IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 7, 2019, accepted March 19, 2019, date of publication April 1, 2019, date of current version April 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908448

Scene Categorization Model Using Deep
Visually Sensitive Features

JING SHI“', HONG ZHU ', SHUNYUAN YU?, WENHUAN WU 13, AND HUA SHI*

UInstitute of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2Institute of Electronic and Information Engineering, Ankang University, Ankang 710025, China

3Institute of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
4Institute of Sciences, Xi’an Technological University, Xi’an 710021, China

Corresponding author: Hong Zhu (zhuhong @xaut.edu.cn)

This work was supported in part by the Nature Science Foundation of China under Grant 61801005, Grant 61771386, and Grant 61673318.

ABSTRACT Visually sensitive regions in the scene are thought to be important for scene categorization.
In this paper, we propose to utilize the important visually sensitive information represented by deep features
for scene categorization. Specifically, the context relationship between the objects and the surroundings
is fully utilized as the main basis for judging the content of the scene, and combining with the deep
convolution neural networks (CNNs), a scene categorization model based on deep visually sensitive features
is constructed. First, the saliency regions of the scene images are marked according to the context-based
saliency detection algorithm. Then, the original images and the corresponding visually sensitive region
detection images are superimposed to obtain the visually sensitive region enhancement images. Second,
the deep convolution features of the original images, the visually sensitive region detection images, and
the visually sensitive region enhancement images are extracted through the deep CNNs pre-trained on the
large-scale scene dataset Places. Finally, considering that the deep features extracted by different layers of
the convolution network have different capabilities of discrimination, the fusion features are generated from
multiple convolution layers to construct visually sensitive CNN model (VS-CNN). In order to verify the
effectiveness of the proposed model, the experiments are conducted on the five standard scene datasets,
i.e., LabelMe, UIUC-Sports, Scene-15, MIT67, and SUN. The experimental results show that the proposed
model is effective and has good adaptability. Especially, our categorization performance is superior to many
state-of the-art methods for a complex indoor scene.

INDEX TERMS Scene categorization, deep convolution networks, visually sensitive features, categorization

model.

I. INTRODUCTION
Scene categorization means to classify scene images into dif-
ferent semantic classes based on their contents. As one of the
main problems in computer vision, it has long been deemed
to be a challenging task due to huge intra-class variations and
inter-class ambiguities of scene images. Scene categorization
can be applied to various tasks, such as image retrieval,
human-computer interaction and intelligent robotics.
Appropriate representations are thought to be the most
essential problem in scene categorization. To obtain suit-
able scene representations, researchers have made various
attempts [1]-[4], e.g. directly utilizing global features,
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aggregating local features, and exploring mid-level visual
representations. Although these methods have improved the
performances of scene categorization so well, they rely on
human to design features whose applicability is restrictive
as image representations. Therefore, when the contents of
the scene images are complicated, the categorization perfor-
mances are degraded.

Recently, remarkable successes have been made by con-
volution networks (CNNs) in various visual tasks [5]-[7].
To obtain richer higher-level semantic features from images,
deep convolution networks process raw data via a sequence
of computational units, so that inputs can be trans-
formed into some intrinsic representations. Many methods
based on CNNs have been proposed for scene
categorization [8]-[10], which significantly improve the
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effect of scene categorization. After being trained on large-
scale image datasets, such as ImageNet [11] and Places [7],
CNNSs can generate deep features which represent semantic
information of images.

Although CNNs are powerful in capturing high-level fea-
tures of objects, the representations are sometimes unclear
when used to classify scene images directly. Since most of
the current methods regard the scene as a set of multiple
objects [12], and the description of contextual semantic rela-
tionship between the objects and the surroundings is insuffi-
cient, which affects the performance of scene categorization.

To this end, this paper uses the context-based saliency
detection algorithm [13] to label the visually sensitive regions
which contain the dominant objects and the partial back-
ground regions to express context information of scene
images. Furthermore, the CNNs which are pre-trained on
large-scale scene-centric dataset Places are combined to con-
struct a scene categorization model based on deep visually
sensitive features. By this model, we can capture more spa-
tial structures of scene images and effectively overcome the
limitations of using objects to classify simply, thus obtaining
good categorization performances.

