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ABSTRACT Magnetic induction (MI) communication is a promising technology for next-generation
low-power underwater wireless sensor networks (UWSNs). Clustering algorithm design becomes an impor-
tant and challenging issue in today’s MI-based UWSNs. In contrast to the conventional approaches which
suffer from continuous movement of ocean current and traffic loads in different areas of the network,
we consider a clustering algorithm based on the Voronoi diagram and node density distribution to improve the
energy efficiency and to prolong the network lifetime. In particular, we propose a jellyfish breathing process
for cluster head selection and an automatic adjustment algorithm for sensor nodes. The simulation results
show that the proposed clustering algorithm achieves a high network capacity rate and a good equalization
for the remaining energy.

INDEX TERMS Underwater sensor network, magnetic induction communication, clustering algorithm,
Poisson point distribution, Voronoi diagram, jellyfish breathing process.

I. INTRODUCTION
Underwater wireless sensor networks (UWSNs) have been
applied in various oceanography missions such as disaster
relief, surveillance, and system control of underwater envi-
ronments where the human operation is impossible. A typical
network is an affiliation of sensor nodes that often oper-
ate with irreplaceable batteries and limited storages. The
sensors can also dynamically form a network without any
underlying infrastructure support. Their responsibilities are
to sense objects (e.g., moving, temperature), to process, and
to send the results to the base station directly or to multi-hop
transmissions. Since two-thirds of the Earth is covered by
water, many countries have funded the researches and appli-
cations on this emerging area to investigate and explore
the oceans. Thus, there has been considerable progress on
UWSNs including microelectronics, embedded systems and
telecommunication technologies. Even though the technolo-
gies are well developed, some problems related to wireless
network topology, routing protocol, localization, and energy
efficiency optimization, to name a few, must be investigated
further [1]. Compared to terrestrial wireless sensor networks,
underwater environments are more challenging for wireless
communication.

Recently, magnetic induction (MI) communication is a
promising technique which is not affected by multipath prop-
agation and fading. It uses a magnetic antenna implemented
as a coil to generate a magnetic field in a high-frequency
band. In order to accomplish wireless communication,
a semi-static near field is utilized rather than using the propa-
gating wave. Fundamentally different from the conventional
underwater communication paradigms (e.g., electromagnetic,
acoustic and optical communications), the underwater MI
communication relies on the time-varying magnetic field to
collect information between the transmitting and receiving
coils. Since theMI communication exhibits several promising
features such as constant channel condition, small antenna
size, and negligible multipath-fading as well as silent and
stealth underwater operations, recent research provides the
fundamentals of underwater MI communications including
the MI channel models, MI networking protocols design,
and MI-based underwater localization [1]–[5]. A compari-
son on major characteristics of underwater communication
technologies is given in Table 1. While many research works
are mainly focused on MI-based applications for under-
ground sensor networks, only a few researches in MI-based
communication have been considered in UWSNs. Thus, the
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TABLE 1. Underwater communication technologies.

MI-based applications for UWSNs are still restricted in the-
oretical study.

FIGURE 1. An illustration of an MI communication system.

A communication system that uses MI transmission is
illustrated in Fig. 1. The magnetic antennas at a transmitter
and a receiver are separated by a distance r , which depends
on the coil radius a, the number of turns N , and other
related factors. In order to reduce the receiving power loss,
it needs to employ some relay coils between the transmitter
and the receiver. Those relay coils called MI waveguides do
not require any energy source and processing device. Thus,
the magnetic induction from the MI transmitter can be pas-
sively relayed by them until reaching the MI receiver. How-
ever, the deployment strategy for MI waveguides to connect
a large number of wireless sensor nodes is still a challeng-
ing issue. In terms of topology control, several optimal MI
waveguide deployment strategies have been developed in
one-dimensional (1D) [2]–[5], two-dimensional (2D) [6]–[8]
and three-dimensional (3D) [9]–[13] networks. In fact,
the positions of MI waveguides in 1D space are placed
along a chain such as underground pipeline systems, while
in 2D space they can be placed at any desired positions
by following either random or regular distributions. In [9],
the authors showed that the constructed network according
to the Voronoi-Fermat (VF) algorithm for MI waveguides
could reduce the number of relay coils and greatly enhance
the network connectivity and robustness to node failures.
For example, with a hexagonal tessellation topology and a
random node distribution, the MI network constructed based
on the VF algorithm had the optimal route because it had
planar and geometrical spanner properties with lower power
consumption and high energy efficiency over the network.
In 3DMI-UWSNs, MI nodes can be deployed in a distributed
method by adjusting their positions in the depth of underwater
environments to reduce the overlapping area, thus increase
the coverage of the network [10], [11].

