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Abstract

We consider Kalman filtering problems when the observations are intermittently erased or lost. It was known that the estimates
are mean-square unstable when the erasure probability is larger than a certain critical value, and stable otherwise. But the
characterization of the critical erasure probability has been open for years. We introduce a new concept of eigenvalue cycles
which captures periodicity of systems, and characterize the critical erasure probability based on this. It is also proved that
eigenvalue cycles can be easily broken if the original physical system is considered to be continuous-time — randomly-dithered
nonuniform sampling of the observations makes the critical erasure probability almost surely 1

|λmax|2
.

I. INTRODUCTION

Unlike classical control systems where the controller and the plant are closely located or connected by dedicated wired links,
in post-modern systems the controllers and plants can be located far apart and thus control has to happen over communication
channels. In other words, there is an observer which can only observe the plant but cannot control it. There is a separate actuator
which can only control the plant but cannot observe it. The observer and actuator are connected by a communication channel.
Therefore, to control the plant the observer has to send information about its observation to the actuator through the communication
channel. Understanding the tradeoff between control performance and communication reliability or finding the optimal controller
structures become the fundamental questions to build such post-modern control systems.

Not only practically, but also philosophically, control-over-communication-channel problems are important. When we are
controlling systems, there is a corresponding life cycle of information. In other words, the uncertainty or new information is
generated and disturbs the plant. This information is propagated to the controller as the controller observes the plant. Finally,
when the controller controls the system by removing the uncertainty, the information is dissipated. It is conceptually very important
to understand and quantify these information flows which naturally occur as we control systems. In control-over-communication-
channel systems, all the information for control has to flow through the communication channel. Therefore, by relating the
communication channels with the control performance, we can measure how much information has to flow to achieve a certain
control performance.

Theoretical study of control-over-communication-channel problems was pioneered by Baillieul [3], [4] and Tatikonda et
al. [30]. They restricted the communication channels to noiseless rate-limited channels, and asked what the minimum rate of
the channel is to stabilize the plant. They found that the rate of the channel has to be at least the sum of the logarithms of the
unstable eigenvalues, and indeed it is sufficient. This fact is known as the data-rate theorem. Later, Nair [19] relaxed the bounded
disturbance assumption that they had to Gaussian disturbances, and proved that the same data-rate theorem holds.

However, an important question was whether we can reduce noisy communication channels to noiseless channels with the
same Shannon capacity, i.e. whether the classical notion of Shannon capacity is still appropriate when the channel is used for
control. In [26], Sahai et al. found the answer for this question is no. Intuitively, since the system keep evolving in time, not
only the rate but also the delay of communication is important. Since Shannon capacity ignores the delay issue, it is insufficient
to understand information flows for control. Thus, they proposed a new notion of anytime capacity which captures the delay
of communication. The stabilizability condition for noisy communication channels with feedback1 was characterized by anytime
capacity.

Since then, researchers have accumulated lots of literature [14], [27], [20], [17], [12], [36], [37] which consider various
generalized and related problems. However, still most of the problems are wide open, and intermittent Kalman filtering problem
which we will study in this paper had been one of them. In [29], Sinopoli et al. considered ‘control over real erasure channels’
which can be thought as a special case of [26], but with a structural constraint on controller design.

Figure 1 shows the system diagram for control-over-real-erasure-channels. The observer makes the observation about the plant,
and then uncodedly transmits its observation through the real erasure channel. The real erasure channel drops the transmitted signal
with a certain probability but otherwise noiselessly transmits the signal. Finally, based on the received signals from the channel,
the controller generates its control inputs to stabilize the system.

The situation that this problem is modeling is that of control over a so-called packet drop channel. A memoryless observer
samples the output of an unstable continuous-time system, quantizes this sample to a sufficient number of bits, binds the resulting
bits into a single packet, and transmits the packet to the controller through a communication system. Due to network congestion or
wireless fading, the transmitted packet may be lost2 with a certain probability and this packet erasure process is further simplified
to be i.i.d. The problem is designed to focus attention on the delay/reliability effect of losing packets and so the number of bits
per packet (capacity) is unconstrained. The main problem is finding what is the maximum tolerable erasure probability keeping
the system stable.

The linearity and memorylessness of the observer is at the heart of what Sinopoli et al. are trying to model. Otherwise, the
earlier results of [25] immediately reveal that the critical erasure probability for the stabilizability only depends on the magnitude
of the largest eigenvalue of the plant. However, to achieve the minimal erasure probability shown in [25], the observer and

1By introducing a feedback, they reduced the problem to the one with nested information structure [35] which is known to be much easier to solve in
decentralized control theory.

2Such losses need not come from network effects — they could also occur because of sensor occlusion or otherwise at the sampling time itself. That is
why the issue of intermittent observations needs to be studied on its own.
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Observer Controller 

Fig. 1: Closed-loop system for ‘control over real erasure channels’. Here, the observer just bypasses its observation to the
channel without any coding.

PLANT SENSOR Estimator 

Fig. 2: System diagram for ‘intermittent Kalman filtering’. This open-loop estimation system is equivalent to the closed-loop
control system of Figure 1. Like Figure 1, the sensor bypasses its observation to the channel without any coding.

controller design has to be quite complicated and not realistic in practice. Therefore, it is practically and theoretically important
to understand how much the control performance degradates with linear observer and controller constraints.

In this paper, we will see that the degradation of stabilizability due to linear constraints fundamentally comes only from
the periodicity of the system. Nonuniform sampling is proposed as a simple way to force the system to behave aperiodically.
Therefore, by using linear controllers in a junction with nonuniform sampling, we can expect a significant performance gain and
indeed recover the optimal stabilizability condition over all possible controller designs.

Furthermore, by the estimation-control separation principle [23], the closed-loop control system can be reduced to an equivalent
open-loop estimation problem [27]. Figure 2 shows the resulting open-loop estimation system so-called intermittent Kalman
filtering [29]. As before, the sensor uncodedly transmits its observation to the real erasure channel. Then, the estimator tries to
estimate the state based on its received signals. We refer to [27] for a literature review and practical applications of the problem.

This paper is organized as follows: First, we formally state the problem in Section II. Then, we introduce some definitions in
Section III. In Section IV, we consider the intermittent observability as a connection of the stability and the observability. From
this, we distinguish our approach to the previous approaches. In Section V, we introduce the intuition for the characterization of the
intermittent observability using representative examples. In Section VI, we formally define the eigenvalue cycle and characterize
the intermittent observability. In Section VII, we discuss that nonuniform sampling can break the eigenvalue cycle and significantly
improve the performance of the intermittent Kalman filtering. Finally, Section VIII gives the proof of the main results.

II. PROBLEM STATEMENT

Formally, the intermittent Kalman filtering problem is formulated as follows in discrete time:

x[n+ 1] = Ax[n] + Bw[n] (1)
y[n] = β[n] (Cx[n] + v[n]) . (2)

Here n is the non-negative integer-valued time index and the system variables can take on complex values — i.e. x[n] ∈
Cm,w[n] ∈ Cg,y[n] ∈ Cl,v[n] ∈ Cl. A ∈ Cm×m, B ∈ Cm×g and C ∈ Cl×m. The underlying randomness comes from
the initial state x[0], the persistent driving disturbances w[n], the observation noises v[n] and the Bernoulli packet-drops β[n].
β[n] = 0 with probability pe. x[0], w[n] and v[n] are jointly Gaussian.

The objective is to find the best causal estimator x̂[n] of x[n] that minimizes the mean square error (MMSE) E[(x[n] −
x̂[n])†(x[n] − x̂[n])], i.e. x̂[n] = E[x[n]|yn]. We assume that the statistics of all random variables are known to the estimator.
If x[0], w[n] and v[n] do not have zero mean, the estimator can properly shift its estimation. Thus, without loss of generality,
x[0],w[n] and v[n] are assumed to be zero mean. x[0],w[n] and v[n] are independent and have uniformly bounded second
moments so that there exists a positive σ2 such that

E[x[0]x[0]†] � σ2I (3)

E[w[n]w[n]†] � σ2I

E[v[n]v[n]†] � σ2I.
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To prevent degeneracy, we also assume that there exists a positive σ′2 such that 3

E[w[n]w[n]†] � σ′2I (4)

E[v[n]v[n]†] � σ′2I.

Under these assumptions we call (1) and (2) an intermittent system.
Definition 1: The linear system equations (1) and (2) with the second moment conditions (3) and (4) are called an intermittent

system (A,B,C), or an intermittent system (A,B,C) with erasure probability pe when we only want to specify the erasure
probability, or an intermittent system (A,B,C, σ, σ′) with erasure probability pe when we specify the upper and lower bounds
on disturbances as well.
We say that the intermittent system is intermittent observable if the MMSE is uniformly bounded for all time.

Definition 2: An intermittent system (A,B,C, σ, σ′) with erasure probability pe is called intermittent observable if there
exists a casual estimator x̂[n] of x[n] such that

sup
n∈Z+

E[(x[n]− x̂[n])†(x[n]− x̂[n])] <∞.

Before we discuss truly intermittent cases, let’s consider two extreme cases, when pe = 1 and pe = 0, to get some insight into
the problem. When pe = 1, the estimator does not have any observations. As a result, the system can be intermittent observable
if and only if the system itself is stable. On the other hand, when pe = 0, the estimator has all the observations without any
erasures. Intermittent observability reduces to observability. Thus, intermittent observability can be understood as a new concept
which interpolates two core concepts of linear system theory: stability and observability.

Moreover, in intermittent systems, we can see the monotonicity of performance with the erasure probability pe. A process with
higher erasure probability can be simulated from a process with lower erasure probability by randomly dropping the observations.
Therefore, it is obvious that the average estimation error is an increasing function on pe. Especially, if we consider an unstable
but observable system, when pe = 1 the estimation error goes to infinity, and when pe = 0 the estimation error is bounded.
Therefore, between 1 and 0 there must be a threshold on pe when the estimation error first becomes infinity.

Theorem 1 (Theorem 2. of [29]): Given an intermittent system (A,B,C, σ, σ′) with erasure probability pe, let (A,B) be
controllable, σ <∞, and σ′ > 0.4 Then, there exists a threshold p?e , such that for pe < p?e the intermittent system (A,B,C, σ, σ′)
with erasure probability pe is intermittent observable and for pe ≥ p?e the intermittent system (A,B,C, σ, σ′) with erasure
probability pe is not intermittent observable.

Therefore, the characterization of intermittent observability reduces to the characterization of the critical erasure probability
p?e . For characterizing the critical erasure probability, we can consider it as a generalization of either stability or observability.

In [29], Sinopoli et al. thought of intermittent observability as a generalization of stability. Based on Lyapunov stability, they
could find a lower bound on the critical erasure probability in a LMI (linear matrix inequality) form. However, this bound is not
tight in general and does not give any insight into the solution. A more intuitive bound can be found in [10].

Theorem 2 (Corollary 8.4. of [10]): Given an intermittent system (A,B,C, σ, σ′) with erasure probability pe, let (A,B) be
controllable, σ <∞, σ′ > 0, and (A,C) be observable. Then,

1∏
i |λi|2

≤ p?e ≤
1

|λmax|2
,

where λi are the unstable eigenvalues of A and λmax is the one with the largest magnitude.
Therefore, the critical erasure probability characterization boils down to understanding where the gap between 1∏

i |λi|2
and

1
|λmax|2

comes from.
In [18], Mo and Sinopoli found two interesting cases that give further insight into this question. The first is when A is

diagonalizable and all eigenvalues of A have distinct magnitudes — then the critical erasure probability is 1
|λmax|2

just it would

be in the formulation of [25]. The second case is when A =

[
2 0
0 −2

]
and C =

[
1 1

]
— the critical erasure probability is

1∏
i |λi|2

= 1
24 . This second case showed that the gap is real and requiring packets to be about a scalar observation can have

serious consequences.
To extend these cases and solve the general problem, we will apply insights from observability and introduce the new concept

of an eigenvalue cycle. As a corollary, we show that in the absence of eigenvalue cycles the critical value becomes 1
|λmax|2

.
Furthermore, we show that simply by introducing nonuniform sampling to the sensor, eigenvalue cycles can be broken and the
critical erasure probability becomes effectively 1

|λmax|2
.

These results can be surprising if we remember that computing random Lyapunov exponents are difficult problems in
general [33]. However, the intermittent Kalman filtering problem turns out to have a special structure which makes the problem
tractable. Precisely speaking, as we will see in Section V-C, the subspaces of the vector state can be separated asymptotically. To
justify such separation, we use ideas from information theory (for example, decoding functions [21] or successive decoding [31]).
Therefore, the whole system can be divided into parallel sub-systems in effect. As we will see in Section V-A, each sub-system
can be solved using ideas from large deviation theory [1].

3The second condition on v[n] may seem redundant, and v[n] = 0 is enough since at each time the new disturbance w[n] is added. However, when
v[n] = 0, we can make the following counterexample when the estimation error of the state is bounded even if the system matrices (A,C) are not observable:

A =

[
2 1
0 2

]
,B =

[
0
1

]
,C =

[
0 1

]
. Thus, this assumption is usually kept in the analysis of Kalman filtering including [23, p.100].

4See Definiton 3 for controllability
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III. DEFINITIONS AND NOTATIONS

Before we start the formal discussion of the problem, we first have to introduce mathematical definitions and notations.
We will use controllability and observability notions from linear system theory.
Definition 3: For a m×m matrix A and a m× p matrix B, (A,B) is called controllable if

C =
[
B AB · · · Am−1B

]
is full rank, or equivalently

[
λI−A B

]
is full rank for all λ ∈ C. Moreover, we call an eigenvalue λ of A uncontrollable if[

λI−A B
]

is rank deficient.
Definition 4: For a m×m matrix A and a l ×m matrix C, (A,C) is called observable if

O =


C

CA
...

CAm−1


is full rank, or equivalently

[
λI−A

C

]
is full rank for all λ ∈ C. Moreover, we call an eigenvalue λ of A unobservable if[

λI−A
C

]
is rank deficient.

We will use Bernoulli processes and geometric random variables from probability theory.
Definition 5: An one-sided discrete-time random process a[n] (n ≥ 0) is called a Bernoulli random process with probability

p if a[n] are i.i.d. random variables with the following probability mass function (p.m.f.):{
P(a[n] = 1) = p
P(a[n] = 0) = 1− p

We also call a[n] as a Bernoulli random variable with erasure probability 1− p. A two-sided Bernoulli random process is defined
in the same way except that n comes from the integers.

Definition 6: A random variable X ∈ Z+ is called a geometric random variable with probability p if it has a probability
mass function P{X = x} = p(1− p)x for x ≥ 0. We also call X as a geometric random variable with erasure probability 1− p.

Then, we have the following relationship between Bernoulli random processes and geometric random variables. Let

X := min{n ∈ Z+ : a[n] = 1 where a[n] is a Bernoulli random variable with probability p}.

Then, X is a geometric random variable with probability p.
We will also use the following basic notions about matrices.
Definition 7: Given a matrix A ∈ Cm×m, |A|max is the elementwise max norm of A i.e. |A|max = max1≤i,j≤m |aij |.
Definition 8: Given a matrix A ∈ Cm×m, dim A denotes m. Given a column vector x1 ∈ Cm×1 and a row vector

x2 ∈ C1×m, dim x1 and dim x2 denote m.
Definition 9: Given ni × ni matrices Ai for i ∈ {1, 2, · · · ,m}, diag{A1,A2, · · · ,Am} is a

(∑m
i=1 ni

)
×
(∑m

i=1 ni
)

matrix in the form of


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

.

We also define modulo operation on numbers.
Definition 10: A sequence, a1, a2, · · · , an, is called congruent mod p if ai ≡ aj(mod p) for all i, j.
Definition 11: A sequence, a1, a2, · · · , an, is called pairwise incongruent mod p if ai 6≡ aj(mod p) for all i 6= j.
Since we will only focus on the scalings behavior, we will use the following definition which can be used as big O and big

Ω notations in complexity theory.
Definition 12: Consider two real functions a(t) and b(t) whose common domain is T ∈ R. We say a(t) . b(t) for t on T

if there exists a positive c such that a(t) ≤ cb(t) for all t ∈ T .
We omit the argument and the domain of the above definition, when they are obvious from the context and do not cause confusion.

We will also use an abbreviated notation for a sequence of random variables.
Definition 13: Given a discrete time random variable a[0], · · · , a[n], we denote a[n1], · · · , a[n2] as an2

n1
, and a[0], · · · , a[n]

as an. Likewise given a continuous time random variable b(t), we define b(t1 : t2) to be b(t) for t1 ≤ t ≤ t2.

IV. INTERMITTENT OBSERVABILITY AS AN EXTENSION OF STABILITY

As we mentioned before, the characterization of the critical erasure probability can be considered from two different directions
— an extension of stability or an extension of observability. In [29], Sinopoli et al. took the first approach, and attempted to
characterize the critical erasure probability by the Lyapunov stability condition. Let’s review a property of Schur complements
and Lyapunov stability theorem.

Lemma 1 (Schur complements): Let X =

[
A B
B† C

]
be a symmetric matrix and C be invertible. Then, X � 0 if and only

if C � 0 and A−BC−1B† � 0.
Proof: See [6, p. 650].
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Theorem 3 (Lyapunov Stability Theorem): Given a linear system (1), the following three conditions are equivalent.
(i) The system is stable.
(ii) ∃M,N � 0 such that

M−AMA† = N.

(iii) ∃M � 0 such that [
M AM

MA† M

]
� 0.

Proof: The equivalence between (i) and (ii) can be easily found in linear system theory books including [23, p.30] and [7,
Theorem 5.D5]. The equivalence between (ii) and (iii) comes from Schur complements in Lemma 1 by simply choosing A = M,
B = AM and C = M.

Before we consider intermittent observability, let’s first characterize the standard observability condition using Lyapunov
stability. The fundamental theorem of observability tells that if (A,C) is observable, the eigenvalues of the closed loop system
A + KC can be placed anywhere by a proper selection of K. Based on this, we can characterize observability in terms of
Lyapunov stability.

Theorem 4: Given a linear system (1) and (2) with pe = 0, the following four conditions are equivalent.
(i) All the unstable modes of A are observable.
(ii) ∃K such that A + KC is stable.
(iii) ∃K and M,N � 0 such that

M− (A + KC)M(A + KC)† = N.

(iv) ∃K and M � 0 such that [
M (A + KC)M

M(A + KC)† M

]
� 0.

Proof: The equivalence of (i) and (ii) is the fundamental theorem of observability [7, Theorem 8.M3]. The equivalence of
(ii), (iii) and (iv) follows from Theorem 3.

Unfortunately, this observability characterization based on Lyapunov stability cannot be generalized for intermittent observ-
ability. The main reason is that in intermittent Kalman filtering the optimal estimator does not converge to a linear time-invariant
one. In conventional Kalman filtering for linear time-invariant systems, it is well-known that the optimal Kalman filter converges
to the linear time-invariant estimator which is known as the Wiener filter [34]. In fact, we can directly plug in the Wiener filter
gain for the matrix K of Theorem 4. However, when observations are erased, the optimal estimator also depends on the erasure
pattern and since the erasure pattern is random and time-varying, the whole system becomes random and time-varying. Therefore,
the optimal estimator is also time-varying and does not converge.

In [29], Sinopoli et al. wrote the optimal time-varying linear estimator in a recursive equation form. The strictly causal
estimator x̂[n] = E[x[n]|yn−1], is given as follows:

x̂[n+ 1] = Ax̂[n]−Kn(y[n]−Cx̂[n]) (5)

Here, Kn depends not only on n but also the history of the β[n], and does not converge to a constant matrix in probability.
Therefore, in the intermittent Kalman filtering problem it is not possible to find a stability-optimal time-invariant gain K in
Theorem 4.

However, we can still force the estimator to be linear time-invariant, and thereby find a sufficient condition for intermittent
observability using Lyapunov stability ideas. This is the idea that Sinopoli et al. used to find a lower bound on the critical erasure
probability in [29]. By restricting the filtering gain to be a linear time-invariant matrix K, we get the following sub-optimal
estimator which looks similar to (5).

x̂[n+ 1] = Ax̂[n]− β[n]K(y[n]−Cx̂[n]) (6)

with x̂[0] = 0. By analyzing this sub-optimal estimator, Sinopoli et al. found the following sufficient condition for intermittent
observability. Here, we further prove that their condition is both necessary and sufficient for the sub-optimal estimators of (6) to
have an expected estimation error uniformly bounded over time.5

Theorem 5 (Extension of Theorem 5 of [29]): Given an intermittent system (A,B,C, σ, σ′) with erasure probability pe, let
(A,B) be controllable, σ <∞, and σ′ > 0. Then, the following three conditions are equivalent.
(i) The system is intermittently observable by the suboptimal estimator of (6) with some K.
(ii) ∃K and M,N � 0 such that

M− peAMA† − (1− pe)(A + KC)M(A + KC)† = N.

(iii) ∃K and M � 0 such that M
√

1− pe(MA + KC)
√
peMA√

1− pe(MA + KC)† M 0√
pe(MA)† 0 M

 � 0.

5This fact is implicitly shown in Elia’s paper [10].
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Proof: By (1), (2) and (6), we can see that the estimation error follows the following dynamics:

x[n+ 1]− x̂[n+ 1] = Ax[n] + Bw[n]− (Ax̂[n]− β[n]K(y[n]−Cx̂[n]))

= Ax[n] + Bw[n]− (Ax̂[n]− β[n]K(Cx[n] + v[n]−Cx̂[n]))

= (A + β[n]KC)(x[n]− x̂[n]) + Bw[n] + β[n]Kv[n]. (7)

Denote (x[n] − x̂[n]) as (e[n] and Bw[n] + β[n]Kv[n]) as w′[n]. Then, w′[n] also has a uniformly bounded variance over
time, and (7) can be written as

e[n+ 1] = (A + β[n]KC)e[n] + w′[n].

Since e[n] is independent from w′[n], β[n] by causality, the covariance matrix of e[n] follows the following dynamics:

E[e[0]e†[0]] = E[x[0]x†[0]],

E[e[n+ 1]e†[n+ 1]] = E[(A + β[n]KC)e[n]e†[n](A + β[n]KC)†] + E[w′[n]w′
†
[n]]

= peAE[e[n]e†[n]]A† + (1− pe)(A + KC)E[e[n]e†[n]](A + KC)† + E[w′[n]w′
†
[n]]. (8)

Now, we will prove the theorem in three steps.
(1) Condition (i) implies condition (ii).

First of all, by linearity we can prove that the estimation error E[e[n]e†[n]] is an increasing function of the variance of the
underlying random variables.

Thus, if the system is intermittently observable by K, the same system with x[0] = 0, v[n] = 0, E[w[n]w†[n]] = σ′2I is
also intermittently observable. So set x[0] = 0, v[n] = 0, E[w[n]w†[n]] = σ′2I without loss of generality. With these parameters,
we have E[e[0]e†[0]] = 0 and E[w′[n]w′

†
[n]] = σ′2BB†. By the recursive equation in (8), we can show that for n ≥ 1, the

covariance matrix of e[n] can be written as

E[e[n]e†[n]] = σ′2BB† +

n∑
k=1

∑
l∈{−1,1}k

∆l∆
†
l . (9)

where

∆l := (
√
peA)

1+l1
2 (
√

1− pe(A + KC))
1−l1

2 · · · (√peA)
1+lk

2 (
√

1− pe(A + KC))
1−lk

2 σ′B.

Here, li = 1 means the ith observation was erased and li = −1 means that the ith observation was not erased.
Here, we can notice that E[e[n]e†[n]] are positive semidefinite matrices and increasing in n. Furthermore, since the system

is intermittently observable by condtion (i), E[e[n]e†[n]] has to be uniformly bounded over time. Therefore,

M̄ := lim
n→∞

E[e[n]e†[n]] = σ′2BB† +

∞∑
k=1

∑
l∈{−1,1}k

∆l∆
†
l (10)

must exist even though it involves an infinite sum. Let’s define M and N as follows:

M := σ′2BB† +

m−1∑
k=1

∑
l={−1,1}k

(k + 1)∆l∆
†
l +

∞∑
k′=m

∑
l′={−1,1}k′

m∆l∆
†
l (11)

N := σ′2BB† +

m−1∑
k=1

∑
l∈{−1,1}k

∆l∆
†
l (12)

where m is the dimension of A as we defined in Section II. By the definitions of M̄ and M, we can easily see that mM̄ �M.
Therefore, M also exists even though it involves an infinite sum. Furthermore, by the definitions of M and N, we can easily see
that

M � σ′2(BB† + peABB†A† + · · ·+ pme AmBB†A†m) (13)

N � σ′2(BB† + peABB†A† + · · ·+ pme AmBB†A†m) (14)

since the terms in L.H.S. are just subsets of the terms in M and N.
Thus, we can see that M � 0, N � 0 since

[
B AB · · · Am−1B

]
is full rank by the controllability of (A,B) and all

terms BB†, · · · , pme AmBB†A†m are positive semidefinite. Finally, by the definitions and simple matrix algebra, we can verify
that M and N satisfy the following relationship:

M = peAMA† + (1− pe)(A + KC)M(A + KC)† + N. (15)

Therefore, M and N satisfy condition (ii).6

6

Consider a fixed point equation, f(x) = xf(x) + g(x). There exist multiple f(x) and g(x) that satisfy this equation. For example, (f(x), g(x)) =
(1+x+x2 + · · · , 1), (f(x), g(x)) = (1+2x+2x2 + · · · , 1+x), · · · , (f(x), g(x)) = (1+2x+ · · ·+(k−1)xk−1 +kxk+kxk+1 · · · , 1+x+ · · ·+xk)
all satisfy the equation. Likewise, there are multiple matrices that satisfy the fixed point equation of (15). For example, we can easily check that M̄ of (10)
and N̄ := σ′2BB† satisfy (15), i.e. M̄ = peAM̄A†+ (1− pe)(A + KC)(A + KC)†+ N̄. However, unlike N, N̄ does not have to be positive definite.
Thus, the choice of M̄, N̄ is not enough to prove the theorem. Here, we choose M, N as shown in (11), (12) as another solution for (15). In fact, the choice
of coefficient in M,N was inspired by the solutions of f(x) = xf(x) + g(x) shown above.
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(2) Condition (ii) implies condition (i).
Since M and N of condition (ii) are positive definite, we can find a such that a2M � E[x[0]x†[0]] and a2N � E[w′[n]w′

†
[n]]

for all n ∈ Z+. And we can easily see that even if we replace K, M, N with K, a2M, a2N, condition (ii) still holds.
We will prove that a2M � E[e[n]e†[n]] for all n ∈ Z+ by induction. Since a2M � E[x[0]x†[0]] = E[e[0]e†[0]], the claim

is true for n = 0. Assume the claim is true for n. Then, from the definition of a and (8),

E[e[n+ 1]e†[n+ 1]] ≺ peA(a2M)A† + (1− pe)(A + KC)(a2M)(A + KC)† + a2N = a2M

where the last equality comes from condition (ii). Therefore, the estimation error is uniformly upper bounded by a2M when we
use the K of condition (ii) as a gain matrix, and so condition (ii) implies condition (i).

(3) Condition (ii) is equivalent to condition (iii).
Since M−1 � 0, by Schur complements in Lemma 1, condition (ii) is equivalent to[

M− peAMA†
√

1− pe(A + KC)√
1− pe(A + KC)† M−1

]
� 0.

Since [
M− peAMA†

√
1− pe(A + KC)√

1− pe(A + KC)† M−1

]
=

[
M

√
1− pe(A + KC)√

1− pe(A + KC)† M−1

]
−
[√

peA
0

]
M
[√
peA

† 0
]

and M−1 � 0, we can apply Schur complement again. Thus, condition (ii) is equivalent to M
√

1− pe(A + KC)
√
peA√

1− pe(A + KC)† M−1 0√
peA

† 0 M−1

 � 0.

Since M−1 � 0, this condition is again equivalent toM−1 0 0
0 I 0
0 0 I

 M
√

1− pe(A + KC)
√
peA√

1− pe(A + KC)† M−1 0√
peA

† 0 M−1

M−1 0 0
0 I 0
0 0 I


=

 M−1 √
1− pe(M−1A + M−1KC)

√
peM

−1A√
1− pe(M−1A + M−1KC)† M−1 0√

pe(M
−1A)† 0 M−1

 � 0.

Since M−1 � 0 and K is an arbitrary matrix, by replacing M−1 by M and M−1K by K we get condition (iii).
As we can expect, the conditions of this theorem reduce to those of stability and those of observability when pe = 1 and

pe = 0 respectively. One can easily observe that condition (ii) of Theorem 5 reduces to condition (ii) of Theorem 3 when pe = 1
and condition (iii) of Theorem 4 when pe = 0. Likewise, condition (iii) of Theorem 5 reduces to condition (iii) of Theorem 3
and condition (iv) of Theorem 4 respectively.

Even though condition (ii) and (iii) of Theorem 5 are equivalent, condition (iii) is preferred since it is given in a LMI (linear
matrix inequality) form and convex optimization techniques [6] are applicable. In fact, in [29] Sinopoli et al. related condition
(iii) with quasi-convex problems.

Since we imposed an additional linear time-invariant constraint on the estimator, Theorem 5 gives a lower bound on p?e .
However, we can conclude that this lower bound is loose in general.7 Moreover, even for stability, the characterization that the
magnitudes of all eigenvalues are less than 1 is much more intuitive than the LMI condition based on Lyapunov stability. Therefore,
researchers including [10] and [18] were looking for a tight and intuitive characterization of the critical erasure probability.

V. INTERMITTENT OBSERVABILITY AS AN EXTENSION OF OBSERVABILITY: MAIN INTUITION

To reach this goal, we borrow insights from a characterization of observability. (A,C) is observable if and only if for all
s ∈ C [

sI−A
C

]
is full rank.

Moreover, by a similarity transform [7] we can assume that A is in Jordan form8 without loss of generality. With this additional
assumption, the observability condition can be further simplified.

Theorem 6 ([7]): Consider a linear system with system matrices (A,C) where A is given in a Jordan form. For an eigenvalue
λ of A, denote Cλ as a matrix whose columns are consist of the columns of C which correspond to the first elements of the
Jordan blocks in A associated with λ. Then, the states associated with λ are observable if and only if the rank of Cλ is equal
to the number of Jordan blocks associated with λ. The whole system is observable if and only if all states associated with all
eigenvalues are observable.

7Numerical computation of the lower bound of Theorem 5 is shown in Figure 4 of [29]. For a system with A =

[
1.25 0

1 1.1

]
and C =

[
1 1

]
. The

numerical simulation shows the lower bound is approximately 1
(1.25×1.1)2

= 0.528 · · · , while the exact characterization of Theorem 7 tells the critical

erasure probability is 1
1.252 = 0.64.

8Throughout the paper, we will use the Jordan form that induces an upper triangular matrix.
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For example, let

A =

2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3


C =

[
c1 c2 c3 c4

]
.

Then, C2 =
[
c1 c3

]
and C3 =

[
c4

]
. The eigenvalue 2 is observable if and only if C2 is full rank, and the eigenvalue 3

is observable if and only if C3 is full rank. The whole system with (A,C) is observable if and only if both eigenvalues are
observable.

This characterization reminds us of a divide-and-conquer approach. First, divide the observability problem into smaller
problems according to the identical eigenvalues. Then, check whether the smaller sub-problem for each eigenvalue is observable.
Finally, the whole system is observable if and only if all the sub-problems are observable.

This suggests applying a divide-and-conquer approach for the characterization of intermittent observability. However, before
we apply a divide-and-conquer approach, we first have to answer the following three questions:
(a) What are the minimal irreducible sub-problems?
(b) How can we solve each sub-problem?
(c) How can we combine the answers of the sub-problems?

We will make an exact characterization of intermittent observability by resolving these questions. The concept of eigenvalue
cycles appears naturally as the answer of the question (a).

Before we answer these questions, let’s first start from the simplest case, scalar plants. For simplicity, we will only give
hand-waving arguments in this section, and the rigorous justification will be shown in later sections. The basic idea for the
characterization of the intermittent observability is to consider the dynamics reverse in time. For example, consider the following
scalar system: for n ∈ Z+, {

x[n+ 1] = 2x[n] + w[n]
y[n] = β[n]x[n]

. (16)

Here, x[0] = 0, w[n] are i.i.d. zero-mean unit-variance Gaussian, and β[n] is an independent Bernoulli process with probability
1− pe. Then, we will show that the critical erasure probability p?e = 1

22 .
First, we extend the one-sided random process (16) to the two-sided process. Let w[n] = 0 for n ∈ Z−− where Z−− implies

negative integers, and β[n] be a two-sided Bernoulli process with probability 1 − pe. Then, we can see that the new two-sided
process is equivalent to the original process except that x[n] = 0, y[n] = 0 for n ∈ Z−−.

Let n − S be the most recent non-erased observation at time n, i.e. S := min{k ≥ 0 : β[n − k] = 1}. Since β[n] is a
two-sided Bernoulli process, the stopping time S is a geometric random variable, i.e. P{S = s} = (1− pe)pes.

(1) Sufficiency: We first prove that pe < 1
22 is sufficient for the intermittent observability of the example. For this, we analyze

the performance of a suboptimal estimator x̂[n] = 2Sy[n− S] = 2Sx[n− S]. Then, the estimation error is upper bounded by

E[(x[n]− x̂[n])2] = E[E[(x[n]− x̂[n])2|S]] (17)

= E[E[(2Sx[n− S] + 2S−1w[n− S] + · · ·+ w[n− 1]− 2Sx[n− S])2|S]] (18)

≤ E[22(S−1) + 22(S−2) + · · ·+ 1] (19)

= E[
22S − 1

22 − 1
] (20)

=
1

22 − 1

((
∞∑
i=0

(1− pe)(pe22)i
)
− 1

)
. (21)

Therefore, the estimation error is uniformly bounded if pe < 1
22 .

(2) Necessity: For necessity, we use the fact that the disturbance w[n − S] is independent of the non-erased observations
present up to the time n. Therefore, the estimation error is lower bounded by

E[(x[n]− E[x[n]|yn])2] ≥ E[E[(2S−1w[n− S])2|S]] (22)

= E[22(S−1) · 1(n− S ≥ 0)] (23)

=
1

22

(
n∑
i=0

(1− pe)(pe22)i
)

(24)

Therefore, if pe ≥ 1
22 the estimation error must diverge to ∞.

(3) Remarks: From the above proof, we can notice that the intermittent observability is decided by whether pe22 is less than
1. Here, 2 is the largest eigenvalue of the system, and pe is the probability mass function (p.m.f.) tail of S which can be defined
as exp lim sups→∞

1
s

lnP{S = s}. Thus, we can think of two potential differences between scalar and vector systems: (i) The
maximum eigenvalue (ii) The p.m.f. tail.

