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ABSTRACT This paper studies a single-machine scheduling problem with a two competing agents in
which the performance criteria of the first and second agents are to minimize the mean lateness and
number of tardy jobs, respectively. Due to the non-deterministic polynomial-time hardness of this problem,
we propose an effective and efficient algorithm, denominated as the SPT-M algorithm, to generate the
non-dominated solutions of the Pareto set. Computational results conducted on a test problem set reveal
that the proposed SPT-M algorithm can generate an efficient Pareto frontier in remarkably short computing
time. The contribution of this paper could help practitioners to determine the tradeoffs between the jobs of
two agents competing for a single resource.

INDEX TERMS Scheduling, single-machine, two competing agents.

I. INTRODUCTION
In practice, various performance measures, such as capacity
utilization, production cost, and hit rate, are used to monitor
the efficiency and effectiveness of operations in manufac-
turing shops. Production scheduling is a key method for
improving resource allocation and thereby increasing capac-
ity utilization and manufacturing shop hit rate and decreasing
production cost. To achieve these goals, planners typically
use more than one criterion (e.g., makespan, total completion
time, lateness, earliness, tardiness, and number of tardy jobs)
for evaluation and determining a proper solution for pro-
duction scheduling [1]. Multi-objective scheduling problems
require multiple performance criteria, which may contradict
one another, to solve scheduling problems. Because optimiz-
ing a single performance criterion does not usually suit the
practical needs of real-world production scheduling, multi-
objective scheduling problems have been heavily discussed
in the literature [1]. So far, thousands of optimization and
approximation methods for solving different multi-objective
scheduling problems have been proposed [2]–[5].

For the traditional multi-objective scheduling problems,
a decision maker typically tries to satisfy multiple criteria
on the same set of jobs. However, in many applications,
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jobs are owned by different entities (agents) and must be
processed using the same resource. Therefore, multi-agent
scheduling problems in which different entities (agents) com-
pete on the usage of shared resources have received more
and more attention in recent decades [6]. For example,
Wu et al. [7] investigated the two-stage assembly flowshop
with two-agent; Lin et al. [8] studied the two-agent multi-
facility customer order scheduling problem; Yin et al. [9]
considered the just-in-time scheduling problem with two
competing agents on unrelated parallel machines; and
Yin et al. [10] focused on the two-agent flowshop scheduling
problem.

Motivated by practical applications, this study focuses on
the single-machine scheduling problem (SMSP) with two
competitive agents. The first agent has a set J1 of n1 jobs, and
the second agent has a set J2 of jobs, and the two must com-
pete to perform on one shared processing resource. We define
n = n1 + n2 and J = J1 ∪ J2, where J1 ∩ J2 = ∅. Each job
j ∈ J s(s = 1, 2) must be processed on the machine exactly
once with given processing time psj . Each job j ∈ J

s(s = 1, 2)
has a predetermined due date d sj . All agents aim at optimizing
an individual performance criterion based only on their own
jobs. The performance criteria of the first and second agents
considered herein areminimizingmean lateness of the n1 jobs
in set J1 (

∑
j∈J1 Lj/n1) and the number of tardy jobs of the n2

jobs in set J2 (
∑

j∈J2 Uj), respectively. The objective of this
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investigation is to generate an efficient Pareto frontier using
non-dominated solutions, which could help decision-makers
to determine the tradeoffs between the jobs of two agents
competing for a single machine. A sequence is considered a
non-dominated solution if no other sequence π ∈ 5 exists
for the first objective function value z1(π ) ≤ z1(π∗) and
the second objective function value z2(π ) ≤ z2(π∗), in which
at least one of the inequalities is strict. By using the well-
known three-field notation [11], the two-agent SMSP consid-
ered herein can be denoted as 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj),

where ‘‘1’’ indicates that the shop environment is a single
machine; ND(∗,∗∗) represents the objective to obtain a non-
dominated solution set with respect to the performance crite-
ria of the two agents. The performance criterion of the first
agent (∗) is mean lateness (

∑
j∈J1 Lj/n1) of its jobs j ∈ J1,

whereas the performance criterion of the second agent (∗∗)
is the number of tardy jobs (

∑
j∈J2 Uj) of its jobs j ∈ J2.

Moreover, the critical assumptions of this two-agent SMSP
are as follows:
• All job release dates are at the beginning (time zero) of
the scheduling period.

• No preemptive priorities are assigned; that is, the jobs
are not allowed to be split.

• The processing times for jobs on the machine are typi-
cally not the same.

• The machine can execute no more than one job at a time.
• The machine is always available for processing jobs
throughout the planning horizon.

