
Received March 18, 2019, accepted April 6, 2019, date of publication April 12, 2019, date of current version April 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910859

Implementation of Encryption Algorithm
and Wireless Image Transmission
System on FPGA
CHENG-HSIUNG YANG 1, HOU-CHENG WU1, AND SHUN-FENG SU 2
1Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, Taipei 106, Taiwan
2Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Corresponding author: Cheng-Hsiung Yang (yangch@mail.ntust.edu.tw)

This work was supported by the Ministry of Science and Technology, Taiwan (ROC), under Grant MOST 107-2221-E-011-091-.

ABSTRACT In this paper, we proposed to improve bit insertion based on the common chaotic encryption
algorithm, which reduces the computational complexity of the chaotic encryption algorithm and is used
on low computational systems. We changed the encryption steps from permutation to XOR and XOR to
bit insertion, which is our proposed bitwise operation based on encryption. Next, we proposed a four-
dimensional chaotic system using the discrete time signal of the chaotic system for the key generator
and optimized the floating point operation as well as FPGA resources of the chaotic system. Then,
we implemented the algorithm on our Nios II-based wireless image transmission system, where the system’s
processor clock is 50 MHz. Finally, we performed a security analysis on our encryption algorithm, and the
results show that our proposed algorithm consumes less computing resources while maintaining sufficient
security.

INDEX TERMS Chaotic system, XOR, bits insertion, image encryption, FPGA.

I. INTRODUCTION
We have to believe the chaotic characteristics are important
and desire to apply chaotic encryption algorithms to mobile
phones, smart home appliances and other devices. However,
after studying the common encryption algorithm [1]–[6],
we find that the algorithm needs to be upgraded in terms of
security and computational requirements. In addition, some
authors of chaotic encryption algorithms claim that chaotic
encryption algorithms have faster speeds, and even claim that
their algorithms are for low-performance systems. However,
the proposed algorithm uses a Core 2 Duo processor to oper-
ate in a Matlab environment [44], or [45] uses a 50 × 50
grayscale image test result and shows an 128×128 encryption
time. These are not real low-performance systems or com-
monly used file types.

Therefore, in order to solve the controversy of non-
use of low-performance systems, we will build a 50 MHz
FPGA-based Nios II system and implement our algorithm on
this system. And we design our chaotic encryption algorithm

The associate editor coordinating the review of this manuscript and
approving it for publication was Rasheed Hussain.

based on the common file types, simplified operations, and
enhanced differential attack resistance [22]–[29].

For the diversity of encryption algorithms, we consider
the chaotic characteristics and hope to apply chaotic encryp-
tion algorithms to mobile phones, smart home appliances
and other devices. However, after studying the traditional
encryption algorithm, we find that the algorithm needs
to be improved in terms of security and computational
requirements.

The traditional chaotic encryption algorithms usually con-
sist of two steps. The first step is to perform complex and
time-consuming element permutation operation on the plain-
text. The second step is to use the iterative value of the
chaotic map as a fixed key to perform an XOR operation
with the ciphertext generated in the first part. Obviously,
this type of algorithm has security issues in the ciphertext
generated in the first step, so the second step of the operation
is needed to encrypt the ciphertext again. In addition, this type
of algorithm is usually only applicable to the specific format
of data types.

For this reason, the encryption algorithm proposed in this
thesis is to improve these two steps and reverse the order of
steps of the traditional chaotic encryptions. First, we designed

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

50513

https://orcid.org/0000-0003-0630-7903
https://orcid.org/0000-0001-9777-128X

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

a four-dimensional chaotic system and a key generator that
adaptively generates a key based on the iterative values of the
chaotic system and the eigenvalues of the plaintext. The key
generator is able to improve the security issues of the second
step of the traditional chaotic encryption algorithms and to
increase the amount of the text required for the differential
attacks. Then, we used the Bits Insertion operation based
on the logical operation and the bit operation to replace the
element permutation operation in the first step of the tradi-
tional chaotic encryption algorithms, which greatly reduced
the time consumed by the encryption operation, and conse-
quently to improve the security [30]–[43].

This paper is organized as follows. Section II presents our
designed a four-dimensional chaotic system, the difference
of the same chaotic system in different numerical operations,
our designed key generator, Bits Insertion scheme, and the
flow of proposed chaotic encryption algorithm. Section III
explains the resource optimization of the chaotic system cir-
cuit and how we implement the wireless image transmission
encryption system on the FPGA. In Section IV, we analyze
the security of proposed encryption algorithm. Finally, sum-
marize the advantages of proposed algorithm in Section V.

II. ALGORITHM DESIGN
In this section, we present the effects of numerical operations
on chaotic systems and apply these effects to our key gener-
ators. Then explain our proposed Bits Insertion encryption.
The encryption and the decryption process of proposed algo-
rithm shown through twoflow charts are described as follows:

A. EFFECTS OF NUMERICAL OPERATIONS
ON THE CHAOTIC SYSTEM
We designed a chaotic system based on the Lorenz attractor
as Equation (1),

ẋ = a (y− x)+ yz+ w
ẏ = bx + cy− xz− ew
ż = x2 − dz
ẇ = x − w

(1)

where parameter values are a = 20, b = 0.5, c = 6.8, d = 8,
and e = 0.5.

FIGURE 1. Two-dimensional phase portraits of proposed chaotic system.