It turns out the latter is true, and the p.m.f. tail is the difference between scalar and vector systems. The following example
shows why and how the p.m.f tail changes in vector systems.
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A. Power Property
The power property answers question (b) of the previous section, “How can we solve each sub-problem?”. Consider the

example of [18].  x[n+ 1] =

[
2 0
0 −2

]
x[n] + w[n]

y[n] = β[n]
[
1 1

]
x[n]

Like above, we put x[0] = 0, w[n] is 2-dimensional i.i.d. Gaussian vector with mean 0 and variance I, and β[n] is an independent
Bernoulli process with probability 1− pe. We also extend the one-sided process to the two-sided process in the same way.

We can see the states are 2-dimensional, while the observations are 1-dimensional. Therefore, unlike scalar systems at least
two observations are required to estimate the states. Moreover, if we write the observability Gramian matrix, we immediately
notice cyclic behavior:

C =
[
1 1

]
CA−1 =

[
1
2
− 1

2

]
CA−2 =

[
1
4

1
4

]
CA−3 =

[
1
8
− 1

8

]
...

Notice that C,CA−2,CA−4, · · · are linearly dependent and CA−1,CA−3,CA−5, · · · are linearly dependent. Therefore, as
observed in [18], we need both even and odd time observations to estimate the states. In this example, we will show that p?e = 1

24 .
(1) Sufficiency: Let pe < 1

24 . From (1) and (2), we can see that when β[n− k] = 1 the following equations hold:

x[n] = Akx[n− k] + Ak−1w[n− k] + · · ·+ w[n− 1] (25)
y[n− k] = Cx[n− k] + v[n− k]

= CA−kx[n]− (CA−1w[n− k] + · · ·+ CA−kw[n− 1]− v[n− k])︸ ︷︷ ︸
:=v′[n−k]

(26)

Here, we can see the variance of v′[n−k] is bounded as E[|v′[n−k]|2] = E[(
[

1
2
− 1

2

]
w[n−1]+· · ·+

[
1

2k
1

(−2)k

]
w[n−k])2] ≤

2
1
4

1− 1
4

= 2
3

.
Now, the stopping time S until we have enough observations to estimate the states becomes the first time until we get both even

and odd time observations, i.e. S := inf{k : 0 ≤ k1 < k2 ≤ k, β[n−k1] = 1, β[n−k2] = 1, k1 6= k2(mod2)}. Here, the p.m.f.
of S gets thicker than that of scalar cases. We can actually prove that the p.m.f. tail of S is exp lim sups→∞

1
s

lnP{S = s} = p
1
2
e ,

which we will rigorously justify in Lemma 6. Thus, we can find δ, c > 0 such that pe < 1
24 − δ and P{S = s} ≤ c

(
1
24 − δ

) s
2

for all s ∈ Z+.

Now, we will analyze the performance of a suboptimal estimator which only uses two observations. Let x̂[n] :=

[
CA−k1

CA−k2

]−1 [
y[n− k1]
y[n− k2]

]
.

Here, we can see the matrix inverse exists since k1 and k2 are even and odd time observations. Let Fβ be the σ-field generated
by β[n]. Then, k1, k2, S are deterministic variables conditioned on Fβ . The estimation error is upper bounded by

E[|x[n]− x̂[n]|22] = E[E[|x[n]− x̂[n]|22|Fβ ]] = E[E[

∣∣∣∣∣
[
CA−k1

CA−k2

]−1 [
v′[n− k1]
v′[n− k2]

]∣∣∣∣∣
2

2

|Fβ ]]

≤ E[E[8 ·

∣∣∣∣∣
[
CA−k1

CA−k2

]−1
∣∣∣∣∣
2

max

·
∣∣∣∣[v′[n− k1]

v′[n− k2]

]∣∣∣∣2
max

|Fβ ]]

= 8 · E[

∣∣∣∣∣
[
2−k1 (−2)−k1

2−k2 (−2)−k2

]−1
∣∣∣∣∣
2

max

· E[

∣∣∣∣[v′[n− k1]
v′[n− k2]

]∣∣∣∣2
max

|Fβ ]]

= 8 · E[

∣∣∣∣ 1

2 · 2−k1 · (−2)−k2

[
(−2)−k2 −(−2)−k1

−2−k2 2−k1

]∣∣∣∣2
max

· E[

∣∣∣∣[v′[n− k1]
v′[n− k2]

]∣∣∣∣2
max

|Fβ ]]

= 8 · E[
1

22

(
2−k1

2−k1 · 2−k2

)2

· E[

∣∣∣∣[v′[n− k1]
v′[n− k2]

]∣∣∣∣2
max

|Fβ ]]

≤ 2 · E[22k2 · E[|v′[n− k1]|2 + |v′[n− k2]|2|Fβ ]]

≤ 8

3
E[22S ] ≤ 8

3

∞∑
s=0

22sc

(
1

24
− δ
) s

2

=
8

3

∞∑
s=0

c(1− 24δ)
s
2 <∞

Therefore, the estimation error is uniformly bounded for pe < 1
24 .

(2) Necessity: We will show that the system is not intermittent observable when pe ≥ 1
24 . Denote the stopping time S′ to be

inf{k ≥ 0 : β[n − k] = 1, k is even}. Then, P{S′ = 0} = 1 − pe, P{S′ = 1} = 0, P{S′ = 2} = (1 − pe)pe, · · · . Thus, the
p.m.f. tail of S′, exp lim sups→∞

1
s

lnP{S′ = s}, is p
1
2
e .
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The state disturbance w[n − S′] can be decomposed into two orthogonal components, w[n − S′] =

[
1
1

]
w1[n − S′] +[

1
−1

]
w2[n− S′] where w1[n− S′] and w2[n− S′] are independent Gaussian random variables with zero mean and variance 1

2
.

From the system equations (25), (26) and the definition of S′, we can see that all the observations between time n − S′ and n
are orthogonal to w2[n − S′]. Thus, the estimator does not know anything about w2[n − S′] at time n, and thus we can lower
bound the estimation error as follows.

E[(x[n]− E[x[n]|yn])2] ≥ E[E[|AS′−1

[
1
−1

]
w2[n− S′]|22]|S′]

≥ E[22(S′−1)E[(w2[n− S′])2|S′]] =
1

23
E[22S′ · 1(S′ ≥ n)]

=
1

23

bn
2
c∑

i=0

(1− pe)(
√
pe2

2)2i

Thus, if pe ≥ 1
24 the estimation error diverges to ∞.

(3) Remarks: Compared to the scalar case, the p.m.f. tails of both S and S′ in this vector system thicken to
√
pe. This

results in decreasing the critical erasure to 1
24 . The cyclic behavior of the observability Gramian matrix, C, CA−1, · · · , causes

the thickening of the p.m.f. tails. Thus, to capture this cyclic behavior of the observability Gramian matrix, we tentatively define
an eigenvalue cycle as follows9: We say that the eigenvalues of A, λ1 and λ2 belong to the same eigenvalue cycle if λ1

λ2
is a

root of unity, i.e.
(
λ1
λ2

)n
= 1 for some n ∈ Z. Moreover, we say that A has no eigenvalue cycles if all the ratios between the

eigenvalues of A are 1 or not roots of unity, which implies A has no nontrivial eigenvalue cycles.
To generalize this example and find the p.m.f. tail for arbitrary eigenvalue cycles, we use the idea of large deviations [1]

which is equivalent to a union bound for simple cases. The idea goes as follows.
First, consider test channels that are erasure-type channels which would make the observability gramian rank-deficient. For this

example, these would be the channel that erases every odd-time observations, the channel that erases every even-time observations
and the channel that erases all observations.10

Next, measure the distance from the true channel to the test channels. In our case, the true channel is the channel without any
restriction and the distance measure between the true and test channel is the hamming distance. For the test channels considered
above, the distance to the odd-time erasure channel is 1 since we are restricting every one out of two indexes to be erasure.
Likewise, the distance to the even-time erasure channel is 1 and the distance to the all erasure channel is 2.

Then, the large deviation principle intuitively says that the performance is decided by the minimum-distance test channel. For
the example, the odd-time or even-time erasure channel whose distances are 1 will govern the performance.

So the effect of the eigenvalue cycle is to thicken the tail of the stopping time until you get enough observations to estimate
the states. Analytically, the effect is equivalent to taking a proper power to the pe and hence the name “power property”.

B. Max Combining
This property answers the question (c) i.e. how we go from a single eigenvalue cycle to multiple eigenvalue cycles. Consider

the following example with two eigenvalue cycles:
x1[n+ 1]
x2[n+ 1]
x3[n+ 1]

 =

3 0 0
0 2 0
0 0 −2

x1[n]
x2[n]
x3[n]

+ w[n]

y[n] = β[n]
[
1 1 1

]
x[n]

(27)

As before, we put x[0] = 0, w[n] be i.i.d. Gaussian with mean 0 and variance I, and β[n] be an independent Bernoulli process
with probability 1−pe. We also extend the one-sided process to the two-sided process. Here, we can see there are two eigenvalue
cycles. One eigenvalue cycle is {2,−2} and the other one is {3}, which can be thought as two subsystems of the original system.

Then, from the previous arguments, we can see that the p.m.f. tails for these two systems are different. The p.m.f. tail
for the eigenvalue cycle {3} is pe, while the p.m.f. tail for the eigenvalue cycle {2,−2} is thickened to p

1
2
e . Therefore, the

question is whether the thickened tail in the eigenvalue cycle {2,−2} affects {3}. The answer turns out to be “No”, and we can
consider two subsystems separately. Thus, in this example, the system is intermittent observable if and only if both subsystems
are intermittent observable, i.e. p?e = 1

max{32,22·2} . The main idea to justify this is so-called successive decoding developed in
information theory [31].

(1) Sufficiency: We will prove that pe < 1
max{32,22·2} is sufficient for the intermittent observability using a successive decoding

idea. The idea is simple. We first estimate the state x1[n]. Then, since we have an estimate for x1[n], we can subtract the estimate
from the system and reduce the dimension of the system. The remaining estimation error is considered as noise.

Let S be the stopping time until we receive three observations in the reverse process, i.e. S := inf{k : 0 ≤ k1 < k2 < k3 ≤
k, β[n − k1] = 1, β[n − k2] = 1, β[n − k3] = 1}. Here, we can prove that the p.m.f. tail of S is the same as the scalar case.
Therefore, exp lim sups→∞ lnP{S = s} = pe, which we will justify in Lemma 6. Since we have the three observations at time

9We will formally define eigenvalue cycles later in Section VI.
10In the actual characterization shown in Section VI, we will see that the set S′ in (41) is a proxy for these test channels. This minimum distance to the

test channels will be denoted as li in (41).
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n− k1, n− k2 and n− k3, by the pigeon-hole principle at least two among them have to be congruent mod 2. Assume that k1

and k2 are both even. Then, by (26) we have

y[n− k1] =
[
1 1 1

] 3 0 0
0 2 0
0 0 −2

−k1
x1[n]
x2[n]
x3[n]

+ v′[n− k1] (28)

=
[
1 1 1

] 3−k1 0 0
0 2−k1 0
0 0 2−k1

x1[n]
x2[n]
x3[n]

+ v′[n− k1] (29)

=
[
1 1

] [3 0
0 2

]−k1
[

x1[n]
x2[n] + x3[n]

]
+ v′[n− k1] (30)

Like the above section, we can also prove that E[|v′[n − k]|2] ≤ 2
1
4

1− 1
4

+
1
9

1− 1
9

= 19
24

. Here, we can notice that instantaneously
at time n− k1 and n− k2 the system equation behaves like the following system with no eigenvalue cycles:

[
x1[n+ 1]

x2[n+ 1] + x3[n+ 1]

]
=

[
3 0
0 2

] [
x1[n]

x2[n] + x3[n]

]
+

[
w1[n]

w2[n] + w3[n]

]
y[n] = β[n]

[
1 1

] [ x1[n]
x2[n] + x3[n]

]

Consider the suboptimal estimator x̂[n] =

[
x̂1[n]

x̂2[n] + x̂3[n]

]
=

[
3−k1 2−k1

3−k2 2−k2

]−1 [
y[n− k1]
y[n− k2]

]
. Let Fβ be the σ-field generated

by β[n], and F be the event that k1 and k2 are even. The estimation error is upper bounded by

E[

∣∣∣∣[ x1[n]
x2[n] + x3[n]

]
− x̂[n]

∣∣∣∣2
2

|Fβ ∩ F ] = E[

∣∣∣∣∣
[
3−k1 2−k1

3−k2 2−k2

]−1 [
v′[n− k1]
v′[n− k2]

]∣∣∣∣∣
2

2

|Fβ ∩ F ] (31)

≤ 8 ·

∣∣∣∣∣
[
3−k1 2−k1

3−k2 2−k2

]−1
∣∣∣∣∣
2

max

· E[

∣∣∣∣[v′[n− k1]
v′[n− k2]

]∣∣∣∣2
max

|Fβ ∩ F ] (32)

(33)

= 8 · 19

12
·
∣∣∣∣ 1

3−k12−k2 − 2−k13−k2

[
2−k2 −2−k1

−3−k2 3−k1

]∣∣∣∣2
max

(34)

= 8 · 19

12
·

 2−k1

3−k12−k2

(
1−

(
2
3

)k2−k1
)
2

(35)

≤ 8 · 19

12
· 32 · (3k1 · 2k2−k1)2 ≤ 57 · 32k2 ≤ 57 · 32S (36)

Likewise, we can prove the same bound holds even if k1 and k2 are not even. Therefore, the estimation error is bounded by
57 · 32S . Like the previous section, we can prove that if pe < 1

32 then E[32S ] <∞. Thus, the expectation of the estimation error
for x1[n] is uniformly bounded over time.

Once we estimate x3[n], we can subtract the estimation x̂3[n] from the observation, i.e. y′[n] := y[n]−β[n]x̂1[n]. Then, the
new system with the observation y′[n] behaves like the following system:

[
x2[n+ 1]
x3[n+ 1]

]
=

[
2 0
0 −2

] [
x2[n]
x3[n]

]
+ w[n]

y′[n] = β[n]

([
1 1

] [x2[n]
x3[n]

]
+ (x1[n]− x̂1[n])

) (37)

Since the expectation of the estimation error for x1[n] is uniformly bounded, it can be considered as a part of the observation
noise.11 In the same way as the previous section, we can prove that the estimation error for x2[n], x3[n] is uniformly bounded
if pe < 1

22·2 . Notice that the minimum number of required information to estimate the state by observability gramian matrix
inversion is 3, the number of the states. However, here we used more number of observation to apply successive decoding idea.

(2) Necessity: To prove that the example is not intermittent observable if pe ≥ 1
max{32,22·2} , we will use a genie argument.

If the states x2[n], x3[n] is given to the estimator as a side-information, the remaining system with x1[n] is a scalar system with
the eigenvalue 3. We know that if pe ≥ 1

32 , x1[n] is not intermittent observable. We can also give x1[n] as a side-information to
conclude that pe ≥ 1

22·2 is a necessary condition for the intermittent observability.
(3) Remarks: In summary, we can solve problems with multiple eigenvalue cycles one by one without worrying about the

existence of the other eigenvalue cycles. In other words, at each step we estimate the eigenvalue cycle associated with the largest
eigenvalue. After the estimation, the eigenvalue cycle can be subtracted from the system except uniformly bounded estimation
error. Then, we can simply repeat the steps for the remaining system. This procedure of successively solving and subtracting
the unknowns is called successive decoding in information theory, and used as a decoding procedure for the multiple-access
channel [31].

11Precisely speaking, the estimation error for x1[n] is a random variable which depends on the channel erasure process. Therefore, the rigorous proof of
Section VIII-C has more steps to justify the argument.
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Therefore, we can conclude that the intermittent observability for a multiple eigenvalue-cycle system is bottlenecked by the
hardest-to-estimate eigenvalue cycle, which manifests as the max operation in the critical erasure probability calculation.

C. Separability of Eigenvalue Cycles
The remaining question is what are the minimal irreducible sub-problems, whose answer can be expected to be eigenvalue

cycles from the discussion up to now. In other words, we will understand general systems with multiple eigenvalue cycles by
dividing into sub-systems with a single eigenvalue cycle. In the max-combining property, we already saw an example with multiple
eigenvalue cycles. In the example, we first reduce the problem with multiple eigenvalue cycles to the problem with no eigenvalue
cycles by sub-sampling plants. For example, in Section V-B we already saw that by sub-sampling (by 2), the system with an
eigenvalue cycle (period 2) becomes a system with no eigenvalue cycles.

Thus, the question reduces to the fact that for systems with no eigenvalue cycles the critical erasure probability is 1
|λmax|2

,
which will be shown in Corollary 1. To intuitively understand why this is true, we will consider three cases depending on the
structure of A.

The first case is when A is a diagonal matrix, and the magnitudes of its eigenvalues are distinct. In fact, this case is already

proved in [18]. Let’s consider a descriptive example when A =

[
3 0
0 2

]
, C =

[
1 1

]
. Then, the observability gramian of the

system becomes
[
CAn1

CAn2

]
=

[
3n1 2n1

3n2 2n2

]
. To prove that the critical erasure probability is given as 1

|λmax|2
= 1

32 , it is enough

to prove that the determinant of the observability gramian is large enough for almost all distinct n1 and n2. To justify this, we
can use the fact that the ratio of the elements, ( 3

2
)n, is an exponentially increasing function.

The second case is when A is a diagonal matrix, and the eigenvalues are distinct but have the same magnitude. Let’s consider

the system with A =

[
ej 0

0 ej
√

2

]
and C =

[
1 1

]
. The observability gramian is given as

[
CAn1

CAn2

]
=

[
ejn1 ej

√
2n1

ejn2 ej
√

2n2

]
, and

like above it is enough to show that the determinant of this observability gramian is large enough for almost all distinct n1, n2.
Here, the arguments from [18] cannot work. For this, we instead used Weyl’s criterion [15] which tells each element (ejn, ej

√
2n)

behaves like a random variable (ejθ1 , ejθ2) where θ1 and θ2 are independent random variables uniformly distributed on [0, 2π].
In fact, the effect of the hypothetical random variables (ejθ1 , ejθ2) is quite similar to the actually randomly-dithered nonuniform
sampling discussed in Section VII.

The last case is when A is a Jordan block matrix. Let’s consider the system with A =

[
2 1
0 2

]
and C =

[
1 0

]
. The

observability gramian is given as
[
CAn1

CAn2

]
=

[
2n1 n12n1

2n2 n22n2

]
, and we have to show that the determinant of this observability

gramian is large enough for almost all distinct n1, n2. Unlike the above cases, this example has polynomial terms in n1, n2.
Exploiting this fact, we can reduce the problem to the fact that a polynomial function on n becomes zero only on a measure zero
set.

By combining the insights from these three examples, we can prove that for a general matrix A with no eigenvalue cycles,
the critical erasure probability is given as 1

|λmax|2
.

VI. INTERMITTENT OBSERVABILITY CHARACTERIZATION

Based on the intuition of the previous section, the intermittent observability condition can be characterized. We begin with
the formal definition of a cycle.

Definition 14: A multiset (a set that allows repetitions of its elements) {a1, a2, · · · , al} is called a cycle with length l and
period p if

(
ai
aj

)p
= 1 for all i, j ∈ {1, 2, · · · , l} and some p ∈ N. Following convention, p is denoted12 as

p := min

{
n ∈ N :

(
ai
aj

)n
= 1, ∀i, j ∈ {1, 2, · · · , l}

}
. (38)

For example, {a} is a cycle with length 1 and period 1 by itself. {ejω, ej(ω+ 2π
6

)} is a cycle with length 2 and period 6.
{ej , ej

√
2} and {1, 2} are not cycles. One trivially necessary condition for a1, a2 to belong to the same cycle is |a1| = |a2|. It

can be also shown that cycles are closed under overlapping unions, meaning that if {a1, a2} and {a2, a3} are cycles, {a1, a2, a3}
is also a cycle.

Now, we can define an eigenvalue cycle. It is well-known in linear system theory [7] that by properly changing coordinates,
any linear system equations (1) can be written in an equivalent form with a Jordan matrix A. Moreover, even though the MMSE
value can be changed by the coordinate change, the condition for the boundedness (stabilizability) remains the same. Rigorously,
for any system matrix A, there exists an invertible matrix U and an upper-triangular Jordan matrix A′ such that A = UA′U−1.
We also define B′ := UB and C′ := CU. Then, the matrix A′ and C′ can be written as the following form:

A′ = diag{A1,1,A1,2, · · · ,Aµ,νµ}
C′ =

[
C1,1 C1,2 · · · Cµ,νµ

]
where

Ai,j is a Jordan block with an eigenvalue λi,j
{λi,1, · · · , λi,νi} is a cycle with length νi and period pi
For i 6= i′, {λi,j , λi′,j′} is not a cycle
Ci,j is a l × dim Ai,j complex matrix. (39)

12We use 0
0

= 1, 1
0

=∞, 1∞ =∞ and 1
∞ = 0.
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Since cycles are closed under overlapping unions, the eigenvalues of A can be uniquely partitioned into maximal cycles,
{λi,1, · · · , λi,νi}. We call these cycles eigenvalue cycles and we say A has no eigenvalue cycle if all of its eigenvalue cycles are
period 1.

Define

Ai = diag{λi,1, · · · , λi,νi}
Ci =

[
(Ci,1)1 · · · (Ci,νi)1

]
where (Ci,j)1 is the first column of Ci,j. (40)

In other words, we are dividing the original problem to sub-problems according to eigenvalue cycles.
Let li be the minimum cardinality among the sets S′ ⊆ {0, 1, · · · , pi − 1} whose resulting S := {0, 1, · · · , pi − 1} \ S′ =

{s1, s2, · · · , s|S|} makes 
CiAi

s1

CiAi
s2

...
CiAi

s|S|

 (41)

be rank deficient, i.e. the rank is strictly less than νi. Here, pi and li will be used for the power property. li represents how many
observations have to be erased out of pi time steps to make the observability Gramian matrix rank deficient. This corresponds to
the critical error event in large deviation theory.

Now, we can apply the max-combination property to characterize intermittent observability. Here is the main theorem of the
paper.

Theorem 7: Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let σ < ∞, σ′ > 0, and (A,B)
be controllable. Then, the intermittent system is intermittent observable if and only if

pe <
1

max
1≤i≤µ

|λi,1|
2
pi
li

.

or equivalently max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

Proof: See Section VIII-C for sufficiency, and Section VIII-D for necessity.
Here, we can notice that there is no assumption about stability or observability of the system. Let’s first do a validity test of

the theorem by trying stable modes and unobservable modes. If |λi,1| < 1, 1

|λi,1|
2
pi
li

> 1. Therefore, the stable modes do not

contribute to the characterization of the critical erasure probability. If (Ai,Ci) are unobservable, li = 0. So, 1

|λi,1|
2
pi
0

= 0 if

|λi,1| ≥ 1 and 1

|λi,1|
2
pi
0

= ∞ if |λi,1| < 1. Therefore, if the unobservable modes are stable they do not affect the intermittent

observability of the system and if they are not the system is not intermittent observable even if pe = 0.

Even though in general li does not admit a closed form, it is computable for special cases.
Corollary 1: Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let σ < ∞, σ′ > 0, and (A,B)

be controllable. We further assume that (A,C) is observable and A has no eigenvalue cycles (i.e.
(
λi
λj

)n
6= 1 for all λi 6= λj

and n ∈ N). Then, the intermittent system is intermittent observable if and only if pe < 1
|λmax|2

where λmax is the largest
magnitude eigenvalue of A.

Proof: Since A has no eigenvalue cycles, pi equal to 1 for all i and Ai are scalars. Moreover, by the observability condition
and Theorem 6, Ci is full-rank. Thus, li = 1 for all i and by Theorem 7 the critical erasure probability is 1

maxi |λi,1|2
= 1
|λmax|2

.

For a more precise understanding of the critical erasure probability, we will focus on the case of a row vector C — i.e.
single-output systems. Heuristically, a row vector C is the worst among C matrices since a vector observation is clearly better
than a scalar observation.

Furthermore, we will also restrict the periods of the all eigenvalue cycles of A to be primes13. The technical reason for this
restriction is that prime periods give us a useful invariance property of the sub-eigenvalue cycles. Let {λ1, λ2, · · · , λl} be an
eigenvalue cycle with prime period p. Then, all subsets of {λ1, λ2, · · · , λl} with distinct elements are eigenvalue cycles with the
same period p. This invariance property need not hold for eigenvalue cycles with composite periods as we will see by example
later.

Corollary 2: Given an intermittent system (A,B,C, σ, σ′) with probability of erasure pe, let σ < ∞, σ′ > 0, and (A,B)
be controllable. We further assume that (A,C) is observable, C is a row vector, and A has only prime-period eigenvalue cycles
of length νi. Then, the intermittent system is intermittent observable if and only if pe < 1

max
1≤i≤µ

|λi,1|
2pi

pi−νi+1

.

13For convenience, we include 1 as a prime number here.
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Proof: First, we introduce the following fact regarding Vandermonde matrix determinants [24]: Let p be a prime, a1, · · · , an
be pairwise incongruent in mod p and b1, · · · , bn be pairwise incongruent in mod p. Then,

e
j2π

a1b1
p e

j2π
a1b2
p · · · e

j2π
a1bn
p

e
j2π

a2b1
p e

j2π
a2b2
p · · · e

j2π
a2bn
p

...
...

. . .
...

e
j2π

anb1
p e

j2π
anb2
p · · · e

j2π anbn
p


is full rank.

Furthermore, since (A,C) is observable and C is a row vector, by Theorem 6, λi,j are distinct and (Ci,j)1 are not zeros.

Therefore, let λi,j = |λi|e
j2π

qi,j
pi where qi,1, · · · , qi,νi are incongruent in mod pi and pi are primes.

Now, we will evaluate the critical erasure probability shown in Theorem 7. For this system, (41) can be written as CiAi
s1

...
CiAi

s|S|

 =

 λ
s1
i,1 · · · λs1i,νi
...

. . .
...

λ
s|S|
i,1 · · · λ

s|S|
i,νi


(Ci,1)1 · · · 0

...
. . .

...
0 · · · (Ci,νi)1



=

|λi|
s1 · · · 0

...
. . .

...
0 · · · |λi|s|S|



e
j2π

qi,1
pi

s1 · · · e
j2π

qi,νi
pi

s1

...
. . .

...

e
j2π

qi,1
pi

s|S| · · · e
j2π

qi,νi
pi

s|S|


(Ci,1)1 · · · 0

...
. . .

...
0 · · · (Ci,νi)1



Since λi and Ci,j1 are non-zeros, the rank of

 CiAi
s1

...
CiAi

s|S|

 is equal to the rank of


e
j2π

qi,1
pi

s1 · · · e
j2π

qi,νi
pi

s1

...
. . .

...

e
j2π

qi,1
pi

s|S| · · · e
j2π

qi,νi
pi

s|S|

.

Furthermore, since qi,1, · · · , qi,ν1 are incongruent in mod pi and s1, · · · , s|S| are also incongruent in mod pi, by the property
of the Vandermonde matrix discussed above, the rank of the observability gramian is greater or equal to νi if and only if |S| ≥ νi.

Therefore, li of (41) is pi − νi + 1, and the corollary follows from Theorem 7.
One may wonder why we could not get a simple answer in Theorem 7 unlike Corollary 2. To understand this, consider two

potential extensions of Corollary 2:

(1) Eigenvalue cycles with periods that are composite numbers: Consider A =

2 0 0

0 2ej
2π
16 0

0 0 2ej
2π
16

9

 and C =
[
1 1 1

]
.

The eigenvalue cycle has length 3 and period 16. If we naively apply the formula of Corollary 2 then we would get a critical
value 1

2
2· 16

16−3+1
= 1

2
16
7

. However, if we consider the sub-eigenvalue cycle {2ej
2π
16 , 2ej

2π
16

9}, the length is 2 and the period is 2.

The formula of Corollary 2 gives 1

2
2· 2

2−2+1
= 1

24 as a critical value, which gives a tighter condition than the previous one. In

fact, the latter value is the correct critical erasure probability. Because the period invariant property does not hold for a composite
number cycle, the longest cycle does not necessarily give the right critical probability.

(2) A general matrix C, multiple-output systems: If we have a vector observation, an eigenvalue cycle can be divided into
smaller cycles. As an extreme case, when C is an identity matrix every eigenvalue cycle is divided into trivial cycles with length

1 and the critical erasure probability becomes 1
|λmax|2

as observed in [29]. Consider now A =


2 0 0 0

0 2ej
2π
5 0 0

0 0 2ej
2π
5

2 0

0 0 0 2ej
2π
5

3


and C =

[
1 2 3 4
0 0 0 δ

]
. The eigenvalue cycle {2, 2ej

2π
5 , 2ej

2π
5

2, 2ej
2π
5

3} of A has length 4 and period 5. However, if δ 6= 0,

by elementary row operations C can be converted to
[
1 2 3 0
0 0 0 1

]
. Thus, the eigenvalue cycle is divided into two sub-cycles,

{2, 2e
2π
5 , 2e

2π
5

2} and {2e
2π
5

3}. The longer cycle with length 3 would dominate and the critical erasure probability would be
1

2
2· 5

5−3+1
= 1

2
10
3

. Meanwhile, if δ = 0, the second row of C would be ignorable. Thus, the eigenvalue cycle would not be

divided and the critical erasure probability would be 1

2
2· 5

5−4+1
= 1

2
10
2

.

In this example, we can see that the critical erasure probability depends on whether δ is equal to 0 or not, which is related to
the rank of C. Thus, it is inevitable to have a rank condition of some sort in the characterization of the critical erasure probability.

A. Extension to Intermittent Kalman Filtering with Parallel Channels
The concept of eigenvalue cycles and the divide-and-conquer approach can be also applied to extensions and variations of

the intermittent Kalman filtering.
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Let’s consider intermittent Kalman filtering with parallel erasure channels as introduced in [11].

x[n+ 1] = Ax[n] + Bw[n]

y1[n] = β1[n](C1x[n] + v1[n])

...
yd[n] = βd[n](Cdx[n] + vd[n])

Here n is the non-negative integer-valued time index, and x[n] ∈ Cm, w[n] ∈ Cg , yi[n] ∈ Cli , vi[n] ∈ Cli , A ∈ Cm×m,
B ∈ Cm×g , Ci ∈ Cli×m. The underlying randomness comes from x[0], w[n], vi[n] and βi[n]. x[0], w[n] and vi[n] are
independent Gaussian vectors with zero mean, and there exist positive σ2 and σ′2 such that

E[x[0]x[0]†] � σ2I

E[w[n]w[n]†] � σ2I

E[vi[n]vi[n]†] � σ2I

E[w[n]w[n]†] � σ′2I
E[vi[n]vi[n]†] � σ′2I.

βi[n] are independent Bernoulli random processes with erasure probabilities pe,i.
We call this system as an intermittent system (A,B,Ci) with erasure probabilities pe,i.
Since the observations go through independent parallel erasure channels, we can expect diversity gain [32], i.e. even though

the observations from some channels are lost, we can still estimate the state based on other successfully transmitted observations.
At the first glance, this extension may seem much harder than the original problem since we have to characterize the whole region
(pe,1, · · · , pe,d) rather than a single critical erasure value. However, a simple extension of Theorem 7 turns out to be enough to
characterize this critical erasure probability region. As in Section VI, let A = UA′U−1 where U is an invertible matrix and A′

is an upper-triangular Jordan matrix. We also define B′ := UB and C′i := CiU.
Then, we can make the following generalized definitions of (39), (40), (41) for A′ and C′i.

A′ = diag{A1,1,A1,2, · · · ,Aµ,νµ}
C′i =

[
C1,1,i C1,2,i · · · Cµ,νµ,i

]
where

Ai,j is a Jordan block matrix with an eigenvalue λi,j
{λi,1, · · · , λi,νi} is a cycle with length νi and period pi
For i 6= i′, {λi,j , λi′,j′} is not a cycle
Ci,j,k is a lk × dim Ai,j matrix.

Denote

Ai = diag{λi,1, · · · , λi,νi}
Ci,j =

[
(Ci,1,j)1, · · · , (Ci,νi,j)1

]
where (Ci,j,k)1 is the first column of Ci,j,k.

Let (li,1, li,2, · · · , li,d) be the cardinality vector of the sets S′1, S′2, · · · , S′d such that Sj := {0, 1, · · · , pi−1}\S′j = {sj,1, sj,2, · · · , sj,|Sj |}
and 

Ci,1Ai
s1,1

...
Ci,1Ai

s1,|S1|

Ci,2Ai
s2,1

...
Ci,dAi

sd,|Sd|


is rank deficient, i.e. has rank strictly less than νi. Denote Li as a set of all such vectors.

Then, the intermittent observability with parallel channels is characterized as follows.
Proposition 1: Given an intermittent system (A,B,Ci, σ, σ

′) with probabilities of erasures (pe,1, · · · , pe,d), let σ < ∞,
σ′ > 0, and (A,B) be controllable. Then, the intermittent system is intermittent observable if and only if

max
1≤i≤µ

max
(li,1,li,2,··· ,li,d)∈Li

 ∏
1≤j≤d

p

li,j
pi
e,j

 |λi,1|2 < 1.

We omit the proof of the proposition, since it is similar to that of Theorem 7.
Compared to Theorem 7, the max-combination and separability principle remain the same, but the test channels in the

power property become more complicated. Here, (S′1, · · · , S′d) represents the test channels such that when they are erased, the
observability Gramian becomes rank-deficient. (li,1, · · · , li,d) represents the distance vector to these test channels.
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VII. INTERMITTENT KALMAN FILTERING WITH NONUNIFORM SAMPLING

In the previous section, we proved that eigenvalue cycles are the only factor that prevents us from having the critical erasure
probability be 1

|λmax|2
. Based on this understanding, we can look for a simple way to avoid this troublesome phenomenon. Here,

we propose nonuniform sampling as a simple way of breaking the eigenvalue cycles and achieving the critical value 1
|λmax|2

.

As an intuitive example, consider A =

[
1 0
0 −1

]
. Then, A =

[
1 0
0 −1

]
,A2 =

[
1 0
0 1

]
,A3 =

[
1 0
0 −1

]
,A4 =[

1 0
0 1

]
, · · · . What the eigenvalue cycle is capturing is that half of A,A2,A3, · · · are identical. Therefore, the question is

how we can make every matrix in A,A2,A3, · · · distinct. To simplify the question, consider the sequence of −1, 1,−1, 1, · · ·
which corresponds to (2, 2) elements of A,A2,A3, · · · .

Rewrite this sequence −1, 1,−1, 1, · · · as (ejπ)1, (ejπ)2, (ejπ)3, (ejπ)4, · · · and introduce a jitter ti to each sampling time.
The resulting sequence becomes (ejπ)1+t1 , (ejπ)2+t2 , (ejπ)3+t3 , (ejπ)4+t4 , · · · and if tis are uniformly distributed i.i.d. random
variables on [0, T ] each element in the sequence is distinct almost surely as long as T > 0.

