
in response of an input sample.

C. TRAINING PARAMETERS OF PROPOSED MODEL
For the training of the designed CNN model, Stochastic
Gradient Descent with Momentum (SGDM) updating rule
was adopted. It could effectively overcome the instability of
Stochastic Gradient Descent (SGD) to some extent, improv-
ing the learning rate and solving the local optimum. In gen-
eral, the training parameters were chosen as follows. The
epochs was set to 100, mini-batch size as 8, the initial learning
rate as 0.001. The momentum determines the contribution of
the gradient step from the previous iteration to the current
iteration of training, which is usually set to be 0.9 [21], [22].

FIGURE 2. Schematic diagram of hyperspectral imaging system.

III. SAMPLE ACQUIRING
As Table 1 depicted, 2862 silkworm pupae were used in the
experiment. Those samples were acquired in two seasons and
consisted of four hybrid species. The sex ratio of all silkworm
pupae was close to 1:1. A total of 707 (24.70%) samples of
871A × 447 species and 664 (23.20%) of 872B × 953 were
acquired in June 2017. A total of 749 (25.93%) samples of
Su × 471 and 749 (26.17%) samples of Ming × 970 were
bought in June 2018. The diversity of samples could effec-
tively increase the generalization ability of the developed
model in a large extent.

A. HYPERSPECTRAL DATA CORRECTION AND
PREPROCESSING
Data were acquired using the laboratory-based HSI system
(363-1026nm) mainly containing spectrograph (ImSpector
V10E, Spectral Imaging Ltd., Oulu, Finland), EMCCD
(Raptor EM285CL, China), two fiber halogen lamps
(IT 3900, 150W), a computer with data acquisition and pre-
processing software (Spectral Image software, Isuze Optics
Corp., Taiwan, China), as shown in Fig. 2. The HSI system
was preheated about one hour before software collecting data.
The spectral resolution was 0.5nm. The distance between the
lens and the samples was set to 20cm, and the movement
speed of platform was set to 0.85mm/s.

The exposure time was set to 21ms. The resolution of the
raw image was 1632∗1232 (spatial ∗ spectral) pixels. The
processing software includes ENVI 4.6 (ITT Visual Infor-
mation Solutions, Boulder, Utah, USA) and Matlab 2017b
(The Math Works, Natick, MA, USA). Then the HSI data
were corrected by minimizing the differences among samples
caused by sensor response and illumination. The mean spec-
tra were extracted from the region of interest (ROI). To avoid
noise at the beginning bands and the ending bands due to the
limitation of the hyperspectral imaging system, the spectra
ranging in 400-900nm were selected. Then, standard normal
variate (SNV) was employed to remove the data artifacts and
scattering effects here.

B. RAW HSI DATA PROCESSING STEPS
The raw HSI data processing steps were shown in Fig. 3.
Firstly, the raw HSI data were corrected by minimizing the
differences among samples caused by sensor response and
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TABLE 1. Statistics results for the sets of silkworm pupae.

FIGURE 3. The flowchart of raw HSI data processing steps.

illumination. Then, the tail region of interest (ROI) was cho-
sen, which was detailed discussed in the part 3.2.1 ‘‘The
selection of ROI’’ in our previous work [11]. Then, the mean
spectra were computed to represent the tail ROI data. The
spectra data of calibration set contained the spectra of mul-
tiple tail ROI data. To avoid noise at the beginning bands
and the ending bands due to bands due to the limitation of
the hyperspectral imaging system, the spectra ranging in 400-
900nmwere selected. Finally, the one dimension CNNmodel
was built based on the spectra of calibration set, which could
be used to predict the sex of silkworm pupae in the testing set.

C. OTHER CLASSIFICATION METHODS
1) SUPPORT VECTOR MACHINE
As an effective analysis tool, SVM has been widely applied
in many fields. Its theory for the classification and regression
has been described in detail [23], [24]. The main thought of
SVM is to represent the original category of the sample in a
higher space, which is called feature space. A complex non-
linear mapping of variables to feature space can be realized
by SVM. The variables are expressed in the feature space
and are distinguished more easily than those in the original
space [25], [26]. It has been shown that radial basis function
(RBF) is more effective than other kernel functions [27]. RBF
is described as Eq.5,

M (x, xt) = exp
(
−‖x − xt‖2

/
2g2

)
(5)

where ‖x − xt‖ calculates the distance from the t-th input
vector and the threshold vector, g represents the width param-
eter. The parameter c and g are usually searched grid-search
procedure.

2) K NEAREST NEIGHBORS
K nearest neighbor (KNN), as a type of pattern recognition
method, calculates the distances between an unknown sample

and the samples in the training set [28]. The number of nearest
samples (k) to the unknown sample is determined by the
categories manually specified. The category of the unknown
sample is of its k nearest samples in the training set. The
determination of k is crucial for KNN, which is optimized
by comparing KNN models using different k . We consider a
number of neighbors of k ∈ [3, 10].

