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ABSTRACT The dual-task paradigm is a promising procedure for estimating cognitive status and may
also be collaterally used to reduce cognitive decline and prevent dementia. In this paper, we use the mini-
mental state exam (MMSE) to the assess cognitive status in the elderly as a reference and investigate the
potential of using machine learning for early detecting cognitive impairment in the elderly. Although many
studies have suggested that dual-task performance, in which participants perform a cognitive task while
walking, is associated with cognition, they only considered the correlation between cognitive parameters
and simple gait feature, such as gait speed, through the statistical analysis. We instead use a Kinect sensor
to capture participants’ whole-body movements and extract a rich gait feature that has the ability to exhibit
different tendencies of movements between healthy and cognitive-impaired elderlies. In our experiments,
a classifier based on the dual-task gait feature achieved a higher performance than the one based on the
single-task feature; the performance of the rich gait feature was better than that of a simple one, and; an
optimal detection performance was achieved with an MMSE cutoff score of 25. We positively validated that
the proposed method could early detect elderly with lowerMMSE scores based on dual-task gait feature with
a promising performance. Our approach can support early and automated diagnosis of cognitive impairment.

INDEX TERMS Cognitive impairment, dual-task, elderly, machine learning, signal processing.

I. INTRODUCTION
Dementia is one of the major causes of disability in later
life. According to theWorld Health Organization, the number
of people living with dementia worldwide was estimated at
47 million by April 2017 and is projected to increase to
75 million by 2030. The number of cases of dementia are
estimated to almost triple by 2050 [1]. The principal goals
for dementia care include early diagnosis, as well as detect-
ing and treating behavioral and psychological symptoms [2].
Because no disease-modifying treatments are currently avail-
able, a demand for effective strategies for preventing demen-
tia is increasing [3]. Cognitive decline may be reduced by
aerobic exercise [4], [5], including walking [6], according to
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epidemiological cohort studies. In this research, we tackle an
early diagnosis of cognitive impairment based on dual-task
gait performance.

Lundin-Olsson et al. showed in their seminal work [7] that
older adults who stopped walking when talking exhibited
less safe gait, slower mobility performance, and increased
dependence in activities of daily living. Associations between
cognitive and gait performance in older adults have been
suggested by several studies [8]–[10], and gait impair-
ment or decline have been considered to be possible pre-
dictors of cognitive impairment [11]–[15]. Control over gait
and posture is no longer considered an automatic task, but
rather an attention-demanding one [16]–[18]. Based on these
studies, an underlying assumption for the dual-task gait
assessment is that when walking and an attention-demanding
task are simultaneously performed, the performance
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in either or both tasks can deteriorate because processing
capacity is limited.

Many studies have suggested that dual-task gait perfor-
mance is associated with cognition [19]–[21]. Using dual task
to assess cognition is promising because dual-task assessment
is less influenced by educational level and is functional,
fast, and easily applicable in clinical practice [22]. However,
only simple gait parameters were used with simple statistical
models to carry out a diagnosis of cognitive impairment.
In these work, basic gait parameters, such as gait speed, step
time, step length, support base, and double support phase,
were obtained in different ways by different studies. These
parameters were fed into a statistical analysis to investigate
the correlation to cognitive status as assessed by a test, such
as theMini-Mental State Exam (MMSE) [23] or TrailMaking
Test (TMT) [24]. However, this small number of parameters
may be insufficient not only to assess associations between
cognitive and gait performance but also to estimate the cogni-
tive impairment of participants who actually tend to be highly
variable in their gait performance, especially in the case of a
large sample size.

Recent gait studies have used the Microsoft Kinect sen-
sor [25]–[29] to take the advantage that the whole-body
movement can be modeled in 3D. A depth-sensing camera
allows the Kinect to extract the 3D positions of human body
joints in a two-stage process: a depthmap is constructed using
time-of-flight technology, and then the pose of a user’s body
can be inferred, such as by a machine-learning approach [30].
Compared with conventional motion analysis systems, which
are expensive and require large spaces, the Kinect sensor is
so affordable and portable that it can be used in homes and
elderly facilities.