We use ODE45 algorithm in MATLAB, set the ini-
tial values x, y, z, w = [0.1, 0.1, 0.1, 0.1], time interval

FIGURE 2. Lyapunov exponents of proposed chaotic system.

t = [250, 300], and draw two-dimensional phase portraits as
Fig. 1. It can be clearly found that this system has a butterfly-
like orbit with Lorenz’s system in the three dimensions x, y, z.
We continually analyze the Lyapunov exponent of the

system. We refer to the method proposed by Wolf et al. [7]
and extend the MATLAB program proposed by Vasiliy
Govorukhin to calculate the Lyapunov exponent [8] to four
dimensions. The time parameter t cannot be set to the infinity
because it is limited by the computing system, although we
have increased Vasiliy Govorukhin’s original time parameter
from 200 seconds to 300 seconds. We verified all the parame-
ters in the proposed chaotic system, and the results show that
the proposed system is chaotic. The result of a parameter is
shown in Fig. 2.

In order to use the signal of the chaotic system for the key
generator, we use the Euler method to obtain the discrete time
signal of the chaotic system as Equation (2),
x(n+ 1) = {a [y(n)− x(n)]+ y(n)z(n)+ w(n)} h+ x(n)
y(n+ 1) = [bx(n)+ cy(n)− x(n)z(n)− ew(n)] h+ y(n)
z(n+ 1) =

[
x2(n)− dz(n)

]
h+ z(n)

w(n+ 1) = [x(n)− w(n)] h+ w(n)
(2)

where step size h = 0.01.
However, we found that in the single-precision and the

double-precision operations, there are more than 10−6 differ-
ences in less than 100 iterations, and the difference reaches
more than one digit after 1000 iterations. This is because the
binary has a round-off error, so the binary cannot strictly obey
the commutative law or the distribution law in floating-point
operations. One of the characteristics of the chaotic system is
that it is sensitive to errors, which means that we only need
to change the calculation order of Equation (2) to the form of
Table 1, and we will get different results.

The Fig. 3 shows the difference in the x dimension calcu-
lated by the system using Equation (2) and Table 1. When the
system is chaotic (c = 6.8), the difference is sharply enlarged
after t = 50, and when the system is periodic (c = 4.5), the
difference is always maintained below 10−12.

This situation meant to us is to adopt the chaotic system
to generate the encryption key, because even if the chaotic

50514 VOLUME 7, 2019

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

TABLE 1. The calculation order of the chaostic system.

FIGURE 3. The difference in x dimension with Equation (2) and Table 1.

FIGURE 4. The chaotic key generator.

system adopted is public, as long as the precision and order
of the calculation process are non-public, others will not get
the same results.

B. OUR CHAOTIC KEY GENERATOR
Such above keys have some fatal flaws in the resistance of
plaintext attacks. Even if the plaintext is repeatedly encrypted
several times, the ciphertext will still have obvious features
because of the file format feature of the plaintext and the fixed
key, which is conducive to the implementation of the plaintext
attack. Since the XOR algorithm of the fixed key cannot pass
the NPCR test, most chaotic encryption algorithms will use
pixel rearrangement for the secondary-encryption to improve
it, but the paper in Ref. [9] shows that this method is still
not safe.

Therefore, this paper proposes an adaptive key generator
whose length and elements will change with different plain-
text. The key generator is shown in Fig 4. It mainly consists of
Euler method chaotic system and a floating-point multiplier.
The generator can generate the key elements, which are equal
to the dimensions of chaotic system in each step. When the
key generated by the key generator used for the XOR opera-
tion, the effect of confusion and diffusion can be achieved at
the same time.

The floating-point multiplier multiplies the iterative value
of each chaotic system by a shift value calculated from the
plaintext. Then, round the quotient to the integer by an integer
converter. Finally, the remainder of the integer 256-modulo
operation is the output as key elements. These processes are
equivalent of treating the chaos system’s iterative value as a
vector, multiplying the vector by a multiple of the shift value,
and project it onto the 256-plane. The larger the shift value
range, the larger the key space.

The shift value is the sum of the elements of the plaintext as
unsigned integers. Then we take the 1000-modulo operation
and add 100, as in Equation (3),

Shift_Value

=

Plaintext_Length∑
n=1

Unsigned_Plaintextn

%1000+ 100

(3)

where % is the modulo operator, and the result is stored in the
single-precision floating-point format.

The 1000-modulo operation here is that because the single-
precision floating-point number has only 7 significant digits
of decimal digits, the iteration values of the chaotic sys-
tem are up to ten digits. The floating-point multiplication
operation may have 2 digits decimal error, so we conser-
vatively limit the multiplier to about 103. In order to avoid
excessive overflow operation, the randomness of the key will
decrease. The addition of 100 intends to avoid a situation in
which the key has a continuously 0 decreasing randomness
when the shift value is 0 and the chaotic system is near the
equilibrium point (0, 0, 0, 0).

VOLUME 7, 2019 50515

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

TABLE 2. Average entropy of the consecutive keys.

Finally, we examine the minimum range of applicable
XOR encryption for the keys generated by the adaptive
key generator. That is, Entropy is calculated by randomly
256 times consecutive keys, until the average Entropy > 7.9
of the sample taken out, then theminimum effective key avail-
able for XOR encryption is obtained. We take the average
of 1000 samples from each sampling interval and round down
the results to the third decimal place as shown in Table 2.
The result shows that the key generated by our designed
key generator is suitable for XOR encryption of plaintext
over 2.25KB.

C. BITS INSERTION
The common chaotic encryption algorithms are modeled on
the concepts of AES and DES, and the encryption method
can be classified into two steps of XOR operation and per-
mutation, just like the two main methods of the encryption
algorithm proposed by Shannon in Ref. [10]:

1) Diffusion: Making a subtle change in the plaintext
produces a completely different ciphertext, such as
permutation.

2) Confusion: Mask the relationship between plaintext
and ciphertext, such as the XOR operation.

However, these chaotic encryption algorithms often use
a large number of complex operation methods in the
permutation.

TABLE 3. The key length and its expected security age.

Not only is it less efficient than AES and 3DES, but it
also cannot increase security by increasing the length of
the key due to the use of a fixed-length permutation key.
Table 3 shows the key lengths and expected security ages
of AES, RSA, ECC, and other algorithms [11].