Operationally, this idea can be implemented as follows: at design-time, the sensor and the estimator agree on the nonuniform
sampling pattern which is a realization of i.i.d. random variables whose distribution is uniform on [0, T ] (T > 0). Whenever
the sensor samples the system, it jitters its sampling time according to this nonuniform pattern. Knowing the sampling time
jitter, the sampled continuous-time system looks like a discrete time-varying system to the estimator. The joint Gaussianity
between the observation and the state is preserved, and furthermore, Kalman filters are optimal even for time-varying systems!
This intermittent Kalman filtering problem with nonuniform samples has the critical erasure probability 1

|λmax|2
almost surely.

Therefore, an eigenvalue cycle is breakable by nonuniform sampling.
One may be bothered by the probabilistic argument on the nonuniform sampling pattern. However, this probabilistic proof is

an indirect argument for the existence of an appropriate deterministic nonuniform sampling pattern, which is similar to how the
existence of capacity achieving codes is proved in information theory [28].

To write the scheme formally, consider a continuous-time dynamic system:

dxc(t) = Acxc(t)dt+ BcdWc(t) (42)

yc(t) = Ccxc(t) + Dc
dVc(t)

dt
. (43)

Here t is the non-negative real-valued time index. Wc(t) and Vc(t) are independent g and l-dimension standard Wiener processes
respectively, i.e. for a, b ≥ 0, Wc(a + b) −Wc(b) is distributed as N (0, aI) and Vc(a + b) − Vc(b) is also distributed as
N (0, aI). Ac ∈ Cm×m, Bc ∈ Cm×g , Cc ∈ Cl×m, and Dc ∈ Cl×l where Dc is invertible. Thus, x[n] ∈ Cm and y[n] ∈ Cl.
For a convenience, we assume x[0] = 0 but the results of this paper hold for any x[0] with finite variance. Throughout this paper,
we use the Ito’s integral [8, p.80] for stochastic calculus.

The process of (42) is known as Ornstein-Uhlenbeck process [8, p.109] whose solution is xc(t) = eActxc(0)+
∫ t

0
eAc(t−t′)BcdWc(t′).

Therefore, for t1 ≤ t2 we have

xc(t2) = eAct2xc(0) +

∫ t2

0

eAc(t2−t′)BcdWc(t′) (44)

= eAc(t2−t1)

(
eAct1xc(0) +

∫ t2

0

eAc(t1−t′)BcdWc(t′)

)
= eAc(t2−t1)

(
eAct1xc(0) +

∫ t1

0

eAc(t1−t′)BcdWc(t′) +

∫ t2

t1

eAc(t1−t′)BcdWc(t′)

)
= eAc(t2−t1)

(
xc(t1) +

∫ t2

t1

eAc(t1−t′)BcdWc(t′)

)
which can be rewritten as

xc(t1) = eAc(t1−t2)xc(t2)−
∫ t2

t1

eAc(t1−t′)BcdWc(t′). (45)

The point of doing this is to understand the values of the states during sampling intervals in terms of the states at the end of the
interval.

Let’s say we want to sample the system with a sampling interval I (I > 0). Conventional samplers uses integration filters to
sample, i.e. in the uniform sampling case, the nth sample y[n] corresponds to the integration of yc(t) for (n− 1)I ≤ t < nI:

y[n] =

∫ nI

(n−1)I

yc(t)dt.

Nonuniform sampling can be thought of in two ways with respect to sampler’s integration filters: (1) The starting times of the
integrations are uniform, but the sampling intervals are non-uniform. (2) The sampling intervals are uniform, but the starting times
of the integrations are non-uniform. Since the analysis and performance is similar in both cases, we will focus on the latter case.
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PLANT Nonuniform Sampling 
SENSOR 

Estimator 

Shared Nonuniform Sampling Pattern tn 

Fig. 3: System diagram for ‘intermittent Kalman filtering with nonuniform sampling’. The sensor samples the plant according
to the nonuniform sampling pattern tn, and sends the observation through the real erasure channel without any coding. The
estimator tries to estimate the state based on its received signals and the nonuniform sampling pattern tn.

To take the nth sample of the system, the non-uniform sampler takes the integration of yc(t) for (n− 1)I − tn ≤ t < nI − tn:

yo[n] =

∫ nI−tn

(n−1)I−tn
yc(t)dt

=

∫ nI−tn

(n−1)I−tn
Ccxc(t)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (46)

=

∫ nI−tn

(n−1)I−tn
Cc

(
eAc(t−(nI−tn))xc(nI − tn)−

∫ nI−tn

t

eAc(t−t′)BcdWc(t′)

)
dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (47)

=

(∫ nI−tn

(n−1)I−tn
Cce

Ac(t−(nI−tn))dt

)
xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)

=

(∫ I

0

Cce
Ac(t−I)dt

)
︸ ︷︷ ︸

:=C

xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t)︸ ︷︷ ︸

:=v[n]

(48)

Here (46) follows from (43), and (47) follows from (45). Since yo[n] is transmitted over the erasure channel, the intermittent
system (Ac,Bc,C) with nonuniform samples and erasure probability pe has the following system equation:

dxc(t) = Acxc(t)dt+ BcdWc(t) (49)
y[n] = β[n](Cxc(nI − tn) + v[n]) (50)

where y[n] ∈ Cl and β[n] is an independent Bernoulli random process with erasure probability pe. The variance of v[n] is
uniformly bounded since the integration interval is bounded, but v[n] can be correlated since the integration intervals could
overlap. Since C is a function of Cc, the observability of (Ac,Cc) does not necessarily imply the observability of (Ac,C)
while the observability of (Ac,C) always implies the observability of (Ac,Cc).

Figure 3 shows the system diagram for intermittent Kalman filtering with nonuniform sampling. The nonuniform sampler
samples the plant according to the nonuniform sampling pattern tn and generates the observation yo[n]. The observation is
transmitted through the real erasure channel without any coding. Then, the estimator tries to estimate the state xc(t) based on its
received signals yn and the nonuniform sampling pattern tn.

As before, the intermittent system (Ac,Bc,C) with nonuniform samples is called intermittent observable if there exists a
causal estimator x̂(t) of x(t) based on y[b t

I
c], · · · ,y[0] such that

sup
t∈R+

E[(x(t)− x̂(t))†(x(t)− x̂(t))] <∞. (51)

Intermittent observability with nonuniform samples is characterized by the following theorem.
Theorem 8: Let tn be i.i.d. random variables uniformly distributed on [0, T ] (T > 0), and (Ac,Bc) be controllable.

When (Ac,C) has unobservable and unstable eigenvalues — i.e. ∃λ ∈ C+ such that
[
λI−Ac

C

]
is rank deficient —, the

intermittent system (Ac,Bc,C) with nonuniform samples is not intermittent observable for all pe. Otherwise, the intermittent
system (Ac,Bc,C) with nonuniform samples is intermittent observable if and only if pe < 1

|e2λmaxI | . Here λmax is the
eigenvalue of Ac with the largest real part.

Proof: See Section VIII-A for sufficiency, and Section VIII-B for necessity.
Since exp ((eigenvalue of Ac)I) corresponds to the eigenvalue of the sampled discrete time system, the critical value of

Theorem 8 is equivalent to that of Corollary 1. The nonuniform sampling allows us to no longer care if eigenvalue cycles could
exist for the original continuous-time system under uniform sampling.
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Nonuniform sampling is the right way of breaking eigenvalue cycles from a practical point of view. So the critical erasure
probability of 1

|λmax|2
can be achieved not only by using the computationally challenging estimation-before-packetization strategy

of [25], but also by the simple memoryless approach of dithered sampling before packetization. And so, even if the sensors were
themselves distributed, the critical erasure probability with nonuniform sampling is still critical value optimal in a sense that they
can achieve the same critical erasure probability as sensors with causal or noncausal information about the erasure pattern and
with unbounded complexity.

A. Extensions of Intermittent Kalman Filtering with Nonuniform Sampling
In this section, we discuss variations and extensions of intermittent Kalman filtering with nonuniform samples. Since the

proofs of the results shown in this section are similar to that of Theorem 8, we only present the results without proofs.
1) General Distribution on tn: First, we relax the condition on the distribution of tn of Theorem 8. There, we assume

that tn are identically and uniformly distributed. However, they do not have to be identical or uniform.
Proposition 2: Assume that t0, t1, · · · are independent and there exist a, c > 0 such that P{|tn| ≥ a} = 0 and P{tn ∈ B} ≤

c|B|L for all n ∈ Z+ and B ∈ B, where B is Borel σ-algebra and | · |L is Lebesgue measure. Then, Theorem 8 still holds,
i.e. if (Ac,C) has no unobservable and unstable eigenvalues, the intermittent system with nonuniform samples is intermittent
observable if and only if pe < 1

|e2λmaxI | .
For the proof of the proposition, we can repeat the proof steps of Theorem 8 using an improper distribution µ such that

µ(A) = c|A ∩ [−a, a]|L.
2) Deterministic Sequences for tn: The randomness assumption on tn can be also removed. As we mentioned earlier, the

probabilistic proof is an indirect proof for the existence of deterministic nonuniform sampling patterns. In fact, any nonuniform
sequence satisfying Weyl’s criteria —which gives the sufficient and necessary condition for a sequence equidistributed on the
interval — can be used to break eigenvalue cycles.

Proposition 3: Let a sequence tn ∈ [0, T ] satisfy Weyl’s criteria, i.e. for all h ∈ Z\{0}, lim
N→∞

| 1
N

∑
1≤n≤N

ej2πh·
t
T | = 0. Then,

Theorem 8 still holds, i.e. if (Ac,C) has no unobservable and unstable eigenvalues, the intermittent system with nonuniform
samples is intermittent observable if and only if pe < 1

|e2λmaxI | .
For example, a sequence like tn =

√
2n−b

√
2nc can be used to break eigenvalue cycles. The proof is by merging the proof

of Theorem 7 and Theorem 8.
3) Nonuniform-length integration interval: In Theorem 8, we introduce nonuniform sampling by changing the starting

time of the length of the integration. Another way of introducing nonuniform sampling is changing the integration interval. To
take the nth sample of the system, the sensor integrates yc(t) from (n− 1)I − tn to nI . Parallel to (48), we have the following
equation.

yo[n] =

∫ nI

(n−1)I−tn
yc(t)dt

=

(∫ nI

(n−1)I−tn
Cce

Ac(t−nI)

)
xc(nI)

−
∫ nI

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI

(n−1)I−tn
DcdVc(t)

=

(∫ n+tn

0

Cce
Ac(t−nI−tn)

)
︸ ︷︷ ︸

:=Cn

xc(nI)

−
∫ nI

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI

(n−1)I−tn
DcdVc(t)︸ ︷︷ ︸

:=v[n]

yo[n] is transmitted over the erasure channel, and the intermittent system (Ac,Bc,Cn) with nonuniform samples and erasure
probability pe has the following system equations which correspond to (49) and (50).

dxc(t) = Acxc(t)dt+ BcdWc(t)

y[n] = β[n](Cnxc(nI) + v[n])

Then, the intermittent observability condition for (Ac,Bc,Cn) is similar to Theorem 8.
Proposition 4: Let tn be i.i.d. random variables uniformly distributed on [0, T ] (T > 0), and (Ac,Bc) be controllable.

If (Ac,Cc) has unobservable and unstable eigenvalues, the intermittent system (Ac,Bc,Cn) with nonuniform samples is not
intermittent observable for all pe. Otherwise, the intermittent system (Ac,Bc,Cn) with nonuniform samples is intermittent
observable if and only if pe < 1

|e2λmaxI | where λmax is the eigenvalue of Ac with the largest real part.
Compared to Theorem 8, we can see that the observability condition of (Ac,C) is relaxed to the observability condition of

(Ac,Cc). This is due to the following fact:
∫ nI−tn

(n−1)I−tn
ej

2π
I
tdt = 0 for all tn and

∫ nI
(n−1)I−tn

ej
2π
I
tdt 6= 0 for some tn. Even

if (Ac,Cc) is observable, (Ac,C) can be unobservable for all tn while (Ac,Cn) is observable for almost all tn.
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(a) (b) (c)

(d) (e)

Fig. 4: (a): uniform sampling of Theorem 7, (b): nonuniform sampling of Theorem 8, (c): nonuniform sampling of Proposition 4,
(d): nonuniform filtering of Proposition 5, (e): nonuniform sampling with nonuniform waveforms

4) Nonuniform Time-varying Filtering: In some cases, it is impossible to change the sampling time. In this case, we can
use nonuniform time-varying filtering to break eigenvalue cycles. Consider the following discrete-time system:

x[n+ 1] = Ax[n] + Bw[n]

yo[n] = Cx[n] + v[n]

Here yo[n] are the observations at the sensor, and the sensor cannot change the sampling intervals. Instead, the sensor introduces
nonuniform filtering to the observations as follows:

y′o[n] = α[n]yo[n] + α′[n]yo[n− 1]

This is just like introducing an FIR (finite impulse response) filter at the sensor except that the impulse response of the filter
keeps changing over time.

The output of the nonuniform time-varying filter, y′o[n], is transmitted over the erasure channel. Therefore, the intermittent
system (A,B,C) with erasure probability pe and nonuniform time-varying filtering has the following system equations:

x[n+ 1] = Ax[n] + Bw[n]

y[n] = β[n](y′o[n])

= β[n](α[n]Cx[n] + α′[n]Cx[n− 1] + α[n]v[n] + α′[n]v[n− 1])

The intermittent observability with nonuniform filtering is given as the following proposition.
Proposition 5: Let α[n] and α′[n] be i.i.d. random variables uniformly distributed on [0, T ] (T > 0), and (A,B) be

controllable. If (A,C) has unobservable and unstable eigenvalues, the intermittent system (A,B,C) with nonuniform filtering
is not intermittent observable for all pe. Otherwise, the intermittent system (A,B,C) with nonuniform filtering is intermittent
observable if and only if pe < 1

|λmax|2
where λmax is the largest magnitude eigenvalue of A.

5) Sampling with Nonuniform Waveforms: So far in Theorem 8, Proposition 4, and Proposition 5, we have seen three
different ways of breaking eigenvalue cycles. However, these methods are essentially the same and generalized to nonuniform
sampling with nonuniform waveforms.

Fig. 4 shows the nonuniform sampling methods used to break eigenvalue cycles with respect to their waveforms. First, Fig. 4a
shows the uniform sampling which is implicitly used to make discrete-time system (1), (2) from the underlying continuous-time
system. As we saw in Theorem 7, the eigenvalue cycles were not broken in this case. Fig. 4b shows the nonuniform sampling by
changing the starting time of the integration, which is used in Theorem 8. In this case, the eigenvalue cycles were successfully
broken, but we can still observe the regularity in the integration intervals. Due to this regularity, we needed the observability of
(Ac,C) instead of the observability of (Ac,Cc). Fig. 4c shows the nonuniform sampling by changing the integration interval,
which is used in Proposition 4. The eigenvalue cycles were also broken in this case and due to the lack of regularity in sampling
intervals the observability of (Ac,Cc) was enough. Fig. 4d shows the nonuniform filtering, which is used in Proposition 5 and
successfully break the eigenvalue cycles. Therefore, we can conclude that as long as the sampling waveforms are not uniform as
Fig. 4a the eigenvalue cycles are broken. In general, nonuniform waveforms shown in Fig. 4e can be used to break eigenvalue
cycles, and it is an interesting technical equation to find the minimal condition on nonuniform waveforms to break eigenvalue
cycles.
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6) Extension to Parallel Channels: Theorem 8 can also be extended to the multiple sensors that transmit their observations
through parallel erasure channels. Consider the following continuous-time system equations.

dxc(t) = Acxc(t)dt+ BcdWc(t)

yc,1(t) = Cc,1xc(t) + Dc,1
dVc,1(t)

dt
...

yc,d(t) = Cc,dxc(t) + Dc,d
dVc,d(t)

dt

Here t is non-negative real-valued time index. Ac ∈ Cm×m, Bc ∈ Cm×g , Cc,i ∈ Cli×m and Dc,i ∈ Cli×li where Dc,i is
invertible. Wc(t) and Vc,1(t) are independent g and li-dimensional standard Wiener process respectively.

Like (48), the nth sample at the sensor i is obtained by integrating yc,i(t) from (n− 1)I − tn,i to nI − tn,i:

yo,i[n] =

∫ nI−tn,i

(n−1)I−tn,i
yc,i(t)dt

=

(∫ I

0

Cc,ie
Ac(t−I)dt

)
︸ ︷︷ ︸

:=Ci

xc(nI − tn,i)

−
∫ nI−tn,i

(n−1)I−tn,i

∫ nI−tn,i

t

Cc,ie
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn,i

(n−1)I−tn,i
Dc,idVc,i(t)︸ ︷︷ ︸

:=vi[n]

Since yo,i[n] are transmitted over the parallel erasure channel, the intermittent system (Ac,Bc,Ci) with parallel channel
has the following system equation:

dxc(t) = Acxc(t)dt+ BcdWc(t)

y1[n] = β1[n](C1xc(nI − tn,1) + v1[n])

...
yd[n] = βd[n](Cdxc(nI − tn,d) + vd[n])

where yi[n] ∈ Cli and βi[n] are independent Bernoulli random processes with erasure probability pe,i.
Like before, by a change of coordinates, we can rewrite the above system equations to the ones with a Jordan form Ac

without changing the intermittent observability. Therefore, like (39), (40) and (41) we can write Ac and Ci as follows without
loss of generality.

Ac = diag{A1,1,A1,2, · · · ,Aµ,νµ}
Ci =

[
C1,1,i C1,2,i · · · Cµ,νµ,i

]
where

Ai,j is a Jordan block with eigenvalue λi
λ1, · · · , λµ are pairwise distinct
Ci,j,k is a lk × dim Ai,j complex matrix.

Denote

Ci,j =
[
(Ci,1,j)1 · · · (Ci,νi,j)1

]
where (Ci,j,k)1 implies the first column of Ci,j,k

Let (li,1, li,2, · · · , li,d) ∈ {0, 1}d such that 1(li,1 = 0)Ci,1

...
1(li,d = 0)Ci,d


is rank deficient, i.e. the rank is strictly less than νi.

Denote Li as the set of such (li,1, li,2, · · · , li,d) vectors. Then, the intermittent observability of the system (Ac,Bc,Ci) with
parallel channel is characterized by the following proposition.

Proposition 6: Given an intermittent system (Ac,Bc,Ci) with probability of erasures (pe,1, · · · , pe,d), let (Ac,Bc) be
controllable, and tn,i be independent random variables uniformly distributed on [0, T ] (T > 0). The intermittent system
(Ac,Bc,Ci) with parallel channel is intermittent observable if and only if

max
1≤i≤µ

max
(li,1,li,2,··· ,li,d)∈Li

 ∏
1≤j≤d

p
li,j
e,j

 |e2λiI | < 1.
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VIII. PROOFS

The proofs of Theorem 7 and Theorem 8 are quite similar, and we can directly relate them by Weyl’s criterion [15]. For
presentation purposes, we will first present the proof of the nonuniform sampling case, Theorem 8, which is easier than that of
Theorem 7.

A. Sufficiency Proof of Theorem 8 (Non-uniform Sampling)
We will prove that if (Ac,C) does not have unobservable and unstable eigenvalues and pe <

1
|e2λmaxI | , the system is

intermittent observable.
• Reduction to a Jordan form matrix Ac: To simplify the problem, we first restrict to system equations (49) and (50) with

the following properties. We will also justify that this restriction is without loss of generality and does not change intermittent
observability.
(a) The system matrix Ac is a Jordan form matrix.
(b) All eigenvalues of Ac are unstable, i.e. the real parts are nonnegative.
(c) (49) and (50) can be extended to two-sided processes.

The restriction (a) can be justified by a similarity transform [7]. As mentioned before, it is known [7] that for any square
matrix Ac, there exists an invertible matrix U and an upper-triangular Jordan matrix A′c such that Ac = UA′cU

−1. Then,
equations (44) and (48) can be rewritten as

U−1xc(t) = eA
′
ctU−1xc(0) +

∫ t

0

eA
′
c(t−t′)U−1BcdWc(t′)

yo[n] =

∫ I

0

CcUe
A′c(t−I)dtU−1xc(nI − tn)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

CcUe
A′c(t−t′)U−1BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t).

Thus, by denoting x′c(t) := U−1xc(t), B′c := U−1Bc, and C′c := CcU, the system equations (42), (43) and (50) can be written
in the following equivalent forms.

dx′c(t) = A′cx
′
c(t)dt+ B′cdWc(t)

yc(t) = C′cx
′
c(t) + Dc

dVc(t)

dt
yo[n] = C′x′c(nI − tn) + v[n]

where C′ :=
∫ I

0
C′ce

A′c(t−I)dt =
∫ I

0
CcUU−1eAc(t−I)Udt = CU.

Since U is invertible, (Ac,C) has an unobservable eigenvalue λ if and only if (A′c,C
′) has an unobservable eigenvalue λ.

Moreover, since x′c = U−1xc(t), the original intermittent system (Ac,Bc,C) with nonuniform samples is intermittent observable
if and only if the new intermittent system (A′c,B

′
c,C

′) with nonuniform samples is intermittent observable. Thus, without loss
of generality, we can assume Ac is given in a Jordan form, which justifies (a).

Once Ac is given in a Jordan form, there is a natural correspondence between the eigenvalues and the states. If there is
a stable eigenvalue — i.e. the real part of the eigenvalue is negative —, the variance of the corresponding state is uniformly
bounded. Thus, we do not have to estimate the state to make the estimation error finite. In the observation y[n], the stable states
can be considered as a part of observation noise v[n], and the variance of v[n] is still uniformly bounded (even if v[n] can be
correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), we put Wc(t) = 0 for t < 0, Vc(t) = 0 for t < 0, and let β[n] be a two-sided Bernoulli process
with probability 1− pe. Then, the resulting two-sided processes xc(t) and y[n] are identical to the original one-sided processes
except that xc(t) and y[n] except that xc(t) = 0 for t ∈ R−− and y[n] = 0 for n ∈ Z−−.

In summary, without loss of generality we can assume that Ac is in a Jordan form, all eigenvalues of Ac are stable, and (49)
and (50) are two-sided processes. Thus, we can assume Ac ∈ Cm×m and C ∈ Cl×m is given as follows.

Ac = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (52)

C =
[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]
(53)

where
Ai,j is a Jordan block with eigenvalue λi + jωi and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ
λ1 ≥ λ2 ≥ · · · ≥ λµ ≥ 0

λ1 + jω1, λ2 + jω2, · · · , λµ + jωµ are pairwise distinct
Ci,j is a l ×mi,j complex matrix
The first columns of Ci,1,Ci,2, · · · ,Ci,νi are linearly independent.

Here, Ai,1, · · · ,Ai,νi are the Jordan blocks corresponding to the same eigenvalue. The Jordan blocks are sorted in a descending
order in the real parts of the eigenvalues. The permutation of Jordan blocks can be justified since they are block diagonal matrices.
The linear independence of Ci,1,Ci,2, · · · ,Ci,νi comes from the observability of (Ac,C) (by Theorem 6).
• Uniform boundedness of observation noise: To prove the intermittent observability, we will propose a suboptimal maximum

likelihood estimator, and analyze it. To upper bound the estimation error, we upper bound the disturbances and observation noises
in the system.
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By (45), we have

xc((n− k)I − tn−k) = e−Ac(kI+tn−k)xc(nI)−
∫ nI

(n−k)I−tn−k
eAc((n−k)I−tn−k−t′)BcdWc(t′)︸ ︷︷ ︸

:=w′[n−k]

. (54)

By plugging this equation into (50), we get

y[n− k] = Cxc((n− k)I − tn−k) + v[n− k]

= Ce−Ac(kI+tn−k)xc(nI) + Cw′[n− k] + v[n− k]︸ ︷︷ ︸
:=v′[n−k]

. (55)

We will upper bound the variance of v′[n− k]. First, consider the variance of w′[n− k]. By the assumption (b), all eigenvalues
of Ac are unstable, and since tn−k ∈ [0, T ], ((n− k)I − tn−k − t′) ranges within [−(kI +T ), 0]. Thus, there exits p′ ∈ N such
that

E[w′[n− k]†w′[n− k]] . 1 + kp
′

(56)

where . holds for all n. (See Definition 12 for the definition of ..)
By (48), the variance of v[n] is uniformly bounded14 for all n. Therefore, we have E[v′[n− k]†v′[n− k]] . 1 + kp

′
for all

n.
Moreover, since Wc(t) is a standard Wiener process with unit variance, sup

n∈Z
E[(x(nI) − x̂(nI))†(x(nI) − x̂(nI))] < ∞

implies sup
t∈R

E[(x(t)− x̂(t))†(x(t)− x̂(t))] <∞. Thus, it is enough to estimate the state only at discrete time steps.

• Suboptimal Maximum Likelihood Estimator: Now, we will give the suboptimal state estimator which only uses a finite
number of recent observations. We first need the following key lemma.

Lemma 2: Let Ac and C be given as in (52) and (53), β[n] be a Bernoulli process with probability 1 − pe, and tn be
i.i.d. random variables whose distribution is uniform on [0, T ] (T > 0). Then, we can find m′ ∈ N, a polynomial p(k) and a
family of stopping times {S(ε, k) : k ∈ Z+, 0 < ε < 1} such that for all k ∈ Z+ and 0 < ε < 1 there exist k ≤ k1 < k2 <
· · · < km′ ≤ S(ε, k) and a m×m′l matrix M satisfying the following four conditions:
(i) β[ki] = 1 for all 1 ≤ i ≤ m′

(ii) M


Ce−(k1I+tk1

)Ac

Ce−(k2I+tk2
)Ac

...
Ce
−(km′ I+tkm′

)Ac

 = Im×m

(iii) |M|max ≤
p(S(ε,k))

ε
eλ1S(ε,k)I

(iv) limε↓0
(
exp lim sups→∞ supk∈Z+

1
s

log P{S(ε, k)− k = s}
)
≤ pe.

Proof: See Appendix X-D.
Since we have pe < 1

|e2λmaxI | = 1

e2λ1I
, there exists δ > 1 such that δ5pe <

1

e2λ1I
. By Lemma 2, we can find m′ ∈ N,

0 < ε < 1, a polynomial p(k) and a family of stopping times {S(n) : n ∈ Z+} such that for all n, there exist 0 ≤ k1 < k2 <
· · · < km′ ≤ S(n) and a m×m′l matrix Mn satisfying the following four conditions:
(i’) β[n− ki] = 1 for 1 ≤ i ≤ m′

(ii’) Mn


Ce−(k1I+tn−k1

)Ac

Ce−(k2I+tn−k2
)Ac

...
Ce
−(km′ I+tn−km′

)Ac

 = Im×m

(iii’) |Mn|max ≤
p(S(n))

ε
eλ1I·S(n)

(iv’) exp
(
lim sups→∞ supn∈Z+

1
s

log P{S(n) = s}
)
≤
√
δpe.

Then, here is the proposed suboptimal maximum likelihood estimator for x(nI):

x̂(nI) = Mn


y[n− k1]
y[n− k2]

...
y[n− km′ ]

 . (57)

Here, ki also depends on n, but we omit the dependency in notation for simplicity. Notice that the number of the observation
of the estimation, m′, is much larger than the dimension of the system, m. In other words, the estimator proposed here may use
much more number of observations than the number of states (the number of observations that a simple matrix inverse observer
needs). This is because we use successive decoding idea in the proof of Lemma 2.
• Analysis of the estimation error: Now, we will analyze the performance of the proposed estimator. Remind that p′ is defined

in (56) and δ > 1 By (iv’) and well-known properties of polynomial and exponential functions, we can find c > 0 that satisfies
the following three conditions:
(i”) (1 + kp

′
) ≤ c · δk for all k ≥ 0

14To justify assumption (b), we consider the stable states as a part of observation noise v[n]. However, this does not change the uniform boundedness since
the variances of the stable states are also uniformly bounded.
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(ii”) p(k) ≤ c · δk for all k ≥ 0
(iii”) supn∈N P{S(n) = s} ≤ c · (δ · pe)s for all s ∈ Z+

Let Fβ be the σ-field generated by β[n] and ti. Then, ki, S(n), and ti are deterministic variables conditioned on Fβ . The
estimation error is upper bounded by

sup
n

E[|x(nI)− x̂(nI)|22] = sup
n

E[E[|x(nI)− x̂(nI)|22|Fβ ]]

(A)
= sup

n
E[E[

∣∣∣∣∣∣∣∣∣x(nI)−Mn(


Ce−Ac(k1I+tn−k1

)

Ce−Ac(k2I+tn−k2
)

...
Ce
−Ac(km′ I+tn−km′

)

x(nI) +


v′[n− k1]
v′[n− k2]

...
v′[n− km′ ]

)

∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

(B)
= sup

n
E[E[

∣∣∣∣∣∣∣∣∣Mn


v′[n− k1]
v′[n− k2]

...
v′[n− k∑

1≤i≤µm
′
i
]


∣∣∣∣∣∣∣∣∣
2

2

|Fβ ]]

. sup
n

E[|Mn|2max · E[

∣∣∣∣∣∣∣∣∣


v′[n− k1]
v′[n− k2]

...
v′[n− km′ ]


∣∣∣∣∣∣∣∣∣
2

max

|Fβ ]]

(C)

. sup
n

E[|Mn|2max · (1 + S(n)p
′
)2]

(D)

≤ sup
n

E[

(
p(S(n))

ε
eλ1I·S(n)

)2

· (1 + S(n)p
′
)2]

(E)

. sup
n

E[δ2S(n) · e2λ1I·S(n) · δ2S(n)]

(F )

.
∞∑
s=0

δ4s · e2λ1I·s · (δ · pe)s

(G)
=

∞∑
s=0

(δ5 · e2λ1I · pe)s

<∞

where . holds for all n.
(A): By (55) and (57).
(B): By condition (ii’).
(C): Since E[v′[n− k]†v′[n− k]] . 1 + kp

′
by definition.

(D): By condition (iii’).
(E): By condition (i”) and (ii”).
(F): By condition (iii”).
(G): Since we choose δ so that δ5pe · e2λ1I < 1.

Therefore, the estimation error is uniformly bounded over t ∈ R+ when pe < 1

e2λ1I
, which finishes the proof.

B. Necessity Proof of Theorem 8
The necessity proof divides into two parts. First, we prove that if pe ≥ 1

|e2λmaxI | , then the system is not intermittent

observable. Second, we prove that if (Ac,C) has unobservable and unstable eigenvalues — i.e. ∃λ ∈ C+ such that
[
λI−Ac

C

]
is rank deficient — then the system is not intermittent observable.
•When pe ≥ 1

|e2λmaxI | : Intuitively speaking, we will give all states except the one corresponding to the maximum eigenvalue
as side-information. Thus, we will reduce the problem to the scalar system discussed in Section V.

Formally, let Σt|t := E[(xc(t) − E[xc(t)|yb
t
I
c])(xc(t) − E[xc(t)|yb

t
I
c])†|Fβ ] where Fβ is the σ-field generated by β[n]

and ti. Notice that Σt|t is a random variable.
It is known that when (Ac,Bc) is controllable, the estimation error of xc(t) even based on all the causally available information

yc(0 : t) is positive definite when t is large enough. Therefore, there exists t′ > 0 and σ2 > 0 such that for all t ≥ t′, Σt|t � σ2I
with probability one. Let e be a right eigenvector of Ac associated with the eigenvalue λmax, i.e. Ace = λmaxe. Then, we can
find σ′2 > 0 such that for all t ≥ t′, Σt|t � σ′2ee† with probability one.

Define the stopping time S′n := inf{k ∈ Z+|β[n− k] = 1} as the time until the most recent observation.
The observations between discrete time n − S′n + 1 and n are all erased. This implies the received observations at discrete

time n are independent from yc((n − Sn)I : nI). Thus, conditioned on (n − S′n)I ≥ t′, ΣnI|nI is lower bounded as follows
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with probability one.15

E[ΣnI|nI|S′n, (n− S′n)I ≥ t′] � (eAc(S′nI))Σ(n−S′n)I|(n−S′n)I(e
Ac(S′nI))† (58)

� σ′2(eAc(S′nI))ee†(eAc(S′nI))† (59)

� σ′2|e2λmaxI |S
′
nee† (60)

Here we use the fact that when e is an eigenvector of Ac associated with an eigenvalue λmax, e is also an eigenvector of eAct

associated with the eigenvalue eλmaxt for all t.
Since pe ≥ 1

|e2λmaxI | , the average estimator error is lower bounded as follows:

E[(xc(nI)− E[xc(nI)|yn])†(xc(nI)− E[xc(nI)|yn])] (61)

≥ E[σ′2|e2λmaxI |S
′
n |e|2 · 1((n− S′n)I ≥ t′)] (62)

≥ σ′2|e|2 ·
∑

0≤s≤bn− t
I
c

|e2λmaxI |s · (1− pe)pse (63)

≥ σ′2|e|2 · (1− pe) · (bn−
t

I
c+ 1) (64)

Thus, the estimation error goes to infinity as n→∞, so the system is not intermittently observable.
• When (Ac,C) has unobservable and unstable eigenvalues: Now, we prove that if (Ac,C) has unobservable and unstable

eigenvalues, the system is not intermittent observable. This proof seems trivial, but the original continuous-time system (Ac,Cc)
can still be observable while the sampled system (Ac,C) is not. Thus, it still needs justification.

Let λ ∈ C+ be the unobservable and unstable eigenvalue. Then,
[
λI−Ac

C

]
is rank deficient, and we can find i such that[

λI−Ac

]
i = 0. Then, i satisfies Ci = 0, Aci = λi, and we can notice that CeActi = eλtCi = 0. We will prove that the

uncertainty in the direction i is not observable by any observations.
By the controllability of (Ac,Bc), as above there exists t′ such that for all t ≥ t′, xc(t)− E[xc(t)|yc(0 : t)] has a positive

definite covariance matrix. Therefore, we can write xc(t)−E[xc(t)|yc(0 : t)] = i ·x′c(t)+x′′c (t) where x′c(t), x′′c (t) and yc(0 : t)
are independent and E[|x′c(t)|2] ≥ σ′′2 for some σ′′2 > 0 and all t ≥ t′.

Then, we will prove that the sampled observations are independent from x′c(t). By (44) and (48), for all τ ≤ (n− 1)I − tn
we have

yo[n] = C(eAc(nI−tn−τ)(xc(τ) +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′))) (65)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (66)

= C(eAc(nI−tn−τ)(i · x′c(τ) + x′′c (τ) + E[xc(τ)|yc(0 : τ)] +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′))) (67)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (68)

= C(eAc(nI−tn−τ)(x′′c (τ) + E[xc(τ)|yc(0 : τ)] +

∫ nI−tn

τ

eAc(τ−t′)BcdWc(t′))) (69)

−
∫ nI−tn

(n−1)I−tn

∫ nI−tn

t

Cce
Ac(t−t′)BcdWc(t′)dt+

∫ nI−tn

(n−1)I−tn
DcdVc(t) (70)

where the last equality comes from CeActi = 0. Moreover, by the causality and definitions, the last equation is independent from
x′′c (τ).