In this paper, we investigate an ability to detect lower
MMSE scores among the elderly using their dual-task gait
feature extracted via a Kinect sensor, which can lead to a
detection of cognitive impairment. The elderly with lower
MMSE scores may have a tendency to behave differently
from those who are healthy, especially while performing dual
tasks. Such a tendencymay be exhibited by a whole-body gait
feature. In this way, we extract a rich gait feature by applying
a time-frequency analysis to a time series of 3D coordinates
of body joints. Machine-learning algorithm is then used to
distinguish a cognitive impaired elderly from normal healthy
ones. The main contributions of this work are summarized as
follows:
• We propose a quick and automatic solution that detects
lower MMSE scores among the elderly based on their
dual-task gait feature.

• We suggest a signal-processing method for gait fea-
ture extraction with Kinect sensor and an associated
machine-learning technique.

• We compare dual-task gait feature with single-task gait
feature in terms of accuracy in detecting elderly with a
lower MMSE score.

• We investigate an optimal MMSE cut-off score and the
contribution of individual body parts.

The remaining of this paper is organized as follows.
Section II describes participants, dual tasks that the par-
ticipants performed, and measurement of dual-task perfor-
mance. Section III describes gait feature extraction method.
Section IV presents and discusses the experimental results.
Finally, conclusions are stated in Section V.

II. PARTICIPANTS AND DATA ACQUISITION
The sample dataset consists of 27 males and 76 females who
were recruited from the users of health care facilities for the
elderly. Most participants (63) were aged between 68 and
90 years, while remaining ones did not release their ages.
The distribution of genders by age is shown in Fig. 1. All the
participants completed the MMSE [23] and released their
MMSE scores. The MMSE includes a series of questions and
instructions that aim to assess people’s orientation, memory,
attention, recall, and language abilities. The maximum total
score is 30 and the most frequently used cut-off score to
indicate the presence or absence of dementia is 24 [31], [32].
We adopt theMMSE as the gold standard to find the tendency
of cognitive impairment.

FIGURE 1. The distribution of genders by age.

FIGURE 2. The distribution of participants MMSE scores (n = 103).

Fig. 2 shows the distribution of participants’ MMSE
scores. The large difference in number between the two
groups of participants separated by a cut-off score can
cause negative effects on the classification performance of
machine-learning algorithms because trained classifiers are
biased towards the majority class. To address the difficulties,
a discriminative representation for classification should be
acquired.
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A dual task involves walking with a cognitive-loading
condition. We instructed the participants to walk in one spot
to measure the positions of body joints by Kinect. The partic-
ipants performed the following tasks while walking in place
for 1 minute: (1) a dual task of serial ones (counting down
from 100 by ones) [20], and (2) a single taskwithout cognitive
load.

FIGURE 3. Data acquisition and body joints.

Gait was captured by a Kinect sensor, as shown in Fig. 3.
Whole-body movements were obtained as a time series of
coordinates of body joints. We extracted gait feature from
these measurement data, as described in the next section.

III. GAIT FEATURE EXTRACTION
To detect older adults with lower MMSE scores, we used
a linear support vector machine (SVM) model [33] as a
classifier which was trained based on gait feature.

Although single-task gait parameters such as step time can
be associated with cognitive impairment, they are insufficient
for classifying participants through their dual-task perfor-
mance because elderly people are typically unable to main-
tain the rhythm and magnitude of their movements [34]. This
is especially the case when performing dual tasks. Moreover,
such a fluctuation in an individual cannot be represented.
We used the Kinect sensor to measure participants’ whole-
body movements, which were separated into sequences of
coordinates of body joints, as shown in Fig. 4.
While we can observe a participant’s movements in detail

through measurement data, investigating and understand-
ing associations between their cognitive impairment and
the measurement data is difficult. Difficulties in analyzing
measurement data can be caused by individual differences,
nonlinearity, and nonstationarity. A suitable physical feature
should be extracted from the data to exhibit different move-
ment tendencies in participant groups separated according to
their cognitive performance.