In Section III.B, we propose some improvements to com-
mon XOR arithmetic steps for chaotic encryption algorithms.
Using a key generator that is sensitive to the plaintext,
the encryption of the XOR operation has the characteristics of
confusion and diffusion at the same time. And in this section,
we propose a re-encryption schemewith a variable-length key
that also has obfuscation and diffusion characteristics.We call
this the Bits Insertion encryption.

FIGURE 5. Change of bits sequence by bits insertion at position 12.

In the Bits Insertion encryption, we treat the elements of
the XOR encrypted ciphertext as an unsigned integer and
take the value of the 1000-modulo operation as the ciphertext
characteristic. In the Bits Insertion encryption, we treat the
elements of the XOR encrypted ciphertext as an unsigned
integer and take the value of the 1000-modulo operation as the
ciphertext characteristic. And calculate the value Num, which
between 1 and 10, shown as Equation (4),

Num = 1+
1
2
[(Ciphertext_Length %

Ciphertext_Characteristic) % 10]

+
1
2
(Ciphertext_Characteristic % 10) (4)

where % is a modulo operator. This value multiplied by 8 is
the number of bits to insert.

Next, we follow the steps 1 to 4 below to obtain the key
used by the Bits Insertion encryption algorithm. The key is
a sequence showing the position of the insertion bit in the
ciphertext. However, the programming language efficient unit
of operation is a byte, so in steps 5 to 7, we convert the key
to a sequence of numbers representing the bytes’ position,
and a sequence of bit positions in the byte. This improves the
efficiency of algorithmic operation:

Step 1. Change the original input adaptive key generator’s
shift value to the ciphertext characteristic, after the
XOR encryption key is generated.

Step 2. Continue to operate the adaptive key generator
2× Num times to obtain a bit length of 8 × Num
elements as the relative position of the Bits Insertion
sequence, abbreviated as bIRP[].

Step 3. Make ciphertext length in floating-point format
divided by the sum of elements of bIRP[] to get the
quotient in floating-point, abbreviated as FpQ.

Step 4. Have bIRP[] multiplied by FpQ, and then round
down it to the integer to get the absolute position of
the bit insertion sequence, abbreviated as bIAP[].

50516 VOLUME 7, 2019

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

Step 5. Let bIAP[] divided by 8 in the integer format to get
the integer quotient sequence, which is the position
number of the byte used to insert bits in the cipher-
text, abbreviated as PBI[].

Step 6. Take the remainder of bIAP[] in an integer format to
get the number of Bits Insertion positions in the bytes
in the ciphertext, abbreviated as PbI[].

Step 7. View the elements of PbI[]. If PbI [i] is 0, change to 8
and subtract 1 from the corresponding PBI [i] value.

Then we use these two sequences to encrypt the ciphertext
with Bits Insertion. The Bits Insertion encryption is to con-
sider the byte sequence in the ciphertext as a single string
bit sequence. The key for inserting the bit encryption is the
position in the order of 1 from the highest bit of the ciphertext
in bits.

When the encryption of bit insertion, it counts backward
from position 1 to the specified position and inserts a bit of
value 1(b). From the inserted position, the original bits are
all shifted backward. The bit sequence changes when the
specified position 12 is shown in Fig. 5. Each bit insertion
thus causes confusion and diffusion of the ciphertext from the
insertion position until every multiple of 8 times is inserted.

The ciphertext encrypted by the Bits Insertion will have
more Num bytes than the original ciphertext. This can avoid
doing differential attacks on the file header, thus speeding up
the cracking of ciphertext. The number of inserted bits is a
multiple of 8 because the data not reaching 8 bits will result
in the failure to convert to a byte or add complement of 0(b)
to become a byte. These situations will result in the loss of
data, the inability to decrypt, or the number of bits that are
found to be inserted to reduce the difficulty of MIPS attack.
Although the number of 1(b) in the plain text is usually higher
than 0(b), we still insert 1(b). This is because in most cases,
0(b) will be slightly higher than 1(b) in ciphertext encrypted by
XOR operation. Therefore, we choose to insert 1(b) to make
the 0(b) and 1(b) numbers closer and have a higher Entropy,
so we refer to the inserted 1(b) as the noise bit.

In addition, selecting Num as in Equation (4) is due to the
length of the ciphertext, the ciphertext eigenvalues will be
changed after the Bits Insertion encryption, and such changes
will be non-linear. At the same time, to avoid the encryption,
in most cases, will consume more storage and transmission
resources. We consider the following two points:

1) Since the unit size of the hard disk storage, called
‘‘cluster size’’, is set to 4 KB [12] in mainstream
databases such as NTFS. Therefore, any size P bytes
file in the hard disk with a cluster size of 4 KB actually
occupies Q bytes, as in Equation (5).

2) During transmission, the file is cut into packet lengths
and sent one by one. According to IEEE 802.3 speci-
fication [13], there are three types of packets: a basic
frame with a length of 1500 bytes, a Q-tagged frame
with a length of 1504 bytes, and an envelope framewith
a length of 1982 bytes. Basic frame is themost common
primary transmission packet.

After encrypting the ciphertext of R bytes with Bits Inser-
tion, we obtain the other ciphertext of S bytes. If R and S
conform to Equation (6), the ciphertext encrypted by bits
will not require more storage and transmission resources.
Therefore, we conservatively limit Num between 1 and 10 by
taking 10-modulo operation. This makes Bits Insertion
encryption not consume more storage or transmission
resources in most cases.