Now, we will prove that the uncertainty x′′c (τ) can be arbitrarily amplified. Since ti are uniform random variables on [0, T ],
there exists a positive probability such that (n− 1)I − tn ≤ (n+ n′ − 1)I − tn+n′ for all n′ ∈ N. Denote such an event as E.
Then, by choosing n large enough so that (n− 1)I − tn ≥ t′, we have the following lower bound on the estimation error for all
t ≥ (n− 1)I − tn:

E[|xc(t)− E[xc(t)|yb
t
I
c]|2] (71)

≥ E[|xc(t)− E[xc(t)|yb
t
I
c]|2|E]P(E) (72)

(a)

≥ E[|eAc(t−((n−1)I−tn))i · x′′c ((n− 1)I − tn)|2|E]P(E) (73)

= |eλ(t−((n−1)I−T )) · i|2σ′′2 · P(E) (74)

(a): By (44), xc(t) = eAc(t−((n−1)I−tn))xc((n − 1)I − tn) +
∫ t

(n−1)I−tn
eAc((n−1)I−tn−t′)BcdWc(t′). Moreover, x′′c ((n −

1)I − tn) is independent from yc(0 : (n− 1)I − tn) and yo[n], yo[n+ 1] · · · .
Since we can choose t arbitrarily large, this finishes the proof for <(λ) > 0. To prove for the case of <(λ) = 0, we can

bound (74) more carefully and justify that independent estimation errors accumulates in the direction of i. We omit the proof

15The lower bound does not hold for <(λ) = 0 which induces pe = 1. However, in this case we do not have any observation, so trivially the system is
unstable.



25

here since the argument is essentially equivalent to that of the well-known fact that an eigenvalue with zero real part is unstable
in continuous-time systems.

C. Sufficiency Proof of Theorem 7 (Discrete-Time Systems)
We will prove that if pe < 1

max
1≤i≤µ

|λi,1|
2
pi
li

then the system is intermittent observable.

• Reduction to a Jordan form matrix A: As in Section VIII-A, we will restrict attention to system equations (1) and (2)
with the following properties, and justify that such a restriction is without loss of generality and does not change the intermittent
observability.
(a) The system matrix A is a Jordan form matrix.
(b) All eigenvalues of A are unstable, i.e. the magnitude of all eigenvalues are greater or equal to 1.
(c) (1) and (2) can be extended to two-sided processes.

The restriction (a) can be justifies by a similarity transform [7]. It is known [7] that for any square matrix A, there exists an
invertible matrix U and an upper-triangular Jordan matrix A′ such that A = UA′U−1. Then, the system equations (1) and (2)
can be rewritten as:

U−1x[n+ 1] = A′U−1x[n] + U−1Bw[n]

y[n] = β[n](CUU−1x[n] + v[n]).

Thus, by denoting x′[n] := U−1x[n], B′ := U−1B, and C′ := CU, we get

x′[n+ 1] = A′x′[n] + B′w[n]

y[n] = β[n](C′x′[n] + v[n]).

Since U is invertible, the controllability of (A,B,C) remains the same for the new intermittent system (A′,B′,C′).
Moreover, since x′[n] = U−1x[n], the original intermittent system is intermittent observable if and only if the new intermittent
system is intermittent observable. Thus, without loss of generality, we can assume that A is given in a Jordan form, which justifies
(a).

Once A is given in Jordan form, there is a natural correspondence between the eigenvalues and the states. If there is a stable
eigenvalue — i.e. the magnitude of the eigenvalue is less than 1 —, the variance of the corresponding state is uniformly bounded.
Thus, we do not have to estimate that particular state to make the estimation error finite. In the observation y[n], the stable states
can be considered as a part of observation noise v[n], and the variance of v[n] is still uniformly bounded (even if v[n] can be
correlated). Therefore, we can assume (b) without loss of generality.

To justify restriction (c), rewrite (1) as

x[n+ 1] = Ax[n] + Iw′[n]

where w′[n] = Bw[n] for n ≥ 0. Let w′[−1] = x[0], w[n] = 0 for n < −1, and v[n] for n < 0. We also extend β[n] to a
two-sided Bernoulli process with probability 1 − pe. Then, the resulting two-sided processes x[n] and y[n] are identical to the
original one-sided processes except that x[n] = 0 and y[n] = 0 for n ∈ Z−−.

In summary, without loss of generality we can assume that A is in a Jordan form, all eigenvalues of A is stable, and (1) and
(2) are two-sided process. Therefore, we can assume that A ∈ Cm×m and C ∈ Cl×m are given as

A = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ}
C =

[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]
where

Ai,j is a Jordan block with an eigenvalue λi,j and size mi,j

mi,1 ≥ mi,2 ≥ · · · ≥ mi,νi for all i = 1, · · · , µ
|λ1,1| ≥ |λ2,1| ≥ · · · ≥ |λµ,1| ≥ 1

{λi,1, · · · , λi,νi} is cycle with length νi and period pi
For i 6= i′, {λi,j , λi′,j′} is not a cycle
Ci,j is a l ×mi,j complex matrix. (75)

Here, Ai,1, · · · ,Ai,νi are the Jordan blocks corresponding to the same eigenvalue cycle. The Jordan blocks are sorted in descending
order by the magnitude of the eigenvalues. Such permutation of Jordan blocks can be justified since Jordan forms are block diagonal
matrices.

Like (40), (41), we also define Ai, Ci, and li as follows.

Ai = diag{λi,1, · · · , λi,νi}
Ci =

[
(Ci,1)1 · · · (Ci,νi)1

]
where (Ci,j)1 is the first column of Ci,j. (76)

li is the minimum cardinality among the sets S′ ⊆ {0, 1, · · · , pi − 1} whose resulting S := {0, 1, · · · , pi − 1} \ S′ =
{s1, s2, · · · , s|S|} makes 

CiAi
s1

CiAi
s2

...
CiAi

s|S|

 (77)
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be rank deficient, i.e. the rank of the matrix (77) is strictly less than νi.
Moreover, in (3), we already assumed that there exists a finite σ > 0 such that

sup
n∈Z

E[w[n]w[n]†] � σ2I

sup
n∈Z

E[v[n]v[n]†] � σ2I. (78)

• Uniform boundedness of observation noise: To prove intermittent observability, we will propose a suboptimal maximum
likelihood estimator, and analyze it. We first have to upper bound the disturbances and observation noises in the system. Following
the same steps of (26), we can derive

y[n− k] = CA−kx[n]− (CA−1w[n− k] + · · ·+ CA−kw[n− 1]− v[n− k])︸ ︷︷ ︸
v′[n−k]

. (79)

The invertibility of A is comes from assumption (b). Moreover, since all eigenvalues of A are unstable, by (78) we can find
p′ ∈ N such that

E[v′[n− k]†v′[n− k]] . 1 + kp
′

(80)

where . holds for all n, k(k ≤ n).
• Suboptimal Maximum Likelihood Estimator: Now, we will give the suboptimal estimator for the state which only uses a

finite number of recent observations. We first need the following lemma which plays a parallel role to Lemma 2.
Lemma 3: Let A and C be given as in (75), (76) and (77), and β[n] be a Bernoulli process with probability 1− pe. Then,

we can find m′1, · · · ,m′µ ∈ N, polynomials p1(k), · · · , pµ(k) and families of stopping times {S1(ε, k) : k ∈ Z+, 0 < ε <
1}, · · · , {Sµ(ε, k) : k ∈ Z+, 0 < ε < 1} such that for all k ∈ Z+ and 0 < ε < 1 there exist k ≤ k1 < · · · < km′1 ≤ S1(ε, k) <
km′1+1 < · · · < k∑

1≤i≤µm
′
i
≤ Sµ(ε, k) and a m× (

∑
1≤i≤µm

′
i)l matrix M satisfying the following conditions:

(i) β[ki] = 1 for 1 ≤ i ≤
∑

1≤i≤µm
′
i

(ii) M


CA−k1

CA−k2

...
CA

−k∑
1≤i≤µ m

′
i

 = Im×m

(iii) |M|max ≤ max1≤i≤µ

{
pi(Si(ε,k))

ε
|λi,1|Si(ε,k)

}
(iv) limε↓0 exp

(
lim sups→∞ supk∈Z+

1
s

log P{Si(ε, k)− k = s}
)
≤ max1≤j≤i

{
p

lj
pj
e

}
for 1 ≤ i ≤ µ

(v) limε↓0 exp
(
lim sups→∞ ess sup 1

s
log P{Sa(ε, k)− Sb(ε, k) = s|FSb}

)
≤ maxb<i≤a

{
p
li
pi
e

}
for 1 ≤ b < a ≤ µ where

FSi is the σ-field generated by Si(ε, k).
Proof: See Appendix X-G.

Since pe < 1

max
1≤i≤µ

|λi,1|
2
pi
li

, there exists δ > 1 such that δ5 · max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1. By Lemma 3, we can find m′1, · · · ,m′µ ∈ N,

0 < ε < 1, polynomials p1(k), · · · , pµ(k), and a family of stopping times {(S1(n), · · · , Sµ(n)) : n ∈ Z+} such that ∀n there
exist 0 ≤ k1 < · · · < km′1 ≤ S1(n) < km′1+1 < · · · < k∑

1≤i≤µm
′
i
≤ Sµ(n) and a m × (

∑
1≤i≤µm

′
i)l matrix Mn satisfying

the following conditions:
(i’) β[n− ki] = 1 for 1 ≤ i ≤

∑
1≤i≤µm

′
i

(ii’) Mn


CA−k1

CA−k2

...
CA

−k∑
1≤i≤µ m

′
i

 = Im×m

(iii’) |Mn|max ≤ max1≤i≤µ

{
pi(Si(n))

ε
|λi,1|Si(n)

}
(iv’) exp

(
lim sups→∞

1
s

log P{Si(n) = s}
)
≤
√
δ ·max1≤j≤i

{
p

lj
pj
e

}
for 1 ≤ i ≤ µ

(v’) exp
(
lim sups→∞ ess sup 1

s
log P{Sa(n)− Sb(n) = s|FSb}

)
≤
√
δ ·maxb<i≤a

{
p
li
pi
e

}
for 1 ≤ b < a ≤ µ where FSi is

the σ-field generated by β[n− Si(n)], β[n− Si(n) + 1], · · · , β[n].
Then, here is the proposed suboptimal maximum likelihood estimator for x[n]:

x̂[n] = Mn


y[n− k1]
y[n− k2]

...
y[n− k∑

1≤i≤µm
′
i
]

 (81)
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Here, ki also depends on n, but we omit the dependency in notation for simplicity. Notice that the number of observations that
this estimator uses, k∑

1≤i≤µm
′
i
, can be much larger than the dimension of the system, m. In other words, the estimator proposed

here may use much more number of observations than the number of states (the number of observations that a simple matrix
inverse observer needs). This is because we use successive decoding idea in the proof of Lemma 2.
• Analysis of the estimation error: Now, we will analyze the performance of the proposed estimator. Remind that p′ is defined

in (80) and δ > 1. By (iv’) and (v’), we can find c > 0 that satisfies the following four conditions:
(i”) (1 + kp

′
) ≤ c · δk for all k ≥ 0

(ii”) pi(k) ≤ c · δk for all 1 ≤ i ≤ µ and k ≥ 0

(iii”) P{Si(n) = s} ≤ c · (δ ·max1≤j≤i

{
p

lj
pj
e

}
)s for all 1 ≤ i ≤ µ and s ∈ Z+

(iv”) P{Sa(n)− Sb(n) = s|FSb} ≤ c · (δ ·maxb<i≤a

{
p
li
pi
e

}
)s for all 1 ≤ b < a ≤ µ and s ∈ Z+.

Let Fβ be the σ-field generated by β[n]. Then, ki and Si are deterministic variables conditioned on Fβ . The estimation error
is upper bounded by

E[|x[n]− x̂[n]|22] = E[E[|x[n]− x̂[n]|22|Fβ ]]

(A)
= E[E[

∣∣∣∣∣∣∣∣∣x[n]−Mn(


CA−k1

CA−k2

...
CA

−k∑
1≤i≤µ m

′
i

x[n]−


v′[n− k1]
v′[n− k2]

...
v′[n− k∑

1≤i≤µm
′
i
]

)

∣∣∣∣∣∣∣∣∣

2

2

|Fβ ]]

(B)
= E[E[

∣∣∣∣∣∣∣∣∣Mn


v′[n− k1]
v′[n− k2]

...
v′[n− k∑

1≤i≤µm
′
i
]


∣∣∣∣∣∣∣∣∣
2

2

|Fβ ]]

. E[|Mn|2max · E[

∣∣∣∣∣∣∣∣∣


v′[n− k1]
v′[n− k2]

...
v′[n− k∑

1≤i≤µm
′
i
]


∣∣∣∣∣∣∣∣∣
2

max

|Fβ ]]

(C)

. E[|Mn|2max · (1 + Sp
′
µ (n))2]

(D)

≤ E[ max
1≤i≤µ

{
(
pi(Si(n))

ε
|λi,1|Si(n)

)2

} · (1 + Sp
′
µ (n))2]

≤
∑

1≤i≤µ

E[

(
pi(Si(n))

ε
|λi,1|Si(n)

)2

· (1 + Sp
′
µ (n))2]

(E)

.
∑

1≤i≤µ

E[δ2Si(n) · |λi,1|2Si(n) · δ2Sµ(n)]

=
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n) · E[δ2(Sµ(n)−Si(n))|FSi(n)]]

(F )

.
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n) ·
∞∑
s=0

δ2s · (δ · max
1≤i≤µ

{p
li
pi
e })s]

(G)

.
∑

1≤i≤µ

E[δ4Si(n) · |λi,1|2Si(n)]

(H)

.
∑

1≤i≤µ

∞∑
s=0

δ4s · |λi,1|2s · (δ · max
1≤j≤i

{
p
li
pi
e

}
)s

=
∑

1≤i≤µ

∞∑
s=0

(δ5 · |λi,1|2 · max
1≤j≤i

{
p

lj
pj
e

}
)s

(I)
< ∞

where . holds for all n.
(A): By (79) and (81).
(B): By condition (ii’).
(C): Since E[v′[n− k]†v′[n− k]] . 1 + kp

′
by the definition of p′ of (80), and thus each element of the v′[n] vector obeys max

bound.
(D): By condition (iii’).
(E): By condition (i”) and (ii”).
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(F): By condition (iv”).

(G): Since δ5 · max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

(H): By condition (iii”).

(I): Since δ5 · max
1≤i≤µ

p
li
pi
e |λi,1|2 < 1.

Therefore, the estimation error is uniformly bounded over n when pe < 1

max
1≤i≤µ

|λi,1|
2
pi
li

, which finishes the proof.

D. Necessity Proof of Theorem 7
Intuitively, we will give all states except the ones that corresponds to the bottleneck eigenvalue cycle as side-information

to the estimator. Then, the problem reduces to the single eigenvalue cycle one discussed in Section V-A, and we can prove the
estimation error diverges similarly. This argument works for pe > 1

maxi |λi,1|
2
pi
li

, since we can show that a single additional

disturbance w[n] grows exponentially. However, for the equality case pe = 1

maxi |λi,1|
2
pi
li

, the proof can be more complicated

since not a single disturbance but the sum of disturbances algebraically diverges to infinity.
So, to make this argument complete and rigorous, we will analyze the optimal estimator, and prove that its estimation error

diverges when the condition of the lemma is violated.
It is well-known that the optimal estimator is the Kalman filter and it can be written in recursive form. Let Fβ be the σ-field

generated by β[n]. Denote the one-step prediction error as Σn+1|n := E[(x[n + 1] − E[x[n + 1]|yn])(x[n + 1] − E[x[n +
1]|yn])†|Fβ ]. Then, Σn+1|n follows the following recursive equation [23, p.101].

Σn+1|n = (A−ALnC̄n)Σn|n−1(A−ALnC̄n)† + ALnE[v[n]v[n]†]Ln
†A† + BE[w[n]w[n]†]B† (82)

Here, Ln = Σn|n−1C̄†n
[
C̄nΣn|n−1C̄†n + E[v[n]v[n]†]

]−1
, and C̄n = C if β[n] = 1 and Cn = 0 otherwise. Notice that

Σn+1|n is a random variable.
Moreover, it is also known that when (A,B) is controllable, the one-step prediction error of x[n + 1] based on y[n]

becomes positive definite for large enough n even if there are no erasures. Therefore, there exists m ∈ N and σ2 > 0 such that
Σn+1|n � σ2I with probability one for all n ≥ m. Therefore, by (82) for all n ≥ n′ ≥ m we have

Σn+1|n � (A−ALnC̄n) · · · (A−ALn′C̄n′)Σn′|n′−1(A−ALn′C̄n′)
† · · · (A−ALnC̄n)† (83)

� σ2(A−ALnC̄n) · · · (A−ALn′C̄n′)I(A−ALn′C̄n′)
† · · · (A−ALnC̄n)†. (84)

Let’s use the definitions of U, A′, C′, U, Ai, Ci, λi,j , pi, li, νi from (39), (40) and (41). Let i? := argmax
1≤i≤µ

|λi,1|
2
pi
li . Let

S′? ⊆ {0, 1, · · · , pi? − 1} be a set achieving the minimum cardinality li? . In other words, define S? := {s?1, s?2, · · · , s?|S?|} =
{0, 1, · · · , pi? − 1} \ S′?. Then, |S′?| = li? and 

Ci?Ai?
s?1

Ci?Ai?
s?2

...
Ci?Ai?

s?|S?|


is rank deficient, i.e. the rank is strictly less than νi? .

For a given time index n, define the stopping time Sn as the most recent observation which does not belong to S? in modulo
pi? , i.e.

Sn := inf{kpi? : k ∈ Z+ and there exists k′ such that β[n− k′] = 1, kpi? ≤ k′ < (k + 1)pi? ,−k′ − 1(mod pi?) ∈ S′?}.
(85)

Then, we can compute that P{Sn = kpi?} = (1 − pli?e )(p
li?
e )k for all k ∈ Z+. From the definition of Sn, we can see that for

all 0 ≤ k < Sn, β[n− k] = 1 if and only if −k − 1(mod pi?) ∈ S.
Then, conditioned on n− Sn ≥ m, by (84) the following inequality holds with probability one:

Σn+1|n � σ2(A−ALnC̄n) · · · (A−ALn−Sn+1C̄n−Sn+1)I(A−ALn−Sn+1C̄n−Sn+1)† · · · (A−ALnC̄n)†. (86)

where C̄n−Sn+k = C if −Sn + k − 1(mod pi?) = k − 1(mod pi?) ∈ S and C̄n−Sn+k = 0 otherwise.
We will prove that the L.H.S. of (86) grows exponentially. For this, we first need the following lemma.
Lemma 4: Consider A, C, U, A′, C′, Ai, Ci, νi, pi given as (39), (40) and (41). For a given set S := {s1, · · · , s|S|} ∈

{0, 1, · · · , pi − 1}, let


CiAi

s1

CiAi
s2

...
CiAi

s|S|

 be rank-deficient, i.e. the rank is less than νi, and define

Ā(K0, · · · ,Kpi−1) := (A−Kpi−1C̄pi−1) · · · (A−K0C̄0)

where C′j = C when j ∈ S and C′j = 0l×m otherwise.
Then, for all K0, · · · ,Kpi−1 ∈ Cm×l, Ā(K0, · · · ,Kpi−1) has a common right eigenvector e whose eigenvalue is λpii,1.
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Proof: For the simplicity of notation, we will set i = 1, but the proof for general i is the same. Let e′ =

 e1

...
eν1

 be a nonzero

vector that belongs to the right null space of


C1A1

s1

C1A1
s2

...
C1A1

s|S|

. Let e′1 be a m1,1 × 1 column vector whose first element is e1 and

the rest are 0. Likewise, e′2 is a m1,2 × 1 column vector with first element e2 and the rest 0. e′3, · · · , e′ν1 are defined in the

same way. Let a m× 1 column vector e′′ be


e′1
...

e′ν1
0(m−

∑
1≤i≤ν1

m1,i)×1

. Then, we will prove that e := Ue′′ is the eigenvector that

satisfies the conditions of the lemma.
By construction, we can see that C1A1

ke′ = 0 for k ∈ {s1, · · · , s|S|}. Moreover, since CAke = CUA′
k
U−1Ue′′ =

C′A′
k
e′′, we also have CAke = 0 for k ∈ {s1, · · · , s|S|}. Thus, we can conclude

(A−Kp1−1C′p1−1) · · · (A−Ks1C′s1)(A−Ks1−1C′s1−1) · · · (A−K0C′0)e

= (A−Kp1−1C′p1−1) · · · (A−Ks1C)(A−Ks1−10) · · · (A−K00)e

= (A−Kp1−1C′p1−1) · · · (A−Ks1C)As1e

= (A−Kp1−1C′p1−1) · · · (As1+1e−Ks1CAs1e)

(a)
= (A−Kp1−1C′p1−1) · · · (As1+1e)

(b)
= Ap1e = UA′

p1U−1e = UA′
p1e′′

(c)
= Uλp1

1,1e
′′ = λp1

1,1e

(a): CAs1e = 0.
(b): Repetitive use of (a) for s2, · · · , s|S|.
(c): A1

p1 = λp1
1,1I and the definition of the vector e′′.

Thus, the lemma is proved.
Let the vector e be the right eigenvector of Lemma 4 for i = i?. Then, there exists σ′ > 0 such that I � σ′2ee†. (86) is

lower bounded as

Σn+1|n � σ2σ′2λSni?,1ee†(λSni?,1)†.

Since pe ≥ 1

|λi?,1|
2
pi?
li?

, the expected one-step prediction error is lower bounded as follows:16

E[(x[n+ 1]− E[x[n+ 1]|yn])†(x[n+ 1]− E[x[n+ 1]|yn])] (87)

≥ E[σ2σ′2|λi?,1|2Sn |e|2 · 1(n− Sn ≥ m)] (88)

≥ σ2σ′2|e|2
∑

0≤s≤bn−m
pi?

c

(1− pli?e )(|λi?,1|2pi? pli?e )s (89)

≥ σ2σ′2|e|2 · (1− pli?e ) · (bn−m
pi?

c). (90)

Therefore, as n goes to infinity, the one-step prediction error diverges to infinity. The estimation error for the state is not uniformly
bounded either, so the system is not intermittent observable.

E. Proof Outline of Lemma 2 and Lemma 3
Now, the proofs of Theorem 8 and 7 boil down to the proofs of Lemma 2 and 3. Since the proofs of Lemma 2 and 3 shown

in Appendix are too involved, we give the outlines of the proofs in this section.
1) Proof Outline of Lemma 2: The proof flow of Lemma 2 is shown in Figure 5. As we saw in Section V, the tail behavior

of probability mass functions (p.m.f.) is crucial in the characterization of the critical erasure probability. Thus, in Appendix X-A
we first study some properties of the p.m.f. tail.

In the sufficiency proof of Section VIII-A, we analyzed a sub-optimal maximum likelihood estimator whose performance
heavily depends on the norm of the inverse of the observability Gramian matrix. In Appendix X-B, we will reduce the question
about the norm of the matrix to a question about an analytic function. In Lemma 10, we first prove that if the determinant of the
observability Gramian matrix is large enough than the norm of the inverse of the observability Gramian matrix is small enough.
Thus, we can reduce the question about the norm to an question about the determinant. Since the determinant of the observability
Gramian matrix is an analytic function, Lemma 12 further reduce the question to a question about an analytic function. In other
words, if an analytic function is large enough, then the determinant of the observability Gramian matrix is also large enough.

16The lower bound does not hold when |λi?,1| = 1 which induces pe = 1. However, in this case we do not have any observation, so trivially the system
is unstable.



30

Tail Property of  
p.m.f. (probability mass functions) 

[Appendix A] 

Observability Gramian Matrix 
[Appendix B] 

Uniform Convergence of  
the probabilities of bad events [Appendix C] 

Matrix Inverse 

Matrix Determinant 

Analytic Function 

Property of 
Analytic Functions 

[Lemma 13] 
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Proof of Lemma 2 
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Determinant of Observability 
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[Lemma 17] 

Proof of Lemma 2 
- Reduction to scalar observation 

system[Claim 2] 
- Successive Decoding: 
  Decode one state [Claim 3] 
  Subtract it from the system 
  Decode the rest states 
 

Fig. 5: Flow diagram of the proof of Lemma 2

For the intermittent observability, we want to prove that the estimation error is uniformly bounded over all time indexes
with nonuniform sampling. It is enough that a set of analytic analytic functions is uniformly away from 0 with high probability.
Lemma 15 of Appendix X-C captures this insight. In Lemma 13, we first prove that each analytic function is away from 0 with high
probability using a property of analytic functions. After this, we apply Dini’s theorem which tells pointwise convergence implies
uniform convergence when the domain of the functions is compact, and prove the desired uniform convergence of Lemma 15.

Now, we are ready to prove Lemma 2. By merging the results of Lemma 12 and 15, we can prove that the determinant of
observability Gramian is large enough with high probability uniformly over all time indexes. Together with the properties of the
p.m.f. tail, we can first prove Lemma 2 for a scalar observation. We can finally prove the general case using the idea of successive
decoding. In other words, we reduce the system to the one with a scalar observation, and estimate one state. Then, we subtract
the estimation from the system, and repeat the same procedure until we decode all states.

2) Proof Outline of Lemma 3: As we can see in Figure 6, the proof outline of Lemma 3 is essentially the same as that
of Lemma 2.

We still use the tail properties of p.m.f. shown in Appendix X-A. In Appendix X-E, we will state the lemmas about the
observability Gramian matrices of discrete time systems which parallel to the ones of Appendix X-B.

The main difference from the nonuniform sampling case is the uniform convergence shown in Appendix X-F. Consider the
system without eigenvalue cycles. In this case, we have to justify that the system essentially reduces to multiple scalar systems, and
the critical erasure probability only depends on the largest eigenvalue of the system. However, unlike the nonuniform sampling
case, we do not have a random jitter at each observation and the determinant of the observability Gramian is a deterministic
sequence in the time indexes. Therefore, we have to prove that the counting measure of the time indexes where the determinant
of the observability Gramian is small converges to zero uniformly over all current time indexes.

For this, we apply the Weyl’s criterion [15] which gives a sufficient condition for deterministic sequences to behave like
uniform random variables. Morover, since different eigenvalue cycles behave like independent random variables, we first generalize
Lemma 15 of Appendix X-C for a single random variable to multiple random variables in Lemma 22. Together with Weyl’s
criterion, we prove Lemma 27 which tells the counting measure of the bad time indexes where the determinant of the observability
Gramain becomes too small converges to zero uniformly over all current time indexes.

The remaining proof flow of Lemma 3 is essentially the same as that of Lemma 2. We first estimate the state corresponds to
the largest eigenvalue cycle, subtract the estimation from the system, and successively decode the remaining states.

IX. COMMENTS

The intermittent Kalman filtering problem was first motivated from control over communication channels. Therefore, the
problem is conventionally believed to fall into the intersection of control and communication. However, if the plant is unstable
the transmission power of the sensor diverges to infinity if it is really going to pack an ever increasing number of bits in there.
Therefore, it is hard to say that intermittent Kalman filtering has a direct connection to communication theory. Instead, we
propose that the intersection of control and signal processing — especially sampling theory — is the right conceptual category
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Fig. 6: Flow diagram of the proof of Lemma 3

for intermittent Kalman filtering. It should thus be interesting to explore the connection between the results of this paper with
classical and modern results of sampling theory.

Arguably, the closest problem to intermittent Kalman filtering is that of observability after sampling. As we mentioned earlier,
the observability of (Ac,Cc) in (42) and (43) does not implies the observability of (Ac,C) in (49) and (50). The well-known
sufficient condition is:

Theorem 9 (Theorem 6.9. of [7]): Suppose (Ac,Cc) is observable. A sufficient condition for its discretized system with
sampling interval I to be observable is that |=(λi−λj)I|

2π
/∈ N whenever <(λi − λj) = 0.

Since the eigenvalue of the sampled system is given as exp(λiI), Corollary 1 can be written as the following corollary for a
sampled system.

Corollary 3: Suppose (Ac,Cc) is observable. A sufficient condition for its discretized system with sampling interval I to
have 1

|e2λmaxI | as a critical erasure probability is that |=(λi−λj)I|
2π

/∈ Q whenever <(λi − λj) = 0.
The idea of breaking cyclic behavior using non-uniform sampling is also shown in the context of sampling multiband signals
[22]. The lower bound on the sampling rate is known to be the Lebesgue measure of the spectral support of the signal sampled.
To achieve this lower bound for a general multiband signal, a nonuniform sampling pattern has to be used. Moreover, nonuniform
sampling is also well known as a necessary condition for the currently hot field of compressed sensing [9].

As a last comment, we would like to mention that the result is not sensitive to the norm. In this paper, intermittent observability
is defined using the l2-norm to follow the majority of the literature. But, if the intermittent observability is defined by the lη-norm,
we can simply replace 2 in every theorem by η. For example, the result of Theorem 7 becomes 1

max
i
|λi,1|

ηpi
l′
i

.

X. APPENDIX

A. Lemmas for Tails of Probability Mass Functions
In this section, we will prove some properties on the tails of probability mass functions (p.m.f.). By the tail, we mean how

fast the probability decreases geometrically as we consider rarer and rarer events.
First, we define the essential supremum, ess sup.
Definition 15: For a given random variable X , ess supX is given as follows.

ess supX = inf{x ∈ R : P(X > x) = 0}. (91)

The following lemma shows that even if we increase a random variable sub-linearly, its p.m.f. tail remains the same.
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Lemma 5: Consider σ-field F and a nonnegative discrete random variable k whose probability mass function satisfies

exp(lim sup
n→∞

ess sup
1

n
log P{k = n|F}) ≤ p

Then, given a function f(x) such that f(x) ≤ a(log(x + 1) + 1) for some a ∈ R+, the probability mass function of a random
variable k + f(k) satisfies the following:

exp(lim sup
n→∞

ess sup
1

n
log P{k + f(k) = n|F}) ≤ p.

Proof: Since ess supP{k = n|F} is bounded by 1, for all δ > 0 such that p + δ < 1 we can find a positive c such that
ess supP{k = n|F} ≤ c (p+ δ)n (1− (p+ δ)). Moreover, since f(x) . log(x+ 1) + 1, for all δ′ > 0 we can find a positive
c′ such that f(x) ≤ δ′x+ c′ for all x ∈ R+. Then, we have

ess supP{k + f(k) = n|F} ≤ ess supP{k + f(k) ≥ n|F} ≤ ess supP{k + δ′k + c′ ≥ n|F}

≤ ess supP{k ≥ bn− c
′

1 + δ′
c|F} ≤

∞∑
i=bn−c

′
1+δ′ c

ess supP{k = i|F}

≤
∞∑

i=bn−c
′

1+δ′ c

c(p+ δ)i(1− (p+ δ))

= c(1− (p+ δ))
(p+ δ)

bn−c
′

1+δ′ c

1− (p+ δ)
= c(p+ δ)

bn−c
′

1+δ′ c

≤ c(p+ δ)
n−c′
1+δ′ −1

= c(p+ δ)
− c′

1+δ′−1
(p+ δ)

n
1+δ′ .

Therefore,

exp

(
lim sup
n→∞

ess sup
1

n
log P{k + f(k) = n|F}

)
≤ (p+ δ)

1
1+δ′ .

Since we can choose δ and δ′ arbitrarily close to 0,

exp

(
lim sup
n→∞

ess sup
1

n
log P{k + f(k) = n|F}

)
≤ p,

which finishes the proof.
The following lemma tells that if we add independent random variables, the p.m.f. tail of the sum is equal to the heaviest

one.
Lemma 6: Consider an increasing σ-fields sequence F0,F1, · · · ,Fn−1 and a sequence of discrete random variables k1, k2, · · · , kn

satisfying two properties:
(i) ki ∈ Fi for i ∈ {1, · · · , n− 1}
(ii) exp(lim supk→∞ ess sup 1

k
log P(ki = k|Fi−1)) ≤ pi.

Let S =
∑n
i=1 ki. Then, exp(lim sups→∞ ess sup 1

s
log P(S = s|F0)) ≤ max1≤i≤n{pi}.

Proof: Given δ > 0, let k′i be independent geometric random variables with probability 1− (pi+ δ). Denote S′ :=
∑n
i=1 k

′
i.

The moment generating function of S′ is

E[Z−S
′
] =

n∏
i=1

(1− (pi + δ))

1− (pi + δ)Z−1
.

By [2], the last term can be expanded into a sum of rational functions whose denominators are 1− (pi + δ)Z−1. Therefore, by
inverse Z-transform shown in [2], we can prove that exp(lim sups→∞

1
s

log P(S′ = s)) ≤ max1≤i≤n{pi + δ}.
On the other hand, since ess supP(ki = k|Fi−1) is bounded by 1, for all δ > 0 we can find positive ci such that

ess supP(ki = k|Fi−1) ≤ ci (p1 + δ)k (1− (p1 + δ)) = ciP(k′i = k)

for all k ∈ Z+. Then

ess supP(S = s|F0)

= ess sup
∑

s=s1+···+sn

P(k1 = s1|F0)P(k2 = s2|F0, k1 = s1) · · ·P(kn = sn|F0, k1 = s1, · · · , kn−1 = sn−1)

≤
∑

s=s1+···+sn

ess supP(k1 = s1|F0) ess supP(k2 = s2|F1) · · · ess supP(kn = sn|Fn−1)

≤
∏

1≤i≤n

ci ·
∑

s=s1+···+sn

P(k′1 = s1)P(k′2 = s2) · · ·P(k′n = sn)

≤
∏

1≤i≤n

ci · P(S′ = s).
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Thus, exp(lim sups→∞ ess sup 1
s

log P(S = s|F0)) ≤ max1≤i≤n{pi + δ}.
Since this holds for all δ > 0, exp(lim sups→∞ ess sup 1

s
log P(S = s|F0)) ≤ max1≤i≤n{pi}.

The next lemma tells how the large deviation principle [1] can be applied to stopping times, i.e. it formally states the “test
channel” and the “distance idea” shown in the power property of Section V-A.

Lemma 7: For given n, consider discrete random variables k1, k2, · · · , kn and σ-algebra F . The probability mass functions
of k1, k2 · · · , kn satisfy

exp(lim sup
k→∞

ess sup
1

k
log P{ki = k|F}) ≤ pi

and k1, k2, · · · , kn are conditionally independent given F .
For given sets T1, T2, · · · , Tm ⊆ {1, 2, · · · , n}, define stopping times M1, · · · ,Mm as

Mi := max
t∈Ti

kt (92)

and a stopping time S as

S := min
1≤i≤m

Mi. (93)

Then,

exp

(
lim sup
k→∞

ess sup
1

k
log P{S = k|F}

)
≤ max
T={t1,t2,··· ,t|T |}⊆{1,2,··· ,n} s.t. T∩Ti 6=∅ for all i

pt1pt2 · · · pt|T | .