We adopted the Hilbert-Huang transform (HHT) [35],
which is designed for analyzing a time series of data that
can be nonlinear and nonstationary. The HHT consists of
the empirical mode decomposition (EMD) [36] followed by
the Hilbert transform. The EMD has been used to classify
electroencephalogram (EEG) signals, which are nonlinear
and nonstationary in nature, with high accuracy [37].

According to the EMD, data may have a finite and often
small number of coexisting simple oscillatory modes of sig-
nificantly different frequencies, one superimposed on the
other. Each component is called an intrinsic mode function
(IMF) and satisfies the following conditions: (1) The differ-
ence between the number of extrema and the number of zero
crossings is less than or equal to one for the entire time series.
(2) The mean value of its upper and lower envelopes equals
zero at any time. Thus, an IMF is almost symmetrical and has
a unique local frequency. The movements of body joints as a
time series of data do not commonly satisfy these conditions
which admit well-behaved Hilbert transforms. Fig. 5 shows
the results of the EMD, i.e., intrinsic mode functions, applied
only to the X coordinate of the data shown in Fig. 4, due
to space limitations. The signals corresponding to relatively
stable body parts, such as the head, shoulders, and spine, tend
to be decomposed into a smaller number of IMFs. Conversely,
the signals obtained from parts whose movements are not
stationary, for example the knees, should be decomposed into
a greater number of IMFs.

With the Hilbert transform, the IMFs yield instantaneous
frequencies as functions of time. The HHT can deal with
nonlinearity and nonstationarity better than the traditional
paradigm of constant frequency and amplitude. The final
result is a time-frequency-energy distribution, designated as
the Hilbert spectrum. Fig. 6 depicts the results of the HHT
for all the data shown in Fig. 4. Focusing on the X coor-
dinates, which correspond to movements perpendicular to
the floor, the power of high frequency bands appear in the
spectrum of the knees, ankles, and wrists. However, they
do not appear in the spectrum of other body parts such as
the head, shoulders, and spine. From the spectrums, we can
observe which body parts moved to a greater extent than
other body parts; for this participant, the knees, ankles, and
wrists moved to a greater extent than the head, shoulders, and
spine.

As shown in Fig. 7, compared with continuous wavelet
analysis, a spectrum obtained using the HHT gives a sharper
frequency resolution. The energy distribution in the time-
frequency domain in the HHT can be regarded as a skeleton
form of that in continuous wavelet analysis [35].

To extract a feature robust against a small fluctuation,
we first divide the Hilbert spectrum into k × l blocks, where
k and l are the number of intervals along the horizontal axis
(frame) and the vertical axis (frequency), and are set experi-
mentally to k = 3 and l = 160, respectively. Then we aggre-
gate amplitudes (or energy) within each block, which yields
a 3 × 160 × 51 = 24, 480 dimensional feature because we
measured three-dimensional coordinates of 17 body joints.
Furthermore, to reduce the number of dimensions and to
make the feature more robust to noise, we apply principal
component analysis (PCA) and use a p-dimensional vector
produced by using only the first p loading vectors as a phys-
ical feature for each participant. A optimal parameter of p is
set by experimentation.
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FIGURE 4. Measured coordinates of a participant’s body joints. X coordinates correspond to movements
perpendicular to the floor, and the plots indicate the participant’s change in behavior over time.

IV. RESULTS AND DISCUSSION
In our experiments, we first explored the optimal MMSE cut-
off score; then compared the performances of the single-task
gait feature versus the dual-task one; compared the perfor-
mances of proposed and the simple gait features at the optimal
cut-off score; and finally, investigated the importance of body
parts by an ablation study. A cut-off score is defined as
follows. With a specified cut-off score, participants are split
into two groups according to theirMMSE scores; those with a
score less than the cut-off score are classified as positive, and
those with a score greater than or equal to the cut-off score
are classified as negative.