The rest of this paper is organized as follows.
Section 2 presents an overview of the proposed method.
Section 3 addresses the detailed categorization model.
Section 4 analyzes and evaluates the results. Finally, we con-
clude this paper in Section 5.

Il. RELATED WORK

So far, in order to obtain discriminative representations of
scene, a number of scene categorization methods have been
proposed.

A. UTILIZING GLOBAL FEATURES

Originally, scene images are represented by directly extract-
ing the global features of the images [14]. Two representative
features are Gist [15] and CENTRIST [3]. Gist uses spectral
and roughly local information to capture the dominant spatial
structures of the scene images and create an image repre-
sentation [15]. CENTRIST uses a local structure distribution
to capture the general structural characteristics of the scene
images [3].

Although it is usually efficient to calculate the global fea-
tures of scene images, the global features can only capture
the global low-level information in scene images, while many
details in scenes are ignored. As a result the global features
are limited to deal with large variations in scene images,
leading to poor performance in the case of complex scene
categories.

B. AGGREGATING LOCAL FEATURES

Compared with the direct extraction of global features, local
features are more robust against image content and scale
variations. The methods generally represent images by aggre-
gating local features, such as SIFT [16] and HOG [17].
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The methods commonly used local feature clustering are
BoVW [2], Fisher vectors [18] and sparse coding [19].

Compared with global features, the statistical results
of local features have certain semantic information. They
have significantly improved the categorization perfor-
mance [20], [21]. However, since the local features are
created from local image patches, they lack correlation infor-
mation of local image semantics. Furthermore, because the
scene category is a high-level visual concept, there is a
semantic gap between the high-level semantics and low-level
features of the scene images, which lacks sufficient dis-
crimination for the judgment of the scene category. Thus,
the method using local features cannot fundamentally
improve the performance of categorization.

C. MID-LEVEL VISUAL REPRESENTATIONS

To overcome the semantic gap between low-level features and
high-level information, mid-level features that reflect objects
and other parts of scenes are widely used to classify the
scene images. The mid-level features carry more meaning-
ful semantic information and can better reflect the effective
information that determines the scene category in the scene
images.

Doerschet et al. used the mean-shift algorithm to seek
the discriminative modes in the distribution space of image
blocks and create the mid-level scene image representa-
tions [20]. In [21], Izadinia et al. used a joint learning
procedure to learn the appearances and layout of objects
simultaneously from scene categories. Parizi et al. proposed
a latent variable model to represent the scene as a set of
reconfigurable region models [22]. Singh et al. used iterative
and cross-validation methods to obtain discriminative image
patches as the mid-level representations of images [23].

During the period, people also found that most of
the scenes contain some representative objects or regions,
and sometimes the objects and layouts could be judged
by the extraction and combination of objects. In [24],
Quattoni and Torralba used manual segmentation to obtain
partial regions of scene images and utilize these regions
as valid information of scene categorization, demonstrating
the effectiveness of the method. Furthermore, many effec-
tive methods using region information of scene images are
proposed [4], [24]-[26].

The mid-level visual expressions overcome the disadvan-
tages of low-level features lacking semantic description of
images and high-level features modeling difficultly [27].
However, middle-level features are difficult to construct and
generalize. Therefore, its development is limited.

D. EXPRESSION OF CNNs FEATURES
At present, the scene categorization algorithm based on deep
learning has made a significant breakthrough, and more and
more researchers use convolution neural networks to solve
the problem of scene categorization [5], [7], [8]-[10].

To obtain better categorization results, Donahue et al.
used CNNs trained on the dataset ImageNet for scene
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categorization [5]. Zhou et al. proposed a large-scale scene-
centric dataset Places to train CNNs, which significantly
improves the performance of scene categorization [7].
Bai et al. proposed the transfer knowledge learning by CNN's
from object-centric dataset to construct scene-specific object
models for scene categorization [10]. Herranz et al. used
scale-specific CNNs and multi-scale architectures to learn
the knowledge of objects and scenes for classifying scene
images [8].

