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ABSTRACT A novel silicone rubber elastic key (SREK) is proposed in this paper for surface mounting tech-
nology (SMT) applications. Effects of thermal reflowing stress on the mechanical properties of SMT-SREKs
are investigated. The manufactured SMT-SREKs, which underwent various reflowing conditions in advance,
are subjected to pressing force and fatigue pressing tests. Fatigue lifetime projection model and its predicted
error are then assessed systematically. The thermal degradation of silicone rubber materials is illustrated
through the dynamic mechanical analysis and the Fourier transform infrared spectroscopy experiments. The
mechanical finite element modeling is also conducted to simulate the pressing process. The results show
that the pressing force and tactility of the SMT-SREKs are strongly affected by the reflowing condition,
which contributes to the degradation of the silicone rubber materials. During the fatigue pressing test,
the change rate of tactility increases with the reflowing peak temperature (Tp) and is accelerated by the
repeated reflowing process. Moreover, a linear model can precisely project the tactility before the fatigue
pressing number of 2.0E+6 times, and the impact rate of Tp on tactility with the increasing fatigue pressing
number can be predicted effectively by using a logarithm model.

INDEX TERMS Silicone rubber elastic key (SREK), surface mounting technology (SMT), mechanical
property, degradation, fatigue lifetime, modeling.

I. INTRODUCTION
Silicone rubber is mainly composed of siloxane segments
containing methyl and a small amount of vinyl; this material
has a complex structure created through crosslinking reac-
tions [1], [2]. Given the low cost, good mechanical proper-
ties, and stable electric insulation of silicone rubber material,
it has been widely used in the electronic industry [3]–[6].
Conductive monomer connectors manufactured with silicone
rubber composites are commonly referred to as silicone rub-
ber elastic keys (SREKs). Most electronic products, such
as toys, telephones, mobile devices, computer keyboards,
electronic controllers, and vehicle control systems, need func-
tional SREKs. However, SREKs have several disadvantages.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

First, existing SREKs are generally non-standard parts. Each
electronic product needs a pair of SREK molds. Completely
new mold designs and manufacturing processes are needed
because the requirements of individual products on the shape
and size of SREKs vary and a unified product standard is
lacking. Second, positioning and assembling in the assembly
process of actual SREK applications are conducted artifi-
cially, indicating low production efficiency.

In microelectronic packaging, surface mounting com-
ponents emerged along with surface mounting technol-
ogy (SMT) in the 1980s and brought about a technological
revolution in electronic device applications. The applications
of surface mounting components have many advantages.
For example, the surface utilization percentage of printed
circuit board (PCB) increases, automatic production can be
performed, and the efficiency of assembly production can
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be greatly improved. To address the abovementioned prob-
lems of existing SREKs, a novel type of material called
SMT-SREK has been developed in recent years [7]. The
novel design breaks through the forms of corresponding posi-
tioning design of traditional SREKs with positioning feet.
The traditional assembly efficiency depending on the manual
positioning and assembling can be effectively improved. The
SMT-SREKs bring a qualitative change to traditional SREKs
and their application. The main change for the applications
of novel SMT-SREKs is to undergo the process of ther-
mal reflowing as a new application form. With this change,
the temperature effect on the mechanical performance of
SMT-SREKs becomes a concern.