We repeated the 5-fold cross-validation procedure
200 times with linear support vector machine (SVM).
Stratified sampling was used so that relative class frequencies
were approximately preserved in each training and test fold.

For each training set, we applied an exhaustive grid search to
choose optimal hyper-parameters of a classifier from candi-
date parameters. To evaluate the classification performance
of our approach, we adopted a receiver operating charac-
teristic (ROC) curve where sensitivity was plotted against
1 − specificity, and where the area under the curve (AUC)
was used [38]. A total of 1000 ROC curves was obtained via
cross-validation and averaged into a curve for performance
evaluation.

A. EXPERIMENT AGAINST MMSE CUT-OFF SCORES
We first sought the optimal parameter of p by fixing the cut-
off score at 25 and checking detection performances (AUC)
against different parameters of p. The experimental result is
summarized in Fig. 8. From the graph, the best detection
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FIGURE 5. The intrinsic mode functions of the X coordinates in the data shown in Fig. 4. (a) AnkleLeft, (b) AnkleRight, (c) ElbowLeft, (d) ElbowRight,
(e) Head, (f) HipLeft, (g) HipRight, (h) KneeLeft, (i) KneeRight, (j) Neck, (k) ShoulderLeft, (l) ShoulderRight, (m) SpineBase, (n) SpineMid,
(o) SpineShoulder, (p) WristLeft, (q) WristRight.

TABLE 1. Comparison among cut-off scores.

performance was found at p = 20. Therefore, we employed
this optimal parameter for p in the remaining experiments.
We then conducted the experiment to compare the classi-

fication performance against cut-off scores for the MMSE.
Fig. 9 shows the corresponding ROC curves. Each cut-off
score split participants into two groups as shown in Table 1.
The largest AUC was achieved when participants were split
according to a cut-off score of 25. The second-largest AUC
was achieved by a cut-off score of 24, which is widely
considered as the standard cut-off score for realizing healthy
and cognitive-impaired. The AUC values with cut-off scores
of 26, 27, and 28 were dominantly smaller than that with
cut-off score of 25. Since the optimal cut-off score is 25,
our method has a capability of early detection of cogni-
tive impairment in comparison with the widely-used cut-off
score of 24.

The optimal cut-off score of 25 suggested from our
experiments is also comparable to those in the litera-
ture [31], [32], while Tombaugh and McIntyre [39] demon-
strated that no single cut-off score serves all purposes, and
Nasreddine et al. [40] noted no optimal single score for
the MMSE. A conclusion drawn from our observations is
that differences in dual-task performance between those with
cognitive impairment and thosewho are healthy allows for the
use of signal-processing and machine-learning techniques to
detect lower MMSE scores in the elderly.

B. COMPARISON BETWEEN DUAL- AND
SINGLE-TASK GAIT FEATURES
We conducted an experiment to compare the classification
performance between single- and dual-task gait features.
In this experiment, the cut-off score for the MMSE was set
at the optimal cut-off score, which split participants into two
groups of 15 positive and 88 negative participants. Single-
task gait feature was extracted from the single-task walking in
place, while dual-task gait feature were extracted from dual-
task walking in place while performing cognitive task.

As shown in Table 2, the performance of dual-task gait
feature is much better than that of single-task feature.
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FIGURE 6. The Hilbert spectrum in log-scale obtained by applying the Hilbert-Huang transform to the data shown in Fig. 4.

TABLE 2. Comparison of areas under the ROC curves among features.

The corresponding ROC curves are shown in Fig. 10. We can
conclude from the comparison that the feature extracted from
the dual-task measurement can better discriminate than the
feature extracted from the single-task measurement.

C. COMPARISON BETWEEN SIMPLE- AND
RICH-GAIT FEATURES
We conducted an experiment to show the advantage of
the proposed (rich) gait feature over a conventional simple

feature also at the optimal cut-off score of 25. We extracted a
simple gait feature as follows:

1) A set of local minima andmaxima (peaks) was detected
from each sequence of coordinates of body joints.

2) A time duration between two peaks was defined as
motion speed, and a difference between two peaks was
defined as motion magnitude.