Although the above methods have achieved obvious cat-
egorization effects, most of them just use a single layer
of CNNs [5], [7]-[9]. The different layers of CNNs can gen-
erate different abstract patterns, but the single layer features
cannot effectively utilize the multiple layer abstraction and
expression of scene images. Therefore, in this paper, we pro-
pose to obtain scene images representations by concatenate
multiple layers deep visually sensitive features of CNNs for
scene categorization.

ill. FRAMEWORK OF THE PROPOSED METHOD

In order to adapt to the diversity of scene images, we uti-
lize the context-based saliency detection algorithm and deep
convolution networks to build a scene categorization model,
so that it can represent the deep intrinsic characteristics of the
scene images.

A. VISUALLY SENSITIVE REGION DETECTION

Regions that have a major impact on visual judgment are
called visually sensitive regions, which can be extracted
by the context-based saliency detection algorithm [13]. The
visually sensitive regions extracted fully consider both locally
and globally distinctiveness at multi-scales. The salient
objects together with the parts of regions that surround them
can throw light on the meaning of images. The salient regions
perfectly reflect the context between the objects and the
surrounding regions in the scene, and filter out some repeated
texture information.

According to principles of human visual attention, a pixel
is considered salient if the appearance of the patch centered
the pixel is distinctive with respect to all other image patches.
In addition, positional distance between patches is also an
important factor.

A dissimilarity measure between a pair of patches is
defined as:

dc(pi, pj)

d(p;, pj)) = — 07
PP = T

ey

where pixel i is center pixel of patches p;. dc(p;, p;) is the
Euclidean distance between the vectorized patches p; and p;
in CIEL*a*b color space. dy(p;, p;) is the Euclidean distance
between the positions of patches p; and p;.

For every patch p; at single-scale, we search for the M most
similar patches Fy.7 in the image, according to Equation (1).
A pixel i is salient when d(p;, pj) is high Vm € [1,M].
The single-scale saliency value of pixel i at scale r is
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FIGURE 1. Example of visually sensitive region detection. (a) Original
images. (b) Visually sensitive region detection images.

defined as:

M
1
m=1

In order to make the detected saliency at multiple scales,
it is necessary to calculate the mean of saliency at different
scales:

Si = % DSt @3)
rer
where K denotes the number of scales, R denotes the scale
space.

In addition, it is necessary to modify the saliency according
to the context of images, so that the regions with different
distances from the significant objects have different saliency.
The saliency of a pixel is redefined as:

Si =51 — dp(i)) 4)

where dr(i) denotes the Euclidean positional distance
between pixel i and the closest focus of attention pixel,
normalized to the range [0,1]. The saliency of interesting
background in the neighborhood of the salient objects will
be increased.

Figure 1 shows an example of visually sensitive region
detection. The brightness value in Figure 1(b) is the visual
sensitivity of the position. It can be seen that the sensitivity
of the background area varies with the degree of closeness to
the objects.

B. CONSTRUCTING VISUALLY SENSITIVE REGION
ENHANCED IMAGES
Although the original images contain comprehensive scene
information, they cannot distinguish between valid informa-
tion and invalid information. Although the visually sensitive
region detection images can distinguish different significant
regions, they may lose some detail information that can assist
in expressing image contents. In order to solve this problem,
we propose to superimpose the original images with the
corresponding visually sensitive region detection images to
obtain the visually sensitive region enhancement images.
The superimposed form is as follows:

Je(i. ) = fs . ). * f (i, ) &)

fe(i,j) denotes the visually sensitive region enhancement
image, -* denotes dot product operation, f;(i, j) denotes the
visually sensitive region detection image, f (i, j) denotes the
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FIGURE 2. Visually sensitive region enhancement. (a) Original images.
(b) Visually sensitive region. (c) The result of detection images
product (a) and (b).
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FIGURE 3. Schematic diagram of generating deep convolution features
utilized the full-connection layers of Alexnet CNN model.

original image. They are normalized to the range [0, 1] before
superimposing.