However, investigations on the temperature influence
on mechanical performance and reliability assessment for
SMT-SREK applications are limited. Some scholars have
studied the mechanical, thermal, and aging properties of sili-
cone rubbers for various applications [8], [9]. For example,
Chandrasekar et al. [10] investigated the aging of silicone
rubber insulation material in a high-temperature environment
and found that thermal aging affects the tensile strength and
storage modulus characteristics of silicone rubber materials.
Chang et al. [11] investigated the temperature and humidity
effect on the aging of silicone rubbers as sealing materials
and found that aging of silicone rubbers becomes more severe
with increasing temperature, mainly resulting from the chem-
ical decomposition of cross-linker units for the connection
of polysiloxane backbones and methyl groups attached to
silicon atoms. Meanwhile, Zhang et al. [12] studied the ther-
mal degradation and thermal stability of conductive silicone
rubber filled with conductive carbon black and found that
thermal degradation of conductive silicone rubber begins at
approximately 350 ◦C and ends at approximately 600 ◦C.
Tan et al. [1] investigated the time-dependent chemical and
mechanical degradation of silicone rubber and found that
temperature has a significant effect on the degradation (i.e.,
the higher the temperature, the faster the material degraded)
and that chemical degradation or mechanical compressive
load affects the mechanical properties. Wu et al. [13] inves-
tigated the aging mechanism of silicone rubber by using
thermal oxidation aging test and X-ray photoelectron spec-
troscopy (XPS) and nuclearmagnetic resonance (NMR) spec-
troscopy analysis. They concluded that the hardness and com-
pression set can increase with aging of silicone rubber, and
also surface roughness and aging can lead to the degradation
of silicone rubber sealing performance.

Many aging problems occur in silicone rubber applications
during long-term usage, which lead to changes in physical
properties [14], [15]. Some researchers found that after long
usage in different environments, the silicone rubber surface
may crack and its tensile strength may decline [16], [17].
Furthermore, the specimen hardness, tensile strength, and
elongation at break may also increase [9], [18], [19].
Zhu et al. [20] studied the surface degradation of unfilled
high-temperature vulcanized silicone rubber resulting from
creeping corona discharges under atmospheric pressure.

FIGURE 1. Schematic of SMT-SREK outline (a) and cross section (b).

They found that obvious cracks and mechanical damages
caused by the corona discharge appear on the aged sili-
cone rubber surface. Kim et al. [21] investigated the adhesion
properties and thermal degradation of silicone rubber by
measuring the activation energy and found that adding carbon
black to the silicone rubber increases the adhesion force sig-
nificantly. For the novel SMT-SREKs, studies on temperature
effect, fatigue, and lifetime prediction are urgently needed to
guide standardization and normalization in the future.

In this work, the manufactured SMT-SREKs, subjected to
different thermal reflowing conditions in advance, are sub-
jected to pressing force and fatigue cyclic pressing tests. The
fatigue lifetime of SMT-SREKs and its predicted error are
evaluated, and a fatigue projection model is created from the
experimental data of the fatigue cyclic pressing test. Mean-
while, dynamic mechanical analysis (DMA) and Fourier
transform infrared (FTIR) spectroscopy are employed to elu-
cidate the thermal degradation of the mechanical properties
of silicone rubber materials in the reflowing process. More-
over, the effect of thermal reflowing stress on the mechanical
performance of SMT-SREKs is analyzed using mechanical
finite element modeling.

II. EXPERIMENTAL METHODOLOGY
A. TACTILITY OF SMT-SREKS
One type of SMT-SREK is manufactured and investigated
in this work. Its structure consists of a base, conical hol-
low elastomer, press lug, conductive carbon point, and two
symmetrical metal feet on the bottom surface of the base
(Fig. 1). A metal holder is connected to the symmetrical
metal feet and embedded in the base. The metal feet protrude
normally 0.1 mm below the base bottom to ensure their
solderability to PCB pads in the thermal reflowing process.
In the manufacturing process of SMT-SREKs, the formed
metal holder with two symmetrical metal feet and the carbon
point are mechanically fixed on a lower mold. Then, a vul-
canization process of silicone rubber paved on the formed
metal holder is conducted with a hot-pressed molding. The
maximum curing temperature in the hot-pressed molding is
approximately 150 ◦C.
Generally, a weight-displacement curve, which is pre-

sented by a double-S curve (Fig. 2), can be generated in the
pressing process of SREKs. The double-S curve consists of
an actuation force curve and a resilience curve. The actua-
tion force can be monitored as the displacement increases
while pressure is loaded on the press lug of the SREK.
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FIGURE 2. Double-S curve of weight displacement generated in pressing
process of SREK.

