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ABSTRACT Electrical impedance tomography (EIT) is a promising medical technique for monitoring brain
injury through the reflection of electrical impedance changes in internal brain tissues. However, the contact
impedances at the electrode—scalp interfaces can still notably affect the EIT accuracy. Hence, we propose
a method for real-time monitoring the multi-channel contact impedances of cerebral EIT using a reference
electrode attached close to the head vertex. This method allows to approximate inter-channel differences
and changes over time of multi-channel contact impedances. The experimental results on 36 volunteers
show that the maximum relative inter-channel difference obtained from 16 disposable surface electrodes
reaches 18.7%, and the maximum relative change over time reaches 19.2%. The proposed method can assist
clinicians in real-time monitoring of contact conditions from the multiple electrode—scalp interfaces during

the clinical application of the cerebral EIT.

INDEX TERMS Contact impedance, electrical impedance tomography, electrode—scalp interface.

I. INTRODUCTION

Electrical impedance tomography (EIT) is a functional imag-
ing technique in which electrodes are attached to a region
of the human body. Then, excitation currents are injected
into the region through some of the electrodes for measuring
the resulting voltage signals at relevant electrodes, and the
spatial distribution of either electrical conductivities or their
variation is imaged [1], [2]. EIT is promising for clinical
diagnostics. For instance, it is sensitive to brain tissue damage
resulting from cerebral hemorrhage, edema, and ischemia,
and provides a high temporal resolution [3], [4]. In addition,
the clinical implications of time-difference EIT have been
demonstrated for monitoring brain injury [5]-[20].

The contact impedance of each electrode is a major fac-
tor affecting the accuracy of cerebral EIT [21]. During
imaging, multiple electrodes are attached to the scalp, and
their contact impedances at the electrode—scalp interface may
differ and vary over time. Both variations may affect signal
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acquisition accuracy and the resulting quality of the recon-
structed EIT image [22]-[26]. Thus, real-time monitoring
of the impedances on the multiple electrode—skin interfaces
can allow to assess the reliability of the signals and images
obtained from cerebral EIT.

The contact impedance in EIT is usually estimated using
the two-electrode method, which is easy to apply and retrieves
rough estimates of the contact quality at the electrode—skin
interface. However, this method is inaccurate for real-time
monitoring of the change over time on multi-channel contact
impedances [27]. Currently, there is no method available to
monitor in real time the inter-channel differences and change
over time of multi-channel contact impedances. More specifi-
cally, no study has been conducted on the magnitudes of these
changes considering contact impedances from the electrode—
scalp interfaces during cerebral EIT. Although accurately
measuring the electrode—skin contact impedance is challeng-
ing, real-time monitoring of inter-channel differences and
change over time on multi-channel contact impedances for
cerebral EIT can improve signal acquisition and the resulting
images.
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FIGURE 1. Diagrams of the experimental setup in this study. (a) Data acquisition using EIT system by exciting pairs of
opposite electrodes and measuring pairs of adjacent electrodes. (b) Functional and reference electrodes attached to the
volunteer’s scalp. (c) Control circuit for the electrode channels of the EIT system. The circuit comprises four 16:1 multiplexers
(MUX1 to MUX4) and two single-pole double-throw switches (SPDT1 and SPDT2).

Boone et al. [28] developed an electrical circuit model
to assess the effect of the contact impedances of multiple
electrode—skin interfaces on signal acquisition and image
reconstruction of EIT. They found that 1) a 2% change in
the contact impedance notably distorts the detected signal,
2) a 5% change almost vanishes the target signal, and 3) a
change of 10% or above results in false features appearing in
the reconstructed images. Nevertheless, the improved perfor-
mance of currently available electronic components may fur-
ther reduce the impact of multi-channel contact impedances
on the EIT performance.