Using the features of the Voronoi diagram, clustering tech-
niques are often deployed for designing an energy-aware and
scalable network. Thus, the simple communication process
of an MI-based UWSN can be divided into three phases.
(i) First, the normal sensors collect the environmental mea-
surements and transmit them to a cluster head (CH) within
their ranges. (ii) Second, the CH collects that information
and sends the aggregated data to a mobile autonomous
underwater vehicle (AUV). (iii) Finally, the AUV collects
the data of all CHs over the network and provides infor-
mation to the system, which is a collection of CHs for
the next round of data aggregation. The energy resource
management during network operation is an important task
to prevent the creation of energy holes, thus prolongs the
network lifetime. An energy hole happens when a normal
node or a CH consumes its energy budget faster than other
sensors. Once this phenomenon appears, no more data can be
transmitted among nodes/clusters. Thus, to keep the energy
conservation, we must concern how to balance load distri-
bution among nodes during the network operations. With
typical physical layers of MI technology and underwater
environment characteristics, designing an appropriate clus-
tering protocol for gathering and aggregating data in an
energy efficient manner faces with different challenges and
constraints such as long communication range of MI coils
and dynamic aquatic environments (e.g., dynamics of ocean
currents).

In this paper, we are interested in designing the clustering
protocol and the dynamic CH selection. From a practical
point of view, the following assumptions have been made.
First, all sensors have the same sensing radius, computing
capability and battery capacity. Second, in order to perform
a realistic simulation of real-life applications, we adopt the
Poisson probabilisticmodel for sensor node distribution in 3D
space. In fact, in a large scale UWSN, since a neighborhood
can consist of a large number of nodes, the expected number
of nearest neighbors of a transmitter must grow logarithmi-
cally with the area. Also, since some nodes in the network
may become invalid under the environment, the network
must run a re-deployment to keep the network connectivity
and coverage. Based on our previous work [10], we propose
in this paper an approach to improve the high-energy node
priority clustering (HENPC) protocol that can balance the
cluster size during network operation. Themain contributions
of this paper are summarized as follows.
(i) We briefly introduce the system model and the motiva-

tion of this work.
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(ii) Then, based on the established system model, we pro-
pose a clustering protocol that includes two main parts.
First, in order to optimize the cluster size, we construct
the jellyfish breathing algorithm based on the node
contribution density. Second, to obtain an appropriate
number of selected CHs, we build a node adjustment
based on the Voronoi diagram.

(iii) Finally, we provide numerical results to show that the
proposed scheme can achieve a higher capacity rate and
longer lifetime than the conventional design [10].

The rest of the paper is organized as follows. Section II
introduces a research background including the related works
and the motivation of this paper. The problem is ana-
lyzed and the improved HENPC protocol is presented in
Section III. In Section IV, the description of performance
metrics and the detailed analysis of the simulation results are
discussed. Finally, the conclusions and future work are drawn
in Section V.
Notations: We use the following notations throughout the

paper. A discrete random variable X ∼ Pois(µ) has a 1D
Poisson distribution with µ ≥ 0 if its probability mass
function is p(k) = e−µµk/k! for k = 0, 1, · · · . We denote
the volume of a set A in 2D space as MA, the number of
points in set A asNA. A counting process X1,X2, · · · is called
the homogeneous Poisson process [14] with intensity λ ≥ 0,
if it satisfies the following two properties. (a) The random
variable NA ∼ Pois(λMA). (b) For any finite set of disjoint
sets {A1, · · · ,An}, their numbers of pointsNA1 , · · · ,NAn are
mutually independent.