The resilience can also be detected on the press lug as the
displacement decreases while the pressure is released grad-
ually and the SREK returns to its original shape. The shape
of the double-S curve mainly depends on the elastomer and
the stroke of a SREK. The tactility value (Tr ) is one of the
important indexes to evaluate the mechanical performance of
SREKs. The peak value (Fp) and peak valley value (Fc) on the
S curve are usually applied to calculate Tr with the following
formula:

Tr =
(Fp − Fc)

Fp
× 100%. (1)

Generally, when Tr is relatively large, the resilience (FR) is
very small. In the pressing process of SREK, a failure mode
failing to rebound appears easily. When Tr is very small,
the tactility to press the SREK becomes extremely poor.
Normally, the Tr range of SREKs should be 40%–70%, and
the SREK should be regarded as a failure when Tr is beyond
this range. Tr is regarded as a key parameter in assessing
SMT-SREK mechanical performance.

B. THERMAL REFLOWING STRESS
Compared with the manufacturing process using traditional
SREKs, an additional thermal reflowing process is conducted
for SMT-SREKs. Fig. 3 shows an exemplified profile of the
thermal reflowing process. Normally, four phases are present
in the reflowing profile, including preheating, thermal insu-
lating, soldering, and cooling zones. In this work, the peak
temperature of the reflowing profile (Tp) is regarded as a
critical factor that affects the mechanical performance of
SMT-SREKs (Fig. 3). Three levels of Tp in the same reflow-
ing profile, namely, 235, 245, and 255 ◦C, are involved. The
impact of the repeated reflowing process on the mechanical
performance of SMT-SREKs is also considered. The thermal
reflowing processes are implemented with a desktop reflow-
ing furnace with an error (± 2 ◦C). The Tp in the soldering

FIGURE 3. Schematic of reflowing profile in soldering process.

zone is guaranteed by a thermal monitoring sensor placed on
the PCB surface.

In this work, 20 units are involved in investigating the
effect of reflowing stress on the mechanical properties of
SMT-SREKs. The manufactured SMT-SREKs, subjected to
three thermal reflowing conditions (namely, 235, 245, and
255 ◦C), are submitted to a fatigue cyclic pressing test for
a maximum pressing number of 2.5E + 6 times, and the
weight-displacement curves of the SMT-SREKs are moni-
tored by the weight-displacement test for 5.0E + 5 times
each. Meanwhile, the elastic performance of silicone materi-
als treated with different reflowing profiles is analyzed with
a DMA tester, and the FTIR spectra are measured to illustrate
the degradation of the rubber materials.

Moreover, finite element modeling of the mechanical
pressing process is also implemented with the Ansys soft-
ware to demonstrate the crucial part of SREKs in practical
application. The well-known hyper elastic Mooney–Rivlin
model [22] is employed to match the elastic characteristics
of silicone rubber materials in the SREK model. The SREK
model is set with elastic modulus (2.5 MPa), Poisson’s ratio
(0.48), and density (1100 Kg/m3), and the bottom face of
the base is fixed on a horizontal PCB without movement
to any direction. The press lug is loaded with a downward
displacement, and then a weight-displacement response can
be achieved at the surface of press lug.

The fatigue lifetime of the SMT-SREK and its predicted
error are evaluated. A fatigue projection model is developed
based on the experimental data of fatigue cyclic pressing
testing.

III. RESULTS AND DISCUSSIONS
A. THERMAL DEGRADATION OF MECHANICAL
PROPERTIES OF SMT-SREKS IN REFLOWING PROCESS
The manufactured SMT-SREKs are soldered on a PCB in
thermal reflowing profile with Tp of 235, 245, and 255 ◦C
(marked with reflow 235, reflow 245, and reflow 255, respec-
tively). The pressing forces of SMT-SREKs are measured
with a weight-displacement tester. The pressing force is visu-
ally a double-S curve, including a positive pressing response
trace and a negative direction return response trace (Fig. 4).
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FIGURE 4. Typical pressing force curve of SMT-SREKs soldered on a PCB.