On the other hand, the effect of contact impedance on
the output of the current source has not been considered.
Using the finite element method, Boyle et al. [29] found that,
when the variation in the multi-channel contact impedances
is above 20%, the reconstructed image contains considerable
artifacts, thus biasing clinical diagnostics. However, their
study was based on a simplified two-dimensional model,
and the parameters of contact impedance neglected the char-
acteristics of multi-channel contact impedances in clinical
environments. Moreover, the impact of multi-channel contact
impedances on the output of the excitation current source and
the accuracy of signal acquisition were not considered.

Traditional techniques for bioelectrical signal detection
(e.g., electroencephalography and electrocardiography) are
also affected by the electrode—skin contact impedances, but at
a much lower extent than in EIT. In fact, the signal frequency
in traditional bioelectrical signal detection is much lower
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than the working frequency of EIT, which is usually between
several and hundreds of kilohertz [30], and electrodes in
traditional techniques are only used for passive signal detec-
tion. Furthermore, cerebral time-difference EIT is even more
sensitive to the change over time in multi-channel contact
impedances.

In this study, we developed a method based on a common
reference electrode for real-time monitoring of multi-channel
contact impedances during cerebral EIT. This method—
implemented on an existing cerebral EIT system—allows
to capture inter-channel differences and change over time
of multi-channel contact impedances. We experimentally
verified the proposed method by systematically monitoring
the distribution and variation of the multi-channel contact
impedances of the EIT system during brain imaging of volun-
teers. The data of multi-channel contact impedances obtained
from the experiments were used for a preliminary analysis
regarding the effect of multi-channel contact impedances on
signal detection.

The remainder of this paper is organized as follows.
In Section II, the operation of the time-difference EIT sys-
tem and the method for monitoring multi-channel contact
impedances are presented. Section III describes the sys-
tem experiments with the participation of human subjects.
In Section IV, the experimental results are analyzed to
demonstrate the characteristics of multi-channel contact
impedances during EIT imaging. Finally, we draw conclu-
sions in Section V and outline suggestions for future research.
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Il. METHODS

A. OPERATION OF TIME-DIFFERENCE EIT

The EIT system considered in this study is equipped with
16 electrodes, which are evenly distributed along a transverse
cross-section of the human head. The system collects data
by injecting excitation currents to pairs of opposite elec-
trodes and measuring signals at pairs of adjacent electrodes,
as shown in Fig. 1(a). For data acquisition, an excitation
current is injected into the human body through the first
pair of opposite electrodes (1-9). The current is designed
according to standard IEC 60601-1 [31] to guarantee safe
ranges for frequency and amplitude. During excitation cur-
rent injection, the system sequentially measures the volt-
ages of the 16 pairs of adjacent electrodes (1-2, 2-3, ...,
16-1). Then, the system sequentially switches the excita-
tion current to the other 15 pairs of opposite electrodes
(2-10, 3-11, ..., 16-8), and again sequentially measures the
voltages of the 16 pairs of adjacent electrodes per pair of
excitation electrodes. This measurement process generates 16
x 16 = 256 voltage measurements, which compose a data
frame. Time-difference EIT uses two data frames obtained at
two different times to reconstruct the distribution of electrical
impedance variation over the target area.

B. REFERENCE ELECTRODE METHOD

Although noninvasive methods for accurate measurement
of contact impedance are not available, common meth-
ods for indirect estimation of contact impedance include
the two-electrode method [32], [33] and reconstruction
method [34]-[36]. The two-electrode method yields the sum
of the contact impedances of two electrode—skin interfaces,
and thus cannot provide the contact impedance of any indi-
vidual interface. Usually, the two-electrode method has been
used to evaluate the performance of electrode materials.