3) ASSESSMENT METRICS
Four parameters including precision, recall, F measure and
accuracy are computed as the index to access the performance
of model. Precision represents the ability of classifier to label
a positive sample that is positive. The F measure is harmonic
mean of precision and recall. Accuracy is the total recognition
rate of classifier [29].

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F =
2 ∗ precision ∗ recall
precision+ recall

(8)

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(9)

True positive (TP) and true negative (TN) respectively rep-
resent the positive samples and negatives samples that are
correctly classified. False positive (FP) denotes the negative
samples that are incorrectly as positive. False negative (FN)
refers to the samples that are misclassified as negative.

IV. RESULTS AND DISCUSSION
Fig.4 depicted the average reflectance spectra characteristics
of silkworm pupae with or without preprocessing. In Fig.4(a),
the general trend of mean female curve and male curve
was similar. In Fig.4, an obvious absorption peak could be
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FIGURE 4. Spectra curves of silkworm pupae.

TABLE 2. Silkworm pupae samples from different species.

TABLE 3. Classification accuracy of classifiers on raw data with or without preprocessing.

observed near 500nm. The spectra preprocessed with Stan-
dard normal variate (SNV) were shown in Fig.4.(b). These
differences were the basis for using the hyperspectral imaging
to the sex determination of silkworm pupae.

A. CLASSIFICATION RESULTS
Before constructing the classificationmodel, female andmale
silkworm pupae from different species were divided into a
calibration set and a test set according to the ratio of 3:1 using
Kennard stone (KS) algorithm, as shown in Table 2.

1) CLASSIFICATION RESULTS USING PREPROCESSING
The sex discrimination results on the raw data with or with-
out preprocessing were shown in Table 3. A good model
should have high accuracy, sensitivity, specificity and preci-
sion. In Table 3, it showed that CNN model reached signifi-
cantly best performance based on the raw data with accuracy
of 98.03%, precision 98.58%, recall 97.48% and F score
98.03%. After preprocessed with SNV, the accuracy of CNN

decreased to 95.09%, while the accuracy of SVM and KNN
was improved to 89.11% and 85.01%, respectively.

It was not surprised that convolutional classifiers (SVM,
KNN)were usually not able to cope with the spectra that were
not well pretreated, and therefore need explicit pretreating
methods in the processing pipeline. On the other hand, CNN
could intelligently handle the interference of the baselines.

2) IDENTIFICATION RESULTS USING PCA
After the raw spectra pretreated, PCA was applied to reduce
the data dimensionality. The number of principal components
was selected such that 99.9% of total variance was retained.
The results were depicted in Table 4. In Table 4, CNN
gave the highest performance based on PCA with precision
96.93%, recall 97.20%, F measure 97.06% and accuracy
97.06%. Compared with results without PCA in Table 3,
SVM and KNN performed better, while the performance
of CNN decreased. It revealed that PCA had the ability to
extract discriminated features from the spectra of female
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TABLE 4. Classification accuracy of classifiers on raw data with or without preprocessing.

FIGURE 5. The classification results on silkworm pupae from different species.

and male silkworm pupae. Besides, CNN model could reach
high performance of classification while requiring minimal
preprocessing of spectra.

3) DISCUSSION
The species of silkworm pupae is up to hundreds. The
sex discrimination model built using one species needs to
rebuild when applied to another species. However, it is
time-consuming to rebuild model in the online discrimina-
tion system. Accordingly, it is necessary to design a new
model. As we known, CNN has quite good generalization
ability. To further substantiate this characteristic of CNN,

the calibration set of each species were applied to build
model and then the model was used to differentiate the
test set of the remaining species. The results were shown
in Table 5. The details were drawn in Fig. 5.The calibration
set of 871A × 447, 872B × 953, Su × 471, Min × 970 was
applied to build the model, as shown in Fig.5a, Fig.5b, Fig.5c,
Fig.5d, respectively. As Fig.5 shown, CNN performed better
than SVM and KNN when the model was adopted to classify
the test set, indicating that CNN had better generalization
ability.

Two points were highlighted by observing four figures.
Firstly, the accuracy of the model was the highest when
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TABLE 5. Classification accuracy of classifiers on raw data with or without preprocessing.

the calibration set and test set were from the same species.
Secondly, when the built model was applied to classify the
silkworm pupae from different species, the species from the
same year with the built model achieved higher accuracy than
that from the different year. The reason may be that with
feeding environment and climate changing from year to year,
silkworm pupae had many differences.

Compared the prediction accuracy of sex classification of
silkworm pupae with other research, this paper gave almost
the same performance when the calibration set and testing
set from the same species and years. However, when the
built model was promoted to classify silkworm pupae from
different species, the CNN model with high generalization
ability proposed in this paper, outperformed other studies.

V. CONCLUSION
In this paper, we proposed a CNN model for sex classifi-
cation of silkworm pupae based on HSI spectra with high
performance. The CNN model outperformed other state-of-
the-art machine learningmethods (SVM,KNN) using the raw
spectra or the spectra processed with pretreating and PCA.
Results indicate that CNN is less dependent on preprocessing
and feature extraction compared to SVM and KNN. This
study will make contributions to the online intelligent sex
recognition of silkworm pupae.
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