Figure 2 shows visually sensitive region enhancement.
It can be seen from Figure 2(b) that the visual sensitiv-
ity of different regions in the scene is different, and some
repeated textures and insignificant region information in the
scene are effectively suppressed, such as lights of the library,
doors of the bedroom. The superimposed image supplements
some detail information (transition regions between sensitive
regions and insensitive regions) on the basis of preserving
visual sensitivity.

C. DEEP VISUALLY SENSITIVE FEATURES
The original image, the visually sensitive region detection
image and the visually sensitive region enhancement image
are respectively input into an existing AlexNet CNN model,
which consists of convolution layers, pooling layers and full-
connection layers to extract deep convolution features. The
model has been pre-trained on the large-scale scene dataset
Places. Because the deep features from different layer of
CNNs correspond to different levels of abstraction of input
images, we use representations from multiple layers of CNNs
for classifying scene images.

Figure 3 shows the schematic diagram of generating deep
convolution features utilized the full-connection layers of
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Alexnet CNN model. The 4096-dimensional output features
of the FC7 and FC6 are concatenated to generate deep con-
volution features of input image. The calculation formula is
as follows:

Fe = [Fy7, Freel (6)

where F. denotes the deep convolution features of input
image, Ff7 is the output features of FC7, Fyg is the output
features of FC6.

After that, to mark different visually sensitive regions and
preserve some details information, the deep convolution fea-
tures of the original image, the visually sensitive region detec-
tion image and the visually sensitive region enhancement
image of the same image are concatenated, generating deep
visually sensitive features. The form is as follows:

FVS—CNN = [F¢, Fe—s, Fe_¢] (7)

where Fys_cnny denotes deep visually sensitive features of
the image, F,, F._s and F._, are the deep convolution fea-
tures of the original image, the deep convolution features
of visually sensitive region detection image, and the deep
convolution features of visually sensitive region enhancement
image, respectively.

The deep visually sensitive features extracted from train-
ing images of Benchmark datasets are input into the SVM
to train a linear SVM classifier for each scene category.
Since the extracted features contain not only the context
semantic relationship between objects and surroundings in
images, but also the deep intrinsic characteristics of the
scene images, the obtained model is called Visually Sensitive
CNN model (VS-CNN).

IV. EXPERIMENTS

A. DATASETS AND SETTINGS

For assessing the proposed method, we conduct exten-
sive experiments on five challenging benchmark scene
datasets that are public available online, i.e. LabelMe(OT)
[15], UIUC-Sports(SE) [12], Scene-15(LS) [2], [15], [27],
MIT67(1S) [23] and SUN [28]. Figure 4 shows the partial
image of each scene dataset. For comparing with the sim-
ilar algorithms, the standard train/test split for the differ-
ent dataset is adopted in experiments. In addition, since the
number of images in different categories of each dataset is
various greatly, in order to maintain the balance of training
data, the same number of samples is randomly selected for
each categories of the same dataset. The experiments are
performed for 10 times with the average accuracy reported.

. LabelMe(OT):This dataset contains 2688 color outdoor
images in eight different categories: MITcoast (360 images),
MITforest (328 images), MIThighway (260 images),
MITinsidecity (308 images), MITmountain (374 images),
MITopencountry (410 images), MITstreet (292 images),
and MITtallbuilding (356 images). The size of images is
256 x 256 pixels. We randomly select 200 images from
each category for training and the rest for testing each time,
respectively.
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(e)

FIGURE 4. The partial images of each dataset. (a) The partial images of
dataset OT. (b) The partial images of dataset SE. (c) The partial images of
dataset LS. (d) The partial images of dataset IS. (e) The partial images of
dataset SUN.

. UIUC-Sports(SE):This dataset contains 1579 color
images in eight sports event categories: badminton
(200 images), bocce (137 images), croquet (236 images),
polo (182 images), rock climbing (194 images), rowing
(250 images), sailing (190 images), and snowboarding
(190 images). The size of images is different. We randomly
select 70 images from each category for training and another
60 images for testing each time, respectively.

