
SPECIAL SECTION ON ADVANCED SOFTWARE AND DATA
ENGINEERING FOR SECURE SOCIETIES

Received April 1, 2019, accepted May 9, 2019, date of publication June 4, 2019, date of current version June 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920675

Towards Further Formal Foundation of Web
Security: Expression of Temporal Logic in
Alloy and Its Application to a Security
Model With Cache
HAYATO SHIMAMOTO1, (Member, IEEE), NAOTO YANAI 1,
SHINGO OKAMURA2, (Member, IEEE), JASON PAUL CRUZ1,
SHOUEI OU1, AND TAKAO OKUBO3
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
2National Institute of Technology, Nara College, Yamatokoriyama 639-1058, Japan
3Graduate School of Information Security, Institute of Information Security, Yokohama 221-0835, Japan

Corresponding author: Naoto Yanai (yanai@ist.osaka-u.ac.jp)

This work was supported in part by the JST ACT-I under Grant JPMJPR16UQ, in part by the Japan Society for the Promotion of Science
KAKENHI under Grant 18K18049 and Grant 16K00196, and in part by the Secom Science and Technology Foundation.

ABSTRACT Security analysis of a web system is complicated, and thus analysis using formal methods to
describe system specification mathematically has attracted attention. Some previous studies have adopted
formal methods, but their models cannot express parallel communication completely. This limitation gives
rise to problems where web functions, such as a cache that stores contents, cannot be defined and attacks
that forge contents cannot be analyzed. These problems are present in the Alloy-based implementations of
current models that do not have the ability to express temporal logic. Therefore, we design implementation
and evaluation of temporal logic in Alloy to express time series and parallel computation for web security
analysis. In doing so, state transitions in the web can be expressed by fitting them in our proposed syntax.
As concrete applications, we describe a web security model that includes caches and show that our proposed
syntax can analyze state-of-the-art attacks, such as unauthorized access to users’ account pages via caches.
The source code of our proposed model in Alloy is publicly available.

INDEX TERMS Alloy, cache, formal methods, security model, temporal logic, web security.

I. INTRODUCTION
A. BACKGROUND
The web is used for many modern services and systems,
such as social network services (SNS) and content deliv-
ery. The web is a complicated system composed of var-
ious elements and protocols, and its wide use makes it
prone to attacks. For example, given that current SNS con-
tain cross-domain systems that provide services via mul-
tiple domains, malicious contents may be injected and
sent within the cross-domain systems [1], [2]. Moreover,
an attack [3] wherein an account page of a client is mali-
ciously generated on a server and accessed by an adversary
was discovered recently. Therefore, the web requires strict
security.

The associate editor coordinating the review of this manuscript and
approving it for publication was Raúl Lara-Cabrera.

Twomethods are used in security analysis of a web system.
The first method is the simulation of the behavior of a
system. This security analysis method has relatively low costs
and is therefore generally used in the industry. However,
the structure of the web has become complicated and contains
a variety of elements. Consequently, security analysis that
simulates a complicated web structure generates a leakage
and therefore cannot guarantee security rigorously. The sec-
ond method is a formal method that describes a security
model to express a system specification in proposition logic.
In this method, the security of a system is analyzed mathe-
matically without any leakage as long as the security model
can express a system precisely. Ahkawe et al. [4] proposed
a basic model that supports the security analysis of subse-
quent web research, and their work has been extended by
De Ryck et al. [5] and other studies [6]–[11].
Although expressing a system exactly as a security model is

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

74941

https://orcid.org/0000-0002-0817-6188


H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

significantly important in the formal method, their models
express temporal logic insufficiently because they do not
consider parallel communication; i.e., their models cannot
analyze a situation where multiple sessions are executed in
parallel. Temporal logic is a proposition logic that expresses
a change in time and is important for a security model of
the web to express state transitions within a system. Since
handling multiple sessions in parallel is crucial in services
where multiple users access the same service or a single
user utilizes several services simultaneously, a model with
insufficient temporal logic expressiveness cannot be used
to analyze the web because it cannot rigorously express
state transitions within a system. Meanwhile, the model by
Ahkawe et al. [4] has been widely used and extended in many
of theworks described above as a formalmethod of a platform
of the web. Therefore, extending these models further is
important to achieve a more rigorous security analysis of
current systems and to improve research in the area of web
security.

The limitation in the temporal logic of current models is
caused by the use of Alloy Analyzer as a software for formal
method. Alloy Analyzer does not support temporal logic, and
thus researchers need to consider a syntax for amodel without
depending on Alloy Analyzer’s expressiveness. Meanwhile,
Alloy Analyzer is suitable for web security analysis because
its outputs can form visualized graphs that can represent the
complicated structures of the web. Therefore, in this paper,
we aim to propose a new syntax that can express temporal
logic higher than Alloy Analyzer. Furthermore, we design
and implement a security model with caches as an application
of our proposed syntax. A cache is a kernel function that
is widely used in the web for storing and reloading con-
tents, but current models do not include caches. Several
attacks [1]–[3] utilize caches, and thus a security model that
considers the behaviors of caches is important.

B. CONTRIBUTION
In this paper, we propose a syntax in Alloy that can
express temporal logic for web security analysis and describe
a security model that includes caches as its application.
We then show that the proposed model has stronger expres-
siveness than current models by verifying the basic behav-
ior of a cache and related attacks, such as browser cache
poisoning attack [2] and web cache deception attack [3],
as case studies. Our proposed syntax is a good fit for security
analysis of models with caches, but is also useful wher-
ever temporal logic is needed for web security analysis
(See Sections III and IV for details).
The problem this paper solves is described below. The

expression of current models is insufficient because Alloy
does not have a syntax that expresses temporal logic.
Expression of temporal logic in Alloy is not trivial. Some
models [4], [5] expressed temporal logic by proposing new
syntaxes, but these syntaxes have strict expressiveness restric-
tions and are unsuitable for general analysis of the web
(See Section II for details). Intuitively, this problem can be

solved by improving the expressiveness of the temporal logic
in Alloy. We published our source codes in Alloy on GitHub
(https://github.com/sho-rong/webmodel).

C. RELATED WORKS
1) FORMAL METHODS FOR THE WEB
Many studies investigated formal methods for web security,
as summarized in [12], but only the work of Ahkawe et al. [4]
performs verification of the web as a platform. Based on
the model of Ahkawe et al. [4], De Ryck et al. [5] showed
verification of a cross-site request forgery attack while
Chen et al. [13] verified app isolation using multiple
browsers. However, they did not mention the problem
described in this paper. Our previous work [10] utilizes a
web security model with a cache mechanism, but it still
does not address the problem described above. Our previous
model [10] only considered potential threats with a web
security model and is therefore incomplete and different in
comparison with this paper.

Bansal et al. [14], [15] modeled a basic element of
the web, such as a browser or a server, in ProVerif.
Fett et al. [16]–[19] proved the security for a single sign-
on (SSO) system. Lee et al. [20] proposed middlebox-aware
TLS, which allows middleboxes to participate in TLS in a
visible and accountable fashion. These works are similar to
our work in the sense that the web is modeled and verified in
platform levels, but they do not consider a cache mechanism
and they use different utilization tools and approaches.

Peroli et al. [21] proposed MobSTer, which is a combina-
tion of a formal method and a penetration testing for web
security. Although their motivation is different from ours,
their model is implemented using Alloy and can potentially
be utilized as an application in our work.

We now describe several case studies that verified tech-
nologies used in the web. Chaitanya et al. [6] verified the
validity of CORP, which is one of the security requirements
in the web. Chen et al. [8] proposed ASPIRE, a framework of
web applications, and verified its security when its behavior
is incorporated in the web. Somorovsky et al. [11] performed
security analysis of cloud computing in theweb and discussed
countermeasures for a discovered vulnerability. Our work is
different in the sense of handling fundamental functions of
the web.

2) FORMAL METHODS IN ALLOY
The following works used Alloy. Klein et al. [22] ana-
lyzed an unexpected behavior of micro-kernel of an OS
called seL4 and proved that such behavior was impossible.
Shin et al. [23] verified the security of the Android OS.
Lie et al. [24] inspected the presence of a state where a
processor loses its tamper resistance and discovered the con-
dition falling into the state. Near and Jackson [25] discovered
access patterns that satisfy the security in the web application
including some specific elements. These works are different
from our work because we abstract specifications of the web
as a platform and not individual techniques.