Q = 4096×
⌈ p
4096

⌉
(5)

⌈
R

4096

⌉
=

⌈
S

4096

⌉
⌈

R
1500

⌉
=

⌈
S

1500

⌉ (6)

where d e is ceiling function.
In the end, we must declare that the Bits Insertion encryp-

tion is not suitable for directly encrypting the plaintext. This
is because the Bits Insertion encryption is used to add noise
in the ciphertext, making differential attack difficultly. How-
ever, the plaintext formed by a fixed block is highly resistant
to the confusion and proliferation caused by Bits Insertion
encryption. After the Bits Insertion encryption, some blocks
still have obvious features. The BMP file is a typical case.

D. FLOW OF ENCRYPTION ALGORITHM
The Fig. 6 shows the flow of the encryption algorithm, where
Shift Value and Ciphertext1 Characteristic are the keys of
XOR and Bits Insertion respectively.

III. FPGA IMPLEMENTAYION
In this section, we are proposing the resource optimization
of the chaotic system circuit on the FPGA and explain the
architecture of the Nios II-based wireless image transmission
system we implemented. The hardware used in this paper is
a pair of DE2-115 motherboards and Terasic RFS daughter
cards. And the system shows as Fig 7.

A. RESOURCE OPTIMIZATION OF THE
CHAOTIC SYSTEM CIRCUIT
We use the adder, substractor and multiplier in the IP core
of Altera’s floating-point arithmetic unit to implement the
circuit. By setting these IP core to the fastest architecture,
the latency of adder, substractor, and multiplier are 7 units,
7 units, and 5 units, respectively. The unit of the latency is the
interval of two clock edge signals. Our key generator and its
chaotic system circuit operate with a 50 MHz clock signal.
With the setting of our condition, each of the adder or the
substractor is constituted by 170 look-up tables (a.k.a. LUT)
and 377 registers (a.k.a. REG). And each of the multiplier
is constituted by embedded 9-bit elements (a.k.a. 7dsp_9bit),
111 LUTs, and 209 REGs.

It can be seen that these floating-point arithmetic units
are very much resource intensive, so we propose a resource
optimization method that is able to reuses– arithmetic units.

VOLUME 7, 2019 50517

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

FIGURE 6. Encryption and decryption flow charts. (a) is encryption flow and (b) is
decryption flow.

FIGURE 7. Wireless image transmission system.

We know that these three types of arithmetic units have the
following three common characteristics:

1) There are two inputs and one output.
2) After any input signal changes, the output after the

latency will change.
3) The sum of the latency of any two units must be greater

than the latency of the third unit.
This means that we can reuse the arithmetic units from step

of second front. Then we can compare the hardware resources
used by the non-reuse with reusing unit architecture as shown
in Table 4. The red numbers in the table indicate that the
arithmetic unit is the reused one. It can be seen through the
proposed method we made to save 1686 REGs, 2329 LUTs,
and 49bits DSPs in this case.

B. ARCHITECTURE OF THE WIRELESS IMAGE
TRANSMISSION SYSTEM
Our wireless image transmission system is based on Nios II
system, a 32-bit RSIC soft-core embedded processor archi-
tecture designed specifically for FPGAs by Altera. We use
Qsys to construct our Nios II system, where the core selection
is the Nios II/f, and use the 50Mhz crystal clock on the

DE2-115 board as the operating frequency of processor and
SDRAM. According to Altera’s manual [14], we understand
that the on-board SDRAM of DE2-115 has two chips, each
with 8M × 16bit × 4bank capacity, and can operate at
50 MHz, 100 MHz, and 133 MHz.

The image encryption wireless transmission system that
we have finally completed includes a SD Card I/O interface,
a VGA display interface, a wireless transmission interface,
and an encryption algorithm. The implementation of these
interfaces and algorithms will be introduced one by one in
the following subsections.

1) SD CARD INTERFACE
The SD Card interface in our system is responsible for
the sender’s plaintext picture read, ciphertext picture write,
and the plaintext picture that the receiver decrypts from
the ciphertext. We use the IP core of the Altera Univer-
sity Program and apply the SD Card interface to our sys-
tem according to the manual [15]. However, this IP core
can only support the FAT16-baed portable driver, and only
has the function of writing a file, and cannot create cor-
responding system data resulting in the file, which can-
not be opened in the windows operating system. Therefore,
when writing the file such as a BMP, we need to create
a blank file in the SD card in advance through the win-
dows operating system for the IP core to write. The file
written by this method will have an additional 0-byte tuple
when closing the file to use the alt_up_sd_card_fclose()
function provided by the IP core, so we do not use
this function.

2) VGA DISPLAY INTERFACE
The VGA display interface is used to instantly display
the plaintext and ciphertext images at the sending end and

50518 VOLUME 7, 2019

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

TABLE 4. Resource consumption with two method.

the receiving end. In this interface, we also use the IP core
of the Altera University Program, which supports image and
video display. According to the manual [16], we use 2MB of
SRAM as the Pixel Buffer, and connect the DMA Controller,
RGB Resampler, and Dual-clock FIFO in order to convert the
24-bit RGB data to the 30-bit VGA RGB data. The Dual-
clock FIFO is responsible for the data transmission of the
50MHz processor and 25MHz VGA port. The VGA port
operates at 25MHz due to the 640× 480 resolution we use.

3) WIRELESS TRANSMISSION INTERFACE
The wireless transmission interface is responsible for the
transmission of ciphertext data between the receiving end
and the sending end. Here we chose to use Terasic RFS
daughter card, which includes gyroscopes, temperature and
humidity sensors, Bluetooth module, and ESP8266 wireless
transmission module. According to the manual [17], [18],
we use the RS-232 serial port as UART channel for trans-
ferring instructions and data between the Nios II system and
the ESP8266.