• The setup time of the machine is negligible.
The practical applications of the addressed SMSP in which

two agents compete for the usage of one shared processing
resource and each agent has its own criterion to optimize are
considerable. Not only can devices, such as lathes, be con-
sidered a single machine; an entire manufacturing facility,
individual, workstation, or production line with a bottle-
neck may also be treated as a single machine. In this study,
an effective and efficient algorithm, referred to as the SPT-M
algorithm, which combines and extends thoughts from the
shortest processing time (SPT) rule and Moore’s algorithm,
is proposed to yield non-dominated solutions of a Pareto set
for the addressed problem. The aim of this study focuses
directly on generating a set of alternative schedules to provide
an operational basis for negotiation the usage of one shared
processing resource. Once a set of non-dominated solutions
has been generated by using the proposed SPT-M algorithm,
decision makers could choose one of these non-dominated
solutions to arrange jobs of two customers (agents) based on
their trading contracts.

The remainder of this paper is organized as follows:
Section 2 presents a review of the relevant literature with
respect to the bi-objective SMSPs to establish the basis of
this study. Section 3 describes in detail the procedures of
the proposed SPT-M algorithm, and Section 4 discusses
the performance of the proposed SPT-M algorithm. Finally,
Section 5 presents conclusions and recommendations for
future studies.

II. RELATED WORKS
The first study on bi-criteria SMSPs was by Smith in
1956 [12]. Since then, several researchers have continued to
study the problem proposed by Smith, whereas others have
investigated different performance criteria SMSPs. As sur-
veyed by Nagar et al. [13], before 1995, researchers typically
employed conventional andwell-established techniques, such
as branch-and-bound [14] and dynamic programming [15]
methods, to resolve bi-objective SMSPs. Because both tech-
niques are affected by computational time complexity, which
restricts the scope of these exact methods when solving
large problems, heuristic algorithms have become the pri-
mary technique for solving bi-criteria SMSPs since 1995.
These heuristic algorithms are designed to consider the trade-
offs between computational cost and solution quality for
real-world sized problems.

Numerous problem-specific heuristic algorithms have
been proposed to solve different bi-criteria SMSPs.
Köksalan and Keha [16] considered two bi-criteria SMSPs
with the objectives of minimizing flowtime and number of
tardy jobs and minimizing flowtime and maximum earliness,
respectively. The authors presented a promising heuristic
algorithm and a genetic algorithm (GA) for the first problem
and adapted the GA for the second problem by utilizing its
special structure. Azizoglu et al. [17] proposed two general
procedures to generate all efficient schedules and identify the
most efficient schedule, respectively, for the bi-criteria SMSP
of minimizing both maximum earliness and the number of
tardy jobs. Jolai et al. [18] focused on the same problem and
proposed a GA that used a heuristic algorithm to improve the
initial population. Harald et al. [19] focused on a bi-criteria
SMSP with both traditional and nontraditional requirements
and proposed an experimental approach and random key GA
to identify non-dominated solutions. Eren and Güner [20]
considered a bi-criteria SMSP with sequence-dependent
setup times. The authors proposed an integer programming
model to minimize the weighted sum of the total completion
time and total tardiness in solving problems with up to
12 jobs. Moreover, a special heuristic algorithm and a Tabu
search-based heuristic algorithm were introduced for solving
large problems. Later, Chen [21] investigated a bi-criteria
SMSPwith periodic maintenance. A highly accurate and effi-
cient heuristic algorithm was proposed to minimize the total
flow time and maximum tardiness by providing a small set
of efficient sequences. The heuristic algorithms mentioned
in the aforementioned studies can yield high-quality non-
dominated solutions of the Pareto set in reasonable computing
times. However, none of them considered the case of SMSPs
with competing agents.

In recent decades, two-agent SMSPs have begun attracting
a great deal of research interest. This problem arises when
two customers, each owning a set of jobs, compete to perform
their jobs on one shared processing resource and both cus-
tomers want to optimize an individual performance criterion
concerning only their own jobs. Baker and Smith [6] first
considered an SMSPwith two competing customers, in which
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jobs belonging to different customers were evaluated based
on their individual criteria. The authors demonstrated that
when minimizing a combination of three basic scheduling
criteria (e.g., makespan, lateness, and total weighted com-
pletion time) the problem was non-deterministic polynomial-
time hardness (NP-hard). Agnetis et al. [22], [23] considered
several cases of two-agent SMSPs arising from different com-
binations of three criteria for the two agents: maximum of a
regular function, weighted total completion time, and number
of tardy jobs. The authors addressed the problem of finding
the optimal solution for one agent with a constraint on the
other agent’s cost function. Moreover, the authors generated
all non-dominated solutions and analyzed the computational
complexity of each case. Ng et al. [24] further revealed that a
two-agent SMSP, where the objective is to minimize the total
completion time of the first agent with the restriction that the
number of tardy jobs of the second agent cannot exceed a
given number can be solved in pseudo-polynomial time using
binary encoding.