Proof: Since ess supP{ki = k|F} is bounded by 1, for all δ > 0 we can find c > 1 such that

ess supP{ki = k|F} ≤ c(pi + δ)k (1− (pi + δ)) .

Thus, we have

ess supP{ki ≥ k|F} ≤ c(pi + δ)k.

Therefore,

ess supP{S = k|F} ≤ ess supP{S ≥ k|F}
= ess supP{M1 ≥ k, · · · ,Mm ≥ k|F}
= ess supP{There exists T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t. T ∩ Ti 6= ∅ for all i and kt1 ≥ k, · · · , kt|T | ≥ k|F}

≤
∑

T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}
s.t. T ∩ Ti 6= ∅ for all i

ess supP{kt1 ≥ k, kt2 ≥ k, · · · , kt|T | ≥ k|F}

≤ |{T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t. T ∩ Ti 6= ∅ for all i}| (94)
· max
T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}

s.t. T ∩ Ti 6= ∅ for all i

ess supP{kt1 ≥ k|F} · · · ess supP{kt|T | ≥ k|F}

≤ cn|{T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n} s.t. T ∩ Ti 6= ∅ for all i}|
· max
T = {t1, t2, · · · , t|T |} ⊆ {1, · · · , n}

s.t. T ∩ Ti 6= ∅ for all i

(pt1 + δ)k−1(pt2 + δ)k−1 · · · (pt|T | + δ)k−1.

(94) follows from union bound. Since the above inequality holds for all δ > 0,

exp

(
lim sup
k→∞

ess sup
1

k
log P{S = k|F}

)
≤ max
T={t1,t2,··· ,t|T |}⊆{1,2,··· ,n} s.t. T∩Ti 6=∅ for all i

pt1pt2 · · · pt|T | .

B. Lemmas about the Observability Gramian of Continuous-Time Systems
In linear system theory [7], the observability Gramian plays a crucial role in estimating states from observations. Therefore,

we also study the behavior of the observability Gramian, especially the norm of the inverse of the observability Gramian.
First, we start with a corollary of the classic rearrangement inequality [13].
Lemma 8 (Rearrangement Inequality): For λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, 0 ≤ k1 ≤ k2 ≤ · · · ≤ km, and any permutation map

σ, the following inequality is true:

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km ≤ e−λ1k1e−λ2k2 · · · e−λmkm .

Moreover, the ratio of these two can also be upper bounded as

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm ≤ e−(λσ(m)−λm)(km−kσ−1(m)
)
.
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Proof: The first inequality directly follows from the classic rearrangement inequality. The second inequality is proved as
follows: When σ−1(m) = m, the inequality is trivial. When σ−1(m) 6= m, we have

e−λσ(1)k1e−λσ(2)k2 · · · e−λmkσ−1(m) · · · e−λσ(m−1)km−1 e−λσ(m)km

=
(
e−λσ(1)k1e−λσ(2)k2 · · · e−λmkσ−1(m) · · · e−λσ(m−1)km−1

)
︸ ︷︷ ︸

(a)

·e−λσ(m)km

=
(
e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)kσ−1(m) · · · e−λσ(m−1)km−1

)
︸ ︷︷ ︸

(b)

·

(
e
−λmkσ−1(m)

e
−λσ(m)kσ−1(m)

)
· e−λσ(m)km . (95)

We can notice that the exponent of (a) has {λ1, λ2, · · · , λm} \ {λσ(m)} and {k1, k2, · · · , km} \ {km} terms in it, and the
exponent of (b) has (

{λ1, λ2, · · · , λm} \ {λσ(m)}
)
∪ {λσ(m)} \ {λm}

= {λ1, λ2, · · · , λm} \ {λm}

and {k1, k2, · · · , km} \ {km} terms in it. Thus, by the first inequality of the lemma,

(b) ≤ e−λ1k1 · · · e−λm−1km−1 .

Together with (95), we have

e−λσ(1)k1e−λσ(2)k2 · · · e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm

≤

(
e−λ1k1 · · · e−λm−1km−1

)
·
(

e
−λmkσ−1(m)

e
−λσ(m)kσ−1(m)

)
· e−λσ(m)km

e−λ1k1e−λ2k2 · · · e−λmkm

=
1

e−λmkm
·

(
e
−λmkσ−1(m)

e
−λσ(m)kσ−1(m)

)
· e−λσ(m)km = e

(λm−λσ(m))(km−kσ−1(m)
)

which finishes the proof.
Even though Theorem 8 is written for a general matrix C, we will first start from the simpler case of a row vector C. In

fact, for the proof of the general case, we will reduce the system with a matrix C to a system with a row vector C.
First, we introduce the definitions corresponding to (52), (53) for a row vector C. Let Ac be a m×m Jordan form matrix,

and C be a 1×m row vector C which are written as follows:

Ac = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (96)

C =
[
C1,1 C1,2 · · · C1,ν1 · · · Cµ,1 · · · Cµ,νµ

]
(97)

where Ai,j is a Jordan block with eigenvalue λi,j +
√
−1ωi,j and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ

mi =
∑

1≤j≤νi

mi,j for all i = 1, · · · , µ

λi,1 = λi,2 = · · · = λi,νi for all i = 1, · · · , µ
λ1,1 > λ2,1 > · · · > λµ,1 ≥ 0

ωi,1, · · · , ωi,νi are pairwise distinct
Ci,j is a 1×mi,j complex matrix and its first element is non-zero

λi +
√
−1ωi is (i, i) element of Ac.

Here, we can notice that the real parts of the eigenvalues of Ai,1, · · · ,Ai,νi are the same, but the eigenvalues of all Jordan
blocks Ai,j are distinct. Therefore, by Theorem 6, the condition that the first elements of Ci,j are non-zero corresponds to the
observability of (Ac,C).

The following lemma upper bounds the determinant of the observability Gramain of the sampled continuous system.
Lemma 9: Let Ac and C be given as (96) and (97). For 0 ≤ k1 ≤ k2 ≤ · · · ≤ km, there exists a > 0, p ∈ Z+ such that∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ ≤ a(kpm + 1)

∏
1≤i≤m

e−kiλi

where λi is the real part of (i, i) component of Ac.
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Proof: First consider a diagonal matrix, i.e. Ac =


λ1 + jω1 0 · · · 0

0 λ2 + jω2 · · · 0
...

...
. . .

...
0 0 · · · λm + jωm

. Then,

∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣ ∑
σ∈Sm

sgn(σ)

m∏
i=1

cie
−kσ(i)(λi+jωi)

∣∣∣∣∣
≤ m! max

σ∈Sm

∣∣∣∣∣
m∏
i=1

cie
−kσ(i)(λi+jωi)

∣∣∣∣∣
= m!

∣∣∣∣∣
m∏
i=1

ci

∣∣∣∣∣ max
σ∈Sm

∣∣∣∣∣
m∏
i=1

e−kσ(i)λi

∣∣∣∣∣
= m!

∣∣∣∣∣
m∏
i=1

ci

∣∣∣∣∣
m∏
i=1

e−kiλi(∵ Lemma 8)

.
m∏
i=1

e−kiλi (98)

where ci are ith component of C, Sm is the set of all permutations on {1, · · · ,m}, and sgn(σ) is +1 if σ is an even permutation
−1 otherwise. Therefore, the lemma is true for a diagonal Ac.

To extend to a general Jordan matrix Ac, consider a matrix A′c which is obtained by erasing the off-diagonal elements of

Ac. Then, we can easily see the ratio between the elements of

Ce−k1Ac

...
Ce−kmAc

 and the corresponding elements of


Ce−k1A′c

...
Ce−kmA′c


is a polynomial whose degree is less than m. Therefore, by repeating the steps of (98) we can easily obtain∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ . (1 + km

2

m )

m∏
i=1

e−kiλi ,

which finishes the proof.
The next lemma upper bounds the norm of the inverse of the observability Gramian, given the lower bound on the observability

Gramian determinant. Therefore, we can reduce the matrix inverse problem to the matrix determinant problem.
Lemma 10: Consider Ac and C given as (96) and (97). Let λi be the real part of (i, i) element of Ac. Then, there exists a

positive polynomial p(k) such that for all ε > 0 and 0 ≤ k1 ≤ · · · ≤ km, if∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m

e−kiλi

then ∣∣∣∣∣∣∣∣∣∣


Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc


−1
∣∣∣∣∣∣∣∣∣∣
max

≤ p(km)

ε
eλ1km .

Proof: Let Oi,j be the matrix obtained by removing the ith row and jth column of


Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc

. Let Ac(j) be the

(m− 1)× (m− 1) matrix that we can obtain by removing the jth row and column of Ac, and C(j) be the row vector that we
can obtain by removing the jth element of C.
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First, let’s consider the case when Ac is a diagonal matrix. In this case, using properties of diagonal matrices we can easily

check that Oi,j =



C(j)e−k1Ac(j)

...
C(j)e−ki−1Ac(j)

C(j)e−ki+1Ac(j)

...
Ce−kmAc


.

In other words, Oi,j are also the observability Gramian of (Ac(j),C(j)). Since Ci,j is the determinant of Oi,j, we can apply
Lemma 9 to conclude that there exists a positive polynomial pi,j such that

|Ci,j | ≤

 pi,j(km)
(∏j−1

l=1 e
−λlkl

)
·
(∏i−1

l=j e
−λl+1kl

)
·
(∏m

l=i+1 e
−λlkl

)
if i ≥ j

pi,j(km)
(∏i−1

l=1 e
−λlkl

)
·
(∏j−1

l=i e
−λlkl+1

)
·
(∏m

l=j+1 e
−λlkl

)
if i ≤ j

(99)

Then, let’s consider the case when Ac is a general Jordan form matrix. Compared to the case of diagonal matrix Ac, the
elements of Oi,j only differ by polynomials on ki in ratio. Therefore, by the same argument of the proof of Lemma 9, we can
still find a positive polynomial pi,j satisfying (99).

Moreover, since λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and 0 ≤ k1 ≤ k2 ≤ · · · ≤ km, we have(
j−1∏
l=1

e−λlkl

)
·

i−1∏
l=j

e−λl+1kl

 ·( m∏
l=i+1

e−λlkl

)
≤

m∏
i=2

e−λiki−1 ,

(
i−1∏
l=1

e−λlkl

)
·

(
j−1∏
l=i

e−λlkl+1

)
·

 m∏
l=j+1

e−λlkl

 ≤ m∏
i=2

e−λiki−1 .

Therefore, we can further bound the cofactor as follows:

|Ci,j | ≤ max
i,j

pi,j(km)

m∏
i=2

e−λiki−1 .

Then, we have ∣∣∣∣∣∣∣∣∣∣


Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc


−1
∣∣∣∣∣∣∣∣∣∣
max

=
maxi,j |Ci,j |∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣

≤ maxi,j |Ci,j |
ε
∏

1≤i≤m e
−kiλi

≤
maxi,j pi,j(km)

∏m
i=2 e

−λiki−1

ε
∏

1≤i≤m e
−kiλi

=
maxi,j pi,j(km)

ε
eλ1k1

m∏
i=2

eλi(ki−ki−1)

≤ maxi,j pi,j(km)

ε
eλ1k1

m∏
i=2

eλ1(ki−ki−1)(∵ λ1 ≥ λi ≥ 0, ki − ki−1 ≥ 0)

=
maxi,j pi,j(km)

ε
eλ1km

≤
∑
i,j pi,j(km)

ε
eλ1km

Therefore, the lemma is true.
Now, the question is reduced to an issue regarding that the observability Gramian determinant has to be large enough. We

will find a sufficient condition for the determinant to be large in terms of a simpler analytic function. For this, we first need the
following lemma that basically asserts that polynomials increases slower than the exponentials.

Lemma 11: For any given polynomial f(x), λ > 0 and ε > 0, there exists a > 0 such that

|f(k + x)| ≤ εeλ·x (100)

for all x ≥ a(log(k + 1) + 1) and k ≥ 0.
Proof: Let the order of f(x) be p. Then, there exists c > 0 such that for all x ≥ 0,

|f(x)| ≤ c(1 + xp+1).
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If we consider 1
λ

log c
ε

+ 1
λ

log(1 + (2x)p+1) and x, the former grows logarithmically on x while the later grows linearly on x.
Therefore, we can find t > 0 such that

1

λ
log

c

ε
+

1

λ
log(1 + (2x)p+1) ≤ x

for all x ≥ t. We can also finde a > 0 such that a(log(k + 1) + 1) ≥ max
{

1
λ

log c
ε

+ 1
λ

log(1 + (2k)p+1), t
}

for all k ≥ 0.
To check the condition, |f(k + x)| ≤ εeλ·x, we divide into two cases.
(a) When x ≤ k,
|f(k + x)| is bounded as follows:

|f(k + x)| ≤ c
(
1 + (k + x)p+1)

≤ c
(
1 + (2k)p+1)

= εeλ( 1
λ

log c
ε

+ 1
λ

log(1+(2k)p+1))

≤ εeλ·x

where the last inequality comes from 1
λ

log c
ε

+ 1
λ

log(1 + (2k)p+1) ≤ x.
(b) When x > k,
Since t ≤ x, 1

λ
log c

ε
+ 1

λ
log(1 + (2x)p+1) ≤ x. Then, we can bound |f(k + x)| as follows:

|f(k + x)| ≤ c
(
1 + (k + x)p+1)

≤ c
(
1 + (2x)p+1)

= εeλ( 1
λ

log c
ε

+ 1
λ

log(1+(2x)p+1))

≤ εeλ·x.

Therefore, the lemma is proved.
Now, we give a sufficient condition to guarantee that the determinant of the observability Gramian is large enough.

Lemma 12: Let Ac and C be given as (96) and (97). Denote ai,j and Ci,j be the (i, j) element and cofactor of


Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc


respectively. Then there exist gε(k) : R+ → R+ and a ∈ R+such that for all ε > 0 and k1, · · · , km satisfying

(i) 0 ≤ k1 < k2 < · · · < km

(ii) km − km−1 ≥ gε(km−1)

(iii) gε(k) ≤ a(1 + log(k + 1))

(iv) |
∑

m−mµ+1≤i≤m

am,iCm,i| ≥ ε
∏

1≤i≤m

e−kiλi

the following inequality holds: ∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ ≥

1

2
ε
∏

1≤i≤m

e−kiλi .

Proof: First of all, because Ac is in Jordan form, it is well known that the elements of e−kAc take a specific form [7]. Thus,
we can prove that for all ai,j there exists a polynomial pi,j(k) such that ai,j = pi,j(ki)e

−ki(λj+jωj). Then, we can find p(k) in
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the form of a(1 + kb) (a > 0) such that p(k) ≥ maxi,j |pi,j(k)| for all k ≥ 0. Denote λ′ := λµ−1,1 − λµ,1 > 0.∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1≤i≤m

am,iCm,i

∣∣∣∣∣∣ =

∣∣∣∣∣ ∑
σ∈Σm

sgn(σ)

m∏
i=1

ai,σ(i)

∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
1≤i≤m−mµ

am,iCm,i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

σ∈Sm,m−mµ+1≤σ(m)≤m

sgn(σ)

m∏
i=1

ai,σ(i)

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
σ∈Sm,1≤σ(m)≤m−mµ

sgn(σ)

m∏
i=1

ai,σ(i)

∣∣∣∣∣∣
≥ ε

∏
1≤i≤m

e−kiλi −

∣∣∣∣∣∣
∑

1≤i≤m−mµ

am,iCm,i

∣∣∣∣∣∣ (∵ Assumption (iv))

= ε
∏

1≤i≤m

e−kiλi −

∣∣∣∣∣∣
∑

σ∈Sm,1≤σ(m)≤m−mµ

sgn(σ)

m∏
i=1

ai,σ(i)

∣∣∣∣∣∣
≥ ε

∏
1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

∣∣∣∣∣
m∏
i=1

ai,σ(i)

∣∣∣∣∣
= ε

∏
1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

∣∣∣∣∣
m∏
i=1

pi,σ(i)(ki)e
−ki(λσ(i)+jωσ(i))

∣∣∣∣∣
≥ ε

∏
1≤i≤m

e−kiλi −
∑

σ∈Sm,1≤σ(m)≤m−mµ

(
e

(λm−λσ(m))(km−kσ−1(m)
) ·

m∏
i=1

p(ki)e
−kiλi

)
(∵ Lemma 8)

≥
∏

1≤i≤m

e−kiλi

ε− ∑
σ∈Sm,1≤σ(m)≤m−mµ

p(km)me
(λm−λσ(m))(km−kσ−1(m)

)

 (∵ p(k) is an increasing function.)

≥
∏

1≤i≤m

e−kiλi

ε− ∑
σ∈Sm,1≤σ(m)≤m−mµ

p(km)me−λ
′(km−km−1)

 (∵ λσ(m) − λm ≥ λµ−1,1 − λµ,1 = λ′)

≥
∏

1≤i≤m

e−kiλi
(
ε−m!p(km)me−λ

′(km−km−1)
)

Since m!p(x)m is a polynomial in x, by Lemma 11 there exists gε(k) : R+ → R+ such that
(i) gε(k) . log(k + 1) + 1

(ii) |m!p(k + x)m| ≤ ε
2
eλ
′·x for all x ≥ gε(k) and k ≥ 0.

Therefore, for all km such that km − km−1 ≥ gε(km−1),∣∣∣∣∣∣∣∣∣det




Ce−k1Ac

Ce−k2Ac

...
Ce−kmAc



∣∣∣∣∣∣∣∣∣ ≥

∏
1≤i≤m

e−kiλi
(
ε− ε

2
eλ
′·(km−km−1)e−λ

′·(km−km−1)
)
≥ ε

2

∏
1≤i≤m

e−kiλi .

Thus, the lemma is proved.

C. Uniform Convergence of a Set of Analytic Functions (Continuous-Time Systems)
We will prove that after introducing nonuniform sampling, the determinant of the observability Gramian will become large

enough regardless of the erasure pattern. Since the determinant of the observability Gramian is an analytic function, to prove that
the observability Gramian is large enough it is enough prove that a set of specific analytic functions are large enough. To this
end, we will prove a set of analytic functions are uniformly away from 0.

First, we prove that an analytic function can become zero only on sets of zero Lebesgue-measure set, as long as the function is
not zero for all values. The intuition for the lemma is that analytic functions can be locally determined by that Taylor expansions.
Thus, if an analytic function is zero for any open interval with non-zero Lebesgue-measure, it is identically zero.

Lemma 13: For a given nonnegative integer p and distinct positive reals ωi,1, ωi,2, · · · , ωi,νi , define

f(x) :=

p∑
i=0

xi
(

νi∑
j=1

aR,i,j cos(ωi,jx) + aI,i,j sin(ωi,jx)

)
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where at least one coefficient among aR,i,j , aI,i,j is non-zero. Let X be a uniform random variable in [0, T ] (T > 0). Then, for
all h ∈ R, the following is true:

P{|f(X)− h| < ε} → 0 as ε ↓ 0.

Proof: First, notice that f(x)−h is an analytic function. It is well-known that if an analytic function f(x)−h is not identically
zero, the set {x ∈ [0, T ] : f(x)−h = 0} is an isolated set [16], which is countable. Therefore, P{|f(X)−h| = 0} = 0. Moreover,
P{|f(X)− h| < ε} ≤ P{|f(X)− h| ≤ ε}, which is a cumulative distribution function. Since cumulative distribution functions
are right-continuous, limε↓0 P{|f(X)− h| < ε} ≤ limε↓0 P{|f(X)− h| ≤ ε} = P{|f(X)− h| = 0} = 0.

Thus, the proof reduces to proving f(x)− h is not zero for all x. Let i∗ be the largest i such that either aR,i,j or aI,i,j is
non-zero.

(i) When i∗ = 0,
In this case, there are no polynomial terns and only sinusoidal terms exist. Let’s compute the energy of f(x)− h in interval

[s, s+ r] and prove that f(x)− h is not identically zero for all s as long as r is large enough.∫ s+r

s

(
νi∗∑
j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))− h

)2

dx

=

∫ s+r

s

νi∗∑
j=1

(
a2
R,i∗,j cos2(ωi∗,jx) + a2

I,i∗,j sin2(ωi∗,jx)
)

+ h2 + 2
∑
i≤j

aR,i∗,iaI,i∗,j cos(ωi∗,ix) sin(ωi∗,jx)

+ 2
∑
i<j

aR,i∗,iaR,i∗,j cos(ωi∗,ix) cos(ωi∗,jx) + 2
∑
i<j

aI,i∗,iaI,i∗,j sin(ωi∗,ix) sin(ωi∗,jx)

− 2

νi∗∑
j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))h dx

=

∫ s+r

s

νi∗∑
j=1

(
a2
R,i∗,j

1 + cos 2ωi∗,jx

2
+ a2

I,i∗,j
1− cos 2ωi∗,jx

2

)
dx

+

∫ s+r

s

∑
i≤j

aR,i∗,iaI,i∗,j (sin ((ωi∗,j + ωi∗,j)x)− sin ((ωi∗,j − ωi∗,j)x)) dx

+

∫ s+r

s

∑
i<j

aR,i∗,iaR,i∗,j (cos ((ωi∗,j − ωi∗,j)x) + cos ((ωi∗,j + ωi∗,j)x)) dx

+

∫ s+r

s

∑
i<j

aI,i∗,iaI,i∗,j (cos ((ωi∗,j − ωi∗,j)x)− cos ((ωi∗,j + ωi∗,j)x)) dx

−
∫ s+r

s

2

νi∗∑
j=1

(aR,i∗,j cos(ωi∗,jx) + aI,i∗,j sin(ωi∗,jx))h dx. (101)

Therefore, as r increases, the first term in (101) arbitrarily increases regardless of s, while the remaining terms in (101) are
sinusoidal and so bounded. Thus, f(x)− h is not identically zero for all s when r is large enough. Thus, there exist δ > 0 and
r > 0 such that for all s, |f(x)− x| ≥ δ holds for some x ∈ [s, s+ r].

(ii) When i∗ ≥ 1,
In this case, we have polynomial terms and we will prove that the term with the highest degree will dominate the reaming

terms. By the argument of (i), we can find δ > 0 and r > 0 such that for all s ≥ 0 we can find x ∈ [s, s+ r] satisfying

|f(x)− h| ≥ δxi
∗
−
i∗−1∑
i=0

(
νi∑
j=1

|aR,i,j |+ |aI,i,j |

)
xi − |h|.

Since we can choose s arbitrarily large, |f(x)− h| has to be greater than 0 for some x. Thus, f(x)− h is not identically zero.
Therefore, the lemma is true.
To prove uniform convergence, we need the following Dini’s theorem which says that for compact sets, pointwise convergence

implies uniform convergence. The intuition behind this theorem is as follows: since we can find a finite open cover for a compact
set, we can convert the uniform convergence of an infinite number of functions to the uniform convergence of only finitely
many functions when the domain is compact. The uniform convergence of a finite number of functions immediately follows from
pointwise convergence.

Theorem 10 (Dini’s Theorem): [5, p. 81] If {fn} is a sequence of functions defined on a set A and converging on A to a
function f , and if
(i) the convergence is monotonic,
(ii) fn is continuous on A, n = 1, 2, · · ·
(iii) f is continuous on A,
(iv) A is compact,
then the convergence is uniform on A.

Proof: See [5, p. 81] for the proof.
Now, using the pointwise convergence of Lemma 13 and Dini’s theorem, we can prove the uniform convergence of the relevant

functions over a set of parameters.
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Lemma 14: Let p, ν0, · · · , νp be nonnegative integers with νp > 0. Suppose γ and Γ are strictly positive reals such that
γ ≤ Γ. For each 0 ≤ i ≤ p, ωi,1, ωi,2, · · · , ωi,νi are distinct reals. Let X be a uniform random variable on [0, T ] for some
T > 0. Then, for all m,n such that 0 ≤ m ≤ p and 1 ≤ n ≤ νm, we have the following inequality:

sup
|am,n|≥γ,∀i,j,|ai,j |≤Γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε

}
→ 0 as ε ↓ 0

where ai,j are taken from C.
Proof: The purpose of this proof is reducing the lemma to Dini’s theorem (Theorem 10).

First, we will assume the wi,j are positive without loss of generality. To justify this, let ωmin = min{mini,j ωi,j , 0}− δ for
some δ > 0. Then,

sup
|am,n|≥γ,|ai,j |≤Γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε

}

= sup
|am,n|≥γ,|ai,j |≤Γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
j(ωi,j−ωmin)X

)∣∣∣∣∣ < ε

}
.

Here, for each i, ωi,1−ωmin, ωi,2−ωmin, · · · , ωi,νi−ωmin are distinct and strictly positive. Therefore, without loss of generality,
we can assume that for each i, ωi,1, ωi,2, · · · , ωi,νi are distinct and strictly positive.

Let ai,j = aR,i,j − jaI,i,j where aR,i,j and aI,i,j are real. Since |am,n| ≥ γ, at least one of |aR,m,n| or |aI,m,n|
should be greater than γ√

2
. First, consider the case when |aR,m,n| ≥ γ√

2
. It is sufficient to prove that the real part of∑p

i=0 X
i
(∑νi

j=1 ai,je
jωi,jX

)
satisfies the lemma, i.e.

sup
aR,m,n≥

γ√
2
,|aR,i,j |≤Γ,|aI,i,j |≤Γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < ε

}
→ 0 as ε ↓ 0.

Here, we take the supremum over aR,m,n ≥ γ√
2

instead of the supremum over |aR,m,n| ≥ γ√
2

by symmetry.
Now, we apply Dini’s theorem 10 and prove the claim.
Fix a positive sequence εi such that εi ↓ 0 as i→∞. Define a sequence of functions {fi} as

fi(aR,1,1, aI,1,1, · · · , aI,p,νp) := P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}
where the domain A of the functions is A := {(aR,1,1, aI,1,1, · · · , aI,p,νp) : aR,m,n ≥ γ√

2
, |aR,i,j | ≤ Γ, |aI,i,j | ≤ Γ}. Let

f(aR,1,1, aI,1,1, · · · , aI,p,νp) be the identically zero function. Then, we will prove that {fi} converges to f = 0 uniformly on A
by checking the conditions of Theorem 10.
• fi point-wisely converges to f :
Since aR,m,n ≥ γ√

2
,
∑p
i=0 x

i
(∑νi

j=1 aR,i,j cos(ωi,jx) + aI,i,j sin(ωi,jx)
)

satisfies the assumptions of Lemma 13. Thus,
for all h

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− h

∣∣∣∣∣ < ε

}
→ 0 as ε ↓ 0. (102)

Therefore, by selecting h = 0, fi(aR,1,1, aI,1,1, · · · , aI,p,νp) converges to f = 0 for all aR,1,1, aI,1,1, · · · , aI,p,νp in A.
• Convergence is monotone: Since εi monotonically converge to 0, fi is also a monotonically decreasing function sequence.

Thus, the convergence is monotone.
• fn is continuous onA: For continuity (does not have to be uniformly continuous), we will prove that for given aR,1,1, aI,1,1, · · · , aI,p,νp

and for all σ > 0, there exists δ(σ) > 0 such that |fi(aR,1,1+∇aR,1,1, aI,1,1+∇aI,1,1, · · · , aI,p,νp+∇aI,p,νp)−fi(aR,1,1, aI,1,1, · · · , aI,p,νp)| <
σ for all |∇aR,i,j | < δ(σ) and |∇aI,i,j | < δ(σ).

By (102), we can find δ′(σ) for all σ such that

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− εi

∣∣∣∣∣ < δ′(σ)

}
<
σ

2
and

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− (−εi)

∣∣∣∣∣ < δ′(σ)

}
<
σ

2
.
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Denote δ(σ) :=
min( 1

Tp
,1)

2
∑p
i=0 νi

δ′(σ). Then, for all |∇aR,i,j | < δ(σ) and |∇aI,i,j | < δ(σ), the following inequality is true.

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

(aR,i,j +∇aR,i,j) cos(ωi,jX) + (aI,i,j +∇aR,i,j) sin(ωi,jX)

)∣∣∣∣∣ < εi

}

≥ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi −

∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

∇aR,i,j cos(ωi,jX) +∇aI,i,j sin(ωi,jX)

)∣∣∣∣∣
}

≥ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi − δ′(σ)

}
(103)

= P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}

− P

{
εi − δ′(σ) ≤

∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}

≥ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}

− P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− εi

∣∣∣∣∣ < δ′(σ)

}

− P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− (−εi)

∣∣∣∣∣ < δ′(σ)

}

> P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}
− σ.

Here, (103) can be shown as follows:∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

∇aR,i,j cos(ωi,jX) +∇aI,i,j sin(ωi,jX)

)∣∣∣∣∣
≤

p∑
i=0

|Xi|
νi∑
j=1

(|∇aR,i,j |+ |∇aI,i,j |)

≤ max(T p, 1)2νiδ(σ)(∵ 0 ≤ X ≤ T w.p. 1)

= δ′(σ)(∵ definition of δ(σ)) (104)

Therefore, by the definition of fi we have

fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)− fi(aR,1,1, aI,1,1, · · · , aI,p,νp) > −σ. (105)
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Likewise, we can prove that

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

(aR,i,j +∇aR,i,j) cos(ωi,jX) + (aI,i,j +∇aR,i,j) sin(ωi,jX)

)∣∣∣∣∣ < εi

}

≤ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi + δ′(σ)

}
(∵ The same step as (103))

= P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}

+ P

{
εi ≤

∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi + δ′(σ)

}

≤ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}

+ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− εi

∣∣∣∣∣ < δ′(σ)

}

+ P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)
− (−εi)

∣∣∣∣∣ < δ′(σ)

}

< P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

aR,i,j cos(ωi,jX) + aI,i,j sin(ωi,jX)

)∣∣∣∣∣ < εi

}
+ σ

which implies

fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)− fi(aR,1,1, aI,1,1, · · · , aI,p,νp) < σ. (106)

By (105) and (106),∣∣fi(aR,1,1 +∇aR,1,1, aI,1,1 +∇aI,1,1, · · · , aI,p,νp +∇aI,p,νp)− fi(aR,1,1, aI,1,1, · · · , aI,p,νp)
∣∣ < σ.

Therefore, fi(aR,1,1, aI,1,1, · · · , aI,p,νp) is continuous.
• f is continuous on A: f is obviously continuous, since f is identically zero.
• A is compact: A is compact since it is closed and bounded.
Thus, by Dini’s theorem 10, the convergence is uniform on A, which finishes the proof for the case of |aR,m,n| ≥ γ√

2
. The

proof for the case of |aI,m,n| ≥ γ√
2

follows in an identical manner. Since there are only two cases, the function

gi(a1,1, · · · , ap,νp) := P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < εi

}
(107)

converges uniformly on {ai,j : |am,n| ≥ γ, |ai,j | ≤ Γ}. This finishes the proof of the lemma.
In Lemma 14, we have a boundedness condition on the coefficients (|ai,j | ≤ Γ) to guarantee compactness. However, we

can easily notice the functions only get larger as ai,j increases. Therefore, we can prove that Lemma 14 still holds without the
boundedness condition.

Lemma 15: Let p be nonnegative integer and ν0, · · · , νp be also nonnegative integers with νp > 0. γ is a strictly positive
real. For each 0 ≤ i ≤ p, ωi,1, ωi,2, · · · , ωi,νi are distinct reals. Let X be a uniform random variable on [0, T ] for some T > 0.
Then, for all m,n such that 0 ≤ m ≤ p and 1 ≤ n ≤ νm, we have the following inequality:

sup
|am,n|≥γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε

}
→ 0 as ε ↓ 0

where ai,j are taken from C.
Proof: Denote ν :=

∑p
i=0 νi. The proof is by strong induction on ν.

(i) When ν = 1.

sup
|ap,1|≥γ

P
{∣∣∣ap,1Xpejωp,1X

∣∣∣ < ε
}

(108)

= sup
|ap,1|≥γ

P
{∣∣∣∣ γ

|ap,1|
ap,1X

pejωp,1X
∣∣∣∣ < γ

|ap,1|
ε

}
≤ sup
|a′p,1|=γ

P
{∣∣∣a′p,1Xpejωp,1X

∣∣∣ < ε
}(

∵
γ

|ap,1|
≤ 1

)
(109)

By lemma 14, (109) converges to 0 as ε ↓ 0. Thus, (108) converges to 0 as ε ↓ 0.
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(ii) As an induction hypothesis, we assume the lemma is true for ν = 1, · · · , n − 1 and prove that the lemma still holds
for ν = n. We will prove this by dividing into two cases: (a) When all ai,j are not much bigger than am,n. In this case, the
claim reduces to Lemma 14. (b) When there is an am′,n′ which is much bigger than am,n. In this case, we can ignore the
term associated with am,n and reduce the number of terms in the functions. Thus, either way the claim reduces to the induction
hypothesis.

To prove the lemma for ν = n, it is enough to show that for a fixed γ and every δ > 0, there exists ε(δ) > 0 such that

sup
|am,n|≥γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}
< δ.