In testing the wireless transmission module, we found the
following three points:

a) The ESP8266 does not support 5G wireless network
signals. Only 2.4G wireless network signals can be
used.

b) ESP8266 comes with 50 KB memory as a buffer for
receiving and transmitting, as well as store system
configuration parameters and AP mode site-local data.

c) Although the transmission speed can reach 2048 KB
packets every 20 ms, since the data is obtained by using
sprintf() function, the packets at the sending end need to
be cropped in accordance with the line-feed character
to avoid the loss of data received by the receiving end.

Ultimately, our wireless interface receives user commands
through the Terminal Console of the Nios II system. The
interface will search for and connect to the specified
Wi-Fi signal source after the Nios II system is started. After
the connection, the interface will automatically obtain the IP
address. The receiver will request to open the Port number
of the receiving data, and the sending end will send the
ciphertext to the receiving port after the encryption.

4) ENCRYPTION ALGORITHM
According to Section II, we will implement our encryp-
tion algorithm as four functions such as Get_Chaos_Key(),
XOR_BMP(), BI_Encryption(), and BI_Decryption().

Among them, Get_Chaos_Key() will input the transcoded
Shift Value to the Chaos_Key_Generator module on the
FPGA, and obtain the key needed for encryption from the
module. XOR_BMP() is a function used to perform XOR
operation on BMP images. This function will skip the BMP
file header and only encrypt the content so that we can
use the picture viewer to view the ciphertext directly on
the computer. BI_Encryption() and BI_Decryption() are the
encryption function and decryption function of the Bits
Insertion algorithm, respectively. The encryption function
will display the two keys of the encrypted file to the user
through Terminal Console. These two keys are the length
of the plaintext and the characteristic value of ciphertext
before the Bits Insertion encryption. The decryption function
will ask the user for the two keys corresponding to the
ciphertext received to decrypt. Source code posted on my
Github: https://github.com/M10512001/DE2-115.

IV. SECURITY ANALYISIS
In this section, we will verify the security of our proposed
encryption algorithm through histogram analysis, correlation
analysis, differential attack analysis, and entropy analysis.

The test images we use here are Lena, Mandrill (a.k.a.
Baboon), Airplane, and Peppers, taken from The Lenna
Story [19] and The USC-SIPI Image Database [20], respec-
tively. And these images are tested after convert file format
from tiff to 24-bits BMP with Microsoft Paint.

A. HISTOGRAM ANALYSIS
The distribution of pixels is reflected in the RGB histogram,
while the non-uniform distribution of pixels represents the
characteristic plaintext. Therefore, the ciphertext produced
by a secure encryption algorithm should be uniform and
horizontal in the histogram.

The Fig. 8 and Fig. 9 are histogram tests of Lena and
Airplane, respectively, and (a) and (b) are the RGB his-
tograms of the plaintext and its chipertext encrypted by our
proposed chaotic encryption. It can be seen that our proposed
chaotic encryption is safe in histogram analysis.

B. CORRELATION ANALYSIS
The correlation coefficient represents the linear intensity and
direction between the two variables. So, any two adjacent
pixels in the horizontal, vertical, or diagonal directions of
the plaintext image are often predictable, which means that
the absolute value of the correlation coefficient of these

VOLUME 7, 2019 50519

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

FIGURE 8. Histogram of Lena and its ciphertext encrypted by our
proposed chaotic encryption.

FIGURE 9. Histogram of Airplane and its ciphertext encrypted by our
proposed chaotic encryption.

TABLE 5. Comparison of correlation coefficients on horizontal.

two pixels will approach 1. However, almost of two adjacent
pixels in the ciphertext are unpredictable, so the correlation
coefficient of the ciphertext tends to be zero. And getting
closer to 0 means that the security of the encryption algorithm
used is higher.

We calculate the correlation coefficient through Equa-
tion (7),

corr (px, py) =
cov (px, py)
σpxσpy

(7)

cov (px, py) =
1
n

n∑
i=1

(pxi − µpx)(pyi − µpy) (8)

σpx =

√√√√1
n

n∑
i=1

(pxi − µpx)2 (9)

σpy =

√√√√1
n

n∑
i=1

(pyi − µpy)2 (10)

where cov(px, py) is the covariation as in Equation (8), and
σpx and σpy are standard deviations as shown in Equation (9)
and Equation (10), µpx and µpy are the average of px and py,
respectively.

We calculate the correlation coefficients in the three direc-
tions by choosing different relative positions of pxi and pyi.
The test results and comparisons of the ciphertext of Lena,

Mandrill, Airplane, and Peppers encrypted using our pro-
posed chaotic encryption algorithm and the studied encryp-
tion algorithms are shown in Table 5, Table 6, and Table 7.

TABLE 6. Comparison of correlation coefficients on vertical.

TABLE 7. Comparison of correlation coefficients on diagonal.

C. DIFFERENTIAL ATTACK ANALYSIS
Differential attack is a plaintext attack that derives the encryp-
tion key by analyzing the characteristics of the plaintext.
This attack corresponds to the strength of the diffusion
algorithm in the encryption algorithm, that is, the amount of
change in the ciphertext caused by the small difference is in
the plaintext. The security of the differential attack is mainly
analyzed by the number of changing pixel rate (called as
NPCR) and the unified averaged changed intensity (called as
UACI). NPCR is to comparewith the two ciphertext images in
which there are a difference of one pixel between the two, and
here, we would obtain a percentage value as Equation (11),

NCPR =

W∑
i

H∑
j
D (i, j)

W × H
× 100% (11)

D (i, j) =

{
0, if C1 (i, j) = C2 (i, j)
1, if C1 (i, j) 6= C2 (i, j)

(12)

where W and H share the common width and height of the
ciphertext images, and i and j are the pixel positions. D(i, j)
is a comparison function, and Equation (12), C1 and C2 are
two-dimensional matrices of pixel values of two ciphertext
images serving for comparison.