Wan et al. [25] considered several two-agent SMSPs with
controllable job processing times, the objective is to mini-
mize the objective function of one agent subject to a given
upper bound on the objective function of the other agent.
The authors presented polynomial-time algorithms for sev-
eral special cases of these two-agent SMSPs. Leung et al. [26]
generalized the results of some of the aforementioned two-
agent SMSPs by including preemption and release dates. The
authors further established the relationships between two-
agent SMSPs with rescheduling and scheduling subject to
availability constraints. Lee et al. [27] proposed a branch-
and-bound algorithm and three heuristic algorithms to solve a
two-agent SMSP with linear deterioration jobs, the objective
being to minimize the total weighted completion time of jobs
from the first agent, while not allowing tardy jobs for the sec-
ond agent. Liu et al. [28] presented optimal properties and
polynomial-time algorithms to solve two two-agent SMSPs
of increasing job linear deterioration processing times. Their
objective was to minimize the performance criterion of one
agent with the restriction that the objective function value of
the other agent remained less than or equal to a fixed level.

Yin et al. [29] proposed optimal properties and complexity
results for two-agent SMSPs with a linear non-increasing
deterioration processing times of jobs. Three objective func-
tions, namely maximum, total, and total weighted earliness
costs, are considered for the first agent subject to the condi-
tion that the maximum earliness cost of the second agent is
less than an established upper bound. The shortest processing
time (SPT) and earliest due date (EDD) rules sequence jobs
in the ascending order of their processing times and due
dates, respectively. These two rules have been prominently
used in literature to solve SMSPs [30]. Khowala et al. [31]
discussed a two-agent SMSP that aimed to minimize the
total weighted completion time and maximum lateness and
proposed a forward SPT-EDD heuristic algorithm to obtain
non-dominated solutions for the Pareto set. Oron et al. [32]
designed faster polynomial-time optimization algorithms for

various two-agent SMSPs with equal job processing times.
The objective functions of the two agents were to minimize
either the weighted sum of completion times or the weighted
number of tardy jobs.

Recently, Yin et al. [33] considered SMSPs involving two
agents, where the due dates of the first agent are deter-
mined by using the common (CON) or slack (SLK) due
date assignment methods. The objective is to minimize the
performance criterion of the first agent while keeping the
objective value of the second agent no greater than a given
limit. The authors analyzed the computational complexity
and presented a dynamic programming algorithm to solve the
problem. Yin et al. [34] investigated an integrated production
and batch delivery scheduling problem on a single machine
with two competing agents. Each of the agents wants to
minimize an objective function depending on the completion
time of its own jobs. The authors proposed polynomial-time
algorithms and pseudo-polynomial dynamic programming
algorithms to minimize the objective function of one agent
while keeping the objective function value of the other agent
below or at a given value.Wang et al. [35] studied a two-agent
single-machine due date assignment and scheduling problem.
The authors presented a fully polynomial-time approximation
scheme to minimize the objective of one agent, subject to an
upper bound on the objective of the other agent. Yin et al. [36]
considered the problem of scheduling n non-resumable and
simultaneously available jobs on a single machine with
several agents, in which each job belongs to one of the
agents. The authors proposed pseudo-polynomial dynamic
programming algorithms and mixed integer linear program-
ming (MILP) formulations to minimize the last agent’s crite-
rion, while keeping each of the other agents’ criterion values
no greater than a given limit. Zhang and Wang [37] presented
optimal polynomial and pseudo-polynomial time algorithms
to solve a two-agent SMSP with different scenarios. The
objectivewas to determine a schedule that minimized the total
weighted late work of the first agent while ensuring that the
maximum cost of the second agent did not exceed a specified
bound. Their algorithms are valid if the processing times
and due dates of all jobs are arbitrary positive real numbers.
More recently, Yin et al. [38] studied several integrated pro-
duction, inventory, and batch delivery SMSPs with due date
assignment and two competing agents. The authors proposed
exact and/or approximation solution algorithms for each of
the problems considered.