. Scene-15(LS):This dataset contains 4485 indoor and
outdoor scene images of 15 different categories, eight
of which are the same as the LabelMe dataset. The
rest categories are bedroom (216 images), CALsuburd
(241 images), industrial (311 images), kitchen (210 images),
living room (216 images), PARoffice (215 images), and store
(315 images). We randomly select 100 images from each
category for training and the rest for testing each time, respec-
tively.

. MIT67(IS): This is a challenging dataset of 15620 indoor
scene images which contains 67 different categories, such as
classroom, library, children-room and so on. We randomly
select 80 images from each category for training and another
20 images for testing each time, respectively.
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. SUN: The dataset is the most challenging dataset for
scene categorization. It contains 397 scene categories and
each has at least 100 images. We randomly select 50 images
from each category for training and another 50 images for
testing each time, respectively.

B. ABLATION STUDIES

In this paper we extract the deep visually sensitive fea-
tures from full-connection layers of Alexnet for representing
images, and train a SVM classifier for scene categorization.
Here, we first investigate the performance of utilizing the
visually sensitive region detection on five scene datasets.
Obtained results are shown in Figure 5.

From Figure 5, it can be observed that the categorization
performance of dataset SUN is improved obviously. The main
reason is that the contents of scene images in this dataset
have rich context relationship. It also shows that the proposed
model has better performance. Furthermore, the categoriza-
tion accuracy for the datasets which contain indoor scenes
has obvious improvement as well, such as datasets LS and IS.
The main reason is that the number of objects is large and
the interrelationship is complex. Therefore, the description
of the context relationship of salient objects in scene images
can fully represent scene properties.

However, the improvement of categorization performance
on dataset SE is not obvious. Because the sports event scene is
composed of persons and surroundings together, and persons
who are not the principal objects for distinguishing scenes can
appear in different scenes. The discrimination of the scene
category is mainly determined by the relationship between
the character action and the surrounding environment.

To evaluate the performance of the proposed categoriza-
tion model which utilizes concatenate features, the VS-CNN
model with output features from the FC6, FC7 and FC6 +
FC7 are compared in terms of accuracy (%) on five datasets,
respectively. The comparison results are shown in Table 1.

From Table 1, we can see that when adopting concatenate
features from the FC6 and FC7, the best categorization result
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TABLE 1. Classification results achieved in terms of accuracy (%) by
utilizing different full-connection layers at the output.

FCo6 FC7 FC6+FC7
oT 98.81 98.62 98.90
SE 96.67 96.46 97.50
LS 97.52 97.18 97.65
IS 79.61 78.36 80.37
SUN 42.04 41.22 43.14

TABLE 2. Classification results achieved in terms of accuracy (%) by
utilizing different input images at the output.

VSR VSE  VSR+ORI VSE+ORI VSR+VSE+ORI
oT 80.69 89.15 95.59 98.71 98.90
SE 66.88 79.79 94.58 96.46 97.50
LS 70.12 84.65 92.56 97.52 97.65
IS 22.61 45.37 69.93 79.63 80.37
SUN 12.34 19.32 30.86 41.55 43.14

is obtained, especially on dataset SUN. Analyzing perfor-
mance layer-by-layer shows that features from FC7 gener-
alize worse than features from FC6. It also reveals that much
of the CNN’s representational power comes from FC6, rather
than from FC7. The experimental results demonstrate that the
accuracy of scene categorization will be limited when only
the single layer features are used and the proposed VS-CNN
model can greatly improve the categorization performance by
effectively fusing the multiple layer features.

Next, to evaluate the impact of different input images
of CNNs on categorization performance, we compare and
analyze experimental results of only utilizing visually sensi-
tive region detection image (VSR), visually sensitive region
enhancement image (VSE), visually sensitive region detec-
tion image together with original image (VSR+ORI) and
visually sensitive region enhancement image together with
original image (VSE+ORI), respectively. Obtained results
are shown in Table 2.