The UACI is the average pixel distance of two ciphertext
images in which there are a pixel difference between the
two plaintexts, and its percentage value calculated as Equa-
tion (13),

UACI =
1

W × H
(
W∑
i

H∑
j

|C1 (i, j)− C2 (i, j)|
255

)× 100%

(13)

whereW , H , i, j, C1, and C2 are the same as in Equation (11)
and Equation (12).

Then we tested 10 times the ciphertext images of Lena,
Mandrill, Airplane, and Peppers encrypted by our proposed
chaotic encryption algorithm with the rounding to fourth
decimal place average of 10 samples, based on the safety stan-
dards of NPCR andUACI proposed by [21], and our proposed
chaotic encryption passed all theoretically critical tests.

50520 VOLUME 7, 2019

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

TABLE 8. Comparison of NPCR and UACI test values.

TABLE 9. Comparison of Global and Local information entropy.

Among them, N ∗βn and (u∗−βn , u
∗+

βn
) are critical values of

NPCR and UACI, respectively, and there are only three kind
of βn: β0 = 0.05, β1 = 0.01, and β2 = 0.001. When
our test values are lower than N ∗βn and u∗−βn , it means that
our ciphertext has only βn+1 probability as a completely
random image, and the test values below the index of β2
means the ciphertext image is not safe enough. And their
values are N ∗0.05 = 99.5893%, N ∗0.01 = 99.5810%, N ∗0.001 =
99.5717%, (u∗+0.05 = 33.5541%, u∗−0.05 = 33.3730%),
(u∗+0.01 = 33.5826%, u∗−0.01 = 33.3445%), and (u∗+0.001 =
33.6156%, u∗−0.001 = 33.3115%), respectively.

However, these tests cannot completely test our ciphertext
images. Take a 512 × 512 size 24bits-BMP image file as
786486 Bytes for example. The ciphertext images of Lena,
Mandrill, Airplane, and Peppers encrypted by our proposed
chaotic encryption algorithm exist extra 4 Bytes, 6 Bytes,
5 Bytes, and 6 Bytes, respectively. Finally, we compare our
test results with the studied encryption algorithm, as shown
in Table 8.

D. INFORMATION ENTROPY ANALYSIS
Information entropy is used to represent the randomness of
data and is calculated as in Equation (14),

H (m) = −
L∑
i=1

P (mi) logb P (mi) (14)

where m represents the type of all existing elements in the
data, the number of types is L. P(mi) means that the mi
type element accounts for the proportion in the data, that is,
the probability that the element in the data is mi. And b is the
number of types of carriers used to represent the data element.
For example, the bit has two types, 1 and 0, so its b = 2.
A 512 × 512 size 24-bits BMP image has 512 × 512 ×

3 bytes representing the pixels, and the byte group of 8 bits
has 256 representative types. Therefore, when we calculate
the information entropy of a 512 × 512 size 24-bits BMP

image, we use the parameter L = 256. Here b is usually used
2 or 28, this theoretically means each byte representing of the
pixels requires 0 to 8 bits or 0 to 1 byte. When the value of
H (m) is closer to 8 (b = 2 and L = 256) or 1 (b = 28
and L = 256), it indicates that the data has no obvious
characteristics, that is, the image data is highly random and
incompressible.

However, global information entropy cannot be compared
among images of different sizes or provide sufficiency to
prove that any block on the ciphertext is sufficiently secure.

Therefore, we refer to the local information entropy test
proposed by Ref. [22], to be that is– randomly sample more
than 30 blocks of 44 × 44 pixel size from the entire picture
need calculating the average value of information entropies
of those samples. This makes the test results of cipher texts
of different sizes comparable in local information entropy.

When the average information entropy (called local infor-
mation entropy) is greater than 7.9, it means that all parts
of the image have a high degree of randomness, that is,
the tested ciphertext has sufficient security. In summary,
the local information entropy is more reliable than the global
information entropy in verifying the security of ciphertext.
Finally, we compare the global information entropy with the
local information entropy of our proposed chaotic encryption
algorithm as shown in Table 9.

V. CONCLUSION
In this paper, we design a new chaotic system based on
Lorenz’s equations and verified it chaotic. After that, we con-
sider the impact of floating-point operation on the chaotic
system and find that difference of calculation by parts leads
to different iteration values of the system after time t > 50s.
Based on this finding, we further discussed the optimization
of the chaotic system circuit that reuses the arithmetic unit,
reducing the iteration time, and applies the optimized circuit
to our key generator.

VOLUME 7, 2019 50521

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

The key generator is designed for the consideration of the
characteristics of confusion and diffusion. And it extracts
the characteristics of the key application object, and then
adaptively generates a key whose content and length are
all changed.

We summarize the traditional chaotic encryption scheme
as the permutation and XOR operation two steps. And we
propose an improvement of the first encryption step, in which
a permutation requiring a large number of complicated calcu-
lations is changed to be the Bits Insertion encryption with an
increase in the length of the key, so that only a single scan
of the file and a small amount of calculation are required to
provide sufficient security and put this encryption step after
XOR operation.

We then applied the key generator and our encryption
algorithm to our Nios II soft-core based wireless transmission
system built on the DE2-115motherboards and RFS daughter
cards. Finally, we use histogram analysis, correlation analy-
sis, differential attack analysis, and entropy analysis to verify
that our proposed encryption scheme has sufficient security.

REFERENCES
[1] C. Hun-Chen, Y. Jui-Cheng, and G. Jiun-In, ‘‘Design of a new cryptogra-

phy system,’’ in Advances in Multimedia Information Processing—PCM.
Berlin, Germany: Springer, Dec. 2002, pp. 1041–1048.

[2] M. Feki, B. Robert, G. Gelle, and C.M. Colas, ‘‘Secure digital communica-
tion using discrete-time chaos synchronization,’’ Chaos, Solitons Fractals,
vol. 18, no. 4, pp. 881–890, Nov. 2003.