74942 VOLUME 7, 2019

https://github.com/sho-rong/webmodel


H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

3) WEB SECURITY
The current specification of HTTP has various vulnera-
bilities. Jia et al. [2] used a browser cache to discover
browser cache poisoning attack, which allows the target
browser to behave arbitrarily by storing forged contents.
De Ryck et al. [5] used cookies in a browser as a coun-
termeasure for an attack called cross-site request forgery.
Ogawa et al. [3] used a cache of an intermediary, such as a
proxy, to discover web cache deception attack, which allows
an attacker to extract a file it has no permission to access.
We will discuss these attacks in Section VI to show the
advantages of our proposed model.

Several state-of-the-art research on web security have
focused on browser-side security [26]–[28]. Among these,
Sjösten et al. [28] pointed out revelation attacks that enable an
adversary to insert contents into browser extensions. We con-
sider that our proposed system can perform analysis against
revelation attacks, although we have not verified this and will
be considered as future work.

Several vulnerabilities of HTTPS, an extension of HTTP,
have been discovered [29]. Consequently, HTTP strict trans-
port security (HSTS) [30] and public key pinning extension
for HTTP (HPKP) [31], which are extensions that improve
the security of HTTPS, have been developed. Most cur-
rent implementations cannot preserve the security of these
protocols because their server setup is insufficient [32].
We consider that these protocols should be analyzed to estab-
lish a standard setting that can guarantee sufficient security
in the future. We consider that our proposed model can be
used in the analyses of HSTS and HPKP, and we leave these
analyses as an open problem.

4) STATE-OF-THE-ART FORMAL METHODS
In recent years, Z3 [33] has been commonly used in analysis
using formal methods [34]–[36]. Bocić and Bultan [37] used
Z3 in web-related analysis and showed the model extraction
for the Rails. However, Z3 is based on command lines and
its outputs are in text format, and thus analysis of results
obtained from complicated models, such as the web, needs
significant effort. On the other hand, Alloy Analyzer is suit-
able for analysis of the web because its output is in the form
of a graph chart, which is identical to actual communication.

D. PAPER ORGANIZATION
The rest of this paper is organized as follows. First, we pro-
vide a background required for understanding this paper in
Section II. Then, we describe current models and their tem-
poral logic problems in Section III and then show our syntax
that solves these problems in Section IV. Then, we propose
the model including a cache in Section V and describe case
studies in Section VI. Finally, we present the conclusion and
future direction in Section VII.

II. PRELIMINARIES
In this section, we present backgrounds of formal methods,
the web platform, and the hypertext transfer protocol that are
necessary to understand this paper.

A. FORMAL METHODS
1) OVERVIEW
Formal methods using mathematical verifications have been
used in security analysis of systems in general. In a formal
method, a user makes a security model for a target system
and checks this model to confirm the security of the sys-
tem. Whereas a formal method called theorem prover per-
forms mathematical proofs through interactions with a user,
we discuss model checking as a main approach in this paper.
We describe the model checking below.

A user performs the following procedure when utilizing
a formal method for system development. First, the user
prepares a security model for the target system. Then, the
user carries out model checking for the security model. If the
user discovers insufficiencies in specifications and weak-
nesses in the system based on the output, then the user devises
corresponding countermeasures. Finally, the user revises the
security model according to the countermeasures and per-
forms the procedure again. The procedure is repeated until
no weaknesses are found.

2) SECURITY MODEL
A security model expresses a target system as the use of a
proposition logic [38]. A security model describes the struc-
tures and behaviors of the target system, the threat model
of the system (e.g., ability of attackers), and the security
requirements of the system.

3) ALLOY ANALYZER
Alloy Analyzer is a model-checking tool that uses a formal
method. In this analyzer, a user describes the security model
of a target system with a language called Alloy. A model in
Alloy can have a syntax of unbounded size, and the syntax
is instantiated by specifying a size bound when the model is
executed. In an actual analysis, an Alloy code as abstraction
of a system specification is converted into a satisfiability
(SAT) problem, which is then solved by a SAT solver within
the Alloy Analyzer. The output can be either of two states
of the model, i.e., one that satisfies the conditions and one
that does not. The former output is used in a case study
to confirm that the security model is implemented properly.
The latter output is used for security analysis of the system,
where the behavior of the system that does not satisfy security
requirements is output by describing the security that the sys-
tem should satisfy. This behavior includes a vulnerability that
violates security requirements, and thus a user can discover
the vulnerability by analyzing the output. The Alloy Analyzer
is intuitive to use because the outputs are in the form of a
graph, which is not supported in other tools that use formal
methods.

We briefly explain the Alloy language used in the Alloy
Analyzer. In Alloy, all data types are represented as relations
and are defined by their type signatures. A type signature
declaration consists of the type name, the declaration of
fields, and an optional signature fact constraining elements of

VOLUME 7, 2019 74943



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

the signature. A subsignature is a type signature that extends
another as a subset of the base signature, and an abstract
signature represents a classification of elements that is aimed
to be refined by a more concrete subsignature.

B. WEB PLATFORM
The web is a system that provides documents on the Internet
with HyperText described in HTML. The HyperText can
express relationships between documents by including their
links. The links in the web create a connection of various
documents on the Internet and facilitate the downloading of
these documents. This convenient feature has made the web
indispensable in the current society.

C. HYPERTEXT TRANSFER PROTOCOL (HTTP)
Hypertext transfer protocol (HTTP) is a protocol that real-
izes general communication for various types of data.
While there are various versions of HTTP, we refer to
HTTP/1.1 [39]–[44], which is commonly used and has
HTTP/1.0 [45] backward compatibility.

HTTP programs include various roles that are classified
into three entities, namely, client, server, and intermediary.
These programs may play multiple roles simultaneously,
i.e., a program may be a client for a connection as well
as a server for another connection. A client in the HTTP
establishes a connection to a server to send a request, and
this role is generally performed by a web browser. A server
in the HTTP sends a result to the client as a response to the
received request. Several servers and clients communicate
through multiple programs, which are called intermediaries.
HTTP/1.1 has three kinds of intermediaries, namely, proxy,
gateway, and tunnel. In this paper, we only target proxy and
gateway as programs that include a cache. A proxy can edit a
request and a response, convert communication contents into
some specified format, and delete the contents. A gateway
connects a local network and a global network, where it
receives a request from the global network side as a server.
The gateway also sends a request to the most suitable server
among multiple servers in a local network as a client. The
gateway generates a response based on the results obtained
from the server in the local network and responds to the origin
of the original request in the global network.

A basic communication in HTTP consists of two phases,
a request from a client to a server and a response from a server
to a client. At the beginning of the phases, a client sends a
request that points to a target resource that a server owns.
The server then transmits a response that includes the target
resource to the client after receiving the request.

Using the procedure above, a client can acquire a resource.
The underlying purpose of HTTP is a protocol for general
usage, and thus contents defined on a protocol include seman-
tic structures of communication contents, usage purpose of
communication contents, and behavior of a communication
partner. A sender generates and sends a packet along with
the defined semantics, and the receiver behaves along with
the packet. Using this simple design, the usage to relay the

communication between protocols different from HTTP is
enabled.

III. CURRENT WEB SECURITY MODELS AND THEIR
TEMPORAL LOGICS
In this section, we describe two web security models, includ-
ing their expressiveness and problems in their temporal logic.
Temporal logic pertains to an expansion of a proposition
logic such that the logic can express state transitions along
with time series. We first recall three types of a threat model
shown in the previous work [4]. Then, we show the models of
Ahkawe et al. [4] and De Ryck et al. [5] and their temporal
logics. Finally, we describe the problems with these models
regarding temporal logic.

A. THREAT MODEL
In this paper, an attacker is classified into three types: web
attacker, network attacker, and gadget attacker. The web
attacker, who is themost basic attacker among the three types,
has root authority in at least one web server and can generate
a response to any content of the request to the server. The
web attacker possesses multiple domain name system (DNS)
servers and obtains a server certificate for a domain it owns
from an authorized certificate authority. The web attacker
can respond to a request to the server it manages and send a
request to a server that is managed by a legitimate user via a
terminal it owns. We note that requests from the web attacker
do not need to follow the specification of HTTP. Moreover,
the web attacker can use API of a browser arbitrarily when
a browser accesses the website owned by the web attacker
even once. However, API used by the attacker cannot behave
beyond the security policy set by the browser.

The network attacker can eavesdrop and falsify contents
of unencrypted communication (e.g., HTTP communica-
tion) and interrupt communications, but it cannot inter-
vene in HTTPS. However, the network attacker can issue a
self-signed certificate when it has obtained a server certifi-
cate for a malicious DNS it owns from a legitimate cer-
tificate authority. Then, the network attacker can use this
self-signed certificate to intercept and intervene in HTTPS
communication.