II. RESEARCH BACKGROUND
A. RELATED WORKS
As we presented in Section I, in order to balance the overall
energy consumption loads in the network (e.g., reducing the
remaining energy gaps among sensor nodes), there have been
a lot of research works on this issue [6]–[8]. Most of which
assume that sensor nodes have the same capabilities such as
communication range and initial energy, and the sensor node
deployment is homogeneous in some scenarios, while we
assume that the sensor nodes follow the Poisson distribution
and the whole network is divided into a set of hexagonal
clusters. For each cluster, the CH is located at the center of
the hexagon.

In [6], the low energy adaptive clustering hierar-
chy (LEACH) protocol was proposed, in which the distri-
bution and the remaining energy of sensor nodes were not
considered. In this case, some clusters contain many nodes,
while others contain a few ones, leading to high power
consumption in large-size clusters. The LEACH–centralized
(LEACH-C) protocol proposed in [7] is an extension of the
LEACH. A selected CH is based on the gathered information
about node location and energy status. However, although
LEACH-C provides an efficient clustering, it still suffers
from many drawbacks such as equal probability for CH
selection and unbalanced energy loads. When the network
energy is low, a node with low remaining energy still has a

chance to become a CH. Once it becomes a CH, its energy
will drain quickly. To prevent the early death of the CH,
Dajin Wang [8] used a set of fixed hexagonal clusters. The
CH is located in the center of each cluster and equipped
with a powerful transmitter that can communicate with the
autonomous underwater vehicle (AUV) and other CHs. This
approach saves the overall power consumption of sensors in
the cluster, but unfortunately increases the complexity of net-
work deployment because the network adopts two different
types of sensor nodes and needs to plan the CH positions
before placing them into the cluster. In [10], we proposed
a new approach called the HENPC algorithm in which a
CH would be selected according to the remaining energy of
sensor nodes and the geometry distance among them. Also,
the ant colony optimization (ACO) was applied to find the
shortest path for the data collection at the AUV. It has been
shown that the HENPC protocol performs a better energy
coverage and achieves a higher network capacity compared
with those aforementioned conventional approaches.

Despite the fact that the HENPC achieves a good per-
formance in some scenarios, it is still essential to develop
and improve it, especially when deploying the mobile nodes
to collect data in 3D-UWSNs. The mobility of free-floating
nodes brings up another challenge in clustering protocol
design. In order to reduce the wasted energy and to prolong
the network lifetime, one needs to select the optimum CHs
and cluster size for each region. As regarding to the conven-
tional work [10], CHs are selected with a fixed radius, so the
optimal number and distribution of CHs cannot be ensured.
Due to the dynamic aquatic environments, the clustering pro-
cess should be run periodically to adapt the nodes’ locations
as well as decrease communication overheads and energy
consumption over the network. Moreover, adopting single
AUV to collect data works well in medium-sized UWSNs,
but it brings a huge end-to-end delay in larger size networks.
To solve this problem, a 2D query region division algorithm
based on the angle was proposed in [15], where the aggrega-
tion data are constructed in a family-set of a tree that can be
used at the same time.

B. MOTIVATION
We consider a 3D-UWSN with several mobile sinks, mobile
relays (i.e., AUV), and fixed nodes as illustrated in Fig. 2.
In this model, the fixed nodes are randomly distributed at
different depth of water on the seabed to observe or detect
a phenomenon. They are usually equipped with a pressure
sensor that can provide its depth information. They also have
limited power and should preserve their energy. The mobile
relays are AUVs, which are in charge of data collection at
CHs and transmission to the mobile sink at the upper layer.
The mobile sinks are deployed at the surface as buoys and
being aware of their locations via a GPS system. They also
have abilities to communicate with the base station and with
each other on data gathering. In order to adapt to the environ-
ment dynamics and to reduce energy consumption, we adopt
a routing protocol based on a reverse route search in [16] for
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FIGURE 2. An illustration of an MI-based UWSN architecture.