By the induction hypothesis for all (m′, n′) 6= (m,n) we can find εm′,n′(δ) > 0 such that

sup
am,n=0,|am′,n′ |≥γ

P

{∣∣∣∣∣
p∑
i=0

Xp

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < εm′,n′(δ)

}
< δ. (110)

We choose κ(δ) as min
{

min(m′,n′)6=(m,n)

{
εm′,n′ (δ)

2γTm

}
, 1
}

. By Lemma 14, there exists ε′(δ) > 0 such that

sup
|am,n|=γ,ai,j≤

γ
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xp

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε′(δ)

}
< δ. (111)

Denote ε(δ) := min
{
ε′(δ),min(m′,n′)6=(m,n)

{
εm′,n′ (δ)

2

}}
. Then, we have

sup
|am,n|≥γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}

= max{ sup

|am,n|≥γ,
|ai,j |
|am,n|

≤ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}
, (112)

max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}
(113)

}. (114)

• When ai,j are not too bigger than am,n: Let’s bound the first term in (112). Set a′i,j := γ
|am,n|ai,j . Then, (112) is upper

bounded as follows:

sup

|am,n|≥γ,
|ai,j |
|am,n|

≤ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}

= sup

|am,n|≥γ,
|ai,j |
|am,n|

≤ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

γ

|am,n|
ai,je

jωi,jX

)∣∣∣∣∣ < γ

|am,n|
ε(δ)

}

= sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

a′i,je
jωi,jX

)∣∣∣∣∣ < γ

|am,n|
ε(δ)

}

≤ sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

a′i,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}
(∵

γ

|am,n|
≤ 1)

≤ sup
|a′m,n|=γ,|a′i,j |≤

γ
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

a′i,je
jωi,jX

)∣∣∣∣∣ < ε′(δ)

}
(∵ definition of ε(δ))

< δ(∵ (111)) (115)

• When am′,n′ is much bigger than am,n: Let’s bound the second term in (113). For given m′, n′, set a′′i,j := γ
|am′,n′ |

ai,j .
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Then, (113) is upper bounded by

max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}

= max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

γ

|am′,n′ |
ai,je

jωi,jX

)∣∣∣∣∣ < γ

|am′,n′ |
ε(δ)

}

≤ max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

γ

|am′,n′ |
ai,je

jωi,jX

)
−Xm γ

|am′,n′ |
am,ne

jωm,nX

∣∣∣∣∣
< max

(m′,n′)6=(m,n)

γ

|am′,n′ |
ε(δ) +

γ

|am′,n′ |
|am,n|Tm

}

≤ max
(m′,n′)6=(m,n)

sup

|am,n|≥γ,
|a
m′,n′ |
|am,n|

≥ 1
κ(δ)

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

γ

|am′,n′ |
ai,je

jωi,jX

)
−Xm γ

|am′,n′ |
am,ne

jωm,nX

∣∣∣∣∣ < εm′,n′(δ)

}
(116)

≤ max
(m′,n′)6=(m,n)

sup
a′′m,n=0,|a′′

m′,n′ |=γ
P

{∣∣∣∣∣
p−1∑
i=0

Xi

(
νi∑
j=1

a′′i,je
jωi,jX

)∣∣∣∣∣ < εm′,n′(δ)

}
(∵ By definition, a′′m′,n′ =

γ

|am′,n′ |
am′,n′)

< δ(∵ (110)) (117)

Here, (116) can be derived as follows: First, we have

1 ≥ κ(δ) (∵ Definition of κ(δ))

≥ γ · κ(δ)

|am,n|
(∵ |am,n| ≥ γ)

≥ γ

|am′,n′ |
. (∵

|am′,n′ |
|am,n|

≥ 1

κ(δ)
) (118)

We also have

γ

|am′,n′ |
|am,n|Tm ≤ γ · κ(δ)Tm (∵

|am′,n′ |
|am,n|

≥ 1

κ(δ)
)

≤ γ εm
′,n′(δ)

2γTm
Tm (∵ By definition, κ(δ) ≤ εm′,n′(δ)

2γTm
)

=
εm′,n′(δ)

2
. (119)

Therefore,

γ

|am′,n′ |
ε(δ) +

γ

|am′,n′ |
|am,n|Tm ≤ ε(δ) +

εm′,n′(δ)

2
(∵ (118), (119))

≤ εm′,n′(δ). (∵ By definition, ε(δ) ≤ εm′,n′(δ)

2
)

Therefore, (116) is true.
By plugging (115) and (117) into (114), we get

sup
|am,n|≥γ

P

{∣∣∣∣∣
p∑
i=0

Xi

(
νi∑
j=1

ai,je
jωi,jX

)∣∣∣∣∣ < ε(δ)

}
< δ,

which finishes the proof.

D. Proof of Lemma 2
In this section, we will merge the properties about the observability Gramian shown in Section X-B with the uniform

convergence of Section X-C, and prove Lemma 2 of page 22.
We first prove the following lemma which tells us that the determinant of the observability Gramian is large with high

probability under a cofactor condition on the Gramian.

Lemma 16: Let Ac and C be given as (96) and (97). Let ai,j and Ci,j be the (i, j) element and cofactor of


Ce−(k1I+t1)Ac

...
Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac


respectively, where t is a random variable which is uniformly distributed on [0, T ] and I is the sampling interval defined in (48).
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Then, there exist a ∈ R+ and a family of increasing functions {gε(·) : ε > 0, gε : R+ → R+} satisfying:
(i) For all ε > 0, k1 < k2 < · · · < km−1, 0 ≤ ti ≤ T if |Cm,m| > ε

∏
1≤i≤m−1 e

−kiI·λi the following is true:

sup
km∈Z,km−km−1≥gε(km−1)

P


∣∣∣∣∣∣∣∣∣det




Ce−(k1I+t1)Ac

...
Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac



∣∣∣∣∣∣∣∣∣ < ε2

∏
1≤i≤m

e−kiI·λi

→ 0 as ε ↓ 0

(ii) For all ε > 0, gε(k) ≤ a(1 + log(k + 1)).

Proof: Let ε′ = 2ε2
∏

1≤i≤m e
λiT . Define a′i,j , C

′
i,j as the (i, j) element and cofactor of

Ce−κ1Ac

...
Ce−κmAc

.

Then, by Lemma 12, we can find a function g′ε′(k) such that for all 0 ≤ κ1 < κ2 < · · · < κm satisfying:
(i’) κm − κm−1 ≥ g′ε′(κm−1)
(ii’) g′ε′(κ) . 1 + log(κ+ 1)
(iii’) |

∑
m−mµ+1≤i≤m a

′
m,iC

′
m,i| ≥ ε′

∏
1≤i≤m e

−κiλi

the following inequality holds: ∣∣∣∣∣∣∣det


Ce−κ1Ac

...
Ce−κmAc



∣∣∣∣∣∣∣ ≥

1

2
ε′
∏

1≤i≤m

e−κiλi . (120)

Let’s use tm and t interchangeably which are in [0, T ] with probability one. Ideally, we want to plug kiI+ti into κi. However,
even though the sequence k1, · · · , km is sorted, the sequence k1I + t1, · · · , kmI + tm may not be sorted. Therefore, we define
k(1)I + t(1), · · · , k(m)I + t(m) as the sorted sequence of k1I + t1, · · · , kmI + tm. Then, we can see this sorted sequence has
the following property.

Claim 1: Consider two sequences, α1, α2, · · · , αn and β1, β2, · · · , βn where α1 ≤ α2 ≤ · · · ≤ αn and βi ∈ [0, T ] (T > 0).
Let α(1) + β(1), α(2) + β(2), · · · , α(n) + β(n) be the ascending ordered set of α1 + β1, α2 + β2, · · · , αn + βn. In other words,

Then, for all i ∈ {1, · · · , n}, we have

0 ≤ α(i) + β(i) − αi ≤ T. (121)

Proof: We will prove this by contradiction. Let’s say there exists i such that

α(i) + β(i) − αi < 0. (122)

Then, we have

α(i) + β(i) < αi ≤ αi+1 ≤ · · · ≤ αn. (123)

Since β1, · · · , βn ≥ 0, we can conclude α(i) + β(i) < αi + βi, · · · , α(i) + β(i) < αn + βn. Thus, in the sequence α1 +
β1, · · · , αn + βn, there exists n− i+ 1 elements which are larger than α(i) + β(i). This contradicts to the fact that α(i) + β(i)

is ith largest element among α1 + β1, · · · , αn + βn.
Likewise, let’s say there exists i such that

α(i) + β(i) − αi > T. (124)

Then, we have

α(i) + β(i) > αi + T ≤ αi−1 + T ≤ α1 + T. (125)

Since β1, · · · , βn ≤ T , we can conclude α(i) + β(i) > αi + βi, · · · , α(i) + β(i) > α1 + β1. Thus, in the sequence α1 +
β1, · · · , αn + βn, there exists i elements which are smaller than α(i) + β(i). This contradicts to the fact that α(i) + β(i) is ith
smallest element among α1 + β1, · · · , αn + βn.

Therefore, by the claim, we have∏
1≤i≤m

e−λiT
∏

1≤i≤m

e−kiI·λi ≤
∏

1≤i≤m

e−(k(i)I+t(i))λi ≤
∏

1≤i≤m

e−kiI·λi . (126)

Finally, we can plug k(i)I + t(i) into κi to conclude the following statement. For all 0 ≤ k1 < · · · < km, 0 ≤ ti ≤ T ,
0 ≤ t ≤ T such that17

(i”) km − km−1 ≥ g′′ε′(km−1)
(ii”) g′′ε′(k) . 1 + log(k + 1)

17Here, we select g′′
ε′ (k) large enough so that when km − km−1 ≥ g′′ε′ (km−1), we always have kmI + t ≥ km−1I + tm−1, i.e. kmI + t becomes the

largest.
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(iii”)
∣∣∣∑m−mµ+1≤i≤m am,iCm,i

∣∣∣ ≥ ε′∏1≤i≤m e
−kiI·λi

(A)

≥ ε′
∏

1≤i≤m e
−(k(i)I+t(i))λi

the following inequality holds:∣∣∣∣∣∣∣∣∣det




Ce−(k1I+t1)Ac

...
Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac



∣∣∣∣∣∣∣∣∣ ≥

1

2
ε′
∏

1≤i≤m

e−(k(i)I+t(i))λi
(B)

≥ 1

2
ε′
∏

1≤i≤m

e−λiT
∏

1≤i≤m

e−kiI·λi (127)

(C)
= ε2

∏
1≤i≤m

e−kiI·λi . (128)

Here, (A) and (B) always hold by (126). (C) follows from the definition of ε′.
Let gε(k) be g′′e′(k). Then, we can easily check such gε(k) satisfies (ii) of the lemma. Let’s show that such gε(k) also satisfies

(i) of the lemma.

sup
km∈Z,km−km−1≥gε(km−1)

P


∣∣∣∣∣∣∣∣∣det




Ce−(k1I+t1)Ac

...
Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac



∣∣∣∣∣∣∣∣∣ < ε2

∏
1≤i≤m

e−kiI·λi


≤ sup
km∈Z,km−km−1≥gε(km−1)

P


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

Cm,iam,i

∣∣∣∣∣∣ < 2ε2
∏

1≤i≤m

eλiT ·
∏

1≤i≤m

e−kiI·λi


= sup
km∈Z,km−km−1≥gε(km−1)

P


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

Cm,i
ε
∏

1≤i≤m−1 e
−kiI·λi

am,i
e−(kmI+t)λm

∣∣∣∣∣∣ < 2ε · eλmt
∏

1≤i≤m

eλiT


≤ sup
|bm|≥1

P


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

bi
am,i

e−(kmI+t)λm

∣∣∣∣∣∣ < 2ε · eλmT
∏

1≤i≤m

eλiT

 . (129)

where the last inequality comes from the assumption of (ii), |Cm,m| > ε
∏

1≤i≤m−1 e
−kiI·λi , and t ∈ [0, T ] with probability

one.
Now, it is enough to prove that (129) converges to 0 as ε ↓ 0. To this end, let’s study am,i which are the elements of the

observability gramian. Let the Cµ,νµ defined in (97) be
[
c′1 · · · c′mµ,νµ

]
. Then, we have

e−(kmI+t)Aµ,νµ

=


e−(kmI+t)(λµ,νµ+jωµ,νµ ) −(kmI + t)e−(kmI+t)(λµ,νµ+jωµ,νµ ) · · · (−1)

mµ,νµ−1
(kmI+t)

mµ,νµ−1

(mµ,νµ−1)!
e−(kmI+t)(λµ,νµ+jωµ,νµ )

0 e−(kmI+t)(λµ,νµ+jωµ,νµ ) · · · (−1)
mµ,νµ−2

(kmI+t)
mµ,νµ−2

(mµ,νµ−2)!
e−(kmI+t)(λµ,νµ+jωµ,νµ )

...
...

. . .
...

0 0 · · · e−(kmI+t)(λµ,νµ+jωµ,νµ )

 .

Thus, we can see that

am,m =
∑

1≤i≤mµ,νµ

c′i
(−1)mµ,νµ−i(kmI + t)mµ,νµ−i

(mµ,νµ − i)!
e−(kmI+t)(λm+jωµ,νµ ).

Therefore,

am,m
e−(kmI+t)λm

=
∑

1≤i≤mµ,νµ

c′i
(−1)mµ,νµ−i(kmI + t)mµ,νµ−i

(mµ,νµ − i)!
e−(kmI+t)(jωµ,νµ ).

Moreover, when am,i is considered as a function of t, the tmµ,νµ−1e−jωµ,νµ t term only shows up in am,m

e−(kmI+t)λm
among

am,m−mµ+1

e−(kmI+t)λm
, · · · , am,m

e−(kmI+t)λm
, and the coefficient is c′1

(−1)
mµ,νµ−1

(mµ,νµ−1)!
e−jωµ,νµkmI . Since we put |bm| ≥ 1 in (129), by defining

c′ :=
|c′1|

(mµ,νµ−1)!
we can see that the magnitude of the corresponding coefficient is greater or equal to c′. Furthermore, the

remaining terms
am,m−mµ+1

e−(kmI+t)λm
, · · · , am,m−1

e−(kmI+t)λm
only have e−jωµ,1t, · · · , tmµ,1−1e−jωµ,1t, e−jωµ,2t, · · · , tmµ,2−1e−jωµ,2t,

· · · , e−jωµ,νµ t, · · · , tmµ,νµ−2e−jωµ,νµ t when they are considered as functions in t. Thus, using the assumption that mν,1 ≤
· · · ≤ mν,µν ,(129) can be upper bounded as follows:

(129) ≤ sup
|a′mµ,νµ ,νµ |≥c

′
P


∣∣∣∣∣
mµ,νµ∑
i=1

ti−1

( νµ∑
j=1

a′i,je
−jωµ,jt

)∣∣∣∣∣ ≤ 2εeλmT ·
∏

1≤i≤m

eλiT

 . (130)
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By Lemma 15 (by setting γ as c′, (m,n) as (mµ,νµ , νµ), p as mµ,νµ , ν0, · · · , νp as νµ, ω0,j , · · · , ωp,j as −ωµ,j , and ε as
2ε
∏

1≤i≤m e
λiT · eλmT ), we get

sup
|a′mµ,νµ ,νµ |≥c

′
P


∣∣∣∣∣
mµ,νµ∑
i=1

ti−1

( νµ∑
j=1

a′i,je
−jωµ,jt

)∣∣∣∣∣ ≤ 2εeλmT ·
∏

1≤i≤m

eλiT

→ 0 as ε ↓ 0. (131)

Therefore, by (129), (130), (131) we can say that

sup
km∈Z,km−km−1≥gε(km−1)

P


∣∣∣∣∣∣∣∣∣det




Ce−(k1I+t1)Ac

...
Ce−(km−1I+tm−1)Ac

Ce−(kmI+t)Ac



∣∣∣∣∣∣∣∣∣ < ε2

∏
1≤i≤m

e−kiI·λi

→ 0 as ε ↓ 0

which finishes the proof.
Based on the previous lemma, we will integrate the properties of p.m.f. tails shown in Section X-A with the properties of the

observability Gramian discussed in Section X-B, and prove Lemma 2 for the case of a row vector C.
Lemma 17: Let Ac and C be given as (96) and (97). Let β[n] (n ∈ Z+) be a Bernoulli random process with probability 1−pe

and tn be i.i.d. random variables which are uniformly distributed on [0, T ] (T > 0). Then, we can find a polynomial p(k) and a
family of stopping times {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0, k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km ≤ S(ε, k)
and M satisfying the following conditions:
(i) β[ki] = 1 for 1 ≤ i ≤ m

(ii) M


Ce−(k1I+tk1

)Ac

Ce−(k2I+tk2
)Ac

...
Ce−(kmI+tkm )Ac

 = I

(iii) |M|max ≤ p(S(ε,k))
ε

eλ1S(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S(ε, k)− k = s} ≤ pe.
Proof: By Lemma 10, instead of conditions (ii) and (iii), it is enough to prove that∣∣∣∣∣∣∣∣∣det




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce−(kmI+tkm )Ac



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m

e−(kiI+tki
)λi .

Furthermore, since ti ≥ 0 it is sufficient to prove that∣∣∣∣∣∣∣∣∣det




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce−(kmI+tkm )Ac



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m

e−kiI·λi .

Therefore, it is enough to prove the following claim:
We can find a family of stopping times {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0 and k ∈ Z+ there exist

k ≤ k1 < k2 < · · · < km ≤ S(ε, k) satisfying the following condition:
(a) β[ki] = 1 for 1 ≤ i ≤ m

(b)

∣∣∣∣∣∣∣∣∣det




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce−(kmI+tkm )Ac



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m e

−kiI·λi

(c) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S(ε, k)− k = s} ≤ pe
We will prove the claim by induction on m, the size of the Ac matrix.
(i) When m = 1,
Since we only have to care about small enough ε, let ε ≤ |c1|e−2Tλ1 . Denote S(ε, k) := inf{n ≥ k : β[n] = 1} and

k1 = S(ε, k). Then, β[k1] = 1 and
∣∣det

([
c1e
−(k1I+tk1

)(λ1+jω1)
])∣∣ ≥ |c1|e−Tλ1e−k1I·λ1 ≥ εe−k1I·λ1 .

Moreover, since S(ε, k)− k is a geometric random variable with probability 1− pe,

exp lim sup
s→∞

sup
k∈Z+

log P {S(ε, k)− k = s} = pe.

Therefore, S(ε, k) satisfies all the conditions of the lemma.
(ii) Now, we assume that the lemma is true for m− 1 and prove the lemma still holds for m. We will see that the induction

hypothesis corresponds to the cofactor condition of Lemma 16, which tells us that the determinant of the observability Gramian
is large enough with high probability.
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Let A′c be the (m− 1)× (m− 1) matrix obtained by removing mth row and column of Ac. Likewise, C′ is a 1× (m− 1)
vector obtained by removing mth element of C. Then, since Ac is given in a Jordan form, we can easily check that once we
remove the last element from the row vector Ce−(kiI+tki

)Ac , we get C′e−(kiI+tki
)A′c . Therefore, we can see that

det




C′e−(k1I+tk1
)A′c

...
C′e

−(km−1I+tkm−1
)A′c


 = cofm,m


 Ce−(k1I+tk1

)Ac

...
Ce−(kmI+tkm )Ac


 (132)

where cofi,j(A) implies the cofactor matrix of A with respect to (i, j) element.
By the induction hypothesis, there exists a stopping time S′(ε, k) such that we can find k ≤ k1 < k2 < · · · < km−1 ≤ S′(ε, k)

satisfying:
(a) β[ki] = 1 for 1 ≤ i ≤ m− 1

(b)

∣∣∣∣∣∣∣∣det




C′e−(k1I+tk1
)A′c

...
C′e

−(km−1I+tkm−1
)A′c



∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m−1 e

−kiI·λi

(c) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S′(ε, k)− k = s} ≤ pe.
Let Fi be a σ-field generated by β[0], · · · , β[i], and t0, · · · , ti. Let gε : R+ → R+ be the function of Lemma 16. Denote

p′(ε) := ess sup sup
km∈Z,km−S′(ε,k)≥gε(S′(ε,k))

Pt


∣∣∣∣∣∣∣∣∣det




Ce−(k1I+tk1
)Ac

...
Ce
−(km−1I+tkm−1

)Ac

Ce−(kmI+t)Ac



∣∣∣∣∣∣∣∣∣ < ε2

∏
1≤i≤m

e−kiI·λi |FS′(ε,k)

 . (133)

Here, given FS′(ε,k), k1, · · · , km−1, tk1 , · · · , tkm−1 , S′(ε, k) are all fixed, we took the supremum over km such that km −
S′(ε, k) ≥ gε(S′(ε, k)), and t is a uniform random variable on [0, T ] which we computed the probability over.

Since km ≥ S′(ε, k) + gε(S
′(ε, k)) ≥ km−1 + gε(km−1), and by (132), (b) implies cofm,m


 Ce−(k1I+tk1

)Ac

...
Ce−(kmI+tkm )Ac


 ≥

ε
∏

1≤i≤m−1 e
−kiI·λi , by Lemma 16 we have limε↓0 p

′(ε) = 0.
Denote S′′(ε, k) := dS′(ε, k) + gε(S

′(ε, k))e. From (ii) of Lemma 16 we know gε(k) . 1 + log(k + 1) for all ε > 0.
Therefore, by (c) and Lemma 5 we have

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S′′(ε, k)− k = s} ≤ pe. (134)

Denote a stopping time

S′′′(ε, k)

:= inf

n ≥ S
′′(ε) : β[n] = 1 and

∣∣∣∣∣∣∣∣∣det




Ce−(k1I+tk1
)Ac

...
Ce
−(km−1I+tkm−1

)Ac

Ce−(nI+tn)Ac



∣∣∣∣∣∣∣∣∣ ≥ ε

2e−nI·λm
∏

1≤i≤m−1

e−kiI·λi

 . (135)

Since β[n] and tn are independent processes, for S′′′(ε, k) = n to hold, β[n] = 1 and the determinant of (135) has to be
large enough. By (133), we already know the probability for the determinant not being large enough is upper bounded by p′(ε).
Therefore, given that S′′′(ε, k) ≥ n, the probability that S′′′(ε, k) 6= n is upper bounded by (pe + (1− pe)p′(ε)) — (erasure) or
(not erased but small determinant). Thus, for all s ∈ Z+, we have

ess supP{S′′′(ε, k)− S′′(ε, k) ≥ s|FS′′(ε,k)} ≤
(
pe + (1− pe) p′(ε)

)s
.

Since we know limε↓0 p
′(ε) = 0, we have

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
log P{S′′′(ε, k)− S′′(ε, k) = s|FS′′(ε,k)} ≤ pe. (136)

By applying Lemma 6 to (134) and (136), we can conclude that

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S′′′(ε, k)− k = s} ≤ pe.

Therefore, if we denote S(ε, k) := S′′′(ε
1
2 , k), S(ε, k) satisfies all the conditions of the claim.

Before we prove Lemma 2, we will first prove the following lemma which allows to merge two Jordan blocks associated
with the same eigenvalue into one Jordan block.



49

Lemma 18: Let A be a Jordan block matrix with an eigenvalue λ ∈ C and a size m ∈ N, i.e. A =


λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

. C

and C′ are 1×m matrices such that

C =
[
c1 c2 · · · cm

]
C′ =

[
c′1 c′2 · · · c′m

]
(137)

where ci, c′i ∈ C and c1 6= 0.

For all k ∈ R and m× 1 matrices X =


x1

x2

...
xm

 and X′ =


x′1
x′2
...
x′m

, there exists T such that

(i)T is an upper triangular matrix.

(ii)CekAX + C′ekAX′ = CekA
(
X + TX′

)
Moreover, the diagonal elements of T are c′1

c1
.

Proof: The proof is an induction on m, the size of the A matrix. The lemma is trivial when m = 1. Thus, we can assume
the lemma is true for m as an induction hypothesis, and consider m+ 1 as the dimension of A.

CekAX + C′ekAX′

= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ

X + C′


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ

X′

= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ

X

+

(
c′1
c1

C +
[
0 c′2 −

c′1
c1
c2 · · · c′m+1 −

c′1
c1
cm+1

])

ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ

X′

= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ


(

X +
c′1
c1

X′
)

+
[
0 c′2 −

c′1
c1
c2 · · · c′m −

c′1
c1
cm

]

ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ

X′

= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ





0
0
...

xm+1 +
c′1
c1
x′m+1

+


x1 +

c′1
c1
x′1

x2 +
c′1
c1
x′2

...
0




+
[
c′2 −

c′1
c1
c2 c′3 −

c′1
c1
c3 · · · c′m+1 −

c′1
c1
cm+1

]

ekλ k

1!
ekλ · · · km−1

(m−1)!
ekλ

0 ekλ · · · km−2

(m−2)!
ekλ

...
...

. . .
...

0 0 · · · ekλ




x′2
x′3
...

x′m+1


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= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ




0
0
...

xm+1 +
c′1
c1
x′m+1



+
[
c1 c2 · · · cm

]

ekλ k

1!
ekλ · · · km−1

(m−1)!
ekλ

0 ekλ · · · km−2

(m−2)!
ekλ

...
...

. . .
...

0 0 · · · ekλ



x1 +

c′1
c1
x′1

x2 +
c′1
c1
x′2

...
xm +

c′1
c1
x′m



+
[
c′2 −

c′1
c1
c2 c′3 −

c′1
c1
c3 · · · c′m+1 −

c′1
c1
cm+1

]

ekλ k

1!
ekλ k

2!
ekλ · · · km−1

(m−1)!
ekλ

0 ekλ k
1!
ekλ · · · km−2

(m−2)!
ekλ

...
...

...
. . .

...
0 0 0 · · · ekλ




x′2
x′3
...

x′m+1



= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ




0
0
...

xm+1 +
c′1
c1
x′m+1



+
[
c1 c2 · · · cm

]

ekλ k

1!
ekλ · · · km−1

(m−1)!
ekλ

0 ekλ · · · km−2

(m−2)!
ekλ

...
...

. . .
...

0 0 · · · ekλ





x1 +

c′1
c1
x′1

x2 +
c′1
c1
x′2

...
xm +

c′1
c1
x′m

+


t′1,1 t′1,2 · · · t′1,m
0 t′2,2 · · · t′2,m
...

...
. . .

...
0 0 · · · t′m,m




x′2
x′3
...

x′m+1


 (138)

= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · ekλ





0
0
...

xm+1 +
c′1
c1
x′m+1

+


x1 +

c′1
c1
x′1

x2 +
c′1
c1
x′2

...
0

+


t′1,1 t′1,2 · · · t′1,m
0 t′2,2 · · · t′2,m
...

...
. . .

...
0 0 · · · 0




x′2
x′3
...

x′m+1




= C


ekλ k

1!
ekλ · · · km

m!
ekλ

0 ekλ · · · km−1

(m−1)!
ekλ

...
...

. . .
...

0 0 · · · k
1!
ekλ

0 0 · · · ekλ






x1

x2

...
xm+1

+


c′1
c1

t′1,1 · · · t′1,m

0
c′1
c1

· · · t′2,m
...

...
. . .

...
0 0 · · · c′1

c1




x′1
x′2
...

x′m+1




where (138) follows from the induction hypothesis. The lemma is true.
Now, we are ready to prove Lemma 2.
Proof of Lemma 2: The proof is an induction on m, the size of matrix Ac. Remind that here C can be a general matrix,

so we use the definitions of Ac,C given as (52), (53).
(i) When m = 1,
In this case, the system is scalar, and the lemma is trivially true. A rigorous proof goes as follows: Since (Ac,C) is observable,

we can find a 1× l matrix L such that LC is not zero. Then, (Ac,LC) is observable, and the lemma is reduced to Lemma 17.
(ii) We will assume that the lemma holds for (m− 1)-dimensional systems as an induction hypothesis, and prove the lemma

holds for m.
The proof goes in three steps. First, we reduce the system to reducing a system with scalar observations to apply Lemma 17.

Then, we estimate one of the states, and subtract the estimation from the system — this procedure is known as successive decoding
in information theory. Now, the system reduces to the (m− 1)-dimensional one, so we apply the induction hypothesis.

For this, we define x :=


x1,1

x1,2

...
xµ,νµ

 where xi,j are mi,j × 1 vectors, and (x1,ν1)m1,ν1
as the m1,ν1 th element of x1,ν1 . We

also define (x)k as the kth element of a vector x in general. Here, x can be thought as the states of the system. We first decode
(x1,ν1)m1,ν1

, and decode the remaining elements in x.
• Reduction to Systems with Scalar Observations: By Lemma 17, we already know that the lemma is true for systems with

scalar observations. Therefore, we will reduce the general systems with vector observations to system with scalar observations.
Claim 2: There exist L,C′,A′,x′ that satisfies the following conditions.

(i) L is a 1× l row vector.
(ii) A′ is a m′ ×m′ square matrix given in a Jordan form. The eigenvalues of A′ belong to {λ1 + jω1, · · · , λµ + jωµ} which
is the set of the eigenvalues of A. The first Jordan block of A′ is equal to A1,ν1 .
(iii) C′ is a l ×m′ matrix and (A′,LC′) is observable.
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(iv) x′ is a m′ × l column vector. (x′)m1,ν1
= (x1,ν1)m1,ν1 .

(v) LCe−kAcx = LC′e−kA
′
x′.

What this claim implies is the following. By multiplying the matrix L to the vector observations, we can reduce the vector
observations to the scalar observations. However, the resulting system may not be observable any more. Therefore, we will carefully
design L matrix and reduced system matrices A′, C′, so that the system remains observable even with a scalar observation and
the information about (x1,ν1)m1,ν1

remains intact.
Proof: Since the first columns of C1,1,C1,2, · · · ,C1,ν1 are linearly independent, there exists a 1 × l matrix L such that

the first elements of LC1,1,LC1,2, · · · ,LC1,ν1−1 are zeros and the first element of LC1,ν1 is non-zero. Then, we can observe
that

LCe−kAcx = L
[
C1,1 · · · Cµ,νµ

] e
−kA1,1 · · · 0

...
. . .

...
0 · · · e−kAµ,νµ


 x1,1

...
xµ,νµ


= LC1,1e

−kA1,1x1,1 + LC1,2e
−kA1,2x1,2 + · · ·+ LCµ,νµe

−kAµ,νµxµ,νµ (139)

Remind that the Jordan blocks Ai,1, · · · ,Ai,νi correspond to the same eigenvalue. We will merge these Jordan blocks into one
Jordan block. However, since the size of Jordan blocks Ai,1, · · · ,Ai,νi are distinct, we will extend the small Jordan block to
the size of the largest one by adding zero elements. Let the dimension of Ai,ν̄i be the largest among Ai,1, · · · ,Ai,νi , and mi,ν̄i

be the corresponding dimension. Then, we define C̄i,j as a matrix where the first mi,ν̄i − mi,j vectors are all zeros, and the
remaining vectors are the same as those of Ci,j. Āi,j is defined as the same matrix as Ai,ν̄i . x̄i,j is defined as a column vector
whose first mi,ν̄i −mi,j elements are all zeros, and the remaining elements are those of xi,j.

Then, by the construction, we know

(139) = LC̄1,1e
−kĀ1,1 x̄1,1 + LC̄1,2e

−kĀ1,2 x̄1,2 + · · ·+ LC̄µ,νµe
−kĀµ,νµ x̄µ,νµ . (140)

Furthermore, A1,ν1 = Ā1,ν1 , C1,ν1 = C̄1,ν1 , x1,ν1 = x̄1,ν1 . The first elements of LC1,1,LC1,2, · · · ,LC1,ν1−1 are zeros
and the first element of LC1,ν1 is non-zero.

Now, we get the same dimension systems (Āi,1,LC̄i,1), · · · , (Āi,νi ,LC̄i,νi). However, none of them might be observable.
Thus, we will truncate the matrices to make sure that at least one of them is observable. Remind that since LC̄i,j is a row vector
and Āi,j is a single Jordan block, the system is observable as long as the first element of LC̄i,j is not zero. Thus, we will truncate
the matrices until we see at least one nonzero element among the first elements of LC̄i,1, · · · , LC̄i,νi . Let ki be the smallest
number such that at least one of the kith elements of LC̄i,1, · · · ,LC̄i,νi becomes nonzero, and let LC̄i,ν?

i
be the vector that

achieves the minimum.
Then, we will reduce the dimensions of (Āi,j,LC̄i,j) by truncating the first (ki−1) vectors. Define C′i,j as a matrix obtained

by removing the first (ki − 1) columns from C̄i,j, A′i,j as a matrix obtained by removing the first (ki − 1) rows and columns
from Āi,j, and x′i,j as a matrix obtained by removing the first (ki − 1) elements from x̄i,j.

Then, by the construction, the resulting systems (A′i,ν?
i
,LC′i,ν?

i
) are observable. We can also see that ν?1 = ν1, C′1,ν?1 =

C̄1,ν1 = C1,ν1 , A′1,ν?1 = Ā1,ν1 = A1,ν1 , and x′1,ν?1 = x̄1,ν1 = x1,ν1 . In words, the Jordan block A1,ν1 was not affected by
the above manipulations. Moreover, by the construction, the first elements of LC′1,1, · · · ,LC′1,ν1−1 are all zero.

Denote C′ :=
[
C′1,ν?1 C′2,ν?2 · · · C′µ,ν?µ

]
and A′ := diag{A′1,ν?1 ,A

′
2,ν?2

, · · · ,A′µ,ν?µ}. Then, (139) can be written as
follows:

(139) = LC′1,1e
−kA′1,1x′1,1 + LC′1,2e

−kA′1,2x′1,2 + · · ·+ LC′µ,νµe
−kA′µ,νµx′µ,νµ

= LC′1,ν?1 e
−kA′

1,ν?1 (x′1,ν?1 +
∑

j∈{1,··· ,ν1}\ν?1

T1,jx
′
1,j) + · · ·

+ LC′µ,ν?µe
−kA′µ,ν?µ (x′µ,ν?µ +

∑
j∈{1,··· ,νµ}\ν?µ

Tµ,jx
′
µ,j) (141)

=
[
LC′1,ν?1 · · · LC′1,ν?µ

] 
e
−kA′

1,ν?1 · · · 0
...

. . .
...

0 · · · e
−kA′µ,ν?µ




x′1,ν?1 +
∑
j∈{1,··· ,ν1}\ν?1

T1,jx
′
1,j

...
x′µ,ν?µ +

∑
j∈{1,··· ,νµ}\ν?µ

Tµ,jx
′
µ,j


︸ ︷︷ ︸

:=x′

= LC′e−kA
′
x′ (142)

where (141) follows from Lemma 18. Here, we can easily see that A′ satisfies the condition (ii) of the claim, and (A′,LC′) is
observable since each (A′i,ν?

i
,LC′i,ν?

i
) is observable.

Moreover, by Lemma 18, we know that T1,1, · · · ,T1,ν1−1 are upper triangular matrices whose diagonal elements are zeros.
Therefore, (x′)m1,ν1

= (x′1,ν1)m1,ν1
= (x1,ν1)m1,ν1

. Therefore, the condition (iv) of the claim is also satisfied.
• Decoding (x1,ν1)m1,ν1

: Now, we reduced the system to a system with a scalar observation. Then, we can apply Lemma 17
to decode (x1,ν1)m1,ν1

.
Claim 3: We can find a polynomial p′(k) and a family of stopping time {S′(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0,

k ∈ Z+ there exist k ≤ k1 < k2 < · · · < km′ ≤ S′(ε, k) and M′
1 satisfying:

(i) β[ki] = 1 for 1 ≤ i ≤ m′



52

(ii) M′
1


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L




Ce−(k1I+tk1
)A

Ce−(k2I+tk2
)A

...
Ce
−(km′ I+tkm′

)A

x = (x1,ν1)m1,ν1

(iii) |M′
1|max ≤

p′(S′(ε,k))
ε

eλ1S
′(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P{S′(ε, k)− k = s} ≤ pe.
This claim is showing that there exist an estimator M′

1diag{L, · · · ,L} which can estimate the state (x1,ν1)m1,ν1
with

observations at time k1, · · · , km.
Proof: By the construction, (A′,LC′) is observable and LC′ is a row vector. Thus, by Lemma 17 we can find a polynomial

p′(k) and a family of stopping time {S′(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0, k ∈ Z+ there exist k ≤ k1 < k2 < · · · <
km′ ≤ S′(ε, k) and M′ satisfying:
(i) β[ki] = 1 for 1 ≤ i ≤ m′

(ii) M′


LC′e−(k1I+tk1

)A′

LC′e−(k2I+tk2
)A′

...
LC′e

−(km′ I+tkm′
)A′

 = I

(iii) |M′|max ≤
p′(S′(ε,k))

ε
eλ1S

′(ε,k)I

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P{S′(ε, k)− k = s} ≤ pe.
Let M′

1 be the m1,ν1 th row of M′. Then,

M′
1


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce−(km′ I+tkm′ )Ac

x = M′
1


LCe−(k1I+tk1

)Acx

LCe−(k2I+tk2
)Acx

...
LCe

−(km′ I+tkm′
)Acx



= M′
1


L′C′e−(k1I+tk1

)A′x′

L′C′e−(k2I+tk2
)A′x′

...
L′C′e

−(km′ I+tkm′
)A′

x′

 (∵ Claim 2 (v))

= M′
1


L′C′e−(k1I+tk1

)A′

L′C′e−(k2I+tk2
)A′

...
L′C′e

−(km′ I+tkm′
)A′

x′ = (x′)m1,ν1
= (x1,ν1)m1,ν1

(∵ Claim 2 (iv)). (143)

• Subtracting (x1,ν1)m1,ν1
from the observations: Now, we have an estimation for (x1,ν1)m1,ν1

. We will remove it from
the system. A′′,C′′ and x′′ are the system matrices after the removal. Formally, A′′,C′′ and x′′ are obtained by removing∑

1≤i≤νi m1,ith row and column from Ac, removing
∑

1≤i≤νi m1,ith row from C and removing
∑

1≤i≤νi m1,ith component
from x respectively.