Related studies have indicated that two-agent SMSPs with
the objective of enumerating all non-dominated solutions
are the most difficult problems to solve, and designing
approaches for determining the non-dominated solution set
for two-agent SMSPs is difficult. For a more detailed litera-
ture review, a systematic survey and classification of exist-
ing contributions in terms of the complexity of two-agent
SMSPs and the proposed algorithms can be found in research
published by Perez-Gonzalez and Framinan [39]. Although
the optimal Pareto set of the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj)

problem can be obtained via exact methods such as complete
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enumeration (CE) and branch and bound methods, these
approaches take a prohibitive amount of computational time
even for moderate size problems. For the practical purpose,
it is often more appropriate to look for heuristic algorithms
that generate a near-optimal Pareto set at the relatively minor
computational expense. This leads to the development of the
SPT-M algorithm in this study.

III. SPT-M ALGORITHM
The following sections discuss in detail the proposed SPT-M
algorithm for solving the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj)

problem. First, we present the structure of the non-dominated
solutions of the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem. Sec-

ond, the detailed procedure of the proposed SPT-M algorithm
is described. Finally, we provide a numerical example of the
proposed SPT-M algorithm.

A. STRUCTURE OF THE NON-DOMINATED SOLUTIONS
OF 1‖ND(

∑
j∈J1 Lj /n1,

∑
j∈J2 Uj )

Some well-known scheduling theorems for SMSPs with
a single criterion have been developed for yielding opti-
mal sequences. For example, mean lateness is minimized
if jobs are sequenced according to the SPT rule [40], [41],
whereas the number of tardy jobs is minimized if jobs
are sequenced according to Moore’s algorithm [30]. Based
on these theorems, we can use the following lemmas to
explore the structure of the non-dominated solutions of the
1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem.

Lemma 1: For all strongly non-dominated solutions of
the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem, there exists an

optimal schedule for the problem in which the n1 jobs of the
first agent (set J1) are sequenced according to the SPT rule.

Proof: Consider a sequence π in which the n1 jobs of
the first agent (set J1) are not sequenced according to the
SPT rule. That is, somewhere in π there must exist a pair of
adjacent jobs, i and i′ (i, i′ ∈ J1), with i′ following i, such that
p1i > p1i′ . Now construct a new sequence, π ′, in which jobs i
and i′ are interchanged in sequence and all other jobs finish at
the same time as in π . Let B denotes the set of jobs preceding
jobs i and i′ in both schedules π and π ′, and A denotes the
set of jobs following i and i′ in both schedules π and π ′.
In addition, let Cj(π ) and Cj(π ′) denote the completion time
of job j under schedule π and π ′, respectively, and Sj(π ) and
Sj(π ′) denote the start time of job j under schedule π and π ′,
respectively. Evidently, Si(π ) = Si′ (π ′).Also, we temporarily
adopt the notations

∑
j∈J1 Lj/n1(π ) and

∑
j∈J1 Lj/n1(π

′) to
represent

∑
j∈J1 Lj/n1 of schedules π and π ′, respectively.

We first show that
∑

j∈J1 Lj/n1(π
′) is smaller than∑

j∈J1 Lj/n1(π ).∑
j∈J1

Lj/n1(π )

= (
∑

j∈J1and j∈B
Lj + Li + Li′ +

∑
j∈J1and j∈A

Lj)/n1

= (
∑

j∈J1and j∈B
Lj + Ci(π )− di + Ci′ (π )− di′

+

∑
j∈J1and j∈A

Lj)/n1

And,∑
j∈J1

Lj/n1(π ′)

= (
∑

j∈J1and j∈B
Lj + Li′ + Li +

∑
j∈J1and j∈A

Lj)/n1

= (
∑

j∈J1and j∈B
Lj + Ci′ (π

′)− di′ + Ci(π
′)− di

+

∑
j∈J1and j∈A

Lj)/n1

Therefore,∑
j∈J1

Lj/n1(π )−
∑

j∈J1
Lj/n1(π ′)

= (Ci(π )− di + Ci′ (π )− di′ )/n1
− (Ci′ (π

′)− di′ + Ci(π
′)− di)/n1

= (Si(π )+ p1i − di + Si(π )+ p
1
i + p

1
i′ − di′ )/n1

− (Si′ (π
′)+ p1i′ − di′ + Si′ (π

′)+ p1i′ + p
1
i − di)/n1

= (p1i − p
1
i′ )/n1 > 0

In other words, the interchange in sequence of jobs i and i′

reduces the value of
∑

j∈J1 Lj/n1. Therefore, any sequence of
the n1 jobs of the first agent that is not an SPT sequence can
be improved with respect to