FIGURE 3. Network topology architecture in UWSNs.

data transmission, reception and acknowledgment. Following
this way, by taking advantage of using several mobile nodes
to collect data, we can avoid data redundancy and make the
network more energy efficient and data aggregation. Fig. 3
shows the topology architecture of a three-layer network.
With a clustering protocol, the network organizes the sensor
nodes into different clusters in which a CH in each cluster
will execute data collection and transmission tasks for the
cluster members (CMs) in the cluster. Our goal is to design
a clustering protocol that avoids uneven distribution problem
of CHs and cluster sizes in large-scale 3D-UWSNs. Finally,
these mobile relay nodes will traverse all the CHs to gather
data in a collaborative monitoring mission.

The HENPC algorithm in [10] is a dynamic clustering
protocol, which consists of two phases. (i) The cluster-
ing phase selects appropriate CHs that manage their mem-
ber nodes (MNs) and communicate with mobile relays;
(ii) In order to ensure that every cluster has the similar
number of MNs, the network reorganizes the nodes into
hexagonal clusters. Before the beginning of a new round,
the CHs are re-selected based on a fixed cluster radius and
the remaining energy of all nodes, where the fixed cluster
radius and CHs can determine which nodes are aggregated
into one cluster, and these nodes cannot be selected as CHs
in the current round. Unlike the aforementioned protocols

in [6]–[8], the CHs are selected according to the amount of
remaining energy, i.e., the sensor nodes with more energy
will have a larger probability to become the CH, and they
locate at the centers of the clusters in the HENPC algorithm.
Thus, the HENPC algorithm can establish more efficient
clusters that can balance the remaining energy of each node.
However, it still has some drawbacks to be resolved. First,
it assumes a uniformly distributed random network, e.g., dis-
tributed honeycomb network. Second, distribution density is
not considered, so it is not suitable for randomly distributed
networks in some cases (i.e., some clusters have many MNs),
while others do not. Thus, those clusters withmany nodeswill
quickly drain energy of the CH, which leads to energy hole
creation. To overcome this problem, we propose in this paper
an approach to improve the HENPC algorithm. We also con-
sider the Poisson distribution to provide a better coverage for
large-scale UWSNs and to adapt to the seafloor movements.
Here, the sensor nodes are deployed in a randomly distributed
manner at the seafloor. This difference leads to significantly
different insight and the performance analysis. For a given
area, the UWSN is divided into several clusters based on the
jellyfish breathing process. Then, in order to balance the num-
ber of nodes among clusters, a node adjustment algorithm for
sensor nodes is considered based on theVoronoi diagram after
CH selection.

III. TECHNIQUE TO IMPROVE ENERGY EFFICIENCY
BASED ON HENPC ALGORITHM
In this section, we provide a guide to go through the HENPC
and how to improve it. First, the Voronoi digram is applied
to find an optimal cluster to obtain the best coverage for
the network in the HENPC. By this way, the network is
divided into several Voronoi cells in which each cell has only
one point (that is, CH) located at the center of the cell as
depicted in Fig. 4(a). Here, a CH forms a circle region Di
according to the preset clustering radius. The basic idea is
that they first sort the sensor list in the descending order of
their residual energy. The node with the largest remaining
value will be selected as the CH. The algorithm also guar-
antees that the distances between the CH and its CMs do
not exceed the preset clustering radius. When sensor nodes
are placed according to the Poisson distribution, different
clustersmay have different sizes due to fixed clustering radius
(i.e., when node distribution is concentrated), and the number
of CMs in a cluster is large. Conversely, when nodes are
sparsely distributed, the number of CMs in a cluster is small
(see Fig. 4(b)).