We propose the use of a reference electrode method for
real-time monitoring of the 16-channel contact impedances
from the EIT system. The method works by adding a refer-
ence electrode to the existing array of 16 electrodes. Here-
after, the 16 electrodes for imaging are called functional
electrodes to distinguish them from the reference electrode.
The reference electrode is attached to either the top of the
head (position A in Fig. 1(b)) or the back of the neck (position
B in Fig. 1(b)). Only when the top of the head does not satisfy
the conditions required by placing the reference electrode,
it is attached to the back of the neck. The 16 functional
electrode channels are controlled using four 16:1 multiplexers
(MUX1 to MUX4), as shown in Fig. 1(c), to realize any com-
bination required for boundary voltage measurement. The
reference electrode channel is controlled using two analog
single-pole double-throw switches (SPDT1 and SPDT2) for
the system to be switched between the modes of boundary
voltage and contact impedance measurements. The reference
electrode method comprises two steps and uses the measure-
ment principle illustrated in Fig. 2(a).
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Step 1: First, the two-electrode method is used to measure
the impedances of each pair of adjacent functional electrodes
and the impedance between the first and third functional
electrodes. Thereby, initial estimates of the 16-channel con-
tact impedances and their differences can be obtained. This
step proceeds as follows. Switches SPDT1 and SPDT2 are
connected to contact 1. Hence, electrodes E,, and E,, are the
same, as well as E, and E,. Then, the impedance is mea-
sured between E,, and E, using the two-electrode method.
The measured impedance (Zm,, ,) is the sum of the contact
impedances of E,, and E,, (Zc,, and Zc,,, respectively). As the
transfer impedance between the two electrodes (Zt,, ) is
much smaller than Zc,, and Zc,, Zm,, , is usually taken as
approximately equal to the sum of Zc,, and Zc,. The other
16 pairs of adjacent electrodes are then measured using the
same approach. Then, the impedance between E| and E3 is
measured using the two-electrode method. Finally, the con-
tact impedances of the 16 electrodes are estimated as

Ze=M""-Zm )

where Zc is the column vector of contact impedances of the
16 electrodes, Zm is the column vector of the 17 measure-
ments, and M is a coefficient matrix:

1 1 0 0 O
0O 1 1 00
M =
1 0 O 0 1
|1 0 1 0 O
™ Zey Zmq
Zcy Zmy
Zc = .. Zm= ) (2
| Zc16 Zmy7

Step 2: During the interval of two adjacent frames of
boundary voltage measurements, the impedances between
every functional electrode and the reference electrode are
sequentially measured using the two-electrode method. This
way, the change over time of the impedances at the 16 chan-
nels can be obtained as follows. Switches SPDT1 and
SPDT?2 are connected to contact 1 to enter the mode of
boundary voltage measurement. Here, Ey,, E,, E,, and E,
correspond to any four of the 16 functional electrodes, and
the combination is controlled through multiplexers MUX1 to
MUX4. From the four electrodes, E,, and E, are the pair
of excitation electrodes, and E, and E, are the pair of mea-
surement electrodes. After completing a frame of boundary
voltage measurements, SPDT1 and SPDT2 are simultane-
ously switched to contact 2 to enter the mode of contact
impedance measurement. Then, E,, and E, are set as the
same functional electrode by controlling MUX1 and MUX3,
and the impedance between E,, and Ef is measured using
the two-electrode method. The impedances between the other
15 functional electrodes and the reference electrode are mea-
sured using the same approach. Then, SPDT1 and SPDT?2 are
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FIGURE 2. Proposed reference electrode method. (a) Measurement principle of reference electrode method. When SPDT1 and
SPDT2 are simultaneously connected to contact 1, the system switches to the mode of boundary voltage measurement,

in which functional electrodes m and n serve as the pair of excitation electrodes and functional electrodes p and q serve as the
pair of measurement electrodes. When SPDT1 and SPDT2 are simultaneously connected to contact 2, the system switches to
the mode of contact impedance measurement, in which functional electrode m and the reference electrode serve as both the
pair of excitation electrodes and the pair of measurement electrodes. (b) Time sequence for measuring boundary voltage,
contact impedance, and excitation current. (c) Block diagram of signal acquisition circuit consisting of buffer amplifiers,
differential amplifier x Gd, high-pass (HP) filter, downstream single-end amplifier x Gs, low-pass (LP) filter, voltage level lifting

circuit, and an analog-to-digital converter (ADC).

connected to contact 1 to restore the mode of boundary volt-
age measurement.