∑
j∈J1 Lj/n1 by interchanging a

pair of jobs. It follows that the SPT sequence of the n1 jobs
of the first agent itself must be optimal.
Lemma 2: For all strongly non-dominated solutions of

the 1‖ND(
∑

j∈J1 Lj/n1,
∑

j∈J2 Uj) problem, there exists an
optimal schedule for the problem in which all non-tardy jobs
in the set J2 are sequenced in EDD order [24].
Lemma 3: For the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem,

there exists a non-delay schedule (one that prohibits unforced
idleness) for all strongly non-dominated solutions on the
Pareto-optimal frontier [31].
Based on the lemmas presented, the structure of any

non-dominated solution of the 1‖ND(
∑

j∈J1 Lj/n1,
∑

j∈J2 Uj)
problem can be denoted by a permutation containing three
subset jobs JI, JII, and JIII, where JI contains n1 jobs from
J1 that are sequenced in SPT order, JII contains all non-
tardy jobs from J2 that are sequenced in EDD order and JIII
contains all tardy jobs from J2 that are sequenced in any
order. The permutation of jobs in JI and JII may be mixed.
Because interference only exists between jobs in JI and JII,
the jobs in JIII can be scheduled after jobs JI and JII without
affecting the performance criteria. For example, if JI =
{j3, j1, j2}, JII = {j7, j4, j5}, and JIII = {j6, j8}, then a non-
dominated solution may be denoted by the permutation π =
{j3, j7, j4, j1, j2, j5, j6, j8}.

Consider the graph shown in Fig. 1, which represents the
efficient Pareto frontier for the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj)

problem. The pointsπ0, π1, . . . , πk−1, πk in the graph denote
the strongly non-dominated solutions on the efficient Pareto
frontier, in which π0 gives the minimum number of tardy jobs
for n2 jobs in the set J2, and πk gives the minimum value of
mean lateness for n1 jobs in the set J1. The points π0′ and
πk ′ are weakly non-dominated solutions. The minimum value
for

∑
j∈J2 Uj of the boundary solution π0 can be obtained by

sequencing the n2 jobs in the set J2 using Moore’s algorithm,
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FIGURE 1. Efficient Pareto frontier for the 1 ‖ND
(∑

j∈J1 Lj /n1, 6j∈J2U j
)

problem.

and the minimum
∑

j∈J1 Lj/n1 value of the boundary solution
πk can be obtained by sequencing the n1 jobs in set J1 in SPT
order.

B. PROCEDURE OF THE SPT-M ALGORITHM
Based on Lemmas 1–3 and the discussion presented on the
structure of non-dominated solutions and the efficient Pareto
frontier, this study proposes an effective and efficient SPT-M
algorithm to generate the non-dominated solutions of the
Pareto set for the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem.

The proposed SPT-M algorithm attempts to generate the

non-dominated solutions from the initial boundary solution
π0 and then sequentially finds the subsequent non-dominated
solution by moving the job in the set JII with the longest
processing time to set JIII until the final boundary solution
πk is achieved. The reason for moving the job in the set
JII with the longest processing time to the set JIII is to get
a maximum decrease in

∑
j∈J1 Lj/n1 by adding one tardy

job of the set J2. The detailed steps of the proposed SPT-M
algorithm are explained as follows.
Step 1. Initialize
Input data of the first and second agents’ jobs in sets

J1 and J2, respectively.
Step 2. Calculate the minimum objective function values

of the two boundary solutions
Sequence the jobs in sets J1 and J2 alone according to the

SPT rule and EDD rule (see Fig. 2 for the detailed procedure),
respectively, to calculate the minimum objective function val-
ues for

∑
j∈J1 Lj/n1 and

∑
j∈J2 Uj of the boundary solutions

πk and π0, respectively.
Step 3: Obtain the initial non-dominated solution
Use the sequences obtained in step 2 to set initial subsets

JI , JII , and JIII , where the jobs in the set JII are rearranged
in EDD order. Identify the initial non-dominated solution
π0 by placing the jobs in set JII on the scheduling hori-
zon in a manner that ensures that they are all completed
on their due dates. Subsequently, use the insertion mecha-
nism (see Fig. 3) to individually insert the jobs in the set
JI into the remaining available period of the time horizon

FIGURE 2. The detailed procedure of Moore’s algorithm.