3) A coordinate sequence was divided into three blocks,
and for each block, motion speed and magnitude were
averaged.

Thus, we obtained three parameters from the motion speed
and magnitude of three coordinates of 17 body joints, which
totaled 306 parameters. In the same way as the rich gait
feature, we used the first 20 loading vectors obtained by PCA.
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FIGURE 7. The wavelet spectrum in log-scale of the data shown in Fig. 4. In comparison with Fig. 6, the Hilbert spectrum gives
a much sharper resolution, seen as higher contrast, in frequency than the wavelet spectrum.

FIGURE 8. Comparison of detection performances against different
parameters of p. The best performance is found at p = 20.

FIGURE 9. Comparison of ROC curves against cut-off scores.

This simple feature imitates single-task gait parameters usu-
ally used in previous studies, but can represent participant’s
movements more expressively.

We compared rich gait feature with simple one extracted
from the dual-task measurement. As shown in Table 3 and
Fig. 11, the proposed rich gait feature based on theHHT could
discriminate better than the simple gait feature could do.

FIGURE 10. Comparison of ROC curves among features.

TABLE 3. Comparison between simple and rich (proposed) gait features
during a dual task.

D. COMPARISON AMONG BODY PARTS
Finally, we conducted an experiment to investigate the impor-
tance of body parts by an ablation study. In other words,
we alternatively excluded gait signal of head, neck, spine,
wrists, elbows, shoulders, hips, knees, and ankles and inves-
tigated the corresponding detection performances (by AUC).
The experiment is summarized in Fig. 12. From the figure,
we see that the best performance was obtained when shoulder
joints were excluded (e.g., AUC = 0.772). This improve-
ment can be explained by the fact that motion of shoulders
was weak and not intentional and hence was considered as
noise. As a result, the exclusion of shoulders motion slightly
improved the detection performance. Similarly, motion of
participant’s head was unrestricted and depended on spon-
taneous participant’s eye gaze and hence the exclusion of
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FIGURE 11. Comparison of ROC curves between simple- and rich-gait
features.

FIGURE 12. Ablation study on the impact of body parts.

head motion also slightly improved the detection perfor-
mance (e.g., AUC = 0.763). On the other hand, motion of
participant’s knees was intentional and usually strong, how-
ever, it depends on the participant’s physical strength more
than on cognitive impairment and hence the exclusion of the
knees motion did not influence the detection performance.
In contrast, the exclusion of motion of participant’s spine,
wrist, or neck significantly reduced the detection perfor-
mance (e.g., AUC = 0.657, 0.661, and 0.680, respectively)
as these body parts played key roles in detecting cognitive
impairment.

V. CONCLUSION
We demonstrated the classification of older adults based
on their dual-task gait feature and achieved reasonable per-
formance. Dual-task gait feature was extracted from the
measurement data while walking in place with a cognitive-
loading condition. Specifically, using the Kinect sensor,
whole-body movements of a participant were measured as
a time series of coordinates of the body joints. The HHT
was employed to extract a high-dimensional gait feature from
the time series data and classifier was trained with linear

SVM models. In the experiments, we found that an optimal
detection performance was obtained at a cut-off score of 25,
which enables a capability of early detection of cognitive
impairment. Further, we also verified that dual-task gait fea-
ture is much more effective than that of single-task one.

In current study, we obtained promising results using
only dual-task gait feature. This is beneficial for medical
doctors to quickly diagnose the cognitive impairment at a
very beginning stage. However, during a dual task, cogni-
tive performance is also important in detecting cognitive
impairment.Moreover, different elderliesmay prioritize tasks
differently depending on their physical and cognitive condi-
tions [41]–[43]. Therefore, employing features of both
physical and cognitive tasks may significantly improve the
detection of cognitive impairment. In future work, we plan
to incorporate features related to cognitive performance to
improve the detection performance. To do so, we need to
automate the cognitive feature extraction, such as by employ-
ing voice recognition, so that the system still can work
automatically.
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