[3] J. C. Yen, H. C. Chen, and S.-M. Wu, ‘‘Design and implementation of a
new cryptographic system for multimedia transmission,’’ in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2005, pp. 6126–6129.

[4] C.-H. Yang and S.-J. Huang, ‘‘Secure color image encryption algorithm
based on chaotic signals and its FPGA realization,’’ Int. J. Circuit Theory
Appl., vol. 42, no. 12, pp. 2444–2461, Dec. 2018. doi: 10.1002/cta.2572.

[5] C. Dong, ‘‘Color image encryption using one-time keys and coupled
chaotic systems,’’ Signal Process., Image Commun., vol. 29, no. 5,
pp. 628–640, May 2014.

[6] R. Boriga, A. C. Dǎscǎlescu, and I. Priescu, ‘‘A new hyperchaotic map and
its application in an image encryption scheme,’’ Signal Process., Image
Commun., vol. 29, no. 8, pp. 887–901, Sep. 2014.

[7] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, ‘‘Determining
Lyapunov exponents from a time series,’’ Phys. D, Nonlinear Phenomena,
vol. 16, no. 3, pp. 285–317, Jul. 1985.

[8] Calculation. (2004). Calculation Lyapunov Exponents for ODE. [Online].
Available: https://ww2.mathworks.cn/matlabcentral/fileexchange/4628-
calculation-lyapunov-exponents-for-ode

[9] M. Preishuber, T. Hütter, S. Katzenbeisser, and A. Uhl, ‘‘Depreciating
motivation and empirical security analysis of chaos-based image and
video encryption,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 9,
pp. 2137–2150. Sep. 2018.

[10] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.

[11] V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H. Eberle,
‘‘Speeding up secure Web transactions using elliptic curve cryptography,’’
in Proc. NDSS, vol. 93, no. 11, Feb. 2004, pp. 231–239.

[12] Microsoft. (2018). Default Cluster Size for NTFS, FAT, and exFAT.
[Online]. Available: https://support.microsoft.com/en-us/help/140365/
default-cluster-size-for-ntfs-fat-and-exfat

[13] IEEE Standard for Ethernet, IEE Standards Association, IEEE
Standard 802.3-2012, 2018, pp. 108–111. [Online]. Available:
https://ieeexplore.ieee.org/document/6419735/

[14] Altera University Program. (2015). Using the SDRAM on
Altera’s DE2-115 Board with Verilog Designs [Ebook].
[Online]. Available: ftp://ftp.altera.com/up/pub/Intel_Material/15.1/
Tutorials/Verilog/DE2-115/Using_the_SDRAM.pdf

[15] Altera University Program. (2015). Altera University Program
Secure Data Card IP Core [Ebook]. [Online]. Available:
ftp://ftp.altera.com/up/pub/Altera_Material/15.1/University_Program_IP
_Cores/Memory/SD_Card_Interface_for_SoPC_Builder.pdf

[16] Altera University Program. (2014). Altera University Program
Video IP Cores [Ebook]. [Online]. Available: ftp://ftp.altera.
com/up/pub/Intel_Material/14.1/University_Program_IP_Cores/Audio_
Video/Video.pdf

[17] Terasic. (2016). RFS User Manual [Ebook]. [Online]. Available: http://
www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=
English&No=1025&FID=d1d10684aa5c6a87efc407b52d504104

[18] Espressif Systems. (2018). ESP8266 AT Instruct. Set [Ebook].
[Online]. Available: https://www.espressif.com/sites/default/files/
documentation/4a-esp8266_at_instruction_set_en.pdf

[19] C. Rosenberg (2011), The Rest Lenna Story. [Online]. Available:
http://www.lenna.org/

[20] The USC-SPI Image Database. (2018). SIPI Image Database. [Online].
Available: http://sipi.usc.edu/database/database.php

[21] Y. Wu, J. P. Noonan, and S. Agaian, ‘‘NPCR and UACI randomness tests
for image encryption,’’ Cyber J., Multidisciplinary J. Sci. Technol. J. Sel.
Areas Telecommun., vol. 1, no. 2, pp. 31–38, Jan. 2011.

[22] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and P. Natarajan,
‘‘Local Shannon entropy measure with statistical tests for image random-
ness,’’ Inf. Sci., vol. 222, pp. 323–342, Feb. 2013.

[23] Z. Hua, B. Zhou, and Y. Zhou, ‘‘Sine-transform-based chaotic system
with FPGA implementation,’’ IEEE Trans. Ind. Electron., vol. 65, no. 3,
pp. 2557–2566, Mar. 2018.

[24] P. Gope and T. Hwang, ‘‘A realistic lightweight anonymous authentication
protocol for securing real-time application data access in wireless sensor
networks,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7124–7132,
Nov. 2016.

[25] D. Liu, Z. Liu, Z. Yong, X. Zou, and J. Cheng, ‘‘Design and implementation
of an ECC-based digital baseband controller for RFID tag chip,’’ IEEE
Trans. Ind. Electron., vol. 62, no. 7, pp. 4365–4373, Jul. 2015.

[26] H. Kim, T.-H. Ki, S. Lee, and H.-S. Lee, ‘‘CMOS security-enhanced
passive (SEP) tag supporting to mutual authentication,’’ IEEE Trans. Ind.
Electron., vol. 61, no. 9, pp. 4920–4930, Sep. 2014.

[27] U. Kretzschmar, A. Astarloa, J. Jiménez, M. Garay, and J. D. Ser,
‘‘Compact and fast fault injection system for robustness measurements
on SRAM-based fpgas,’’ IEEE Trans. Ind. Electron., vol. 61, no. 5,
pp. 2493–2503, May 2014.