A. CLUSTER HEAD SELECTION
It is assumed that a network is divided into a predefined
number of clusters n. To form clusters with the equal num-
ber of CMs in each of them, all sensor nodes communicate
the information on their positions and the remaining energy
levels with the CHs. Those sensor nodes with high remaining
energy will have chances to become CHs in the next round.
Also, clusters will perform the Jellyfish breathing process
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FIGURE 4. An example of CH selection based on two schemes. (a) HENPC
protocol. (b) Proposed protocol.

(Algorithm 2) to adaptively adjust the cluster size based on
the node density. The act of breathing includes two stages;
contraction and extension. Each node i calculates its own
cluster range Ri, then R = Mean(Ri) will be selected as the
preset clustering radius. We denote Mmin and Mmax as the
lower bound and the upper bound for the number of MNs
in a circle formed by a CH. First, we select the node with
the highest energy as the CH. The CH forms a disk area Dm
according to the preset clustering radius R, and the number
of MNs in D, denoted by Nm. The contraction process is
executed when Nm ≥ Mmax. The clustering radius will be
decreased until the number of the MNs is less than or equal to
Mmax. Otherwise, the extension process will be executed, that
is, if Nm ≤ Mmin the clustering radius will be increased until
the number of MNs in the circle meetsMmax or the clustering
radius reaches the maximum communication distance Rcom
of the node. If Nm ∈ [Mmin,Mmax], the sensor node will be
selected as the next CH. For example, Fig. 4(b) is a result after
applying Algorithm 2.We observe that the number of NMs in
purple circles D3 and D5 is the same, even though their clus-
tering radius are different. Thus, the aim of this algorithm is to
adjust the circle radius based on the node density. Compared
to Fig. 4(a), we can see that our algorithm not only reduces
the number of clusters but also balances the number of NMs
in each circle. Let Pm represents the list after the m-th cluster
is selected. The details of the proposed improvement on the
HENPC algorithm are described in Algorithm 1.

In the next section, we target to balance the number of
MNs among the clusters according to the initial configuration

Algorithm 1 Improved HENPC Algorithm
Input: Sensor nodes {p1, · · · ,pN } and remaining energy for

the given area
Output: CH C

Initialization: Sort amount of remaining energy of each
node in the descending order

1: Set the preset cluster radius Rcom and m = 1
2: while length(Pm) > 0 do
3: Take CHm as the center and Rcom as the radius of the

circle region Dm
4: Calculate the number of MNs N1 in the circle
5: if N1 ∈ [Mmin,Mmax] then
6: Break
7: else
8: Jellyfish breathing process (Algorithm 2)
9: end if
10: if (pj ∈ Dm) and (pj ∈ Pm) then
11: Delete pj from the list Pm
12: end if
13: C = CHm; P ← CMm
14: m = m+ 1;
15: end while
16: return C

FIGURE 5. An example of node adjustment algorithm. (a) Before node
adjustment. (b) After node adjustment.

settings, thus an node adjustment procedure is presented to
obtain the finest clustering strategy. As shown in Fig. 5(a),
we observe that the improved algorithm can reasonably divide
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the network into clusters, where the red nodes are the cluster
heads and the green nodes are the sensor nodes.

B. CLUSTER DIVISION ADJUSTMENT PROCEDURE
Note that by applying the jellyfish breathing process
described in Algorithm 2, each normal node can indicate
which CH is closest to itself. The entire network is reason-
ably divided into several circle regions in which CHs are
located at the center and they almost have the same num-
ber of MNs. However, for accomplishing the coverage task,
we must reorganize the clusters and balance the number of
CMs for the overall network so that clusters have almost
the same number of CMs. In order to do that, we propose
an automatic node adjustment algorithm which is described
in Algorithm 3.