As shown in Fig. 2(a), Zn, ref is the sum of the impedance
across the tissue between the m-th functional electrode and
the reference electrode (Zt, rer), the sampling resistance (R),
the contact impedance of the reference electrode (Zcret),
and the contact impedance of the m-th functional
electrode (Zc,):

Iy rof = Ztm,ref + R+ Zcrer + Zcy, 3)

where m = 1, 2, ..., 16, and Zt,, ret < Zcy,. The reference
electrode should be larger than the functional electrode to
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ensure Zcer <K Zcy. As the value of R is known, Zmy, ref 1S
substituted by (Z,, ref — R) hereafter.

Fig. 2(b) shows the time sequence of the three modes of
measurement, namely, boundary voltage, contact impedance,
and excitation current. The system alternates between the
two modes of boundary voltage and contact impedance mea-
surement. To reduce the hardware size, the two modes of
measurement were designed to share the same signal acqui-
sition circuit. The mode of excitation current measurement
was designed for real-time monitoring the output of the exci-
tation current source and computing the contact impedance.
In addition, it runs parallel to the other two modes by being
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FIGURE 3. Block diagram of EIT system. (MCU, multipoint control unit).

implemented on a separate signal acquisition circuit. Each of
the two signal acquisition circuits consists of buffer ampli-
fiers, an upstream program-controlled differential amplifier
(x Gd), a high-pass filter, a downstream program-controlled
single-end amplifier (x Gs), a low-pass filter, a voltage level
lifting circuit, and an analog-to-digital converter, as shown
in Fig. 2(c).

The proposed reference electrode method was realized by
adjusting the circuit of the high-precision EIT data acquisi-
tion system for brain imaging introduced in [37]. We used
a modular design and incorporated a reference electrode
control module into the multiplexer and interface subsystem.
Fig. 3 shows the block diagram of the resulting hardware
system. It satisfies the requirements for high-precision brain
imaging as verified experimentally.

C. ANALYSIS OF MULTI-CHANNEL CONTACT IMPEDANCES
Let AZ,,(ty, t) be defined as

AZ (10, 1) = Zyref () — Zi,rer (10)
= {Zt ), o (1) — Ztm,rer (0)}
H{Zcrer (t) — Zerep (to) +{Zew () — Zewm (1)
= Azt ref (10, 1)+ AZcrer (10, 1)+ AZcy, (to, H)
)

where AZt,, ref(to,t) is the variation in impedance of the tissue
between the m-th functional electrode and the reference elec-
trode during time interval fo— ¢, AZcref(fo,t) is the variation
in the contact impedance of the reference electrode, and
AZcy,(to,t) is the variation in the contact impedance of the
m-th functional electrode, both during time interval #o— 7.

Given that Zty, et < Zcm, Zeret <K Zcm, and Zcy, is
more prone to variation by external factors, we proved that
AZty ref(to,t) K AZcy(to,t) and AZcref(to,t) K AZcm(to, 1)
through preliminary experiments. Thus,

AZy(ty, 1) = Zm,ref(t) - Zm,ref(tO) ~

The contact impedances of the 16 channels at time #y, Zcm (%),
which we use as base values of the contact impedances for

AZcy, (to, 1) (5)
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subsequent analyses, can be estimated using (1), and the
contact impedances at time ¢, Zc,,(t), can be computed as

Zem (1) = Zem (10) + AZcy (10, 1)

= Zcp (o) + { m,ref (t) — Zn, ref (tO)}
= Zcm (t0) + AZp(to, 1) (6)

Then, the difference between the contact impedances of the
m-th and n-th channels (Zc,,(t) and Zc,(t), respectively) can
be expressed as

AZcm,n(t) = Zcw(t) — Zey(t)
= {Zcy (10) +AZ (1o, )} —{Zen(to) + AZ (2o, 1)}
={Zcy, (t0) —Zcn ()} +H{AZ (20, ) — AZ (10, 1)}
@)

where AZ,,(ty, t) and AZ,(ty, t) can be obtained from (5).