By comparing the results in Table 2, we have the fol-
lowing points. First, the performance of VSR+VSE+ORI
is generally better than the other four types input images
and the performance of VSR is the worst. The reason is
that VSR removed some visually insensitive information of
scene images, which demonstrates that it is beneficial to
use ORI data for scene categorization tasks, especially when
the content of scene images is quite complicated. Second,
the proposed model gained the greatest improvement for
dataset IS than the other four datasets. More specifically,
the categorization precision of VSR+-VSE+ORI than that of
VSR is significantly increased by nearly 60% on dataset IS.
The proposed VS-CNN model utilizing superimposing of the
different input images significantly outperformed the other
methods mainly because it takes advantage of the different
details of images, which can properly maintain the structure
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TABLE 3. Confusion matrix of dataset OT.

Categorization 1 2 3 4 5 6 7 8 Recall(%)

MITecoast (1) 159 1 - - - - - - 99.4
MITforest (2) - 128 - - - - - - 100
MIThighway (3) - - 60 - - - - - 100
MITinsidecity (4) - - - 108 - - - - 100
MITmountain (5) 1 - - - 173 - - - 99.4
MITopencountry (6> 4 - - - 1 205 - - 97.6
MITstreet (7) - - - - - - 92 - 100
MITtallbuilding (8) - - - - - - - 156 100

Precision (%) 96.9 99.2 100 100 99.4 100 100 100

Correct: MiTopencountry MiTcoast MITopencountry MITopencountry
Mistaken: MiTmountain  MITforest MiTcoast MITcoast

FIGURE 6. Misclassification examples in the dataset OT.

properties of each feature and adequately exploit the comple-
mentary information between the different features.

C. PERFORMANCE EVALUATION

To demonstrate the effectiveness of the proposed model for
scene categorization, we compare and analyze experimental
results on three datasets using precision and recall criterion.

The confusion matrix of dataset OT is shown in Table 3.
It can be observed that the precision and recall can achieve
100% on ‘MIThighway’, ‘MITinsidecity’, ‘MITstreet’ and
‘MITtallbuilding’ utilizing proposed model. The rest of the
categories can also achieve good categorization results. The
most mistakes are that the ‘MITopencountry’ is misclassified
into the ‘MITcoast’.

The misclassification examples of Table 3 are partially
shown in Figure 6. The first image is to misclassify
‘MITopencountry’ into ‘MITmountain’, the second image
is to misclassify ‘MITcoast’ into ‘MITforest’, and the
last two images are to misclassify ‘MITopencountry’ into
‘MITcoast’. From Figure 6, it can be seen that the reason for
misclassification is mainly that the images contain features of
misclassified scene category.

The confusion matrix of dataset SE is shown in Table 4.
It can be observed that the precision and recall can achieve
100% on ‘Rock Climbing’, ‘rowing’, ‘sailing’ and ‘snow-
boarding’. ‘Bocce’ and ‘croquet’ are the two most confusing
categories, in which bocce has the lowest precision. The main
reason is that the surroundings of the two scene categories are
very similar and the discrimination of the two scenes mainly
depends on the characters behavior. The character actions of
the two scenes are very close, so it is easy to misclassify.

The misclassification examples of Table 4 are partially
shown in Figure 7. The first image is to misclassify ‘bocce’
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TABLE 4. Confusion matrix of dataset SE.

TABLE 5. Confusion matrix of dataset LS.

Recall

Categorization 1 2 3 4 5 6 7 8 Recall(%) Categorizaton 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (%)
badminton (1) 59 1 - - - - - . 983 BON™ oo s Lo oL ey
bocee (2) 1 55 3 1 - - - - 97 B )
croquet (3) -5 55 - - - - - 91.7 '""'(‘;;““‘ U205 . 1 . . o
Kitch
P0.10 (.4) - - - 60 - - - 100 ”'t(i)e" 2 T I
RockClimbing (5) - - - - 60 - - - 100 leu;gS;oom 6 - 3 . s ee
rowing (6) - - - - - 60 - - 100 MITcoast
o ) L T T T
sailing (7) - - - - - - 60 - 100 MITforest
. @ .- - .. -225 - - 12 - - - - 97
snowboarding (8) - - - - - - - 60 100 MIThighway
. 8 - - .- . 160 - - - - - o . 100
Precision (%) 983 902 94.8 984 100 100 100 100 MITinsadecity
©) - -3 - 1 - . 204 - - - - .98l
MITmountain
(10) - - .-l - 213 - - - - . 996
MITopencountry
an - - - - - 101 - - 1 298 - - - - 9%l
MITstreet
(12 - -2 - 1 - - - 1 - - 188 - - - 979
MiTtallbuilding
13) .- T - - - .. 4 - o . 245 - - 957
PARoffice
(14) - - - - - - - - - - - - - 115 - 100
Store
Correct: bocce bocce as e 212 98.6
Mistaken: badminton polo Precision(%) 941 100 94.5 96.4 94.7 95.9 99.1 100 96.2 99.4 97.7 100 99.6 96.6 99.1