FIGURE 3. The pseudo code of insertion mechanism.
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FIGURE 4. Gantt chart for scheduling the numerical example.

that is greater than or equal to the processing time of the
inserted job. During the insertion process, after each job in
JI is inserted, the jobs in the set JII are moved forward to
avoid unforced idleness of jobs in the set JI . Finally, place
the jobs in set JIII on the scheduling horizon after jobs in
sets JI and JII .
Step 4: Obtain the subsequent non-dominated solution
Select the job with the longest processing time from the

set JII and move it to set JIII using Moore’s algorithm.
Identify the subsequent non-dominated solution by placing
the remaining jobs in set JII on the scheduling horizon in
a manner that ensures that all of them are completed on
their due dates, and use the insertion mechanism to insert the
jobs in the set JI into the remaining available period of time
horizons. Finally, place the jobs in set JIII on the scheduling
horizon after jobs in sets JI and JII .
Step 5: Stopping criterion
If the mean lateness value

∑
j∈J1 Lj/n1 of the subse-

quent non-dominated solution is equal to the minimum value
obtained in step 2, then the algorithm is terminated; other-
wise, return to step 4.

C. NUMERICAL EXAMPLE
Fig. 4 presents the Gantt charts for scheduling the numerical
example using the proposed SPT-M algorithm, in which the
jobs in the set J1 and J2 are indicated in light gray and
dark gray, respectively. Using the data presented in Table 1,

the detailed steps for solving the numerical example are
explained as follows.
Step 1: Initialize
Assume that the first agent has a set J1 of five jobs and

the second agent has a set J2 of five jobs. The processing
time psj and due date d

s
j of each job j ∈ J

s (s = 1, 2) are given
as follows.
Step 2: Calculate the minimum objective function values

of the two boundary solutions
Sequence the jobs in set J1 alone according to the SPT

rule; a permutation [1 3 4 5 2] with
∑

j∈J1 Lj/n1 = −7.8
(see iteration 0 of Table 1) is obtained.

Sequence the jobs in set J2 alone usingMoore’s algorithm;
a permutation [1 2 3 4 5] with

∑
j∈J2 Uj = 0 (see iteration 0 of

Table 1) is obtained.
Therefore, the minimum objective function values of∑
j∈J1 Lj/n1 = −7.8 and

∑
j∈J2 Uj = 0 of the bound-

ary solutions πk and π0 are set, respectively. As a result,
the algorithm is terminated when a non-dominated solution
with

∑
j∈J1 Lj/n1 = −7.8 is obtained.

Step 3: Obtain the initial non-dominated solution
Use the sequences obtained in step 2 to set subsets JI =

{1 3 4 5 2}, JII ={1 2 3 4 5 }, and JIII ={null} of the initial
non-dominated solution.
Iteration 1st :
As shown in Fig. 4(a) and Table 1, the initial non-

dominated solution π0 =[1 1 2 3 3 4 4 5 5 2] with
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TABLE 1. Detailed data of the numerical example.

∑
j∈J1 Lj/n1 = −4.2 and

∑
j∈J2 Uj = 0 can be found using

the algorithm. After inserting jobs 3 and 4 of JI , jobs 4 and
5 of JII are moved forward, respectively, to create a non-delay
schedule.
Step 4: Obtain the subsequent non-dominated solution
Iteration 2nd :
As shown in Fig. 4(b) and Table 1, the subsequent non-

dominated solution π1 =[1 1 3 4 3 5 4 5 2 2 ] with∑
j∈J1 Lj/n1 = −3.6 and

∑
j∈J2 Uj = 1 can be determined

using the algorithm after moving job 2 from JII to JIII . After
inserting jobs 3 and 4 of JI , job 3 of JII is moved forward,
and after inserting job 5 of JI , jobs 4 and 5 of JII are moved
forward to create a non-delay schedule.
Iteration 3rd :
As shown in Fig. 4(c) and Table 1, the subsequent non-

dominated solution π2 =[1 1 3 4 3 5 2 5 2 4 ] with∑
j∈J1 Lj/n1 = −4.6 and

∑
j∈J2 Uj = 2 can be obtained

using the algorithm after moving job 4 from JII to JIII .

After inserting jobs 3 and 4 of JI , job 3 of JII is moved forward
to create a non-delay schedule.
Iteration 4th:
As shown in Fig. 4(d) and Table 1, the subsequent non-

dominated solution π3 =[1 3 4 5 3 2 5 2 4 1 ] with∑
j∈J1 Lj/n1 = −7.4 and

∑
j∈J2 Uj = 3 can be obtained

using the algorithm after moving job 1 from JII to JIII . After
inserting jobs 1, 3, 4, and 5 of JI , job 3 of JII is moved forward
to create a non-delay schedule.
Iteration 5th:
As shown in Fig. 4(e) and Table 1, the subsequent non-

dominated solution π4 =[1 3 4 5 2 5 2 4 1 3 ] with∑
j∈J1 Lj/n1 = −7.8 and

∑
j∈J2 Uj = 4 can be identified

using the algorithm after moving job 3 from JII to JIII . The
algorithm is terminated when a non-dominated solution with∑

j∈J1 Lj/n1 = −7.8, that is, the stopping criterion has been
achieved. Eventually, five strongly non-dominated solutions,
(4.2, 0), (−3.6,1), (−4.6, 2), (−7.4, 3), and (−7.8, 4), are
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obtained by using the SPT-M algorithm. Then, decision mak-
ers could choose one of these non-dominated solutions to
arrange jobs of two customers (agents) based on their trading
contracts.