Then, the mean contact impedance of each channel (Zew)
can be computed using (8). In addition, the maximum relative
variation of the contact impedance per channel (§,,) can be
obtained using (9), and the maximum variation of the contact
impedances from the 16 channels, 8, which characterizes the
change over time in the contact impedances from all the chan-
nels, can be obtained using (10). Furthermore, the maximum
difference between contact impedances of the 16 channels,
y, which characterizes the differences between the contact
impedances of the channels, can be obtained using (11),
wherem,n=1,2, ..., 16.

7200
Zem = ZZcm(tk) / 7200 )

k=1
5, — A_Zcm
Zcy,
maxzzolo {Zc,, (tr)} — m1n7200 {Zc,, (t1)}
= ©)
Zcm
8 = max!® | {5} (10)

16
max,’ _ AAZcy., ()}
y = max[Zp e (1)
min,) {Zcwm (1))
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FIGURE 4. Photographs of experimental equipment and setup. (a) Functional electrodes (Ag/AgCl powder electrode (type A) and
disposable surface electrode (type B)) and reference electrode. (b) Functional electrodes attached to the head of a volunteer.
(c) Reference electrode attached at the top of the head of a volunteer.

lll. EXPERIMENTS

We considered the cerebral EIT system as experimental plat-
form to evaluate the proposed method. The method can moni-
tor in real time the contact impedances of the 16 EIT channels,
as shown in Fig. 1(b). Two types of functional electrodes were
used for the experiment, namely, Ag/AgCl powder electrodes
(Oxford Instruments, Abingdon, UK) and disposable surface
electrodes (Friendship Medical Electronics Company Litd,
Xi’an, China). Fig. 4(a) shows photos and indicates the geo-
metrical dimensions of the two types of functional electrodes
and the reference electrode. The functional electrode region
to be in contact with the human body is made from Ag/AgCl,
has a small polarization potential and 10 mm in diameter. The
reference electrode is a disposable grounded electrode for
medical applications (Friendship Medical Electronics Com-
pany Ltd), has an effective area of skin contact of 35 x
50 mm, is manufactured from Ag/AgCl, is self-adhesive, and
can remain in contact with the skin for long periods.

Thirty-six healthy male volunteers with ages of 39 =+
17 years were recruited for the experiment. They neither
had cerebrovascular disease nor experienced any traumatic
brain injury. The 36 volunteers were randomly divided into
two groups of 18 participants each. The Ag/AgCl powder
electrodes were used for group 1 and attached to the skin
using a conductive paste (Elefix, Z-410CE; Nihon Kohden,
Tokyo, Japan). The disposable surface electrodes were used
for group 2 and attached to the skin using hydrogel. The
same type of reference electrode was used for both groups.
This study was approved by the Fourth Military Medical Uni-
versity Ethics Committee of Human Research, and informed
written consent was obtained from all the volunteers.

To prepare for the experiment, the head hairs of the volun-
teers were removed, and their scalps were cleaned. Sixteen
functional electrodes were attached to the head of each vol-
unteer and numbered as shown in Fig. 1(b). Fig. 4(b) shows
a photograph of the electrode arrangement on a volunteer.
The reference electrode was attached to the top of the vol-
unteer’s head, as shown in Fig. 4(c). After the electrodes
were attached, the volunteer laid on his back on a bed during
the measurements. Meanwhile, the EIT system was initial-
ized and allowed to warm up for 30 min, with excitation
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current of 1.25 mAp_, and frequency of 50 kHz. All the
volunteers were tested in the same laboratory room, which
was well insulated and had environmental temperature of
26.0 + 2.0 oC and relative humidity of 35 £ 10%.