Obviously, A′′ ∈ C(m−1)×(m−1) and C′′ ∈ Cl×(m−1). Moreover, since the last element of the Jordan block A1,ν1 is removed
and the observability only depends on the first element, (A′′,C′′) is observable. Denote λ′′1 + ω′′1 be the eigenvalue of A′′ with
the largest real part. Then, trivially λ′′1 ≤ λ1.

The new system (A′′,C′′) and the original system (A,C) are related as follows. Denote the
∑

1≤i≤νi m1,ith column of
Ce−kAc as R(k). Then, we have

Ce−kAcx−R(k)(x1,ν1)m1,ν1
= C′′e−kA′′x′′ (144)

which can be easily proved from the block diagonal structure of Ac. We can further see that there exists a polynomial p′′′(k)
such that |R(k)|max ≤ p

′′′(k)e−kλ1 .
• Decoding the remaining element of x: We decoded and subtracted the state (x1,ν1)m1,ν1

from the system. Now, we can
apply the induction hypothesis to the remaining (m− 1)-dimensional system and estimate the remaining states.

By induction hypothesis, for given S′(ε, k), we can find m′′ ∈ Z and a polynomial p′′(k) and a family of stopping time
{S′′(ε, S′(ε, k)) : S′(ε, k) ∈ Z+, 0 < ε < 1} such that for all 0 < ε < 1 there exist S′(ε, k) < km′+1 < · · · < km′′ ≤
S′′(ε, S′(ε, k)) and a (m− 1)× (m′′ −m′)l matrix M′′ satisfying the following conditions:
(i) β[ki] = 1 for m′ + 1 ≤ i ≤ m′′

(ii) M′′


C′′e

−(km′+1I+tkm′+1
)A′′

C′′e
−(km′+2I+tkm′+2

)A′′

...
C′′e

−(km′′ I+tkm′′
)A′′

 = I(m−1)×(m−1)

(iii) |M′′|max ≤
p′′(S′′(ε,S′(ε,k)))

ε
eλ
′′
1 S
′′(ε,S′(ε,k))I
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(iv) limε↓0 exp lim sups→∞ ess sup 1
s

log P{S′′(ε, S′(ε, k))− S′(ε, k) = s|FS′(ε,k)} ≤ pe
where Fn is the σ-field generated by β[0], · · · , β[n] and t0, · · · , tn.

Then,

x′′ = M′′


C′′e

−(km′+1I+tkm′+1
)A′′

C′′e
−(km′+2I+tkm′+2

)A′′

...
C′′e

−(km′′ I+tkm′′
)A′′

x′′

= M′′


Ce
−(km′+1I+tkm′+1

)Ac
x−R(km′+1I + tkm′+1

)(x1,ν1)m1,ν1

Ce
−(km′+2I+tkm′+2

)Ac
x−R(km′+2I + tkm′+2

)(x1,ν1)m1,ν1

...
Ce
−(km′′ I+tkm′′

)Acx−R(km′′I + tkm′′ )(x1,ν1)m1,ν1

 (145)

= M′′




Ce
−(km′+1I+tkm′+1

)Ac

Ce
−(km′+2I+tkm′+2

)Ac

...
Ce
−(km′′ I+tkm′′

)Ac

x−


R(km′+1I + tkm′+1

)
R(km′+2I + tkm′+2

)
...

R(km′′I + tkm′′ )

 (x1,ν1)m1,ν1



= M′′




Ce
−(km′+1I+tkm′+1

)Ac

Ce
−(km′+2I+tkm′+2

)Ac

...
Ce
−(km′′ I+tkm′′

)Ac

x−


R(km′+1I + tkm′+1

)
R(km′+2I + tkm′+2

)
...

R(km′′I + tkm′′ )

M′
1


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce
−(km′ I+tkm′

)Ac

x


(146)

= M′′

−


R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...
R(km′′I + tkm′′ )

M′
1


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L

 I




Ce−(k1I+tk1
)Ac

Ce−(k2I+tk2
)Ac

...
Ce
−(km′′ I+tkm′′

)Ac

x

where (145) follows from (144), and (146) follows from the condition (ii) of Claim 3.Therefore, we can recover the remaining
states of x.

Moreover, we have∣∣∣∣∣∣∣∣∣M
′′

−


R(km′+1I + tkm′+1
)

R(km′+2I + tkm′+2
)

...
R(km′′I + tkm′′ )

M′
1


L 0 · · · 0
0 L · · · 0
...

...
. . .

...
0 0 · · · L

 I


∣∣∣∣∣∣∣∣∣
max

.
∣∣M′′∣∣

max
·max


∣∣∣∣∣∣∣∣∣


R(km′+1I + tkm′+1

)
R(km′+2I + tkm′+2

)
...

R(km′′I + tkm′′ )


∣∣∣∣∣∣∣∣∣
max

∣∣M′
1

∣∣
max
|L|max , 1


.
p′′(S′′(ε, S′(ε, k)))

ε
eλ
′′
1 S
′′(ε,S′(ε,k))I max

{
p′′′(km′′I + tkm′′ )e

−λ1(km′+1I+tkm′+1
) · p

′(S′(ε, k))

ε
eλ1S

′(ε,k)I · |L|max , 1
}

.
p̄(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I (∵ S′(ε, k) < km′+1 < km′′ ≤ S′′(ε, S′(ε, k)), λ′′1 ≤ λ1)

for some polynomial p̄(k). Since for some ¯̄p(k)∣∣M′
1

∣∣
max
≤ p′(S′(ε, k))

ε
eλ1S

′(ε,k)I ≤
¯̄p(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I

and we can recover x from x′′ and (x1,ν1)m1,ν1
, there exists M and a polynomial p(k) such that

M

 Ce−(k1I+tk1
)Ac

...
Ce
−(km′′ I+tkm′′

)Ac

 = Im×m

and

|M|max ≤
p(S′′(ε, S′(ε, k)))

ε2
eλ1S

′′(ε,S′(ε,k))I .
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Moreover, since

lim
ε↓0

exp lim sup
s→∞

ess sup log P{S′′(ε, S′(ε, k))− S′(ε, k)|FS′(ε,k)} ≤ pe

and

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

log P{S′(ε, k)− k} ≤ pe,

by Lemma 6

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

log P{S′′(ε, S′(ε, k))− k} ≤ pe.

Therefore, by putting S(ε, k) := S′′(ε
1
2 , S′(ε

1
2 , k)), S(ε, k) satisfies all the conditions of the lemma.

E. Lemmas about the Observability Gramian of Discrete-Time Systems
Now, we will consider the discrete-time systems discussed in Section VI. Like the continuous time case, we start from a

simpler case when C is a row vector and A has no eigenvalue cycles. The definitions corresponding to (75) for the row vector
case are given as follows: Let A be a m×m Jordan form matrix and C be 1×m row vector which can be written as

A = diag{A1,1,A1,2, · · · ,A1,ν1 , · · · ,Aµ,1, · · · ,Aµ,νµ} (147)

C =
[
C1,1,C1,2, · · · ,C1,ν1 , · · · ,Cµ,1, · · · ,Cµ,νµ

]
(148)

where

Ai,j is a Jordan block with eigenvalue λi,jej2πωi,j and size mi,j

mi,1 ≤ mi,2 ≤ · · · ≤ mi,νi for all i = 1, · · · , µ
λi,1 = λi,2 = · · · = λi,νi for all i = 1, · · · , µ
λ1,1 > λ2,1 > · · · > λµ,1 ≥ 1

{λi,1, · · · , λi,νi} is cycle with length νi and period pi
For all (i, j) 6= (i′, j′), ωi,j − ωi′,j′ /∈ Q
Ci,j is a 1×mi,j complex matrix and its first element is non-zero

λie
j2πωi is (i, i) element of A.

Here, we can notice that A has no eigenvalue cycles since ωi,j − ωi′,j′ /∈ Q for all (i, j) 6= (i′, j′), and C is a row vector. By
Theorem 6, the condition that the first elements of Ci,j are non-zero corresponds to the observability condition of (A,C) since
C is a row vector.

Let’s state lemmas which parallel Lemma 10 and Lemma 12. In fact, the proofs of the lemmas are very similar to those of
Lemma 10 and Lemma 12 and we omit the proofs here.

Lemma 19: Let A and C be given as (147) and (148). Then, there exists a polynomial p(k) such that for all ε > 0 and
0 ≤ k1 ≤ · · · ≤ km, if ∣∣∣∣∣∣∣∣∣det




CA−k1

CA−k2

...
CA−km



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤i≤m

λ−kii

then ∣∣∣∣∣∣∣∣∣


CA−k1

CA−k2

...
CA−km


∣∣∣∣∣∣∣∣∣
max

≤ p(km)

ε
λkm1

Proof: It can be easily proved in a similar way to Lemma 10

Lemma 20: Let A and C be given as (147) and (148). Define ai,j and Ci,j as the (i, j) element and cofactor of


CA−k1

CA−k2

...
CA−km


respectively. Then there exists gε(k) : R+ → R+ and a ∈ R+ such that for all ε > 0 and k1, · · · , km satisfying

(i)0 ≤ k1 < k2 < · · · < km

(ii)km − km−1 ≥ gε(km−1)

(iii)gε(k) ≤ a(1 + log(k + 1))

(iv)

∣∣∣∣∣∣
∑

m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣ ≥ ε
∏

1≤i≤m

λi
−ki
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the following inequality holds: ∣∣∣∣∣∣∣∣∣det




CA−k1

CA−k2

...
CA−km



∣∣∣∣∣∣∣∣∣ ≥

1

2
ε
∏

1≤i≤m

λi
−ki .

Proof: It can be easily proved in a similar way to Lemma 12.
Like the continuous-time case, these lemmas reduce questions about the inverse of the observability Gramian to questions about
the determinant of the observability Gramian.

F. Uniform Convergence of Sequences satisfying Weyl’s criterion (Discrete-Time Systems)
As we did in the continuous-time case, we will prove that the determinant of the observability matrix is large enough regardless

of the erasure pattern. The main difference from the continuous-time case of Appendix X-C is the measure that must be used.
While we used the Lebesgue measure to measure the bad event —the event that the determinant of the observability matrix is
small—, we use the counting measure in this section.

The main idea of this section is approximating aperiodic deterministic sequences by random variables using ergodic theory [15].
The necessary and sufficient condition for a sequence to behave like uniformly distributed random variables in [0, 1] is known as
Weyl’s criterion. We first state a general ergodic theorem, and derive the Weyl’s criterion as a corollary.

Theorem 11 (Koksma and Szusz inequality [15]): Consider a s-dimensional sequence x1,x2, · · · ∈ Rs, and let α := (α1, · · · , αs)
and β := (β1, · · · , βs). For any positive integer m, we have

sup
0≤αi<βi≤1

∣∣∣∣∣∣A ([α, β);N, {xn})
N

−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣ ≤ 2s23s+1

 1

m
+

∑
h∈Zs,0<|h|∞≤m

1

r(h)

∣∣∣∣∣∣ 1

N

∑
1≤n≤N

e2π
√
−1〈h,xn〉

∣∣∣∣∣∣


where

A ([α, β);N, {xn}) :=
∑

1≤n≤N

1 {xn ∈ [α1, β1)× [α2, β2) · · · × [αs, βs)} (149)

r(h) :=
∏

1≤j≤s

max{|hj |, 1}.

Proof: See [15] for the proof.
Here, we can see A([α, β);N, {xn) is the counting measure of the event that a sequence falls in the set [α, β). The theorem tells
us that the counting measure is close to the Lebesgue measure of the set [α, β) uniformly over all α, β.

Using this theorem, we can easily derive18 the Weyl’s criterion for a family of sequences.
Definition 16: Consider a family of s-dimensional sequences J = {(x1,σ,x2,σ, · · · ) : σ ∈ J, xi,σ ∈ Rs}. Here, the index

set for the sequences, J , can be infinite. If for all h ∈ Zs \ {0},

lim
N→∞

sup
σ∈J

∣∣∣∣∣∣ 1

N

∑
1≤n≤N

ej2π〈h,xn,σ〉
∣∣∣∣∣∣ = 0

then the family of sequences is said to satisfy Weyl’s criterion.
Theorem 12 (Weyl’s criterion [15]): Consider a family of s-dimensional sequences J = {(x1,σ,x2,σ, · · · ) : σ ∈ J, xi,σ ∈

Rs}, which satisfy the Weyl’s criterion. Then, this family of sequences satisfies

lim
N→∞

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣A ([α, β);N, {xn,σ})
N

−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣ = 0,

where the definition of A ([α, β);N, {xn,σ}) is given in (149).
Proof: By Theorem 11, for any positive integer m, we have

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣A ([α, β);N, {xn,σ})
N

−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣ (150)

≤ sup
σ∈J

2s23s+1

 1

m
+

∑
0<|h|∞≤m

1

r(h)

∣∣∣∣∣∣ 1

N

∑
1≤n≤N

e2πj〈h,xn,σ〉
∣∣∣∣∣∣
 (151)

To prove the theorem, it is enough to show that for all δ > 0 there exists N ′ such that for all N > N ′

sup
σ∈J

sup
0≤αi<βi≤1

∣∣∣∣∣∣A ([α, β);N, {xn,σ})
N

−
∏

1≤i≤s

(βi − αi)

∣∣∣∣∣∣ < δ. (152)

18The original Weyl’s criterion is shown for only one sequence. But, here we extend Weyl’s criterion to a family of sequences. For this, we state a generalized
theorem of the Weyl’s criterion and prove it.
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Let’s choose m := 4s23s+1

δ
so that

2s23s+1

m
<
δ

2
. (153)

Once we fix m, there are only (2m+ 1)s number of h ∈ Zs such that |h|∞ ≤ m. Furthermore, by the definition of Weyl’s
criterion, we can find N ′′ such that for all N > N ′′,

sup
σ∈J

∣∣∣∣∣∣ 1

N

∑
1≤n≤N

ej2π〈h,xn,σ〉
∣∣∣∣∣∣ < 1

(2m+ 1)s2s23s+1

δ

2
. (154)

Thus, we can find N ′′ such that for all N > N ′′ the following holds:

2s23s+1sm+1 max
0<|h|∞≤m

sup
σ∈J

∣∣∣∣∣∣ 1

N

∑
1≤n≤N

ej2π〈h,xn,σ〉
∣∣∣∣∣∣ < δ

2
(155)

Therefore, by plugging (153), (155) into (151), we can prove (152). Thus, the theorem is true.
Since we are mainly interested in the fractional part of sequences, it will be helpful to denote 〈x〉 := x − bxc. Although

〈x,y〉 is the inner product between two vectors, these two definitions can be distinguished by counting the number of arguments.
Let’s consider some specific sequences, and see whether they satisfies the Weyl’s criterion.

Example 1:
(〈√

2n
〉
,
〈√

3n
〉)

satisfies Weyl’s criterion and
(〈√

2n
〉
,
〈
(
√

2 +
√

3)n
〉)

does too.(〈√
2n
〉
,
〈(√

2 + 0.5
)
n
〉)

does not satisfy Weyl’s criterion and neither does
(〈√

2n
〉
,
〈√

2
2
n
〉)

.
Therefore, among general sequences in the form of (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉), there are sequences which satisfy Weyl’s criterion
and others do not. However, the following lemma reveals all sequences can be written as linear combinations of basis sequences
which satisfy Weyl’s criterion. This idea is very similar to that linear-algebraic concepts like linear decomposition and basis.

Lemma 21: Consider an m-dimensional sequence (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉). Then, there exists k ≤ m and p ∈ N such
that

ωi =
qi,0
p

+
∑

1≤j≤k

qi,jγj

where

qi,j ∈ Z,
(〈γ1n〉 , 〈γ2n〉 , · · · , 〈γkn〉) satisfies Weyl’s criterion.

Proof: Before the proof, we can observe the following two facts.
First, since as long as 〈h,w〉 is not an integer,

1

N

∑
1≤n≤N

ej2π〈h,(〈ω1n〉,〈ω2n〉,··· ,〈ωmn〉)〉 =
1

N

ej2π(h1ω1+h2ω2+···+hmωm)
(

1− ej2πN(h1ω1+h2ω2+···+hmωm)
)

1− ej2π(h1ω1+h2ω2+···+hmωm)
,

the statement that the sequence (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) does not satisfy Weyl’s criterion is equivalent to there being
h1, h2, · · · , hm ∈ Z that are not identically zero and make

h1ω1 + h2ω2 + · · ·+ hmωm ∈ Z. (156)

The second observation is that if (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) satisfies Weyl’s criterion then for all a1, · · · , am ∈ N,
(
〈
ω1
a1
n
〉
,
〈
ω2
a2
n
〉
, · · · ,

〈
ωm
am

n
〉

) also satisfies Weyl’s criterion. To see this, suppose (
〈
ω1
a1
n
〉
,
〈
ω2
a2
n
〉
, · · · ,

〈
ωm
am

n
〉

) did not
satisfy Weyl’s criterion. Then, by (156) there would exist (h1, h2, · · · , hm) ∈ Zm\{0} such that h1

ω1
a1

+h2
ω2
a2

+· · ·+hm ωm
am
∈ Z.

So,
h1
∏

1≤i≤m ai

a1
ω1 +

h2
∏

1≤i≤m ai

a2
ω2 + · · ·+ hm

∏
1≤i≤m ai

am
ωm ∈ Z as well as (

h1
∏

1≤i≤m ai

a1
, · · · , hm

∏
1≤i≤m ai

am
) ∈ Zm\{0}.

But since (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) would not satisfy Weyl’s criterion, this causes a contradiction.
Now, we will prove the lemma by induction on m.
(i) When m = 1,
If 〈ω1n〉 satisfies Weyl’s criterion, the lemma is trivially true by selecting γ1 = ω1 and q1,1 = 1. If 〈ω1n〉 does not satisfy

Weyl’s criterion, then by (156), ω1 is a rational number. So we can find q1,0 and p such that ω1 =
q1,0
p

, and set the k = 0.
(ii) Assume that the lemma is true for m− 1.
If (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) satisfies Weyl’s criterion, the lemma follows by selecting k = m, γi = ωi and qi,i = 1.
If (〈ω1n〉 , 〈ω2n〉 , · · · , 〈ωmn〉) does not satisfy Weyl’s criterion, by (156) there exists (h1, h2, · · · , hm) ∈ Zm \ {0} and

h ∈ Z such that h1ω1 + h2ω2 + · · ·+ hmωm = h. Without loss of generality, let’s say h1 6= 0. Then

ω1 = −h2

h1
ω2 −

h3

h1
ω3 − · · · −

hm
h1

ωm +
h

h1
. (157)
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By induction hypothesis, we know that there exists k′ ≤ m− 1, p′ ∈ N, q′i,j ∈ Z, γ′i such that

ω2 =
q′2,0
p′

+
∑

1≤j≤k′
q′2,jγ

′
j

...

ωm =
q′m,0
p′

+
∑

1≤j≤k′
q′m,jγ

′
j . (158)

where (〈γ′1n〉 , 〈γ′2n〉 , · · · , 〈γ′kn〉) satisfies Weyl’s criterion. Therefore, by plugging (158) to (157) we can find q′1,j ∈ Z such that

ω1 =
q′1,0
|h1 · p′|

+
∑

1≤i≤k

q′1,i
γ′i
h1
.

By the second observation, (
〈
γ′1
h1
n
〉
,
〈
γ′2
h1
n
〉
, · · · ,

〈
γ′k
h1
n
〉

) satisfies Weyl’s criterion, so we can use p = |h1 · p′| and γi =
γ′i
h1

to show that the lemma also holds for m.
Therefore, by induction the lemma is true.
Now, we can decompose the sequences into basis sequences which satisfy Weyl’s criterion, and so behave like uniform random

variables. The main difference from the uniform convergence discussion of Appendix X-C is the number of random variables.
In other words, in continuous-time systems with random jitter, only one random variable is introduced at each sample for the
random jitter. However, this is not the case in discrete-time systems.

Let A1 =

[
ej
√

2 0

0 ej2
√

2

]
, A2 =

[
ej
√

2 0

0 ej
√

3

]
, C =

[
1 1

]
. The row of the observability gramian of (A1,C) is

CA1
n =

[
ej
√

2n ej2
√

2n
]
. In this case, the elements of CA1

n do not satisfy Weyl’s criterion. Thus, it can be approximated

by
[
ejX ej2X

]
where X is uniform in [0, 2π], which involves only one random variable.

However, the row of the observability gramian of (A2,C) is CA2
n =

[
ej
√

2n ej
√

3n
]

whose elements satisfy Weyl’s

criterion. Thus, it can be approximated by
[
ejX1 ejX2

]
where X1, X2 are independent uniform random variables in [0, 2π],

which involves two random variables.
Therefore, the lemmas derived in Appendix X-C have to be generalized to multiple random variables, and then the multiple

random variables can be used to model deterministic sequences.
Intuitively, adding more randomness should not cause any problems, so generalization to multiple random variables must be

possible. We first extend Lemma 14 which was written for a single random variable to multiple random variables.
Lemma 22: Let X be (X1, X2, · · · , Xν) where Xi are i.i.d. random variables whose distribution is uniform between 0 and

2π. Let k1,k2, · · · ,kµ ∈ Rν be distinct. Then, for strictly positive γ, Γ (γ ≤ Γ), and m ∈ {1, · · · , µ}

sup
|am|≥γ,|ai|≤Γ,ai∈C

P{|
µ∑
i=1

aie
j<ki,X>| < ε} → 0 as ε ↓ 0.

Proof: We will prove the lemma by induction on ν, the number of random variables.
(i) When ν = 1. The lemma reduces to Lemma 14.
(ii) Let’s assume the lemma is true for 1, · · · , ν − 1.
Without loss of generality, we can assume m = 1 by symmetry. We will prove the lemma by dividing into cases based on

ki. Let the jth component of ki be denoted as kij .
First, consider the case when k1,1 = k2,1 = · · · = kµ,1. Then,

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑
i=1

aie
j<ki,X>| < ε} = sup

|a1|≥γ,|ai|≤Γ

P{|
µ∑
i=1

aie
j
∑

1≤j≤ν ki,jXj | < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|ejk1,1X1 | · |
µ∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε} → 0 (∵ induction hypothesis).

Second, consider the case when ki,1 6= kj,1 for some i, j. Without loss of generality, we can assume that k1,1 = k2,1 =
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· · · = kµ1,1 and k1,1 6= kj,1 for all µ1 < j ≤ µ. Then, for all ε′ > 0, we have

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑
i=1

aie
j<ki,X>| < ε}

= sup
|a1|≥γ,|ai|≤Γ

P{|
µ1∑
i=1

aie
j<ki,X> +

µ∑
i=µ1+1

aie
j<ki,X>| < ε}

≤ sup
|a1|≥γ,|ai|≤Γ

P{|
µ1∑
i=1

aie
j<ki,X> +

µ∑
i=µ1+1

aie
j<ki,X>| < ε

∣∣∣| µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | ≥ ε′}+ P{|
µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

= sup
|a1|≥γ,|ai|≤Γ

P{|(
µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj )ejk1,1X1 +

µ∑
i=µ1+1

aie
j<ki,X>| < ε

∣∣∣| µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | ≥ ε′}

+ P{|
µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

≤ sup
|a′1|≥ε′,|a

′
i|≤µΓ

PX1{|a
′
1e
jk1,1X1 +

µ∑
i=µ1+1

a′ie
jki,1X1 | < ε}+ sup

|a1|≥γ,|ai|≤Γ

P{|
µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}.

(159)

Therefore, by the induction hypothesis (since the first term has only one random variable, and the second term has ν − 1 random
variables)

lim
ε→0

sup
|a1|≥γ,|ai|≤Γ

P{|
µ∑
i=1

aie
j<ki,X>| < ε}

≤ lim
ε′→0

lim
ε→0

sup
|a′1|≥ε′,|a

′
i|≤µΓ

P{|a′1ejk1,1X1 +

µ∑
i=µ1+1

a′ie
jki,1X1 | < ε}+ sup

|a1|≥γ,|ai|≤Γ

P{|
µ1∑
i=1

aie
j
∑

2≤j≤ν ki,jXj | < ε′}

= 0.

Therefore, the lemma is true.
Now, we will consider a deterministic sequence in the form of (< ω1n >, · · · , < ωµn >). As we have shown in Lemma 21,

this sequence can be thought of as a linear combination of basis sequences which satisfy Weyl’s criterion. Thus, we can approximate
the deterministic sequence as a linear combination of multiple uniform random variables considered in Lemma 22.

Lemma 23: Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for strictly positive numbers γ
and Γ (γ ≤ Γ), and m ∈ {1, · · · , µ}

lim
ε↓0

lim
N→∞

sup
|am|≥γ,|ai|≤Γ,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε} → 0.

Proof: By Lemma 21, ωi can be written as 〈qi, ρ〉 where qi = (qi,0, qi,1, · · · , qi,r) ∈ Zr+1, ρ = ( 1
s
, ρ1, · · · , ρr) ∈ Rr+1

and s ∈ N. Here, (〈ρ1n〉 , 〈ρ2n〉 , · · · , 〈ρrn〉) satisfies Weyl’s criterion. Since ωi − ωj /∈ Q for all i 6= j, (qi,1, qi,2, · · · , qi,r) 6=
(qj,1, qj,2, · · · , qj,r).

For given k,N,M ∈ N, and m1, · · · ,mr ∈ {1, · · · ,M}, define a set Sm1,··· ,mr as19{
n ∈ {1, · · · , N} :

m1 − 1

M
≤ 〈ρ1(n+ k)〉 < m1

M
, · · · , mr − 1

M
≤ 〈ρr(n+ k)〉 < mr

M

}
.

Then, for all k,N,M ∈ N and ε > 0, we have the following:

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε}

=

N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε, n ∈ Sm1,··· ,mr}

≤
N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

1{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2πωi(n+k)| < ε, n ∈ Sm1,··· ,mr}

=

N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

1{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2πωi(n+k)| < ε} · 1{n ∈ Sm1,··· ,mr}. (160)

19Notice that the definition of Sm1,··· ,mr also depends on k,N,M as well as m1, · · · ,mr . However, we omit the dependence on k,N,M in the
definition for simplicity.
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Moreover, we also know by the definitions of qi and ρ,
µ∑
i=1

aie
j2πωi(n+k) =

µ∑
i=1

aie
j2π〈qi,ρ〉(n+k)

=

µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+qi,1ρ1(n+k)+···+qi,rρr(n+k)
)

=

µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉
)
(∵ qi,j ∈ Z).

Thus, by defining Xm1,··· ,mr as a random vector which is uniformly distributed over [m1−1
M

, m1
M

)× · · · × [mr−1
M

, mr
M

) and
q′i = (qi,1, qi,2, · · · , qi,r), ρ′ = (ρ1, ρ2, · · · , ρr), we can conclude

max
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2πωi(n+k)| = max

n∈Sm1,··· ,mr
|
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉
)
|

≥ |
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+〈q′i,Xm1,··· ,mr〉
)
| a.e. (161)

By (161), (160) can be upper bounded as follows:

(160) ≤
N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

P{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2πωi(n+k)| − max

n∈Sm1,··· ,mr
|
µ∑
i=1

aie
j2πωi(n+k)|

+ |
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+〈q′i,Xm1,··· ,mr〉
)
| < ε} · 1{n ∈ Sm1,··· ,mr}

=

N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

P{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+〈q′i,ρ′〉(n+k)
)
| − max

n∈Sm1,··· ,mr
|
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+〈q′i,ρ′〉(n+k)
)
|

+ |
µ∑
i=1

aie
j2π

( qi,0
s

(n+k)+〈q′i,Xm1,··· ,mr〉
)
| < ε} · 1{n ∈ Sm1,··· ,mr}

≤
N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

max
0≤s′<s

P{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,ρ′〉(n+k)
)
| − max

n∈Sm1,··· ,mr
|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,ρ′〉(n+k)
)
|

+ |
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,Xm1,··· ,mr〉
)
| < ε} · 1{n ∈ Sm1,··· ,mr}

≤
N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

∑
0≤s′<s

P{ min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,ρ′〉(n+k)
)
| − max

n∈Sm1,··· ,mr
|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,ρ′〉(n+k)
)
|

+ |
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,Xm1,··· ,mr〉
)
| < ε} · 1{n ∈ Sm1,··· ,mr}. (162)
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Here, we have

max
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,ρ′〉(n+k)
)
|

= max
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

(
s′
s

+qi,1〈ρ1(n+k)〉+···+qi,r〈ρr(n+k)〉
)
|(∵ qi,j ∈ Z)

≤ sup
0≤∆i<

1
M

|
µ∑
i=1

aie
j2π

(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

+qi,1∆1+···+qi,r∆r

)
|

= sup
0≤∆i<

1
M

|
µ∑
i=1

aie
j2π

(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
+ aie

j2π
(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)

(−1 + cos 2π(qi,1∆1 + · · ·+ qi,r∆r) + j sin 2π(qi,1∆1 + · · ·+ qi,r∆r))|

≤ |
µ∑
i=1

aie
j2π

(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
|

+

µ∑
i=1

|aiej2π
(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
|

· ( sup
0≤∆i<

1
M

| − 1 + cos 2π(qi,1∆1 + · · ·+ qi,r∆r)|+ sup
0≤∆i<

1
M

| sin 2π(qi,1∆1 + · · ·+ qi,r∆r)|)

≤ |
µ∑
i=1

aie
j2π

(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
|+ 4π

µ∑
i=1

|ai| sup
0≤∆i<

1
M

|qi,1∆1 + · · ·+ qi,r∆r| (163)

≤ |
µ∑
i=1

aie
j2π

(
s′
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
|+ 4πΓ

M

µ∑
i=1

r∑
j=1

|qi,j |.(∵ We assumed |ai| ≤ Γ)

where (163) comes from the fact that | sinx| ≤ |x| and | − 1 + cosx| ≤ |x| for all x ∈ R.
Likewise, we also have

min
n∈Sm1,··· ,mr

|
µ∑
i=1

aie
j2π

(
s′i
s

+〈q′i,ρ′〉(n+k)

)
|

≥ |
µ∑
i=1

aie
j2π

(
s′i
s

+qi,1
m1−1
M

+···+qi,r
mr−1
M

)
| − 4πΓ

M

µ∑
i=1

r∑
j=1

|qi,j |.

Therefore,

sup
mi−1
M
≤〈ρi(n+k)〉<mi

M

|
µ∑
i=1

aie
j2π

(
s′i
s

+〈q′i,ρ′〉(n+k)

)
| − inf

mi−1
M
≤〈ρi(n+k)〉<mi

M

|
µ∑
i=1

aie
j2π

(
s′i
s

+〈q′i,ρ′〉(n+k)

)
|

≤ 8πΓ

M

µ∑
i=1

r∑
j=1

|qi,j |.

By selecting M such that 8πΓ
M

∑µ
i=1

∑r
j=1 |qi,j | ≤ ε, (162) is upper bounded by

(162) ≤
N∑
n=1

∑
1≤m1≤M,··· ,1≤mr≤M

∑
0≤s′<s

P{|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,Xm1,··· ,mr〉
)
| < 2ε} · 1{n ∈ Sm1,··· ,mr}. (164)

Since (〈ρ1n〉 , · · · , 〈ρkn〉) satisfies Weyl’s criterion, by Theorem 12

lim
N→∞

sup
k∈Z

1

N

N∑
n=1

1{n ∈ Sm1,··· ,mr} =
1

Mr
. (165)

Therefore, if we let X be a 1× r random vector whose distribution is uniform on [0, 1)r , by (164) and (165)

lim
N→∞

sup
|am|≥γ,|ai|≤Γ,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε}

≤ sup
|am|≥γ,|ai|≤Γ,k∈Z

∑
1≤m1≤M,··· ,1≤mr≤M

∑
0≤s′<s

P{|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,Xm1,··· ,mr〉
)
| < 2ε} · 1

Mr
(166)

≤ sup
|am|≥γ,|ai|≤Γ,k∈Z

∑
0≤s′<s

P{|
µ∑
i=1

aie
j2π

(
s′
s

+〈q′i,X〉
)
| < 2ε}(∵ definitions of Xm1,··· ,mr ,X)

≤ sup
|am|≥γ,|ai|≤Γ

s · P{|
µ∑
i=1

aie
j2π(〈q′i,X〉)| < 2ε}.(∵ ej2π

s′
s only rotates the phase.) (167)
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Since q′i are distinct, by Lemma 22, (167) goes to 0 as ε ↓ 0.
So far, we put the restriction that |ai| ≤ Γ. However, the functions are growing as |ai| increases. Therefore, Lemma 23 holds

even after we remove such restrictions. The proof is similar to that of Lemma 15.
Lemma 24: Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for strictly positive numbers γ,

and any m ∈ {1, · · · , µ}

lim
ε↓0

lim
N→∞

sup
|am|≥γ,ai∈C,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε} → 0.

Proof: The proof is by induction on µ, the number of terms in the inner sum.
(i) When µ = 1.
Denote a′1 as γ a1

|a1|
. Then,

lim
N→∞

sup
|a1|≥γ,k∈Z

1

N

N∑
n=1

1{|a1e
j2πω1(n+k)| < ε} (168)

= lim
N→∞

sup
|a1|≥γ,k∈Z

1

N

N∑
n=1

1{| γ|a1|
a1e

j2πω1(n+k)| < γ

|a1|
ε}

≤ lim
N→∞

sup
|a′1|=1,k∈Z

1

N

N∑
n=1

1{|a′1ej2πω1(n+k)| < ε}(∵ γ

|a1|
≤ 1) (169)

By Lemma 23, (169) converges to 0 as ε ↓ 0. Thus, (168) converges to 0 as ε ↓ 0.
(ii) As an induction hypothesis, we assume the lemma is true until µ− 1.
To prove the lemma for µ, it is enough to show that for all δ > 0 there exists ε(δ) > 0 such that

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)} < δ.