IV. EXPERIMENTAL RESULTS
This section compares the experimental results obtained by
applying the proposed SPT-M algorithm on a set of test
instances with those obtained using the complete enumera-
tion (CE) method. The following subsections elucidate the
test instances, performance indices, and experimental results
of this study.

A. TEST INSTANCES
The test problem set has 120 randomly generated test
instances, which has 24 combinations of the number of jobs
and range of due dates. Each agent has two types of numbers
of jobs: symmetric and asymmetric. In the symmetric type,
each agent has four values for the number of jobs: 6, 7, 10,
and 15. In the asymmetric type, the first and second agents
have two values for the number of jobs: (n1, n2) =(6, 18) and
(18, 6). Therefore, the two agents have a total of six values for
the number of jobs: (6, 6), (7, 7), (10, 10), (15, 15), (6, 18),
and (18, 6) jobs. The processing time psj of each job j ∈ J s

(s = 1, 2) is an integer that is randomly generated from the
discrete uniform distribution U [1, 20].

The range of due dates is generated using the approach
adopted byAbdul-Razaq et al. [42] andKeha et al. [43]. To be
more specific, the due date d sj of each job j ∈ J s (s = 1, 2)
is an integer that is randomly generated from the discrete
uniform distribution U [P(L − R/2),P(L + R/2)], where the
first parameter combination is P = 0.5 ×

∑
j p

1
j +

∑
j p

2
j

and L ∈ {0.5, 0.7}, and the second parameter combination
is P =

∑
j p

1
j + 0.5 ×

∑
j p

2
j and L ∈ {0.4, 0.8}. There-

fore, four ranges of due dates are identified: [0.3P, 0.7P],
[0.1P, 0.9P], [0.5P, 0.9P], and [0.3P, 1.1P]. To evaluate
the computational efficiency and solution quality of the pro-
posed algorithm, five test instances are generated for each
combination of the number of jobs and range of due dates,
yielding a total of 6 × 4 × 5 = 120 test instances for the
experiment.

B. PERFORMANCE INDICES
To evaluate the solution quality of the proposed SPT-M
algorithm and the CE method, we adopted the following six
indices that have commonly been used [44]–[46].
• A: the number of non-dominated solutions obtained
using a certain approach.

• B: the number of non-dominated solutions in net non-
dominated Pareto set obtained using a certain approach.

• B/A: the quotient between B and A (i.e., the ratio of non-
dominated solutions in the net non-dominated Pareto set
obtained using a certain approach).

• C: the coverage rate of the two sets of non-dominated
solutions obtained using two approaches. Let51 and52
be two sets of non-dominated solutions obtained using

two approaches, respectively. Thus, C maps the ordered
pair (51,52) into the interval [0, 1] as follows:

C(51,52) =
|πa ∈ 51/∃πb ∈ 52 : πa�πb|

|51|

Accordingly, a larger value of C reflects favorable non-
dominated solutions of51. If all non-dominated solutions in
52 are dominated by 51, then C(51,52) = 1; however,
if none of the non-dominated solutions in 52 are dominated
by 51, then C(51,52) = 0.
• ϒ : the convergence metric, which denotes the mean
value of the minimum Euclidean distances of all non-
dominated solutions obtained using a certain approach
to net non-dominated solutions. A ϒ value closer to
zero indicates a higher convergence level of the obtained
non-dominated solutions.

• �: the dominance metric, which represents the percent-
age of the number of solutions in the net non-dominated
Pareto set obtained using a certain approach.

C. RESULTS AND DISCUSSION
The proposed SPT-M algorithm and CE method were coded
using Visual C++ and run on a personal computer with
an Intel Core i3-4030U 1.9-GHz CPU with 4 GB random-
access memory and on the Visual Studio 2015 integrated-
development-environment software verification platform.
The maximum computational time of the CE method was
set at 3,600 s. Tables 2–7 summarize the six performance
indices obtained using the proposed SPT-M algorithm and
the compared CE method, in which the average (Ave), min-
imum (Min), and maximum (Max) values for the five test
instances are provided.