FIGURE 7. Misclassification examples in the dataset SE.

into ‘badminton’. The reason is that the throwing action
in ‘bocce’ is similar to the catching action in ‘badminton’.
The second image is to misclassify ‘bocce’ into ‘polo’, that’s
due to the green plants in ‘bocce’ are similar to that in ‘polo’.

The partial categorization results of dataset IS are shown
in Figure 8. It can be seen that the categorization results
of ‘bowling’, ‘cloister’, ‘greenhouse’ and ‘restaurant’ reach
100%, while the categorization result of the ‘deli’ category
is only about 30% at the lowest. It shows that the proposed
model has limited ability to represent ‘deli’ category.

The confusion matrix of dataset LS is shown in Table 5.
It can be observed that the precision and recall can
achieve 100% on ‘CALsuburb’ and ‘MIThighway’.
‘MITopencountry’ is most easily misclassified to ‘MITcoast’.
As shown in the first two images of Figure 9, the texture
information of ‘MITopencountry’ is similar to that of ‘coast’.
The reason for the misclassification of the last two images is
that the tall buildings, clouds, and streetlights are similar to
the buildings of ‘industrial’ scene.

D. COMPARISON TO STATE-OF-THE-ART METHODS

To demonstrate the effectiveness of the proposed method,
we compare it to state-of-the-art methods on five challenging
benchmark datasets for scene categorization. All methods
used for comparison follow the same protocols described in
the experiment setting subsection. The evaluation criterion
for these datasets is the average categorization accuracy over
the 10 splits. Comparison results of the proposed method
to state-of-the-art approaches on five datasets are shown
in Table 6.

From the result, we can see that approaches based on deep
features give superior performances to traditional ones. For
the dataset OT, deep networks trained by using the scene-
centric database Places show better performances than the
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TABLE 6. Comparison to state-of-the-art approaches on five datasets (%).

oT SE LS IS SUN
LGF[1] - 88.52 85.80 - -
02C kernels[31] - 86.02 88.81 39.85 -
ISPR+IFV[35] - 92.08 91.06 68.50 -
ImageNet-CNN[11] 92.83 94.42 84.23 56.79  42.61
Places-CNN[7] 9430  94.12 90.19 68.24  54.32
Hybrid-CNN[7] - 94.22 91.59 70.80  53.86
RF-CNNs|32] - 94.86 - 72.35 -
S”ICA[33] - 95.80 93.1 71.20 -
DDSFL+Caffe[9] - 96.78 92.81 76.23 -
DAG-VggNet19[38] - - - 77.50 -
Scene-specific
objects+Structure - 96.93 - 74.35 -
features[10]
SDO+ fc features[36] - - 95.88 - -
OTC[39] - - 84.40 47.33 34.56
M-CNN]34] - - 87.50 7890  42.40
LRML-PCDM]|29] - 76.97 65.82 - -
DGSK]30] - - 92.30 75.10 -
DFDF|[37] 87.1 76.3 - - -
VS-CNN (Ours) 98.90  97.50 97.65 80.37 43.14

one trained on the object-centric database ImageNet. The
deep features of the proposed method can extract richer
semantic information and represent the association of the
semantic information.