[28] K.-K. R. Choo, S. Gritzalis, and J. H. Park, ‘‘Cryptographic solutions
for industrial Internet-of-Things: Research challenges and opportunities,’’
IEEE Trans. Ind. Inform., vol. 14, no. 8, pp. 3567–3569, Aug. 2018.

[29] K. Gai and M. Qiu, ‘‘Blend arithmetic operations on tensor-based fully
homomorphic encryption over real numbers,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 8, pp. 3590–3598, Aug. 2018.

[30] Y. Yang, X. Liu, and R. H. Deng, ‘‘Lightweight break-glass access control
system for healthcare Internet-of-Things,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 8, pp. 3610–3617, Aug. 2018.

[31] D. He,M.Ma, S. Zeadally, N. Kumar, andK. Liang, ‘‘Certificateless public
key authenticated encryption with keyword search for industrial Internet
of Things,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3618–3627,
Aug. 2018.

[32] R. Zhou, X. Zhang, X. Du, X. Wang, G. Yang, and M. Guizani, ‘‘File-
centric multi-key aggregate keyword searchable encryption for indus-
trial Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8,
pp. 3648–3658, Aug. 2018.

[33] K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H. Wang, and S. W. Baik,
‘‘Secure surveillance framework for IoT systems using probabilistic image
encryption,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3679–3689,
Aug. 2018.

[34] N. Zhou, H. Jiang, L. Gong, and X. Xie, ‘‘Double-image compression and
encryption algorithm based on co-sparse representation and random pixel
exchanging,’’ Opt. Lasers Eng., vol. 110, pp. 72–79, Nov. 2018.

[35] L. Gong, X. Liu, F. Zheng, and N. Zhou, ‘‘Flexible multiple-image encryp-
tion algorithm based on log-polar transform and double random phase
encoding technique,’’ J. Mod. Opt., vol. 60, no. 13, pp. 1074–1082, 2013.

[36] Y. Zhuang, N. Jiang, Q. Li, H. Hu, and K. W. D. Chiu, ‘‘Towards
professionally user-adaptive large medical image transmission process-
ing in mobile telemedicine systems,’’ Multimedia Syst., vol. 24, no. 2,
pp. 123–145, 2018.

[37] S. Amina and F. K.Mohamed, ‘‘An efficient and secure chaotic cipher algo-
rithm for image content preservation,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 60, pp. 12–32, Jul. 2018.

[38] E. Yavuz, R. Yazici, M. C. Kasapbaşi, and E. Yamaç, ‘‘A chaos-based
image encryption algorithm with simple logical functions,’’ Comput.
Electr. Eng., vol. 54, pp. 471–483, Aug. 2016.

[39] H. Liu and X. Wang, ‘‘Color image encryption based on one-time
keys and robust chaotic maps,’’ Comput. Math. Appl., vol. 59, no. 10,
pp. 3320–3327, May 2010.

50522 VOLUME 7, 2019

http://dx.doi.org/10.1002/cta.2572

C.-H. Yang et al.: Implementation of Encryption Algorithm and Wireless Image Transmission System on FPGA

[40] J. S. Khan and J. Ahmad, ‘‘Chaos based efficient selective image encryp-
tion,’’Multidimensional Syst. Signal Process., vol. 30, no. 2, pp. 943–961,
Apr. 2019. doi: 10.1007/s11045-018-0589-x.

[41] H. Liu and X. Wang, ‘‘Color image encryption using spatial bit-level
permutation and high-dimension chaotic system,’’Opt. Commun., vol. 284,
nos. 16–17, pp. 3895–3903, 2011.

[42] X.-Y. Wang, L. Yang, R. Liu, and A. Kadir, ‘‘A chaotic image encryption
algorithm based on perceptron model,’’ Nonlinear Dyn., vol. 62, no. 3,
pp. 615–621, 2010.

[43] J. S. Khan, M. A. Khan, J. Ahmad, S. Hwang, and W. Ahmed,
‘‘An improved image encryption scheme based on a non-linear
chaotic algorithm and substitution boxes,’’ Informatica, vol. 28, no. 4,
pp. 629–649, Jan. 2017.

[44] S. Bahrami and M. Naderi, ‘‘Image encryption using a lightweight stream
encryption algorithm,’’ Adv. Multimedia, vol. 2012, 2012, Art. no. 767364.
doi: 10.1155/2012/767364.

[45] S. Janakiraman, K. Thenmozhi, J. B. B. Rayappan, and R. Amirtharajan,
‘‘Lightweight chaotic image encryption algorithm for real-time embedded
system: Implementation and analysis on 32-bit microcontroller,’’ Micro-
process. Microsyst., vol. 56, pp. 1–12, Feb. 2018.

Authors’ photographs and biographies not available at the time of
publication.

VOLUME 7, 2019 50523

http://dx.doi.org/10.1007/s11045-018-0589-x
http://dx.doi.org/10.1155/2012/767364

	INTRODUCTION
	ALGORITHM DESIGN
	EFFECTS OF NUMERICAL OPERATIONS ON THE CHAOTIC SYSTEM
	OUR CHAOTIC KEY GENERATOR
	BITS INSERTION
	FLOW OF ENCRYPTION ALGORITHM

	FPGA IMPLEMENTAYION
	RESOURCE OPTIMIZATION OF THE CHAOTIC SYSTEM CIRCUIT
	ARCHITECTURE OF THE WIRELESS IMAGE TRANSMISSION SYSTEM
	SD CARD INTERFACE
	VGA DISPLAY INTERFACE
	WIRELESS TRANSMISSION INTERFACE
	ENCRYPTION ALGORITHM

	SECURITY ANALYISIS
	HISTOGRAM ANALYSIS
	CORRELATION ANALYSIS
	DIFFERENTIAL ATTACK ANALYSIS
	INFORMATION ENTROPY ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	Authors'