Algorithm 2 Jellyfish Breathing Process
Input: MNs, CHm, Rcom, Mmin, Mmax
Output: Circle region Dm
Contraction process:
1: if Nm > Mmax then
2: while (N1 > Mmax) do
3: R(m) = (1− α)R(m);
4: Update the circle region Dm using R(m)

5: Calculate the number of MNs Nm in the Dm
6: end while
7: end if

Extension process:
1: if Nm < Mmin then
2: while (Nm ≤ Mmin) and (R(m) ≤ Rcom) do
3: R(m) = (1+ α)R(m)

4: Update the circle region Dm using R(m)

5: Calculate the number of MNs Nm in the circle
6: end while
7: end if

return Circle region Dm

By applying the Voronoi diagram, we divided the network
area into several Voronoi cells V (CHi) (i = 1, · · · ,m) based
on the density of sensor nodes. In particular, in this paper we
assume that the distribution of sensors follows the Poisson
distribution with a given node density. A set of all sensor
nodes closer to a CH CHi ∈ C than any other CH CHj 6=
CHi (i, j = 1, · · · ,m, i 6= j,CHj ∈ C) is defined as the
Voronoi cell for CHi [17]. Mathematically, for a network of
n distinct nodes {p1, · · · ,pn}, we write

V (CHi) = {pk : ||CHi − pk || ≤ ||CHj − pk ||,∀i 6= j}. (1)

Although the Voronoi diagram allows MNs to find their
nearest CHs, sometimes it leads to uneven allocation among
MNs (see Fig. 5(a)). Thus, we have to balance the cluster size
among those cells by applying an automatic node adjustment
algorithm which is described in Algorithm 3. The main task
of this algorithm is to check the numbers of NMs in the circles

formed by given CHs, then to rearrange a number of redun-
dant nodes according to the predefined parameters (Mmin and
Mmax). For instance, if the number of CMs Ni in a cluster is
smaller thanMmin, other normal nodes nearby the CH will be
assigned to the cluster until Ni reaches Mmin, and vice versa.
A numerical study case is shown in Fig. 5, which compares
the network division results before and after running the
proposed node adjustment. From the figure, we observe that
for both cases clusters are consistent with good coverage
and CHs are well-distributed in the network area. After node
adjustment as illustrated in Fig. 5(b), the numbers of CMs
among clusters are almost equal, which yields a balanced load
allocation result.

IV. PERFORMANCE EVALUATION AND ANALYSIS
A. COMPLEXITY ANALYSIS
The complexity of Algorithm 1 includes two parts. The
procedure of sorting sensor nodes based on their remaining
energies requires a complexity of O(n2). To select a CH,
it takes O(m) to calculate the number of MNs in each circle
regions, O(n) to perform the jellyfish breathing process, and
O(n) to delete the MNs in a circular region. Consequently,
the total complexity of selecting m CHs is O(mn), that is,
the procedure of CH selection has linear complexity in the
number of CHs and the number of sensor nodes, and thus
can be easily implemented in real-time. The worst-case hap-
pens when m reaches n, and the corresponding complexity is
O(n2). Afterwards, the complexity becomes O(n2). Regard-
ing to Algorithm 3, it requires a complexity ofO(m2) at every
adjustment scheduling to obtain the optimal performance.
In particular, it requires a complexity of O(m) to calculate

Algorithm 3 Automatic Node Adjustment Algorithm
Input: MNs, Rcom, and CHs {CH1, · · · ,CHm}
Output: Voronoi clusters with automatic node adjustment

Initialization: Cluster division by applying the Voronoi
diagram {D1, · · · ,Dm};

1: for i=1:m do
2: Calculate the number of CMs Ni in the circle Di
3: if (Ni > Mmax) then
4: for j=1:Ni −Mmax do
5: Find adjacent cluster(s) Dj to the Di with the

minimum number of CMs Nj
6: if (Nj < Mmin) then
7: Find the normal node p ⊂ Di nearest to Dj
8: if (dist(p,CHj) < Rcom) then
9: The node p will be assigned to Dj
10: Update Ni,Nj
11: end if
12: end if
13: end for
14: end if
15: end for
16: return Voronoi clusters
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the number of CMs in the i-th cluster and O(m) to find the
cluster(s) with the minimum number of CMs.