In an actual pressing process, the pressing displacement of the
press lug increases with the gradual increase of the pressing
force loaded on the press lug of a SMT-SREK, and then a
‘‘yielding’’ phenomenon occurs on the press lug while the
pressing force reaches the peak value of Fp, followed by a
significant decrease until the displacement reaches the stroke
of SMT-SREK. Then, the pressing force climbs sharply with
the slight increase of displacement with the deformation of
the press lug and carbon point. Thereafter, the pressure is
released gradually and the SREK returns to its original shape.
Accordingly, the force monitored on the press lug shows a
returning trace and forms a closed double-S curve with the
positive response trace. Tactility is known as a key index
for quantifying the actual feeling of the pressing process and
calculated based on the feature of the double-S curve, that is,
Equation (1).

In this study, 20 units for each condition are measured.
To investigate the impact of repeated soldering process on
the products, one group of SMT-SREKs soldered on a PCB
is exposed to two time reflowing profiles with Tp of 245 ◦C
(marked with 2 ∗ reflow 245). Tr is calculated using equa-
tion (1). Fig. 5 presents the average Tr of SMT-SREKs
that experience different reflowing profiles. The mechanical
properties of silicone rubber materials are highly sensitive to
the increase of subjected temperature [11], and the hardness
and compression set of silicone rubber materials increase
with increasing temperature [9], [13]. A similar decay phe-
nomenon was found in SMT-SREKs subjected to the reflow-
ing process. Notably, Fp and Fc increase with increasing Tp
(inset of Fig. 5). Tr declines gradually with increasing Tp, and
the double reflowing process further exacerbates this decay.
Evidently, the effect of Tp on the tactility of SMT-SREKs
is remarkable. DMA results show the substantial degrada-
tion of mechanical properties for silicone rubber materials
in thermal reflowing stresses (Fig. 6). The pulling force of
silicone rubber materials drops sharply by 20%–40% after
different reflowing conditions. The elastic coefficient of sili-
cone rubber material degrades in a similar manner as Tr with
increasing Tp (Fig. 7).

FIGURE 5. Change in average Tr with increasing Tp (inset: changes of
Fp and Fc forces).

FIGURE 6. DMA test result of silicone rubber materials subjected to
different reflowing conditions.

FIGURE 7. Material elastic coefficient and SREK Tr with increasing Tp.

The FTIR spectra illustrate further the degradation mech-
anisms of silicone rubber materials in different reflowing
processes (Fig. 8 (a)). The broadest and strongest absorp-
tion peaks near 1010 and 1080 cm−1 from the stretching
vibrations of cross-linkers (Si-O-Si bonds) on the backbone
of silicone rubbers decrease significantly after the reflowing
process (Fig. 8 (b)); a similar decline is also observed in the
absorption peak at 793 cm−1 from the coupling of stretching
vibration of Si-C and rocking vibration of−CH3 (Fig. 8 (c)).
A sudden chemical degradation should occur in high
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FIGURE 8. ART–FTIR spectra of silicone rubber materials before/after
reflowing processes.

FIGURE 9. Mechanical stress distribution in pressing process.

reflowing temperature, mainly including de-crosslinking
reaction at cross-linked sites of silicone rubbers and com-
bination reaction on the rubber backbone [1], [9], [11]. Fur-
thermore, the increasing Tp, acting as a thermal shock stress
to silicone rubbers, slightly aggravates the degradation of
most absorption peaks on the FTIR spectra, which results
in the mechanical performance decay law of SMT-SREKs
in various reflowing processes. Evidently, although the dura-
tion of the reflowing process is very short, the tactility of
SMT-SREKs is affected significantly and decreases with the
increase of Tp because of the chemical degradations of sili-
cone rubber materials.

Moreover, a finite element modeling of mechanical press-
ing for SMT-SREKs is conducted in this work (Fig. 9). The
critical part of SREKs in real cycling application is the thin
elastomer. The mechanical stress distribution of SREKs is
located at the circular transition of the conical hollow elas-
tomer, where it connects to the moving lug. The stress con-
centration at the circular transition (point 1) sharply increases
with increasing downward displacement and then reaches a
stable value (Fig. 10). Impressively, the mechanical stresses
at points 1 and 2 rise and then saturate without a droop
until they reach the stroke, rather exhibiting a significant
change from a climbing to a decreasing trend, as shown by the
weight-displacement curve, because the deformed elastomer
of SREKs continues to bend after the yielding moment. The
deformation and stress distribution of the enlarged elastomer

FIGURE 10. Mechanical stress concentration at circular transition
connected to moving lug of SREK. (The inset shows the deformation
process and stress distribution of enlarged elastomer with increasing
downward displacement.)

with the increasing downward displacement are illustrated in
the inset of Fig. 10.