The gadget attacker has the abilities of both the web and
network attackers and it can insert contents of several spec-
ified formats in legitimate websites. The formats of these
contents depend on web applications, and hyperlinks can be
injected in many situations.

Similarly, behavior of legitimate users has restrictions.
A legitimate user refers to a general user who is different
from the three types of attackers described above. When the
behavior of legitimate users is unrestricted, a very simple
behavior that violates the security, e.g., a legitimate user may
send a password to the attacker, will be detected, and the
number of output results becomes enormous. The restrictions
for legitimate users then reduce the number of the output
results, and push forward verification smoothly. An appro-
priate restrictions adjustment is important because typical

74944 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 1. Temporal axis in the basic model.

attacks are overlooked when excessively strong restrictions
are considered.

In the basic model by Ahkawe et al., the following restric-
tions are followed by legitimate users. First, a user may be
connected to multiple websites, including that owned by an
attacker. Intentional connection by the user to the malicious
site is not included. Next, a user never confuses malicious
websites from legitimate websites even if the user connects
to a malicious website. This premises that a user under-
stands security alerts of browsers. Under these assumptions,
the following two conditions are defined as security require-
ments of the web. The first condition is security invariants–
specifications of web components are not modified, i.e., the
condition requires that the elements follow specifications.
The second condition is session integrity– the server managed
by a legitimate user replies only to anHTTP request generated
by a legitimate user.

B. BASIC MODEL
The web security model proposed by Akhawe et al. [4] is
a fundamental model that aims to have extensibility. This
model selects and contains components that are used fre-
quently in the web. This model implements a temporal logic
expressing the temporal axis to express the order of events,
such as a request and a response. We describe the Time class
as the temporal axis, as shown in Code 1.

Ordering of instances of the Time class is enabled by an
ordering option, and operators, such as next expressing
the next instance, first expressing the first instance, and
last expressing the last instance, are available. We can
express the order of events via the temporal axis of the
Time class by associating the Event class expressing a
request and a response with the Time class. We define the
CSState class to express a state of a cookie at each time.
We can express a state of a cookie in a browser at the time
of a request and a response by associating the CSState
class with the HTTPTransaction class expressing a
request and a response. Moreover, the CSState class rep-
resents how a set of cookies changes between states of a
request and a response. Therefore, state transition of cookies
between a request and a response can be expressed using
Code 2.

CODE 2. Temporal logic of the cookie model.

C. COOKIE MODEL
De Ryck et al. [5] proposed a web security model that pointed
out the lack of inclusion contents of the basic model (similar
to our work), and they created an extension that includes
cookies. We call their model as the Cookie model hereinafter.
The Cookie model applies the temporal axis of the event
introduced in the basic model and extends the temporal logic
to express state transitions of cookies at the time of event
occurrence. The code for the temporal logic of the Cookie
model is shown in Code 2.

D. PROBLEMS WITH CURRENT MODELS
The temporal logics of the models described in
Sections III-B and III-C have problems with their expres-
siveness. In particular, given the ability of these temporal
logics, state transitions can be expressed only between a
single request and a single response. In other words, state
transitions with more than two states cannot be expressed.
For example, consider the situation where two requests are
sent in succession by the same browser, and responses are
sent in turn, as shown in Fig. 1. The expressiveness in the
Cookie model can express changes in the set of cookies, such
as CSState1 to CSState3 and CSState2 to CSState4. However,
the expressiveness in this model cannot store Cookie1 stored
in CSState3 into CSState4 because CSState4 cannot catch
state transitions that occurred in CSState3, as shown in Fig. 1.
However, a state shown in Fig. 2 should be expressed when
a user considers the behavior of cookies. In this paper,
we propose a syntax in Alloy that realizes state transitions
along the temporal axis towards a situation shown in Fig. 2.

IV. PROPOSED SYNTAX OF TEMPORAL LOGIC IN ALLOY
In this section, we propose a new syntax of temporal logic in
Alloy that can express state transitions of various elements in
the web at each event occurrence. First, we explain our main
idea that aims to solve the problems described in the previous

VOLUME 7, 2019 74945



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

FIGURE 1. An example of state transitions available in the cookie model.

FIGURE 2. An example of state transitions unavailable in the cookie
model.

section. Then, we describe the expression of the temporal
axis defined in Section III-B and our general state class. Our
general idea is to consider two predicates, one that decides
the last state and another one that decides the initial state.

A. MAIN IDEA
The main problem of the expressiveness of temporal log-
ics in current models is that state transtitions with more
than two states cannot be expressed. This problem is
caused by the relationship between state classes, i.e., the
CSState class in the Cookie model is expressed using
only the HTTPTransaction class. Such method can only
express state transitions in the same HTTPTransaction.
Therefore, a method that can express the relationship between
state classes without depending on the HTTPTransaction
class is necessary. In addition, the CSState class in the
Cookie model that expresses the state of a cookie lacks
extensibility to express other elements in the web. Therefore,
we aim to express the relationship between state classes to
strengthen extensibility and define a general state class that
can express states of various elements in the web.

In this paper, we consider temporal logic, which is nec-
essary for expressing state transitions between state classes.
We consider the kind of predicate that is necessary to express
transitions through the whole temporal axis. If we can deter-
mine whether two states are successive on the temporal axis,

FIGURE 3. Relation between temporal axis and event in the proposed
model.

then we will be able to express the anteroposterior change
that is possible in two states. In addition, we will be able
to express a condition on an initial state, i.e., an initial
condition, if we can decide the initial state of state transi-
tions. By combining these two expressiveness, we can then
express possible state transitions in the whole temporal axis
inductively. Based on the idea described above, we construct
predicates that decide the initial state and last state in transi-
tions to express state transitions in the whole temporal axis.

B. EXPRESSION OF TEMPORAL AXIS
In the basic model [4], the Event class expressing a response
and a request on a network is associated with the Time
class expressing the temporal axis. The relationship between
these classes can represent contents, e.g., Event0 is produced
between Time0 and Time1 in Fig. 3, and can also express the
time of an event through an instance of two Time classes.
Such relationship is available because only the Event class
is associated with the temporal axis.

In the proposed syntax, not only the Event class but also
the State class expressing states of elements on the web
at a certain point in time are related to the temporal axis.
We emphasize that the current model expresses the time of
one event by instances of two Time classes, and thus the
logical expression of the predicate and its implementation
become complicated. Therefore, we construct a syntax such
that the time of events can be expressed in a single instance
of a Time class, as shown in Fig. 3.

The basic model includes the restriction such that a request
and a response are not created at the same time, and our
proposed syntax removes this restriction. We note that our
proposed syntax does not affect the extensibility of cur-
rent models, i.e., the expressiveness of their temporal logics
remains unchanged.

C. GENERAL STATE CLASS
We define a new State class as shown in Code 3. The flow
of the State class in line 2 connects State classes and
represents state transitions, andcurrent represents the time
when the states can be obtained. Moreover, we also define
the EqItem class in line 7 and DifItem class in line 8 as
variables of the State class.

The EqItem class expresses an element in the web that
remains the same even after state transition, i.e., invariants.

74946 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 3. Our proposed state class.

CODE 4. Application to cookies.

We use these invariants in the presence of multiple states
to determine which states are on the same transition. The
web contains various elements and state transitions occur in
parallel, and thus decidingwhich instances belong to the same
transition is necessary. Such decision is enabled by invari-
ants. The DifItem class expresses an element in the web
that may change during state transitions, i.e., variants. The
beforeState and afterState are defined to express
the time of a request and a response, respectively, by relating
the states with HTTPTransaction similar to the Cookie
model. We define the dedicated class for elements extended
from State, EqItem, and DifItem classes, which are
used to consider state transitions of elements in the web.
We also clarify invariants and variants of the elements and
describe them in the extended class.

Code 4 refers to our application to cookies based
on the Cookie model, where CookieEqItem and
CookieDifItem have the same functionality as EqItem
and DifItem in Code 3, respectively. In the Cookie
model, a client is an unchangeable item, i.e., an invari-
ant, and the set of cookies is a changeable item, i.e., a
variant. Each client saves cookies that can change during
state transition and the client is not changed during state
transition.

CODE 5. Predicate that decides the last state in state transitions.