Each volunteer was continuously monitored for 2 h. A data
frame of boundary voltage measurements and a frame of con-
tact impedance measurements were collected every second.
During the test, the volunteer remained comfortable and was
asked to be relaxed. The body movements of the volunteer
were also recorded. After completing the test, the electrodes
were removed from the volunteer, and his scalp was cleaned.

IV. RESULTS AND ANALYSIS

A. MONITORING RESULTS OVER 2 HOURS IN
PRELIMINARY EXPERIMENT

Fig. 5(a) shows the estimates of real-time contact impedances
Zcy(t) at the 16 channels obtained from the 2-hour EIT test
of one volunteer in group 1 (i.e., using electrode type A).
The contact impedance of the 13th channel at 3600 s notably
deviates, and that of the 12th channel slightly deviates. The
record shows that the volunteer made substantial body move-
ments during this part of the experiment. Fig. 5(b) shows the
real-time monitoring results for one volunteer in group 2 (i.e.,
using electrode type B). Unlike the other channels, the contact
impedance of the 13th channel exhibits remarkable temporal
fluctuations.

Figs. 5(c) and 5(d) present the average, maximum, and
minimum values of the contact impedances in Figs. 5(a) and
5(b), respectively. The contact impedances measured using
electrode type A have a smaller mean value but larger inter-
channel differences and change over time than those mea-
sured using electrode type B.

This may be explained by the different conductive agents
used at the electrode—skin interface. In fact, electrode type B
was supplied with a layer of hydrogel, which serves as agent
to bound the electrode to the skin and conductive medium
at the electrode—skin interface, whereas electrode type A
was attached to the skin by applying a layer of conductive
paste at the electrode—skin interface. As the conductivity of
the hydrogel is poorer than that of the conductive paste,
the contact impedance of electrode type B is higher than that
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FIGURE 5. Monitoring results. (a) Continuously monitored contact impedances of the electrode type A during the
preliminary experiment for 2h. (b) Continuously monitored contact impedances of the electrode type B during the
preliminary experiment for 2h. Statistical results of (c) data shown in Fig. 5(a) and (d) data shown in Fig. 5(b) (mean,

maximum, and minimum values).

of electrode type A. On the other hand, the layer of hydrogel is
uniform in thickness and shape, unlike the conductive paste.
Hence, the contact impedances measured using electrode type
A exhibited larger inter-channel differences (lower spatial
consistency) than those measured using electrode type B.
Furthermore, hydrogel has a better moisture-holding capacity
than conductive paste. In other words, the effectiveness of
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the conductive paste decreases more notably with time than
that of the hydrogel. Consequently, the contact impedances
measured using electrode type A show larger changes over
time.

Overall, the contact impedances of the EIT system mea-
sured using electrode type A have larger inter-channel
differences and change over time than those measured
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FIGURE 7. Statistical analysis results of contact impedances from the 18 volunteers in group 2 (measured using disposable
surface electrodes) (N = 18). (a) Maximum relative difference between contact impedances (y) and (b) maximum relative
change over time of the contact impedances (5) at the 16 channels.

using electrode type B. Therefore, the multi-channel contact
impedances of the EIT system measured using electrode type
B were used for subsequent analyses.

B. COMPARISON OF CONTACT IMPEDANCES AT FOUR
POSITIONS

To investigate the effect of the electrode location on the con-
tact impedance, we performed a one-way ANOVA analysis
(N = 18) to the contact impedances measured at the following
four electrodes: E| (above the left ear), E5 (at the center of the
forehead), Eg9 (above the right ear), and E;3 (at the occiput).
Fig. 6(a) shows the mean values of the contact impedances
at these four electrodes. The mean contact impedance at E13
is significantly (p < 0.05) lower than that at the other three
electrodes, E1, E5, and E9, by 8.7, 6.9, and 8.6%, respectively.
The differences between the contact impedances at Ey, Es,
and Ey are not statistically significant. Fig. 6(b) shows the
statistical analysis results of the change over time in the
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contact impedances at the four electrodes. The change of
contact impedance over time at E3 is significantly (p < 0.05)
higher than that at the other three electrodes, E;, E5, and Eg.