B. PERFORMANCE METRICS
In order to evaluate the performance of the proposed algo-
rithms, the following three quantities are considered in this
section: the network capacity rate, the network lifetime and
the number of sensor nodes.

1) NETWORK CAPACITY RATE
First, the path loss of MI propagation underwater is given
by [4]

Lp(r) = −10 log10
Pr (r)
Pt (r)

, (2)

where r is the transmission distance in meters, Pr (t) and
Pt (r) are the received power and the transmitting power at
the transmission range r , respectively. Therefore, the channel
capacity between two MI coils is defined by

C = B log2

(
1+

Pt · LP
Nnoise

)
[bit/s], (3)

where B is the operating bandwidth, and Nnoise is the constant
ambient noise level [1], [18]. For a network of n clusters,
since we utilize mobile nodes to gather data at CHs, they have
interdependent paths at each cluster. Denote t as the amount
of time that the network has spent to transmit data to the base
station, the network capacity is calculated by

CMI =
n∑
i=1

Ti · C ′i
t + Tmax

. (4)

Here, Ti represents the time for the i-th CH spent on collecting
data and Tmax = maxi Ti represents the longest time to collect
data among clusters. In fact, we set t = 1.7Tmax and Tmax =
Ti = 2.7 (s) for all clusters. Thus, we have

CMI =
n∑
i=1

[
C ′i/2.7

]
. (5)

Let Varnode be the variances among cluster sizes, the network
capacity rate CMI is defined as

Cnet = 1+ ln(CMI/Varnode)

≈ ln
n∑
i=1

[C ′i/Varnode] [bit/s]. (6)

Here, the network capacity reflects the maximum workload
the network can handle per unit time, and the clustering size
determines the efficiency of processing data. When there are
no energy holes and the clustering sizes are similar among
clusters, Cnet becomes large, that is, the network has high
throughput and high efficiency of processing data at the clus-
ters. Conversely, it implies that the communication distance
between the sensor nodes becomes larger and the number of
normal nodes in each cluster is unbalanced.

2) NETWORK LIFETIME
The network lifetime is determined by the number of rounds
for a network to collect data. A round is defined as the
amount of time that data are aggregated from the source
nodes to the CHs and collected by the mobile relays. For
a sensor node, if its power is exhausted prematurely, there
will be an energy hole. When many energy holes appear in
the network, the connectivity of the network may become
worse and the network requires more energy to collect the
data, which accelerates the demise of the network. Therefore,
the network lifetime is an important metric to evaluate the
clustering algorithm.

C. SIMULATION RESULTS
We consider a network with N nodes that are deployed in a
seafloor of 100 m×100 m with the homogeneous amount of
energy. The distribution of sensors follows the Poisson distri-
bution with node density equal to 0.008.We set the maximum
and the minimum number of CMs in a cluster as Mmax = 4
and Mmin = 2, respectively. The changed rate of the cluster
radius is α = 10 %. In terms of MI deployment settings,
other parameters are given in Table 2 [10], [18]. Sensors are
deployed in the same depth of water, which is about 30 m
from the seafloor. Note that the distance between the nodes
and the node position offset should meet the connectivity
condition and coincide with the central concentrations [10].

TABLE 2. Simulation parameters.