D. PREDICATE THAT DECIDES THE LAST STATE
For the State class described in IV-C, we define a predicate
named LastState that decides whether a state is on the
same state transitions. LastState takes three parameters,
two of which are states. We call the two states as pre and
post and are defined in the first line of Code 5. We define
the predicate LastState as follows: a pre state is the
previous state of a given post state only if the LastState
is true. However, when only these states are utilized as
input, a single post state may have multiple pre states.
To avoid this, we further introduce StateTransaction
to specify the time for each post. We define such a param-
eter (StateTransaction) as str in the first line of
Code 5. With str, we can decide which pre is the previous
state for the post based on the time included in the given
StateTransaction. That is, we can uniquely decide a
pair of a pre and a post whose predicate becomes true.
We then define a condition where a predicate LastState
is true as follows:
Definition 1 (LastState): Suppose pre and post are

instances in the State class, and str is an instance in the
StateTransaction class. We say LastState is true if
a pre, a post, and a str meet the following conditions:

• invariants of the post are identical to those of the pre;
• the post belongs to either beforeState or
afterState for the str;

VOLUME 7, 2019 74947



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 6. Predicate that decides the initial state on state transitions.

FIGURE 4. Example of InitialState.

• there are no other states whose invariants are identical
to the given pre and post states;

• and the time of str is between the time of the pre and
time of the post.

E. PREDICATE THAT DECIDES THE INITIAL STATE
The predicate named InitialState is available for a
State class and decides an initial state, as shown in in
Code 6. InitialState takes State class as input, ref-
ered to as s in the first line, and decides whether the state is an
initial state. Here, there are multiple initial states if invariants
are different from each other because state transitions become
independent of each other, as shown in Fig. 4.
Definition 2 (InitialState): We say, for any instance s in a

State class, InitialState is true with respect to s if all
instances in the State class, whose invariants are identical
to that of s, occur only after s occurs.

V. PROPOSED MODEL
In this section, we propose a web security model that includes
caches as an application of the proposed syntax described in
Section IV. The cache is an important element of the web
and has therefore been utilized in many attacks as described
in Section I. Vulnerability utilizing a cache has significant
influence to web users, and therefore analyzing the security
of both the web and caches is crucial.

A. FEATURES OF THE PROPOSED MODEL
We construct the proposed model.

1) CACHE
A cache belongs to a client, a server, and an intermediary,
and its basic behaviors include storage, deletion, reuse, and
verification of contents. These behaviors are controlled by
headers.

TABLE 1. Headers in the proposed model.

TABLE 2. Options of cache-control headers in the proposed model.

2) INTERMEDIARY
An intermediary is an entity on a communication path
between a server and a client as described in Section II-C.
Programs corresponding to the intermediary with a cache are
a proxy and a gateway for HTTP/1.1. The proposed model
includes both a proxy and a gateway. An intermediary does
not generate a request or response by itself and just forwards
the received requests and responses. Therefore, only when an
intermediary utilizes a cache, the intermediary can reply to
a request via the reusability of the cache without forwarding
the request and receiving the response. Meanwhile, a proxy
and a gateway can edit contents in their communications.

3) HTTP HEADER
Headers included in the basic model are insufficient for
expressing the behavior of a cache, and thus we introduce
additional headers shown in Table 1. The cache-control head-
ers in Table 1 specify the behavior of a cache, and thus
our model also enables the use of their options. We show
the options available in the proposed model in Table 2. The
behaviors of each term in Table 1 and Table 2 conform to the
specification of HTTP/1.1.

4) BROWSER
The basic model contains the restriction that only a write
is available in memory regions of a browser to simplify the
expression. However, under this restriction, behaviors such
as the deletion and the verification of responses stored in
a cache cannot be executed. Consequently, the basic model
cannot express the behavior of a cache fully. The proposed
model overcomes the restriction described above by using the
proposed syntax of temporal logic.

74948 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 7. Cache class.

5) THREAT MODEL
Our threat model is based on that of the basic model. Consider
the three attackers described in Section III and the behav-
ior of users as bases, and introduce the attack capability
about a cache mechanism and an intermediary in an attacker.
We describe the attackers as follows:

• A web attacker can own multiple intermediaries, can
only forward contents, and cannot edit contents or inter-
rupt the communication. However, it can eavesdrop
on contents during unencrypted communication. More-
over, it can introduce caches into owned clients,
servers, and intermediaries, and it operates according to
specifications.

• A network attacker has all of the abilities of a web
attacker. In addition, it can falsify contents of unen-
crypted communication and interrupt the communica-
tion via an intermediary.

• A gadget attacker has all of the abilities of a network
attacker. In addition, it can falsify contents and interrupt
communication for an intermediary.

6) SECURITY REQUIREMENTS
The proposed model has two security requirements that are
identical to those of the basic model. In addition, our security
invariants contain a specification of a cache and that of an
intermediary.

B. CLASS OF CACHE
We show a class that expresses a cache in Code 7.
We define the Cache class as an abstract class,
the PrivateCache class to express a cache for each user,
and the PublicCache class to express a shared cache, such
as a proxy. Furthermore, we introduce restrictions into the
Cache class described in Code 8 as follows:

• Each cache belongs to a terminal in a network.
• A personal cache belongs to a client.
• A shared cache belongs to a server or an intermediary.
We also construct the class of components in the web,

as shown in Code 9, to introduce a cache mechanism.
We added the Cache class to the HTTPConfirmist class
in the basic model, containing a client, a server, and an
intermediary in the HTTP. Each device can then own at most
one cache.

C. CLASS FOR EXPRESSING STATES OF CACHE
We define the CacheState class that expresses states of a
cache at each point in the temporal axis, as shown in Code 10.
This CacheState class is extended from the State class
and can use a predicate about the proposed temporal logic.

CODE 8. Restrictions for cache class.

CODE 9. Components with cache utilizing HTTP in the web.

CODE 10. Class to express states of cache.

The invariants defined in the State class are a finite set
of the Cache class defined in Code 7, and the variants are
that of responses to express stored responses. We then define
CacheEqItem to express invariants and CacheDifItem
to express variants in Code 10.

Moreover, we give the following restrictions to
CacheState although we omit them in Code 10. This is
a condition that must be held when a response is stored in a
cache and follows the specification of HTTP/1.1.

• When a response is stored in a personal cache, either one
of a max-age option of a cache-control header or a pair
of a date header and an expire header is included.

• When a response is stored in a shared cache, either one of
amax-age option of a cache-control header, an s-maxage
option, or a pair of a date header and an expire header is
included.

• When a response is stored in a cache, one age header is
included.

VOLUME 7, 2019 74949



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

Next, we introduce the following restrictions that do not
affect analysis results directly but can possibly reduce the
number of instances to make the analysis easy.

• There are no multiple instances of a State class
whose contents are identical to each other. When mul-
tiple instances have the same states at different times,
the states are unified in the same State class.

• When a device with a cache communicates, a state of the
cache is always expressed as an instance.

• When a response is stored in a cache, one age header is
always included.

D. BEHAVIORS OF A CACHE
Using the CacheState class defined in Section V-B,
we express three basic behaviors of a cache described in
Section V-A in Alloy.

1) STORAGE AND DELETION OF RESPONSES
In the proposed model, storage and deletion of responses in a
cache are executed as follows:
Definition 3 (Storage of Responses): A cache can store

responses that its device sends and receives. The time to store
in the cache is the same as that to send and receive the
responses. Furthermore, let the stored responses meet all the
conditions to be stored.
Definition 4 (Deletion of Responses): A cache can delete

stored responses from the cache at any time.
We express the storage and deletion of responses as state

transitions between two states, as shown in Fig. 5. The
storage of responses for any state of each cache can be
represented by adding the responses to the stored responses-
so-far. This process corresponds to state transitions from
CacheState0 to CacheState1 in Fig. 5. In this figure,
CacheState0 has CacheDifItem0 and CacheState1 has
CacheDifItem1 as variants, respectively. A set of the stored
responses for CacheDifItem0 is an empty set while that
for CacheDifItem1 includes Response0, indicating that a
response for StateTransaction0 is Response0 and the response
is stored in Cache0. Similarly, the deletion of responses
can be expressed by not succeeding the responses from the
previous state to the next state. This process corresponds to
state transitions from CacheState1 to CacheState2 in Fig. 5.
In this figure, CacheState2 includes CacheDifItem0 as a vari-
ant, and hence is identical to a reverse process of the storage
of responses, indicating that Response0 stored in Cache0 at
CacheState1 is deleted at CacheState2.

The storage and deletion in a cache implemented in the
proposed model are shown in Code 11. For any post of
all CacheState classes, the previous state pre is obtained
using a predicate LastState. When post is a state for a
request, a set of the stored responses at the post is identical
to a complement set for the set of the stored responses at
the pre. Moreover, we represent the deletion of the stored
responses where a part of the responses in the previous state
is removed, i.e., its complement set. If post is a set at the

FIGURE 5. Representation of storage and deletion in a cache.