This trend may be explained by the fact that the volunteer
laid down on his back during the experiment. When the volun-
teer maintained this posture, the electrodes at the occiput were
squeezed against the scalp and showed improved contact with
the skin, thus reducing the contact impedance measurements.
When the volunteer moved his head, the contact between
the electrode fixed at the occiput and his skin was more
prone to variation, thus resulting in higher change over time
in the contact impedances measured at this electrode. Fur-
thermore, some volunteers had a scalp with slackness, and
the friction between the bolster and scalp possibly resulted
in shifts of the scalp and consequent shifts of the elec-
trode attached at the occiput. Therefore, higher change over
time occurred in the contact impedances measured at this
electrode.
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TABLE 1. Statistical results of contact impedances at the 16 channels
(N =18).

Characteristic Maximum (%) Minimum (%)  Mean (%)
Relative inter-channel 18.7 43 9.5
difference (y)

Relative variation 19.2 5.4 9.7

within 2 hours (8)

C. CHARACTERISTICS OF 16-CHANNEL CONTACT
IMPEDANCES

The relative difference between the contact impedances of the
16 channels (y) and their relative change over time (§) were
computed using (10) and (11), respectively, obtaining the
results shown in Figs. 7(a) and 7(b), respectively. Table 1 lists
the statistical results of the multi-channel contact impedances
of the 18 volunteers in group 2 (i.e., using electrode type
B). Under this more ideal testing condition (compared to
the use of electrode type A), the contact impedances of the
16 channels of the EIT have mean, maximum, and minimum
inter-channel differences of 9.5, 18.7, and 4.3%, respectively,
and mean, maximum, and minimum change over time of 9.7,
19.2, and 5.4%, respectively, as shown in Table 1.

V. CONCLUSION

We propose a reference-electrode method to monitor in real
time the multi-channel contact impedances of cerebral EIT.
The method comprises two steps: 1) when the EIT system
is initialized, the multi-channel contact impedances are esti-
mated as basis for subsequent monitoring; 2) in the intervals
of boundary voltage measurements, real-time monitoring of
change over time of the multi-channel impedances is con-
ducted. Hence, the proposed method offers real-time evalu-
ation of the spatial distribution differences and change over
time of multi-channel impedances. Although the method
cannot accurately measure the true values of multi-channel
impedances, it presents the following advantages: 1) at
monitoring onset, a quick estimation of the multi-channel
impedances can be used as basis for subsequent analyses and
reference for attaching the electrodes; 2) the multi-channel
contact impedances can be quickly obtained, in tens of mil-
liseconds, after measuring the boundary voltages. There-
fore, we consider feasible to track the change of contact
impedances over time during boundary voltage measure-
ments in real time with few electrode channel switches and
without affecting the measurements.

We verified the proposed method during EIT measure-
ments on several volunteers. The contact impedances of
EIT measured using the disposable surface electrodes have
smaller inter-channel differences and change over time than
those measured using the Ag/AgCl powder electrodes. The
contact impedances of the 16 channels of the cerebral EIT
system using the disposable surface electrodes have maxi-
mum relative inter-channel difference of 18.7% and maxi-
mum relative change over time of 19.2%.
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Under the more ideal testing condition (i.e., using
the disposable surface electrodes providing better contact
impedance for long-time monitoring), the effects of both
the difference between contact impedances and their change
over time at the 16 channels are dependent on image recon-
struction. For clinical application of EIT, where the test-
ing environments may be more intricate than the laboratory
environment in this study, these effects on signal detec-
tion and image reconstruction of EIT may be even more
considerable.

There are at least two ways to use the data obtained
from the proposed reference-electrode method in prac-
tice. First, it can flag poor electrode contact and cor-
rupted data, as contact impedances directly reflect the
contact quality of electrodes with the scalp, which in
turn affects data acquisition. Second, data may be used
for correcting measured voltages and improving image
reconstruction.
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