First, in order to show how much we improve the network
capacity rate from the previous work (HENPC) [10], Fig. 6
illustrates a complete statistical report on network capac-
ity rate with different network lifetime. For a given round,
we observe that the proposed scheme (‘‘Improved HENPC’’)
achieves higher rates than the HENPC algorithm. For exam-
ple, at the 100-th round, in the HENPC protocol about 86 %
Cnet obtain high values: 82.5 % of Cnet ∈ [16, 17.5] and
3.5% ofCnet ≥ 17.5, while in the improvedHENPC protocol
about 99 % achieve high values: 34 % of Cnet ∈ [16, 17.5]
and 65 % of Cnet ≥ 17.5. For longer lifetime, e.g., at 1900-th
round, we can see that around 3 % of Cnet ≤ 17.5 in Fig. 6(a)
and around 26 % of Cnet ≥ 17.5. Also, the death time
of the first node in the improved HENPC protocol is later
than the HENPC (after 2100 rounds). This is because we
distribute the network nodes energy more efficiently. The
adaptive clustering protocol with balanced cluster sizes over
the network is able to accomplish less energy to transmit data
and thus prolong the lifetime of the network.
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FIGURE 6. Network capacity rate versus lifetime. (a) HENPC protocol.
(b) Improved HENPC protocol.

FIGURE 7. Lifetime versus number of nodes alive.

Fig. 7 shows the relationship between the number of
nodes alive and the network lifetime of the three schemes:
EELEACH-C [7], HENPC [10] and our improved HENPC.
We observe that the number of nodes alive in the pro-
posed approach surpasses those in the EELEACH-C and the
HENPC protocols at the same round. The network using the
EELEACH-C protocol stops its life at about 750 rounds and
the HENPC can maintain the lifecycle to about 1400 rounds,
while the improved HENPC protocol can prolong its life-
time to 1750 rounds. This is because the improved HENPC
can balance the energy consumption so that it avoids pre-
mature energy holes, thus improves the network lifetime.
Furthermore, we observe that the three clustering algo-
rithms have different downfall intervals of the number of

nodes alive. As the lifetime increases, the downfall interval
of the proposed algorithm is the trajectory of values on the
round interval [1750, 2150], while those intervals are focused
on [1500, 2150] in the EELEACH-C and [1800, 2150] in the
HENPC, respectively.

FIGURE 8. Number of sensor nodes versus lifetime.

For the network described above, simulations to determine
the average lifetime are done for various number of sensor
nodes as shown in Fig. 8. Under the same input conditions,
the proposed scheme can keep most of the nodes alive in
the network, that is, it can balance the energy consumption
more effectively than the HENPC and the EELEACH-C pro-
tocols. Thus, the first death node appears later. From the
obtained results, the proposed scheme extends the lifetime
period by 600 rounds as compared to the EELEACH-C pro-
tocol and by 200 rounds as compared to the HENPC proto-
col. Moreover, it performs more stable than the EELEACH-C
due to the inherited characteristics from the HENPC. This
means that the proposed protocol is more energy-efficient
and robust than the other two, thus it allows sensor nodes to
function well for a long time.

V. CONCLUSION AND DISCUSSION
In this paper, we study the clustering strategy for MI-based
UWSNs, where sensor nodes are deployed with the Poisson
distribution. In order to obtain a clustering protocol with
saving the energy consumption, based on the idea of the
conventional HENPC, we modify the CH selection process
by considering the dynamic change of sensor nodes’ residual
energies and the number of CMs in the clusters. The proposed
scheme determines the number of CHs based on the density
of sensor nodes in the given area and adaptively adjusts the
numbers of CMs in the clusters. Simulation results show that
our improved HENPC protocol significantly outperforms the
conventional HENPC and EELEACH-C algorithms in terms
of network capacity rate and network lifetime.

In summary, the proposed scheme is a dynamic protocol,
i.e., the CH selection is based on the residual energy and
geometry distances of sensor nodes. From the perspective
of saving energy, multihop aggregation data and nodes with
high residual energy preferentially selected as CHs, can effec-
tively balance the energy consumption for the entire network.
On the other hand, under the condition on full coverage of
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the network, we provide an effective way for collecting data
by deploying mobile nodes (e.g., AUV, mobile sink) for a
large-scaleUWSNs.However, there are some open issues that
we need to work on. For instance, using mobile nodes may
take extra-costs, so we have to balance the trade-off between
energy efficiency and hardware costs. Also, how to avoid the
collision at the surface as well as analyzing the complexity
of operation and maintenance avoidance collision should be
also investigated.
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