CODE 11. Expression of storage and deletion of a cache.

response, a set of the stored responses at the post becomes
a complement set where the response at the post is added
to a set of the stored responses at the pre. Namely, adding a
response at the pre to a set means storing of the response in a
cache. However, we note that the states of a cache at each time
depend on their previous states and hence the initial states
always become unconditional. In this case, when the initial
states are identical to states such that any communication has
never been executed, there is no response in a cache at the
initial states. Therefore, we express a restriction to assume a
set of the stored responses at the initial state as an empty set
by using InitialState.

2) REUSE OF RESPONSES
We describe the behavior of the reuse of responses by a cache
in the proposed model as follows:
Definition 5 (Reuse of Responses): For any sent and

received request, if a response for the request is stored in a
cache, then a device with the cache can reply to the request
by utilizing the response. A sender of the request reuses

74950 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 12. Cachereuse classs.

responses within its own cache, and the request is not sent
to the network.

To do this, we define CacheReuse class in the pro-
posed model similarly to the HTTPResponse class that
represents responses in the basic model. The CacheReuse
class is shown in the fourth line of Code 12. The
HTTPResponse class is extended from the HTTPEvent
class which expresses events in the HTTP protocol, and
the CacheReuse class is extended from the HTTPEvent
class. In addition, the CacheReuse class represents which
response is reused by associating the class with a single
response in the HTTPResponse class. Devices related to an
event are defined in the HTTPEvent class, and thus a sender
and a receiver of the reused responses can be expressed via
the HTTPEvent class. We note that the HTTPEvent class
includes a header and a body in addition to a sender and a
receiver. For an actual reuse of responses, where a header
and a body of the responses to be reused are sent, these two
terms are typically unnecessary because they are expressed
by associating them with the reuse of the responses described
above. In other words, the relationship between a header and
a body in the CacheReuse class can be ignored. Headers
and bodies have many instances, and hence the computation
in the proposed model spends a significant amount of time
in proportion to the number of elements. To decrease compu-
tation time, we assume that both a header and a body in the
CacheReuse class are empty sets, as shown in the seventh
and eighth lines of Code 12, respectively.

To express a reuse via the CacheReuse class described
above, we construct the condition for the CacheReuse
event along with an actual behavior of a cache as follows.
First, a receiver of a reused response is the sender of the
request that causes the reuse. A sender of a reused response
is either the sender of the request that causes the reuse or a
receiver of the request. Next, any previous state of the reuse
of a cache includes a response to be reused in the stored
responses. Finally, a URI for any request that causes the reuse
is identical to that for any response to be reused.

We allow a sender of a reused response to be a sender
of the request on the conditions described above because
the sender may reuse responses in its own cache for any
request.

3) VERIFICATION OF STORED RESPONSES
In the proposed model, verification of stored responses in a
cache is defined as follows:
Definition 6 (Verification of Stored Responses): A device

with a stored response sends a conditional request to an
origin server to decide whether the response can be reused.
A conditional request includes either an if-modified-since
header or an if-none-match header. The origin server can
decide whether the stored response is identical to the latest
content by the use of a value transmitted with these head-
ers and responds to the reuse of the response accordingly.
If the verification finishes successfully, a status code of this
response becomes 304 or 200. The status code 304 indicates
that the cache can reuse a stored response regardless of the
values of a header and a body, and the status code 200 indi-
cates that the stored response cannot be reused and the newly
received response is stored in a cache. Moreover, in each
case, except for the reusable responses, there is no response
including the same URI in the cache after verification.

The behavior described above can be implemented by the
following information:

• A predicate that decides whether a reused response has
been verified.

• Behavior of a server for conditional requests.
The predicate checkVerification, which decides

whether a response has been verified, is shown in Code 13.
An input of the predicate is StateTransaction, which
we refer to as str. The predicate is defined as follows: it
is true if str is a transaction replied by the reuse, and if
the transaction including a conditional request exists between
the reuse and the request for str. This can be expressed as
follows:
Definition 7 (Predicate of checkVerification): The predi-

cate is true if an instance str in a StateTransaction
class is reused and if there is an instance str’ in a
StateTransaction class that satisfies the following
conditions:

• str and str’ are different transactions;
• a response of str’ exists, that is, the communication
finished successfully;

• the request of str’ occurs after str, and the response
of str’ occurs before the reuse of str;

• the request of str’ is sent to the original sender for the
reused response from a device whose cache stores the
reuse of str;

• the requested URI for str’ is identical to that for str;
• either an etag header or a last-modified header is
included in the stored response to be verified;

• if an etag header is included in the stored response to
be verified, an if-none-match header is included in a
request for str’; and

• if a last-modified header is included in the stored
response to be verified, and an if-modified-since header
is included in a request for str’.

Next, we express behavior of a server for any con-
ditional request in Alloy. When an instance tr of the

VOLUME 7, 2019 74951



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 13. Predicate that decides whether the reuse was verified.

HTTPTransaction class is a communication that includes
a conditional request, the server receiving the request adds the
following conditions:

• after verification, there is exactly a single stored
response that has a URI of the response to be verified;

• a status code of a response for tr is 200 or 304;
• if the status code is 200, the response for tr is stored in
a cache; and

• if the status code is 304, the response for tr is not stored
in a cache.

E. IMPLEMENTATION OF INTERMEDIARY
In the proposed model, an intermediary works in both
HTTP and HTTPS and includes a proxy and a gateway.
We define a class of the intermediaryHTTPIntermediary
that extends HTTPConfirmist, whose device is according

CODE 14. Class of intermediary.

to HTTP. Likewise, we define a class of a proxy and a
gateway that extends HTTPIntermediary. These classes
are implemented as shown in Code 14.

Next, we express behavior of an intermediary in Alloy as
follows: a receiver of a request is HTTPIntermediary,
and the intermediary has HTTPTransaction whose
response exists. For any instance tr of such
HTTPTransaction, there is at least one instance tr’ of
HTTPTransaction that satisfies the following conditions:

• tr and tr’ are different transactions;
• the request for tr’ occurs after the request for tr, and
a response for tr’ occurs before a response for tr;

• a sender of the request for tr’ is an intermediary that is
the sender of the request for tr;

• a URI of the request for tr’ is identical to that for tr;
and

• a status code of a body of a response for tr’ is identical
to that for tr.

The behavior described above is that of an intermediary man-
aged by a legitimate user, and the behavior of an intermediary
managed by an attacker may be different.

VI. CASE STUDIES
In this section, we show several case studies related to anal-
ysis of web security. We discuss two basic behaviors of a
cache mechanism and four attacks. The two behaviors will be
used to confirm the capabilities of the proposed model. The
four attacks, namely, verifications of a same-origin browser
cache poisoning (BCP) attack [2], a cross-site request forgery
(CSRF) attack [1], a cross-origin BCP attack [2], and a
web cache deception attack [3], will be discussed to show
improvements in the expressiveness of the proposed model.
Hereinafter, for output of each case study, we summarize
the original output of the Alloy Analyzer to help readers
understand easily given that reading the original output of
the Alloy Analyzer can be difficult due to a complicated
state transition diagram. The complete original output can
be obtained by executing our published codes (https://
github.com/sho-rong/webmodel).

A. BASIC BEHAVIORS OF A CACHE
In this section, we confirm the feasibility for behaviors of a
cache in the proposed model. A cache executes three behav-
iors, i.e., storage, reuse, and verification, and we check each
result using the Alloy Analyzer.

74952 VOLUME 7, 2019

https://github.com/sho-rong/webmodel
https://github.com/sho-rong/webmodel


H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 15. Storage of responses.

FIGURE 6. Example of state for storage of responses.

1) STORAGE OF RESPONSES
To check the behavior of storage of responses, we extract a
result of storing of responses from an execution result using
the Alloy Analyzer. For convenience, we obtained the result
using Code 15 by targeting the storage of responses in the
simplest communication, i.e., communication between two
nodes. The results show that, for any communication with a
pair of a request and a response between a client and a server,
there is a state of a cache whose element is in a set of the
stored responses.

Fig. 6 shows a simplified figure of the obtained results.
This figure represents a state transition of a cache via a trans-
action between Request0 and Response0 for Browser0 with
PrivateCache0 and Server0. Request0 is a transaction from
Browser0 to Server0 while Response0 is the opposite.
A state of a cache at Request0 is shown as CacheState0.
Then, the state is changed to CacheState1 at Response0, and
the corresponding CacheDifItem1 shows the store action for
Response0. Fig. 6 represents a state where a response is
stored in a browser cache for any transaction, and hence we
can confirm that the storage of responses is expressible in the
proposed model.