As shown in Table 2, the proposed SPT-M algorithm is
more effective than the CE method in terms of the six perfor-
mance indices for the test instances with (6, 6) jobs. The total
average of the Ave, Min, and Max values obtained using the
proposed SPT-M algorithm with respect to the performance
indices A, B, B/A, C , ϒ , and � are (6.200, 5.000, 6.750),
(4.850, 3.500, 6.500), (0.791, 0.529, 1.000), (0.742, 0.479,
1.000), (0.420, 0.000, 1.103), and (0.833, 0.607, 1.000),
respectively. The corresponding values for the CE method
are (4.550, 3.250, 6.000), (2.450, 1.250, 4.750), (0.514,
0.242, 0.810), (0.404, 0.2030, 0.661), (1.943, 0.555, 4.516),
and (0.403, 0.203, 0.705), respectively. The proposed SPT-
M algorithm demonstrated favorable performance compared
with the CE method across most Ave, Min, and Max values
with respect to the performance indices A, B, B/A, C , ϒ ,
and �. The analytical results of these performance indices
also reveal that the majority of solutions in the net non-
dominated Pareto set were obtained using the SPT-M algo-
rithm. Furthermore, the non-dominated solutions obtained
using the SPT-M algorithm exhibited high coverage rates and
convergence levels.

Similar statistical results were also achieved for the test
instances with (7, 7), (10, 10), (15, 15), (6, 18), and
(18, 6) jobs. As indicated in Tables 3–7, the performance
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TABLE 2. Performance comparison between SPT-M and CE in test instances with (6, 6) jobs.

TABLE 3. Performance comparison between SPT-M and CE in test instances with (7, 7) jobs.

indices of the proposed SPT-M algorithm are considerably
favorable compared with those of the CE method in terms
of the number of obtained non-dominated solutions, number
of obtained non-dominated solutions in net non-dominated

Pareto set, ratio of obtained non-dominated solutions in the
net non-dominated Pareto set, coverage rate of the obtained
non-dominated solutions, convergence rate of the obtained
non-dominated solutions, and percentage of the number of
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TABLE 4. Performance comparison between SPT-M and CE in test instances with (10, 10) jobs.

TABLE 5. Performance comparison between SPT-M and CE in test instances with (15, 15) jobs.

obtained solutions in the net non-dominated Pareto set.
Evidently, the quality of the solution provided by the pro-
posed SPT-M algorithmwas superior to that of the CEmethod
on the test problem set.

Table 8 compares the computational efficiency (aver-
age CPU times) of the proposed SPT-M algorithm with
that of the CE method, thus revealing that SPT-M is a
highly efficient algorithm that can solve each test instance
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TABLE 6. Performance comparison between SPT-M and CE in test instances with (6, 18) jobs.

TABLE 7. Performance comparison between SPT-M and CE in test instances with (18, 6) jobs.

within approximately 0.2 s, whereas the CE method can-
not solve any test instances to optimality within the maxi-
mum computing time. Consequently, we can conclude that

the proposed SPT-M algorithm is remarkably effective for
identifying high-quality non-dominated solutions for the
1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem.
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TABLE 8. Comparison of computational times in different test instances.

V. CONCLUSION
Most practical scheduling problems inherently present multi-
objective characteristics; however, relatively few studies have
considered such practical characteristics. In this study, we for-
malize and examine the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) prob-

lem and propose an effective and efficient SPT-M algorithm
for obtaining its solution. Experimental results confirm that
the proposed SPT-M algorithm outperforms the CE method
in terms of the six multi-objective performance indices.
Because the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem investi-

gated herein often arises in practical manufacturing systems,
this study contributes an effective and efficient algorithm for
satisfying real-world scheduling requirements.

Many extension lines in the addressed two-agent SMSPs
merit further research. First, designing efficient exact
methods for enumerating all of the Pareto optima on
the 1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem are topics that

should be addressed in future studies. Second, creat-
ing effective and efficient meta-heuristics for solving the
1‖ND(

∑
j∈J1 Lj/n1,

∑
j∈J2 Uj) problem also constitutes a

promising avenue of future research. Third, extensions of
the two-agent SMSP involving different performance criteria
also serve as a rich area for investigation. Two-agent SMSPs
with stochastic processing times are complex, but certainly
worthy of further study; moreover, scholars should consider
the two-agent SMSPs with special processing constraints
such as setup time and breakdown. Finally, three-agent
and multi-agent SMSPs pose new challenges for scheduling
algorithm design and implementation.
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