For the dataset SE, what is different is that the pro-
posed method only slightly outperforms ImageNet-CNN [11]
trained on the dataset ImageNet and Places-CNN [7] trained
on the dataset Places. It is mainly due to the strong inter-
ference of the actions of the characters in the sports scenes,
and the sensitive regions often include the people in scenes.
The richness of the sports movement has a certain influence
on the category determination. Furthermore, although Scene-
specific objects+Structure features [10] utilize the structure
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FIGURE 8. The partial categorization results of dataset IS.

and objects information of the scene, the deep visually sensi-
tive features obtained by using the context information of the
visually sensitive regions are obviously more effective.

For the dataset LS, SDO + fc features [36] exploit
the correlations of object configurations among different
scenes by the co-occurrence pattern of all objects across
scenes to choose representative and discriminative objects
which enhance the discriminating ability of inter-class. More-
over, the method represents the image descriptors with the
occurrence probabilities of discriminative objects in image
patches to eliminate the negative effects of common objects.
Although the method considers the correlation between the
objects in the scene, it is still limited to the simple objects,
and the surrounding background area adjacent to the object is
not considered, so the effectiveness is limited.

For the dataset IS, the accuracy of Places-CNN pre-trained
on the dataset Places exceeds that of ImageNet-CNN pre-
trained on the dataset ImageNet by nearly 12%. The reason
is that the spatial structure features of networks trained by
the scenes are more effective for scene categorization. Fur-
thermore, because the variances of indoor scenes are greater,
the randomness is also greater. Therefore, compared to out-
door scenes, the advantage of the proposed method is obvi-
ous. The proposed method obtained better results than the
Hybrid-CNN method, in which image features are extracted
from CNNs pre-trained on a dataset obtained by combining
datasets ImageNet and Places. Our method only uses the
convolution neural network pre-trained by the Places dataset,
and combines the context information of the visually sensitive
region of images to obtain higher accuracy than the Hybrid-
CNN method by nearly 10%.

However, for the dataset SUN, which is the largest
dataset for scene categorization, the performance of the pro-
posed method is lower than Places-CNN and Hybrid-CNN.
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TABLE 7. The parameter training times(s) of the SVM classifier.

Dataset oT SE LS IS SUN

Parameter training 49.01

14.68 79.24
times

1432.62  9348.71

Correct MITopencountry MiTopencountry MITtallbuilding MITtaIIbundlng
Mistaken: MiTcoast MiTcoast Industrial Industrial

FIGURE 9. Misclassification examples in the dataset LS.

The reason is that some regions that cannot represent the
content properties of scenes are extracted as visually sensitive
regions in scene images, resulting in the impact on classifi-
cation accuracy. In future work, we will do more in-depth
research on the utilizing of context information. But it can
be seen that the proposed model still has obvious advantages
compared that of the two methods on the other datasets. It also
shows that the proposed model has good adaptability under
multiple datasets.

In addition, Table 7 shows the parameter training times
of the SVM classifier in the proposed VS-CNN model on
five datasets. The processor is Intel(R) Core(TM) i7-4790,
CPU @ 3.60GHz. The experiments are performed for
10 times for reporting their average time.

V. CONCLUSION

In this paper, a scene categorization model based on deep
visually sensitive features is proposed for scene catego-
rization. To this end, we utilize the context-based saliency
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detection to obtain the visually sensitive regions of scene
images, superimposed with the corresponding original image
to obtain the visually sensitive region enhancement image.
Furthermore, to utilize the complementary information of dif-
ferent layers of deep convolution neural networks, we extract
multiple types of features from images based on its hierarchi-
cal structure and concatenate them as the representations of
scene images.

Because the extracted features by the proposed model
simultaneously describes the object information and the con-
text semantic information between the object and its sur-
rounding scenes in images, the proposed model can obtain
the visual expression of the scene images reasonably by
combining different visual sensitivities with the multi-layer
deep convolution features. Extensive experiments are con-
ducted on the five benchmark scene datasets i.e. LabelMe,
UIUC-Sports, Scene-15, MIT67 and SUN. Experiment
results demonstrate that the proposed method is effective for
scene categorization and can achieve superior results to most
of state-of-the-art approaches.
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