The modeling result implies that failure modes, such as the
crack or low elasticity at points 1 and 2, easily occur in fatigue
testing and actual applications. The mechanical reliability of
SREKs should be a significant concern, particularly when
the impact of thermal reflowing process on the SREKs is
involved.

B. FATIGUE LIFETIME PROJECTION OF SMT-SREKS IN
FATIGUE CYCLIC PRESSING TEST
The fatigue cyclic pressing test is conducted using a pressing
frequency of 60 times per minute after the SMT-SREKs are
soldered on PCB pads with different reflowing conditions.
The SMT-SREKs are grouped according to Tp of 235, 245,
and 255 ◦C. Two additional groups for repeated reflowing
profiles with Tp of 245 ◦C and 255 ◦C (markedwith 2 ∗ reflow
245 or 255) are added for comparison. Three units for each
reflowing condition are tested, and the fatigue cyclic pressing
number is 2.5E+6 times for each sample. The pressing forces
at the various phases of the fatigue cyclic pressing test are
measured. The pressing forces at six phases in the fatigue
cyclic pressing test are provided for the SMT-SREKs sub-
jected to the reflow condition with a Tp of 235 ◦C (Fig. 11).
The mechanical performance of SMT-SREKs exhibits an
obvious decreasing trendwith increasing pressing number.Fp
and Fc (Figs. 12 and 13) degrade significantly in a manner
of exponential law. The increasing Tp can accelerate the
decay rate of SMT-SREK mechanical performance, and the
temperature influence on Fc is more obvious than that on Fp.
Moreover, the repeated reflowing process accelerates the
decay rate before the pressing number of 1.5E+6 times. The
decay rate, to a certain extent, is decreased by the repeated
process while the pressing number is over 1.5E + 6 times
(Figs. 12 and 13). The yield phenomenon for the impact
of repeated reflowing process on the decay rate should be
attributed to the mentioned increase in the hardness and com-
pression set of silicone rubber materials [9], [13]. The change
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FIGURE 11. Pressing forces of SMT-SREKs at six phases in fatigue cyclic pressing test: initial,
5.0E+ 5 times, 1.0E+ 6 times, 1.5E+ 6 times, 2.0E+ 6 times, and 2.5E+ 6 times.

FIGURE 12. Changes in Fp during fatigue cyclic pressing test.

of Tr with increasing pressing number can further illustrate
the degradation of the mechanical properties of SMT-SREKs
(Fig. 14). Indeed, the increasing Tp and repeated reflowing
process greatly affect the SREK tactility. Notably, the impact
of the cyclic fatigue pressing number on Tr exhibits an evi-
dent increasing trend (Fig. 14), which is opposite the effect
of the reflowing thermal stress level on Tr (Fig. 5). The
hardness and elasticity of silicone rubber materials subjected
to increasing reflowing thermal stresses increase gradually
(Fig. 6), and the mechanical elastic performance of SMT-
SREKs declines accordingly after the reflowing processes.
By contrast, Tr increases with the fatigue pressing number
(Fig. 14). The mechanical pressing process should soften the
conical hollow elastomer of SMT-SREKs gradually in the
fatigue test. Moreover, the Tr value depends on Fp and the
difference between Fp and Fc. We believe that the changing
rate of Fp is faster than that of the difference between Fp and
Fc during the fatigue pressing test. Therefore, Tr shows an
increasing trend with the pressing number.