2) REUSE OF STORED RESPONSES
To check the behavior of the reuse of responses, we extract a
result of storing of responses from an execution result using
the Alloy Analyzer. For convenience, we obtained the result
using Code 16 by targeting the reuse of responses in the

CODE 16. Reuse of stored responses.

FIGURE 7. Example of reuse of stored responses.

simplest communication, i.e., communication between two
nodes. The results show that, for any communication with
a pair of a request and a response between a client and a
server, one reuse of a single response occurs. Fig. 7 shows
a simplified figure of the original output. Fig. 7 represents
a situation where two requests, Request0 and Request1, are
sent to the same URI between a browser with a cache and a
server. In addition, StateTransaction0 is storing Response0 in
a browser cache in a similar manner as in Fig. 6. Then,
for StateTransaction1, CacheReuse0 which is an event for
the reuse of the stored response calls Response0 with the
target. These results confirm that the behavior of the reuse
is expressible in the proposed model.

3) VERIFICATION OF STORED RESPONSES
To check verification of responses, we extract the results
from an execution result using the Alloy Analyzer. For
convenience, we obtained the results using Code 17 by tar-
geting the verification of responses in the simplest com-
munication, i.e., communication between two nodes. The
results show communication with verification for any com-
munication with a pair of a request and a response between
a client and a server. We also decide whether verifica-
tion is performed or not via the predicate described in
Section V-D.3, i.e., Code 13.
Fig. 8 shows a simplified figure of the original output.

Fig. 8 represents a situation where three communications,
i.e., StateTransaction0, StateTransaction1, and StateTransac-
tion2, occur between a browser with a cache and a server,
and only StateTransaction2 is the communication with ver-
ification. First, the browser stores Response0 in its cache

VOLUME 7, 2019 74953



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 17. Verification of stored responses.

FIGURE 8. Example of verification for stored responses.

by StateTransaction0 similarly to Fig. 6. Next, the browser
verifies in StateTransaction2 to reuse Response0 stored in the
cache for Request2. Request1, which is a conditional request
for the verification, includes an IfNoneMatchHeader because
the stored response, i.e., Response0, includes an EtagHeader.
Then, the verification result for Request1, i.e., Response1,
contains a 304 status code, whichmeans the reuse is available,
and hence Response0 is reused. The process described above
therefore shows that Response0 was reused in StateTransac-
tion1 and the verification finished successfully. These results
confirm that behavior of the verification is expressible in the
proposed model.

B. BASIC BEHAVIORS OF AN INTERMEDIARY
To check behavior of intermediaries, we extract a result for
verification of responses from an execution result using the
Alloy Analyzer. For convenience, we obtained the result
using Code 18 by targeting communication transited via an
intermediary in the simplest case with a single client, a single
proxy, and a single server.

Fig. 9 shows a simplified figure of the original out-
put. Fig. 9 represents a communication between a browser
of the client and the proxy as StateTransaction0 and that
between the proxy and the server as StateTransaction1. The
intermediary, i.e., the proxy, forwards received requests and
responses to these destinations and, in particular, StateTrans-
action1 is the forwarding information for StateTransaction0.

CODE 18. Behavior for intermediary.

FIGURE 9. Example of behavior of intermediaries.

These results confirm that the behavior of an intermediary is
expressible in the proposed model.

C. SAME-ORIGIN BROWSER CACHE POISONING ATTACK
In this section, we show that our proposed model can express
a same-origin browser cache poisoning (BCP) attack. Same-
origin BCP attack is a man-in-the-middle attack where an
attacker interposes an intermediary between a target browser
and a server. The main purpose of this attack is to store
information generated by the attacker in the browser as a
response from the server and to execute arbitrary behavior
designated by the attacker against the browser. The main
advantage of this attack is continuousness, i.e., even by a
single interruption to communication, the target browser is
affected whenever the response is reused.

The flow of same-origin BCP attack is shown in Fig. 10.
In this attack, the attacker manipulates a response generated
for a browser and then stores the manipulated response in
a target browser. The attacker manipulates two data, i.e., a
header and a body. For a header of a response, the attacker
manipulates in a way that the response is stored and reused
by a browser cache. For instance, an attacker may extend an
expiry date or reuse a response without verification. For a
body of a response, the attacker describes arbitrary behavior
to be executed for a victim.

In Fig. 10, the browser is affected when a manipulated
response is stored in a cache and when the manipulated
responses is reused to access the same file, i.e., the fifth and
sixth phases. The sixth phase may be iterated as long as the

74954 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

FIGURE 10. Flow of same-origin browser cache poisoning attack.

FIGURE 11. Example of same-origin browser cache poisoning attack.

manipulated response is stored in the cache. The same-origin
BCP attack is expressed in Code 19 shown in Appendix.
Fig. 11 shows a simplified figure of the original output.
Fig. 11 represents a communication between a browser of
a client and a proxy as StateTransaction0 and that between
the proxy and a server as StateTransaction1. An intermediary,
i.e., the proxy, forwards received requests and responses to
these destinations, and StateTransaction0 is the forwarding
communication for StateTransaction0. However, the proxy is
a device owned by the attacker, and the response forwarded
via the proxy manipulates the original response generated
from the server. In particular, the browser stores the manip-
ulated response stored in CacheState0 and then reuses the
response in StateTransaction2. We can thus confirm that a
same-origin BCP attack is expressible in the proposed model.

D. CROSS-SITE REQUEST FORGERY ATTACK
In this section, we show that our proposed model can express
a cross-site request forgery (CSRF) attack [5]. The CSRF
attack is executed among three parties, i.e., a target server,
a servermanaged by an attacker, and a browser of a client. The
main purpose of this attack is to execute arbitrary behavior for
the target server.

FIGURE 12. Cross-site request forgery attack.

FIGURE 13. Example of cross-site request forgery attack.

FIGURE 14. Flow of cross-origin browser cache poisoning attack.

The flow of the CSRF attack is shown in Fig. 12.
Server1 is a server managed by an attacker and Server2 is
a target server, i.e., a victim. The attacker behaves as fol-
lows: when Server1 receives a request from a browser, the
server returns a response such that the browser is forced
to send another request, i.e., the request on the third phase
in Fig. 12. Furthermore, the request sent from the browser
is also operated along with the response returned from
Server1.

The CSRF attack is expressed in the code shown in
Code 20 in Appendix. Fig. 13 shows a simplified figure of the
original output. Server0 is a server managed by an attacker
and Server1 is a target server, i.e., a victim. StateTransac-
tion0 is a communication between a browser and Server0,
while StateTransaction1 is a communication between the
browser and Server1. The figure shows that StateTransac-
tion1 is a relation with the cause for StateTransaction0,
i.e., StateTransaction1 is caused by StateTransaction0. These
results confirm that a CSRF attack is expressible in the pro-
posed model.

VOLUME 7, 2019 74955



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

FIGURE 15. Example of cross-origin browser cache poisoning attack.

FIGURE 16. Flow of web cache deception attack.

FIGURE 17. Example of web cache deception attack.

E. CROSS-ORIGIN BROWSER CACHE POISONING ATTACK
In this section, we show that our proposed model can
express a cross-origin browser cache poisoning (BCP) attack.
In this kind of BCP attack, an attacker manipulates a response
communicated between multiple servers, e.g., redirection
between different servers. In other words, the attacker can
also focus on files which are utilized in multiple sites, e.g.,
a css file or a js file.

The flow of the cross-origin BSP attack is shown in Fig. 14.
Server1 and Server2 are honest servers, while Intermediary
is a device managed by an attacker. The phases after the fifth
phase are identical to those of the same-origin BCP attack.
Likewise, phases before the fifth phase are similar to those of
the CSRF attack. In particular, the attacker first manipulates

CODE 19. Expression of same-origin browser cache poisoning attack.

a response by interrupting communication during the first
phase. The manipulation aims to cause a request on the fifth
phase for a target file. For example, when there is a file named
A.css used in many pages, a request for A.css can be caused
by describing the use of A.css at a response on the third
phase. The attacker can then manipulate and store an arbi-
trary file in a browser cache. Moreover, even if Server1 and
Server2 have new communication after a successful attack,

74956 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 20. Expression of cross-site request forgery attack.

a browser will be affected when a file designated in the
manipulated response is reused.