During the cyclic pressing test, the change rate of Tr
increases with increasing Tp and can be speeded up by the
repeated reflowing process before the pressing number of

FIGURE 13. Changes in Fc during fatigue cyclic pressing test.

approximately 1.5E+ 6 times. Meanwhile, with the increase
in cyclic pressing number, Tr is changed in a linear law.
A linear fitted equation with a high fit goodness (R2 = 0.96
for 235 reflows) can be achieved for the relationship between
the pressing number (N) and the Tr normalized to its initial
value as follows:

Tr = a ∗ N + b, (2)

where a and b are the constants of linear fitting on the actual
accumulated database. Evidently, the linearmodel is adequate
for predicting the tactility of SMT-SREKs during the fatigue
cyclic pressing test.

Based on a linear model (Equation 2), the forward Tr ,
as a lifetime index of SMT-SREKs, is projected with the
accumulated Tr , which are received at the pressing number
phase of 1.0E + 6 times. Similarly, a projection of forward
Tr is implemented at the pressing phase of 1.5E + 6 times,
2.0E+6 times, and 2.5E+6 times. The error of predicted Tr to
experimental Tr is less than 1% before the pressing number of
1.5E+6 times and about 8% before 2.5E+6 times (Fig. 15).
Evidently, the prediction of SMT-SREK Tr is effective with
the linear model before the pressing number of 2.5E+6 times.
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FIGURE 14. Tr with increasing fatigue cyclic pressing number.

FIGURE 15. Error of predicted Tr with increasing pressing number for the
reflowing condition at Tp of 235 ◦C.

FIGURE 16. Average errors of predicted Tr with increasing pressing
number for all reflowing conditions.

Moreover, average errors of the predicted Tr to the exper-
imental Tr for three reflowing conditions are provided
(Fig. 16). The average errors before the pressing number of
1.5E + 6 times are less than 4% and less than 7% before
2.0E + 6 times. However, the prediction errors increase by

FIGURE 17. Tr with increasing Tp at different phases.

FIGURE 18. β with increasing fatigue pressing number (inset: error of
forward predicted β).

more than 10% while the pressing number is over 2.5E + 6
times. This sudden increase is attributed to the exacerbating
decay of silicone rubber materials in increasing reflowing
temperatures, such as the degradation of hardness and com-
pression set [13], and significantly affects the mechanical
properties such as tensile strength and elongation [23]. Nor-
mally, the specification on the fatigue pressing number of
general SREKs should be in a range of 1.0E + 5 to 1.0E +
6 times. Therefore, the linear model, which is suitable for
projecting the pressing number within 2.0E + 6 times, can
be applied for most products.

C. Tp EFFECT ON TACTILITY WITH INCREASING PRESSING
NUMBER
Tr of each fatigue testing phase increases regularly in a
manner of linear law with increasing Tp (Fig. 17). The impact
rate of Tp on Tr , abbreviated as β, increases gradually in
a logarithmic law and becomes stable when the pressing
number is over 1.5E + 6 times (Fig. 18). The forward β is
predicted using a logarithm model beginning with the press-
ing cycle of 1.5E+6 times (the inset of Fig. 18). The error of
predicted β to the experimental one is less than 3.5%, which
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indicates that the logarithm model is a good candidate to
express the relationship between β and the increasing fatigue
pressing number. From the standpoint of optimizing long-
term reliability, this finding is helpful to achieve an expected
Tr in the phase of designing a thermal reflowing profile for
manufactured SMT-SREKs.

IV. CONCLUSION
The mechanical pressing force and tactility of SREKs sub-
jected to thermal reflowing degrade considerably although
the duration of the reflowing process is extremely short
because of the sudden thermal degradation of silicone rub-
ber materials. Mechanical reliability is a major concern in
the reflowing process. The circular transition between the
conical hollow elastomer and the moving lug is the most
dangerous position on SMT-SREKs. During the fatigue cyclic
pressing test, Tr linearly changes with the increasing cyclic
pressing number. The linear model is adequate for predicting
the SMT-SREK tactility with an acceptable error before the
fatigue pressing number of 2.0E+6 times. Meanwhile, the Tr
change rate increases with Tp and can be accelerated by the
repeated reflowing process before the pressing number of
approximately 1.5E + 6 times. The logarithm model can
determine the impact rate of Tp on Tr with the increasing
pressing number. The findings of this study are significant
for the qualification and normalization of novel SMT-SREKs
in the future.
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