The attack is expressed in the code shown in Code 21 in
Appendix. As a result of execution, our proposed model
can output a situation including the five communications
shown in Fig. 14. Fig. 15 shows a simplified figure of the
original output. In Fig. 15, the process is identical to that
of Fig. 11 until Time3. At Time4 and Time5, the process
is redirected to another server, and an attacker manipulates
Response3 from Server2 at Time6. A cache stores the manip-
ulated response in a cache, and then a cache state transitions
from CacheState0 to CacheState1. The stored response is
reused in StateTransaction4. The output represents a situation
where a manipulated response is reused after a redirection.
These results confirm that a cross-site request forgery attack
is expressible in the proposed model.

F. WEB CACHE DECEPTION ATTACK
In this section, we show that our proposed model can express
a web cache deception (WCD) attack [3]. The WCD attack
is executed among a target server, a target intermediary, and
two browsers. An attacker owns one of the browsers and tries
to extract a user’s file that is unavailable to the attacker.

CODE 21. Expression of cross-origin browser cache poisoning attack.

Fig. 16 shows the flow of the WCD attack. Browser1 is
a browser managed by an attacker and Browser2 is a victim
browser. The victim browser accesses a file that is unavailable

VOLUME 7, 2019 74957



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

CODE 22. Expression of web cache deception attack.

to the attacker via the intermediary. When the intermediary
stores a file returned as the response in a cache on the third
phase, the attacker then sends a request for the file to the
intermediary and can extract the file via the reuse of the file.

The attack is expressed in the code shown in Code 22 in
Appendix. Fig. 17 shows a simplified figure of the original
output. The figure is similar to Fig. 11. In Fig. 17, a request
on the first phase and that on the second phase in Fig. 16 cor-
respond to StateTransaction0 and StateTransaction1, respec-
tively. Token, which is unavailable to the attacker, is attached
to a body of Response1. Moreover, Response1 is stored in a
cache of the intermediary at Time2 and reused for StateTrans-
action2, which is communication by the attacker. The output
therefore represents a situation where an attacker can extract

a file that is unavailable for the attacker itself by the reuse via
a cache of an intermediary. These results confirm that aWCD
attack is expressible in the proposed model.

VII. CONCLUSION
In this paper, we used formal methods to perform security
analysis of the web. In particular, we presented a new syntax
in Alloy that can express temporal logic and state transitions
of elements in the web. Furthermore, we proposed a new web
security model that includes caches as an application of our
proposed syntax. Then, we verified that four attacks includ-
ing state transitions that are inexpressible in current models,
and confirmed improvements in the expressiveness of the
proposed model. Although our source codes do not include
HTTPS, our model can be used for verification of HTTPS by
extending it along with the specifications of HTTPS. We also
consider that various vulnerabilities for not only caches but
also for other mechanisms can be verified by extending our
model.

We will discuss countermeasures for attacks shown in the
case studies as future work. In particular, we will discuss
the countermeasures by finding conditions where the attacks
fail in the proposed model. Moreover, we plan to apply our
model to the analysis of the HTTP strict transport security
(HSTS) [30] and the public key pinning extension for HTTP
(HPKP) [31], which are extended protocols of HTTPS. These
protocols are state-of-the-art protocols and their security
analysis via formal methods is necessary. We consider that
the security of these protocols can be analyzed by introducing
their headers in our model.

APPENDIX
VERIFICATION CODE FOR SAME-ORIGIN BROWSER
CACHE POISONING ATTACK
See codes 19–22.

ACKNOWLEDGMENT
The authors would like to thank for their support. They
would also like to thank Ju Chien Cheng for proofreading this
manuscript.

REFERENCES
[1] Cross-Site Request Forgery (CSRF), OWASP, MD, USA, 2018.
[2] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, and Z. Liang, ‘‘Man-in-the-

browser-cache: Persisting HTTPS attacks via browser cache poisoning,’’
Comput. Secur., vol. 55, pp. 62–80, Nov. 2015.

[3] R. Ogawa, Y. Okuda, and T. Saito, ‘‘Web cache deception vulnerabil-
ity scanner,’’ (in Japanese), in Proc. Symp. Cryptgr. Inf. Secur., 2018,
pp. 23–26.

[4] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song, ‘‘Towards a
formal foundation of Web security,’’ in Proc. IEEE Comput. Secur. Found.
Symp., Jul. 2010, pp. 290–304.

[5] P. De Ryck, L. Desmet,W. Joosen, and F. Piessens, ‘‘Automatic and precise
client-side protection against CSRF attacks,’’ in Proc. Eur. Conf. Res.
Comput. Secur., 2011, pp. 100–116.

[6] K. Chaitanya, A. Agrawall, and V. Choppella, ‘‘A formal model of Web
security showing malicious cross origin requests and its mitigation using
CORP,’’ in Proc. Int. Conf. Inf. Syst. Secur. Privacy, 2017, pp. 516–523.

[7] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, ‘‘Practical, formal
synthesis and automatic enforcement of security policies for android,’’ in
Proc. Int. Conf. Dependable Syst. Netw., 2016, pp. 514–525.

74958 VOLUME 7, 2019



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

[8] K. Z. Chen, W. He, D. Akhawe, V. D’Silva, P. Mittal, and D. Song,
‘‘ASPIRE: Iterative specification synthesis for security,’’ in Proc. HotOS,
2015, pp. 1–6.

[9] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
‘‘Aluminum: Principled scenario exploration throughminimality,’’ inProc.
Int. Conf. Softw. Eng., 2013, pp. 232–241.

[10] H. Shimamoto, N. Yanai, S. Okamura, and T. Fujiwara, ‘‘Web secu-
rity model with cache,’’ in Proc. Int. Symp. Inf. Theory Appl., 2016,
pp. 408–412.

[11] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. L. Iacono, ‘‘All your clouds are belong to us: Security analysis of cloud
management interfaces,’’ in Proc. 3rd ACM Workshop Cloud Comput.
Secur. Workshop, 2011, pp. 3–14.

[12] M. Bugliesi, S. Calzavara, and R. Focardi, ‘‘Formal methods forWeb secu-
rity,’’ J. Log. Algebr. Methods Program., vol. 87, pp. 110–126, Feb. 2017.

[13] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, ‘‘ Isolation: Get the
security of multiple browsers with just one,’’ in Proc. ACM Conf. Comput.
Commun. Secur., 2011, pp. 227–237.

[14] C. Bansal, K. Bhargavan, and S.Maffeis, ‘‘Discovering concrete attacks on
Website authorization by formal analysis,’’ in Proc. Comput. Secur. Found.
Symp., 2012, pp. 247–262.

[15] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S.Maffeis, ‘‘Keys to the
cloud: Formal analysis and concrete attacks on encrypted Web storage,’’
in Principles of Security and Trust. Berlin, Germany: Springer, 2013,
pp. 126–146.

[16] D. Fett, R. Küsters, and G. Schmitz, ‘‘An expressive model for the Web
infrastructure: Definition and application to the Browser ID SSO system,’’
in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 673–688.

[17] D. Fett, R. Küsters, and G. Schmitz, ‘‘Analyzing the BrowserID SSO
system with primary identity providers using an expressive model of the
Web,’’ in Proc. Eur. Symp. Res. Comput. Secur., 2015, pp. 43–65.

[18] D. Fett, R. Küsters, and G. Schmitz, ‘‘A comprehensive formal security
analysis of OAuth 2.0,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1204–1215.

[19] D. Fett, R. Küsters, and G. Schmitz, ‘‘The Web SSO standard OpenID
connect: In-depth formal security analysis and security guidelines,’’ in
Proc. Comput. Secur. Found. Symp., 2017, pp. 189–202.

[20] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. Kwon,
‘‘How tomake TLSmiddlebox-aware?’’ inProc. Netw. Distrib. Syst. Secur.
Symp., 2019, pp. 1–15.

[21] M. Peroli, F. De Meo, L. Viganò, and D. Guardini, ‘‘MobSTer: A model-
based security testing framework for Web applications,’’ Softw. Test., Ver-
ification Rel., vol. 28, no. 8, p. e1685, 2018.

[22] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, ‘‘seL4: Formal verification of an OS kernel,’’ in Proc.
Symp. Oper. Syst. Princ., 2009, pp. 207–220.

[23] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, ‘‘Towards formal
analysis of the permission-based security model for Android,’’ in Proc.
Int. Conf. Wireless Mobile Commun., 2009, pp. 87–92.

[24] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz, ‘‘Specifying and
verifying hardware for tamper-resistant software,’’ in Proc. Symp. Secur.
Privacy, 2003, pp. 166–177.

[25] J. P. Near andD. Jackson, ‘‘Finding security bugs inWeb applications using
a catalog of access control patterns,’’ in Proc. IEEE Int. Conf. Softw. Eng.,
May 2016, pp. 947–958.

[26] S. Calzavara, A. Rabitti, and M. Bugliesi, ‘‘Semantics-based analysis of
content security policy deployment,’’ACMTrans.Web, vol. 12, no. 2, 2018,
Art. no. 10.

[27] S. Calzavara, R. Focardi, M. Maffei, C. Schneidewind, M. Squarcina, and
M. Tempesta, ‘‘WPSE: FortifyingWeb protocols via browser-side security
monitoring,’’ in Proc. USENIX Secur. Symp., 2018, pp. 1493–1510.

[28] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld, ‘‘LATEX
GLOVES: Protecting browser extensions from probing and revelation
attacks,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[29] B. Möller, T. Duong, and K. Kotowicz, ‘‘This POODLE bites: Exploiting
the SSL 3.0 fallback,’’ Secur. Advisory, 2014. [Online]. Available: https://
scholar.google.com/scholar?cluster=8401917122173530019&hl=en&as_
sdt=0,5&sciodt=0,5#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ao-9se
xubmXQJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%
3D0%26scfhb%3D1%26hl%3Den

[30] J. Hodges, C. Jackson, and A. Barth, HTTP Strict Transport Security
(HSTS), document RFC 6797, 2012.

[31] C. Evans, C. Palmer, and R. Sleevi, Public Key Pinning Extension for
HTTP, document RFC 7469, 2015.

[32] M. Kranch and J. Bonneau, ‘‘Upgrading HTTPS in mid-air: An empirical
study of strict transport security and key pinning,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2015, pp. 1–15.

[33] L. de Moura and N. Bjørner, ‘‘Z3: An efficient SMT solver,’’ in Tools and
Algorithms for the Construction and Analysis of Systems. Berlin, Germany:
Springer, 2008, pp. 337–340.

[34] A. Ayad and C. Marché, ‘‘Multi-prover verification of floating-point
programs,’’ in Proc. 5th Int. Joint Conf. Automated Reasoning, 2010,
pp. 127–141.

[35] S. Chu, C.Wang, K.Weitz, and A. Cheung, ‘‘Cosette: An automated prover
for SQL,’’ in Proc. 8th Biennial Conf. Innov. Data Syst. Res., 2017, pp. 1–7.

[36] A. Peyrard, N. Kosmatov, S. Duquennoy, and S. Raza, ‘‘Towards formal
verification of Contiki: Analysis of the AES–CCM∗ modules with Frama-
C,’’ in Proc. Workshop Recent Adv. Secure Manage. Data Resour. IoT,
2018, pp. 1–7.

[37] I. Bocić and T. Bultan, ‘‘Symbolic model extraction for Web application
verification,’’ in Proc. Int. Conf. Softw. Eng., 2017, pp. 724–734.

[38] J. Bau and J. C. Mitchell, ‘‘Security modeling and analysis,’’ in Proc. IEEE
Secur. Privacy, May/Jun. 2011, vol. 9, no. 3, pp. 18–25.

[39] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing, document RFC 7230, 2014.

[40] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content, document RFC 7231, 2014.

[41] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests, document RFC 7232, 2014.

[42] R. Fielding, Y. Lafon, and P. J. Reschke, Hypertext Transfer Protocol
(HTTP/1.1): Range Requests, document RFC 7233, 2014.

[43] R. Fielding, M. Nottingham, and P. J. Reschke, Hypertext Transfer Proto-
col (HTTP/1.1): Caching, document RFC 7234, 2014.

[44] R. Fielding and J. Reschke, Hypertext Transfer Protocol (HTTP/1.1):
Authentication, RFC 7235, 2014.

[45] T. Berners-Lee, R. Fielding, and H. Frystyk,Hypertext Transfer Protocol—
HTTP/1.0, document RFC 1945, 1996.

HAYATO SHIMAMOTO received the B.Eng.
degree in engineering science from Osaka Uni-
versity, Japan, in 2016, and the M.S.Eng. degree
from the Graduate School of Information Science
and Technology, Osaka University, in 2018. His
research interest includes information security.

NAOTO YANAI received the B.Eng. degree from
The National Institution of Academic Degrees and
University Evaluation, Japan, in 2009, and the
M.S.Eng. and Dr.E. degrees from the Graduate
School of Systems and Information Engineering,
University of Tsukuba, Japan, in 2011 and 2014,
respectively. He is currently an Assistant Profes-
sor with Osaka University, Japan. His research
interests include cryptography and information
security.

SHINGO OKAMURA received the B.E., M.E.,
and Ph.D. degrees in information science and tech-
nology from Osaka University, in 2000, 2002,
and 2005, respectively. Since 2005, he has been
with Osaka University. In 2008, he joined the
National Institute of Technology, Nara College,
where he is currently an Associate Professor. His
research interests include cryptographic protocols
and cyber security. He is amember of IEICE, IEEJ,
ACM, and IACR.

VOLUME 7, 2019 74959



H. Shimamoto et al.: Towards Further Formal Foundation of Web Security

JASON PAUL CRUZ received the B.S. degree in
electronics and communications engineering and
the M.S. degree in electronics engineering from
Ateneo de Manila University, Quezon, Philip-
pines, in 2009 and 2011, respectively, and the
Ph.D. degree in engineering from the Graduate
School of Information Science, Nara Institute of
Science and Technology, Nara, Japan, in 2017.
He is currently a Specially Appointed Assistant
Professor with Osaka University, Osaka, Japan.

His current research interests include role-based access control, blockchain
technology, hash functions and algorithms, privacy-preserving cryptography,
and Android programming.

SHOUEI OU received B.Eng. degree in engineer-
ing science fromOsaka University, Japan, in 2018,
where he is currently pursuing the M.S. degree
with the Graduate School of Information Science
and Technology. His research interest includes
information security.

TAKAO OKUBO received the M.S. degree in
engineering from the Tokyo Institute of Tech-
nology, in 1991, and the Ph.D. degree in infor-
matics from the Institute of Information Security,
in 2009. From 1991 to 2013, he was a Researcher
in software engineering and software security with
Fujitsu Laboratories. In 2013, he moved to the
Institute of Information Security as an Associate
Professor. He is currently a Professor with the
Institute of Information Security, Japan. He is a

member of IEICE, IPSJ, ACM, and IEEE CS. His current interests include
secure development and threat analysis.

74960 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	CONTRIBUTION
	RELATED WORKS
	FORMAL METHODS FOR THE WEB
	FORMAL METHODS IN ALLOY
	WEB SECURITY
	STATE-OF-THE-ART FORMAL METHODS

	PAPER ORGANIZATION

	PRELIMINARIES
	FORMAL METHODS
	OVERVIEW
	SECURITY MODEL
	ALLOY ANALYZER

	WEB PLATFORM
	HYPERTEXT TRANSFER PROTOCOL (HTTP)

	CURRENT WEB SECURITY MODELS AND THEIR TEMPORAL LOGICS
	THREAT MODEL
	BASIC MODEL
	COOKIE MODEL
	PROBLEMS WITH CURRENT MODELS

	PROPOSED SYNTAX OF TEMPORAL LOGIC IN ALLOY
	MAIN IDEA
	EXPRESSION OF TEMPORAL AXIS
	GENERAL STATE CLASS
	PREDICATE THAT DECIDES THE LAST STATE
	PREDICATE THAT DECIDES THE INITIAL STATE

	PROPOSED MODEL
	FEATURES OF THE PROPOSED MODEL
	CACHE
	INTERMEDIARY
	HTTP HEADER
	BROWSER
	THREAT MODEL
	SECURITY REQUIREMENTS

	CLASS OF CACHE
	CLASS FOR EXPRESSING STATES OF CACHE
	BEHAVIORS OF A CACHE
	STORAGE AND DELETION OF RESPONSES
	REUSE OF RESPONSES
	VERIFICATION OF STORED RESPONSES

	IMPLEMENTATION OF INTERMEDIARY

	CASE STUDIES
	BASIC BEHAVIORS OF A CACHE
	STORAGE OF RESPONSES
	REUSE OF STORED RESPONSES
	VERIFICATION OF STORED RESPONSES

	BASIC BEHAVIORS OF AN INTERMEDIARY
	SAME-ORIGIN BROWSER CACHE POISONING ATTACK
	CROSS-SITE REQUEST FORGERY ATTACK
	CROSS-ORIGIN BROWSER CACHE POISONING ATTACK
	WEB CACHE DECEPTION ATTACK

	CONCLUSION
	REFERENCES
	Biographies
	HAYATO SHIMAMOTO
	NAOTO YANAI
	SHINGO OKAMURA
	JASON PAUL CRUZ
	SHOUEI OU
	TAKAO OKUBO