By the induction hypothesis, for all m′ 6= m we can find εm′(δ) > 0 such that

lim
N→∞

sup
|am′ |≥γ,k∈Z

1

N

N∑
n=1

1{|
∑

1≤i≤µ,i 6=m

aie
j2πωi(n+k)| < εm′(δ)} < δ. (170)

Let κ(δ) := min
{

minm′ 6=m

{
εm′ (δ)

2γ

}
, 1
}

. By Lemma 23, there exists ε′(δ) > 0 such that

lim
N→∞

sup
|am|≥γ,|ai|≤

γ
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε′(δ)} < δ. (171)

Set ε(δ) := min
{
ε′(δ),minm′ 6=m

{
εm′ (δ)

2

}}
. Then, we have

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)}

≤ lim
N→∞

max{ sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)},

max
m′ 6=m

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)}}

= max{ lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)},

max
m′ 6=m

lim
N→∞

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)}}. (172)
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Let a′i := γ
|am|ai. Then, the first term in (172) is upper bounded by

lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)}

= lim
N→∞

sup
|am|≥γ,

|ai|
|am|

≤ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

γ

|am|
aie

j2πωi(n+k)| < γ

|am|
ε(δ)}

= lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

a′ie
j2πωi(n+k)| < γ

|am|
ε(δ)}

≤ lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

a′ie
j2πωi(n+k)| < ε(δ)}(∵ γ

|am|
≤ 1)

≤ lim
N→∞

sup
|a′m|=γ,|a′i|≤

γ
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

a′ie
j2πωi(n+k)| < ε′(δ)}(∵ ε′ ≥ ε)

< δ.(∵ (171)) (173)

Let a′′i := γ
|am′ |

ai. Then, the second term in (172) is upper bounded by

lim
N→∞

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)}

= lim
N→∞

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

γ

|am′ |
aie

j2πωi(n+k)| < γ

|am′ |
ε(δ)}

≤ lim
N→∞

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

γ

|am′ |
aie

j2πωi(n+k) − γ

|am′ |
ame

j2πωm(n+k)| < γ

|am′ |
ε(δ) +

γ

|am′ |
|am|}

≤ lim
N→∞

sup

|am|≥γ,
|a
m′ |
|am|

≥ 1
κ(δ)

,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

γ

|am′ |
aie

j2πωi(n+k) − γ

|am′ |
ame

j2πωm(n+k)| < εm′(δ)} (174)

≤ lim
N→∞

sup
|a′′
m′ |=γ,k∈Z

1

N

N∑
n=1

1{|
∑

1≤i≤µ,i 6=m

a′′i e
j2πωi(n+k)| < εm′(δ)}(∵ definition of a′′i )

< δ.(∵ (170)) (175)

Here, (174) is justified as follows:
γ

|a′m|
ε(δ) +

γ

|a′m|
|am| (176)

≤ γ

|am|
ε(δ) + γκ(δ)(∵

|am′ |
|am|

≥ 1

κ(δ)
, and by definition κ(δ) ≤ 1) (177)

≤ ε(δ) + γκ(δ)(∵ |am| ≥ γ) (178)

≤ εm′(δ)

2
+
εm′(δ)

2
.(∵ definitions of ε(δ), κ(δ)) (179)

Therefore, by plugging (173) and (175) into (172),we get

lim
N→∞

sup
|am|≥γ,k∈Z

1

N

N∑
n=1

1{|
µ∑
i=1

aie
j2πωi(n+k)| < ε(δ)} < δ,

which finishes the proof.
Now, we will generalize Lemma 24 by introducing polynomial terms. First, we prove that a set of polynomials is uniformly

bounded away from 0 when there is nonzero coefficient.
Lemma 25: For all n ∈ N, n′ ∈ Z+, m ∈ {1, · · · , n}, γ > 0 and k > 0,

lim
T→∞

sup
|am|≥γ,ai∈C

|{x ∈ (0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= 0

where | · |L is the Lebesgue measure of the set.
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Proof: Let X be a uniform random variable on (0, 1]. Then, we have

sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ ai

xi

Tm
| < k

Tm
}|L

T

= sup
|am|≥γ

|{x ∈ (0, T ] : |
∑n
i=−n′ ai

(
x
T

)i | < k
Tm
}|L

T

= sup
|am|≥γ

|{x ∈ (0, 1] : |
n∑

i=−n′
aix

i| < k

Tm
}|L

= sup
|am|≥γ

P{|
n∑

i=−n′
aiX

i| < k

Tm
}

= sup
|am+n′ |≥γ

P{|
n+n′∑
i=0

aiX
i| < kXn′

Tm
}

≤ sup
|am+n′ |≥γ

P{|
n+n′∑
i=0

aiX
i| < k

Tm
}.(∵ 0 < X ≤ 1 w.p. 1)

(180)

Therefore, by Lemma 15

lim
T→∞

sup
|am|≥γ,ai∈C

|{x ∈ [0, T ] : |
∑n
i=−n′ aix

i| < k}|L
T

= lim
T→∞

sup
|am+n′ |≥γ,ai∈C

P{|
n+n′∑
i=0

aiX
i| < k

Tm
} = 0,

which finishes the proof.
The following lemma shows that the above lemma still holds even if we change Lebesgue measure to counting measure.
Lemma 26: For all n ∈ N, n′ ∈ Z+, m ∈ {1, · · · , n}, γ > 0 and k > 0,

lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ {1, · · · , N} : |
∑n
i=−n′ aix

i| < k}|C
N

= 0

where | · |C implies the counting measure of the set, the cardinality of the set.
Proof: First, we will prove the following claim which relates Lebesgue measure with counting measure.

Claim 4: Let f : R+ → R be a C∞ function with l local maxima and minima. Then,

|{x ∈ [1, N ] : f(x) > 0}|L ≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 3l + 2.

Proof: Since f(x) is a continuous function with l local maxima and minima, we can prove that there exist l′ ≤ l + 1, si
and ti (1 ≤ i ≤ l′) such that

{x ∈ {1, · · · , N} : f(x) > 0} = {s1, s1 + 1, · · · , s1 + t1} ∪ · · · ∪ {sl′ , sl′ + 1, · · · , sl′ + tl′}.

One way to justify this is by contradiction, i.e. if we assume l′ > l+ 1, there should exist more than l local maxima and minima
by the mean value theorem. Moreover, since the number of local maxima and minima is bounded by l, we have

|{x ∈ [1, N ] : f(x) > 0}|L ≤ |[s1 − 1, s1 + t1 + 1]|L + · · ·+ |[sl′ − 1, sl′ + tl′ + 1]|L + l

≤ (t1 + 2) + · · ·+ (tl′ + 2) + l

≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 2l′ + l

≤ |{x ∈ {1, · · · , N} : f(x) > 0}|C + 3l + 2.

Thus, the claim is true.
To prove the lemma, let ai = aR,i + jaI,i where aR,i, aI,i ∈ R. Then,

|
n∑

i=−n′
aix

i| < k (181)

(⇔)|
n+n′∑
i=0

ai−n′x
i| < kxn

′
(182)

(⇔)(

n+n′∑
i=0

aR,i−n′x
i)2 + (

n+n′∑
i=0

aI,i−n′x
i)2 < k2xn

′
. (183)
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Since k2x2n′ − (
∑n+n′

i=0 aR,i−n′x
i)2 − (

∑n+n′

i=0 aI,i−n′x
i)2 is a continuous function with at most 2(n+ n′) local maxima

and minima, by the claim we have

lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ {1, · · · , N} : |
∑n
i=0 aix

i| < k}|C
N

≤ lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ [1, N ] : |
∑n
i=0 aix

i| < k}|L + 6(n+ n′) + 2

N

= lim
N→∞

sup
|am|≥γ,ai∈C

|{x ∈ (0, N ] : |
∑n
i=0 aix

i| < k}|L
N

= 0 (∵ Lemma 25)

Therefore, the lemma is proved.
Now, we merge Lemma 26 with Lemma 24 to prove that Lemma 27 still holds even after we introduce polynomial terms to

the functions.
Lemma 27: Let ω1, ω2, · · · , ωµ be real numbers such that ωi − ωj /∈ Q for all i 6= j. Then, for strictly positive numbers γ,

lim
ε↓0

lim
N→∞

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωi(n+k)

∣∣∣∣∣ < ε

}
→ 0.

Proof: To prove the lemma, it is enough to show that for all δ > 0, there exist ε > 0 and N ∈ N such that

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωi(n+k)

∣∣∣∣∣ < ε

}
< δ. (184)

Since µ is finite, by Lemma 24, there exist ε′ > 0 and M ∈ N such that

max
d∈{1,··· ,µ}

(
sup

k∈Z,ai∈C,|ad|≥1

1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

aie
j2πωi(c+k)

∣∣∣∣∣ < ε′
})

<
δ

2
. (185)

By Lemma 26, there exists B′ ∈ N such that

sup
|a′1ν1 |≥γ

∣∣∣{b ∈ {1, · · · , B′} :
∣∣∣∑ν1

j=0 a
′
1jb

j
∣∣∣ ≤ 2

}∣∣∣
C

B′
<
δ

4
. (186)

Define κ′ :=
2
∑µ
i=1

∑νi
j=1

∑j
k=1 (jk)

ε′ . By Lemma 26, there exists B′′ ∈ N such that

∑
1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|ak|=1

|{b ∈ {1, · · · , B′′} : κ′ ≥ |
∑νi−j+k
j′=−j+k aj′b

j′ |}|C
B′′

<
δ

4
. (187)
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Define B := max(B′, B′′). We will show that the choice of ε = ε′ and N = M ·B satisfies (184).

sup
|a1ν1

|≥γ,aij∈C,k∈Z

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωi(n+k)

∣∣∣∣∣ < ε

}

= sup
|a1ν1

|≥γ,aij∈C

1

N

N∑
n=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aijn
j

)
ej2πωin

∣∣∣∣∣ < ε

}
(∵ ej2πωik can be absorbed into the aij .)

= sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM + c)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}
(∵ n is rewritten as bM + c.)

= sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij

(
(bM)j +

j∑
k=1

(
j

k

)
(bM)j−kck

))
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε+

µ∑
i=1

νi∑
j=1

|aij |
j∑

k=1

(
j

k

)
(bM)j−kck

}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(
νi∑
j=0

aij(bM)j
)
ej2πωi(bM+c)

∣∣∣∣∣ < ε+

µ∑
i=1

νi∑
j=1

j∑
k=1

|aij |

(
j

k

)
(bM)j−kMk

}
(188)

≤ sup
|a1ν1

|≥γ,aij∈C

1

B ·M

B−1∑
b=0

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ <
ε

Mb
+

∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb

}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

{
1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

+ 1

{
ε

Mb
+

∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

}}

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

{
1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}

+ 1

{
ε

Mb
≥ ε

2

}
+ 1

{∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

2

}}
(189)

where Mb := maxi
{∣∣∣∑νi

j=0 aij (bM)j
∣∣∣} and when Mb = 0 the value of the indicator function is set to be 0 since in this case,

the indicator function of (188) is already 0.
First, let’s prove that the first term of (189) is small enough. For all aij ∈ C such that |a1ν1 | ≥ γ and b ∈ {0, · · · , B}, we

have

1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

(∑νi
j=0 aij(bM)j

Mb

)
ej2πωi(bM+c)

∣∣∣∣∣ < ε

}
(190)

≤ max
d∈{1,··· ,µ}

(
sup

k∈Z,ai∈C,|ad|≥1

1

M

M∑
c=1

1

{∣∣∣∣∣
µ∑
i=1

aie
jωi(c+k)

∣∣∣∣∣ < ε

})
(191)

(∵ By the definition of Mb,
∣∣∣∣∑νi

j=0 aij(bM)j

Mb

∣∣∣∣ = 1 for some i) (192)

<
δ

2
.(∵ (185)) (193)

Let’s prove that the second term of (189) is small enough.

sup
|a1ν1

|≥γ

|{b ∈ {1, · · · , B} : Mb < 2}|C
B

≤ sup
|a1ν1

|≥γ

∣∣∣{b ∈ {1, · · · , B} :
∣∣∣∑ν1

j=0 a1j(bM)j
∣∣∣ < 2

}∣∣∣
C

B
(∵ definition of Mb)

≤ sup
|a′1ν1 |≥γ

∣∣∣{b ∈ {1, · · · , B} :
∣∣∣∑ν1

j=0 a
′
1jb

j
∣∣∣ < 2

}∣∣∣
C

B
(∵ putting a′1j := a1jM

j and M goes to infinity.)

<
δ

4
.(∵ (186)) (194)
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Now, we will prove that the third term of (189) is small enough.

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{∑µ
i=1

∑νi
j=1

∑j
k=1 |aij |

(
j
k

)
(bM)j−kMk

Mb
≥ ε

2

}
(195)

≤ sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
(

µ∑
i′=1

νi′∑
j′=1

j′∑
k′=1

(
j′

k′

)
) · max

1≤i≤µ,1≤j≤νi,1≤k≤j
|aij |(bM)j−kMk ≥ ε

2
Mb

}
(196)

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′|aij |(bM)j−kMk ≥Mb

}
(197)

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′|aij |(bM)j−kMk ≥ |

νi∑
j′=0

aij′(bM)j
′
|

}
(∵ definition of Mb) (198)

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|a1ν1

|≥γ,aij∈C

1

B

B−1∑
b=0

1

{
κ′ ≥ |

νi∑
j′=0

aij′(bM)j
′

|aij |bj−kMk
|

}
(199)

≤
∑

1≤i≤µ,1≤j≤νi,1≤k≤j

sup
|ak|=1

1

B

B−1∑
b=0

1

{
κ′ ≥ |

νi−j+k∑
j′=−j+k

aj′b
j′ |

}
(200)

<
δ

4
.(∵ (187)) (201)

Therefore, by (193), (194), (201), we can see (189) < δ, which finishes the proof.

G. Proof of Lemma 3
In this section, we will merge the properties about the observability Gramian shown in Appendix X-E with the uniform

convergence of Appendix X-F, and prove Lemma 3 of page 26.
Just as we did in Appendix X-D, we must first prove the following lemma which tells that the determinant of the observability

Gramian is large except a negligible set under a cofactor condition the Gramian matrix. The proof of the lemma is very similar
to that of Lemma 16.

Lemma 28: Let A and C be given as (147) and (148). Define ai,j and Ci,j as the (i, j) element and cofactor of


CA−k1

...
CA−km−1

CA−n


respectively. Then, there exists a family of functions {gε : ε > 0, gε : R+ → R+} satisfying:
(i) For all ε > 0, k1 < k2 < · · · < km−1 and |Cm,m| ≥ ε

∏
1≤i≤m−1 λ

−ki
i , the following is true.

lim
N→∞

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣∣∣∣det




CA−k1

...
CA−km−1

CA−n



∣∣∣∣∣∣∣∣∣ < ε2λ−nm

∏
1≤i≤m−1

λ−kii

→ 0 as ε ↓ 0.

(ii) For each ε > 0, gε(k) . 1 + log(k + 1).
Proof: By Lemma 20, we can find a function g′2ε2(k) such that for all 0 ≤ k1 < k2 < · · · < km−1 < n satisfying:

(i) n− km−1 ≥ g′2ε2(km−1)
(ii) g′2ε2(k) . 1 + log(k + 1)

(iii)
∣∣∣∑m−mµ+1≤i≤m am,iCm,i

∣∣∣ ≥ 2ε2λ−nm
∏

1≤i≤m−1 λ
−ki
i

the following inequality holds: ∣∣∣∣∣∣∣∣∣det




CA−k1

...
CA−km−1

CA−n



∣∣∣∣∣∣∣∣∣ ≥ ε

2λ−nm
∏

1≤i≤m−1

λ−kii .
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Let gε(k) be g′2ε2(k). Then, we have

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣∣∣∣det




CA−k1

...
CA−km−1

CA−n



∣∣∣∣∣∣∣∣∣ < ε2λ−nm

∏
1≤i≤m−1

λ−kii


≤ sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

am,iCm,i

∣∣∣∣∣∣ < 2ε2λ−nm
∏

1≤i≤m−1

λ−kii

 (202)

= sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

am,i

λ−nm

Cm,i

ε
∏

1≤i≤m−1 λ
−ki
i

∣∣∣∣∣∣ < 2ε


≤ sup
k∈Z,|bm|≥1

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣

∑
m−mµ+1≤i≤m

bi
am,i

λ−nm

∣∣∣∣∣∣ < 2ε

 (203)

where (202) is by the definition of gε(k) and Lemma 20, and (203) is by |Cm,m| ≥ ε
∏

1≤i≤m−1 λ
−ki
i .

Let Cµ,νµ denoted in (148) be
[
c′1 · · · c′mµ,νµ

]
.

Moreover,

Aµ,νµ
−n

=


(λµ,νµe

j2πωµ,νµ )−n
(−n

1

)
(λµ,νµe

j2πωµ,νµ )−n−1 · · ·
( −n
mµ,νµ−1

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+1

0 (λµ,νµe
j2πωµ,νµ )−n · · ·

( −n
mµ,νµ−2

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+2

...
...

. . .
...

0 0 · · · (λµ,νµe
j2πωµ,νµ )−n

 .
Thus, we can see that

am,m =
∑

1≤i≤mµ,νµ

c′i

(
−n

mµ,νµ − i

)
(λµ,νµe

j2πωµ,νµ )−n−mµ,νµ+i.

Therefore,

am,m

λ−nm
=

∑
1≤i≤mµ,νµ

c′i

(
−n

mµ,νµ − i

)
λ
−mµ,νµ+i
µ,νµ (ej2πωµ,νµ )−n−mµ,νµ+i.

Moreover, when am,i is considered as a function of n, nmµ,νµ−1e−j2πωµ,νµn term is only shown up in am,m

λ−nm
among

am,m−mµ+1

λ−nm
, · · · , am,m

λ−nm
,

and the associated coefficient is c′1(−1)
mµ,νµ−1

(mµ,νµ−1)!
λ
−mµ,νµ+1
µ,νµ ej2πωµ,νµ (−mµ,νµ+1).

Let c′ :=
|c′1|

(mµ,νµ−1)!
λ
−mµ,νµ+1
µ,νµ . Then, (203) can be upper bounded as follows:

(203) ≤ sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣
∑

1≤i≤νµ

 ∑
1≤j≤mµ,i

aijn
j−1

 ej2π(−ωµ,i)n

∣∣∣∣∣∣ < 2ε


= sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑
n=1

1


∣∣∣∣∣∣
∑

1≤i≤νµ

 ∑
1≤j≤mµ,i

aij(n+ k)j−1

 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣ < 2ε


≤ sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑
n=1

1


∣∣∣∣∣∣
∑

1≤i≤νµ

 ∑
1≤j≤mµ,i

aijn
j−1

 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣ < 2ε

 (204)

The last inequality comes from the fact that the coefficient of nmµ,νµ−1 is the same for both
∑

1≤j≤mµ,νµ
aνµ,j(n+ k)j−1 and∑

1≤j≤mµ,νµ
aνµ,jn

j−1.
By Lemma 15, we get

lim
N→∞

sup
k∈Z,|aνµ,mµ,νµ |≥c

′

1

N

N∑
n=1

1


∣∣∣∣∣∣
∑

1≤i≤νµ

 ∑
1≤j≤mµ,i

aijn
j−1

 ej2π(−ωµ,i)(n+k)

∣∣∣∣∣∣ < 2ε

→ 0 as ε ↓ 0.

Therefore, by (204) we can say that

lim
N→∞

sup
k∈Z,k−km−1≥gε(km−1)

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣∣∣∣det




CA−k1

...
CA−km−1

CA−n



∣∣∣∣∣∣∣∣∣ < ε2λ−nm

∏
1≤i≤m−1

λ−kii

→ 0 as ε ↓ 0
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which finishes the proof.
Based on the previous lemma, the properties of p.m.f. tails shown in Section X-A and the properties of the observability

Gramian discussed in Section X-E, we can prove Lemma 3 for the case when the system has no eigenvalue cycles. Moreover,
we will prove a lemma with multiple systems. This will turn out to be helpful in proving Lemma 3 for the general systems with
eigenvalue cycles.

Consider pairs of matrices (A1,C1), (A2,C2), · · · , (Ar,Cr) defined as follows:

Ai is a mi ×mi Jordan form matrix and Ci is a 1×mi row vector (205)
Each Ai has no eigenvalues cycles and (Ai,Ci) is observable

λ
(i)
j ej2πω

(i)
j is (j, j) element of Ai

λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
mi ≥ 1.

Then, the following lemma holds.
Lemma 29: Consider systems (A1,C1), (A2,C2), · · · , (Ar,Cr) given as (205). Then, we can find a polynomial p(k)

and a family of random variable {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0, k ∈ Z+ and 1 ≤ i ≤ r there exist
k ≤ ki,1 < ki,2 < · · · < ki,mi ≤ S(ε, k) and Mi satisfying the following conditions:
(i) β[ki,j ] = 1 for 1 ≤ i ≤ µ and 1 ≤ j ≤ mi

(ii) Mi


CiAi

−ki,1

CiAi
−ki,2

...
CiAi

−ki,mi

 = I

(iii) |Mi|max ≤ p(S(ε,k))
ε

(λ
(i)
1 )S(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P{S(ε, k)− k = s} = pe.
Proof: By Lemma 19, instead of the condition (ii) and (iii) it is enough to prove that∣∣∣∣∣∣∣∣∣det




CiAi
−ki,1

CiAi
−ki,2

...
CiAi

−ki,mi



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤j≤mi

(λ
(i)
j )−ki,j .

Therefore, it is enough to prove the following claim:
Claim 5: We can find a family of stopping times {S(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0, k ∈ Z+ and 1 ≤ i ≤ r

there exist k ≤ ki,1 < ki,2 < · · · < ki,mi ≤ S(ε, k) satisfying the following condition:
(a) β[ki,j ] = 1 for 1 ≤ i ≤ µ and 1 ≤ j ≤ mi

(b)

∣∣∣∣∣∣∣∣∣det




CiAi
−ki,1

CiAi
−ki,2

...
CiAi

−ki,mi



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤j≤mi(λ

(i)
j )−ki,j

(c) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S(ε, k)− k = s} ≤ pe.
Before we prove the above claim, we first prove the claim for a single system.

Claim 6: We can find a family of stopping times {S1(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0 and k ∈ Z+ there exist
k ≤ k′1 < k′2 < · · · < k′m1

≤ S1(ε, k) satisfying the following condition:
(a’) β[k′j ] = 1 for 1 ≤ j ≤ m1

(b’)

∣∣∣∣∣∣∣∣∣∣
det




C1A1
−k′1

C1A1
−k′2

...
C1A1

−k′mi



∣∣∣∣∣∣∣∣∣∣
≥ ε

∏
1≤j≤m1

(λ
(1)
j )−k

′
j

(c’) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S1(ε, k)− k = s} ≤ pe.
• Proof of Claim 6: The proof of Claim 6 is an induction on m.
(i) First consider the case m1 = 1.
In this case, A1 and C1 is scalar, so denote A1 := λ

(1)
1 ej2πω

(1)
1 and C1 := c1. Since we only care about small enough ε, let

ε ≤ |c1|. Denote S1(ε, k) := inf{n ≥ k : β[n] = 1} and k′1 = S1(ε, k). Then, β[k′1] = 1 and
∣∣∣det

([
c1(λ

(1)
1 ej2πω

(1)
1 )−k

′
1

])∣∣∣ =

|c1|(λ(1)
1 )−k

′
1 ≥ ε(λ(1)

1 )−k
′
1 . Moreover, since S1(ε, k)− k is a geometric random variable with probability 1− pe,

exp lim sup
s→∞

sup
k∈Z+

log P {S1(ε, k)− k = s} = pe.

Therefore, S1(ε, k) satisfies all the conditions of the claim.
(ii) As an induction hypothesis, we assume the claim is true for m1 − 1 and prove the claim hold for m1.
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Denote A′1 be a (m1 − 1) × (m1 − 1) matrix obtained by removing m1th row and column of A1. Likewise, C′1 is a
1× (m1 − 1) vector obtained by removing m1th element of C1. Then, we can observe that

det




C′1A′1
−k′1

...
C′1A′1

−k′m1−1


 = cofm1,m1




C1A1
−k′1

...
C1A1

−k′m1




where cofi,j(A) implies the cofactor matrix of A with respect to (i, j) element.
By the induction hypothesis, we can find a stopping time S′1(ε, k) such that there exist k ≤ k′1 < k′2 < · · · < k′m1−1 ≤ S′1(ε, k)

satisfying:
(a”) β[k′j ] = 1 for 1 ≤ j ≤ m1 − 1

(b”)

∣∣∣∣∣∣∣∣det




C′1A′1
−k′1

...
C′1A′1

−k′m1−1



∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤j≤m1−1(λ

(1)
j )−k

′
j

(c”) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P {S′1(ε, k)− k = s} ≤ pe.
Let Fi be a σ-field generated by β[0], · · · , β[i] and gε : R+ → R+ be the function of Lemma 28. Denote a random variable

d(ε,N) as following:

d(ε,N) := sup
k∈Z,k−S′1(ε,k)≥gε(S′1(ε,k))

1

N

k+N∑
n=k+1

1


∣∣∣∣∣∣∣∣∣det




C1A1
−k′1

...
C1A1

−k′m1−1

C1A1
−n



∣∣∣∣∣∣∣∣∣ < ε2(λ(1)

m1
)−n

∏
1≤j≤m1−1

(λ
(1)
j )−kj |FS′1(ε,k)

 .

Since (b”) implies cofm1,m1




C1A1
−k′1

...
C1A1

−k′m1−1

C1A1
−n


 ≥ ε∏1≤j≤m1−1(λ

(1)
i )−k

′
j , by Lemma 28 we have

lim
ε↓0

lim
N→∞

ess sup d(ε,N) = 0.

Denote S′′1 (ε, k) := S′1(ε, k) + gε(S
′
1(ε, k)). From (ii) of Lemma 28 we know gε(k) . 1 + log(k + 1) for all ε > 0. Therefore,

by Lemma 5 we have

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S′′1 (ε, k)− k = s} ≤ pe. (206)

Denote a stopping time

S′′′1 (ε, k) := inf

n > S′′1 (ε, k) : β[n] = 1 and

∣∣∣∣∣∣∣∣∣det




C1A1
−k′1

...
C1A1

−k′m1−1

C1A1
−n



∣∣∣∣∣∣∣∣∣ ≥ ε

2(λ(1)
m1

)−n
∏

1≤j≤m1−1

(λ
(1)
j )−k

′
j

 .

Since β[n] is a Bernoulli process,

P{S′′′1 (ε, k)− S′′1 (ε, k) ≥ N |FS′′1 (ε,k)} ≤ pN(1−d(ε,N))
e .

Therefore,

lim
ε↓0

exp lim sup
N→0

ess sup
1

N
log P{S′′′1 (ε, k)− S′′1 (ε, k) ≥ N |FS′′1 (ε,k)} ≤ lim

ε↓0
lim
N→∞

ess sup p1−d(ε,N)
e ≤ pe

i.e.

lim
ε↓0

exp lim sup
s→0

ess sup
1

s
log P{S′′′1 (ε, k)− S′′1 (ε, k) = s|FS′′1 (ε,k)} ≤ pe. (207)

By applying Lemma 6 to (206) and (207), we can conclude that

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S′′′1 (ε, k)− k = s} ≤ pe.

Therefore, if we denote S1(ε, k) := S′′′1 (ε
1
2 , k), S1(ε, k) satisfies all the conditions of Claim 6.

• Proof of Claim 5: By recursive use of Claim 6, we can find stopping times S2(ε, k), · · · , Sr(ε, k) such that for all ε > 0
and 2 ≤ i ≤ r there exist Si−1(ε, k) < ki,1 < ki,2 < · · · < ki,mi ≤ Si(ε, k) satisfying the following condition:
(a) β[ki,j ] = 1 for 1 ≤ j ≤ mi
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(b)

∣∣∣∣∣∣∣∣∣det




CiAi
−ki,1

CiAi
−ki,2

...
CiAi

−ki,mi



∣∣∣∣∣∣∣∣∣ ≥ ε

∏
1≤j≤mi(λ

(i)
j )−ki,j

(c) limε↓0 exp lim sups→∞ ess sup 1
s

log P{Si(ε, k)− Si−1(ε, k) = s|FSi−1(ε,k)} ≤ pe.
Then, by Lemma 6

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{Sr(ε, k)− k = s} ≤ pe.

Therefore, if we denote S(ε, k) := Sr(ε, k), S(ε, k) satisfies all the conditions of Claim 5. Thus, Claim 5 is true and the lemma
is also true.

We prove some properties about matrices which will be helpful in the proof of Lemma 3.
Lemma 30: Let A and A′ be Jordan block matrices with eigenvalues λ, αλ(α 6= 0) respectively and the same size m ∈ N,

i.e. A =


λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 and A′ =


αλ 1 · · · 0
0 αλ · · · 0
...

...
. . .

...
0 0 · · · αλ

. Then, for all n ∈ Z

A′
n

=


α−(m−1) 0 · · · 0

0 α−(m−2) · · · 0
...

...
. . .

...
0 0 · · · 1

An


αn+(m−1) 0 · · · 0

0 αn+(m−2) · · · 0
...

...
. . .

...
0 0 · · · αn

 .
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Proof:

A′
n

=


(αλ)n

(
n
1

)
(αλ)n−1

(
n
2

)
(αλ)n−2 · · ·

(
n
m

)
(αλ)n−(m−1)

0 (αλ)n
(
n
1

)
(αλ)n−1 · · ·

(
n

m−1

)
(αλ)n−(m−2)

0 0 (αλ)n · · ·
(

n
m−2

)
(αλ)n−(m−3)

...
...

...
. . .

...
0 0 0 · · · (αλ)n



=


α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



·


αn+m−1λn

(
n
1

)
αn−1+m−1λn−1

(
n
2

)
αn−2+m−1λn−2 · · ·

(
n
m

)
αn−(m−1)+m−1λn−(m−1)

0 αn+m−2λn
(
n
1

)
αn−1+m−2λn−1 · · ·

(
n

m−1

)
αn−(m−2)+m−2λn−(m−2)

0 0 αn+m−3λn · · ·
(

n
m−2

)
αn−(m−3)+m−3λn−(m−3)

...
...

...
. . .

...
0 0 0 · · · αnλn



=


α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



·


αn+m−1λn

(
n
1

)
αn+m−2λn−1

(
n
2

)
αn+m−3λn−2 · · ·

(
n
m

)
αnλn−m

0 αn+m−2λn
(
n
1

)
αn+m−3λn−1 · · ·

(
n

m−1

)
αnλn−(m−1)

0 0 αn+m−3λn · · ·
(

n
m−2

)
αnλn−(m−2)

...
...

...
. . .

...
0 0 0 · · · αnλn



=


α−(m−1) 0 0 · · · 0

0 α−(m−2) 0 · · · 0

0 0 α−(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



·


λn

(
n
1

)
λn−1

(
n
2

)
λn−2 · · ·

(
n
m

)
λn−m

0 λn
(
n
1

)
λn−1 · · ·

(
n

m−1

)
λn−(m−1)

0 0 λn · · ·
(

n
m−2

)
λn−(m−2)

...
...

...
. . .

...
0 0 0 · · · λn

 ·

αn+(m−1) 0 0 · · · 0

0 αn+(m−2) 0 · · · 0

0 0 αn+(m−3) · · · 0
...

...
...

. . .
...

0 0 0 · · · αn



=


α−(m−1) 0 · · · 0

0 α−(m−2) · · · 0
...

...
. . .

...
0 0 · · · 1

An


αn+(m−1) 0 · · · 0

0 αn+(m−2) · · · 0
...

...
. . .

...
0 0 · · · αn


This finishes the proof.

Lemma 31: Let A be a Jordan block with eigenvalue λ and dimension m×m. Then, the Jordan decomposition of the matrix
Ak for k ∈ N is UΛU−1 where U is an invertible upper triangular matrix —so the diagonal elements of U are non-zero— and
Λ is a Jordan block with eigenvalue λk and dimension m×m.

Proof: We can see that Ak is a upper triangular toeplitz matrix whose diagonal elements are λk. Thus, det(sI −Ak) =
(s−λk)m and all eigenvalues of Ak are λk. Moreover, the rank of Ak−λkI is m−1. Thus, Λ has to be a Jordan block matrix
with eigenvalue λk and dimension m×m.

Moreover, Ker
((

A− λkI
)p) ⊇ span{e1, e2, · · · , ep}. Therefore, ith column of U−1 has to belong to the vector space

{e1, · · · , ei} and U−1 is upper diagonal matrix. Here, the existence of Jordan form of arbitrary matrix guarantee the invertibility
of U. Therefore, U is also upper triangular matrix and the invertibility condition of an upper triangular matrix is its diagonal
elements are non-zero.

Lemma 32: Let A be a Jordan block matrix with eigenvalue λ ∈ C and size m ∈ N, i.e. A =


λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

. C and
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C′ are 1×m matrices such that

C =
[
c1 c2 · · · cm

]
C′ =

[
c′1 c′2 · · · c′m

]
(208)

where ci, c′i ∈ C and c1 6= 0.

For all k ∈ R and m× 1 matrices X =


x1

x2

...
xm

 and X′ =


x′1
x′2
...
x′m

, there exists T such that

(i)T is an upper triangular matrix.

(ii)CAkX + C′AkX′ = CAk (X + TX′
)

Moreover, the diagonal elements of T are c′1
c1

.
Proof: Similar to Lemma 18.

Now, we can prove Lemma 3.
Proof of Lemma 3: We will prove the lemma by an induction on m, the dimension of the system. Remind that here we are

using the definitions of (75), (76) for the system matrices A, C, Ai, Ci, · · · .
(i) When m = 1,
In this case, the lemma reduces to the scalar problem and is trivially true. Precisely, if we choose S1(ε, k) as inf{s ≥ k :

β[s] = 1}, we can check all the conditions of the lemma are satisfied.
(ii) Now, we will assume the lemma is true when the system dimension is m− 1 as an induction hypothesis, and prove the

lemma holds for the system with dimension m.

Let xi,j be a mi,j × 1 column vector, and x be


x1,1

x1,2

...
xµ,νµ

. Here, x can be thought as the state of the system, and xi,j

corresponds to the states associated with the Jordan block Ai,j. Remind that A1,1 is the Jordan block with the largest eigenvalue
and size.

The purpose of this proof is following: By Lemma 29, we already know that the lemma holds for systems with scalar
observations and without eigenvalue cycles. Therefore, we first reduce the system to one with scalar observations and without
eigenvalue cycles. To reduce the system to the one without eigenvalue cycles, we will use down-sampling ideas (polyphase
decomposition) form signal processing [2]. To reduce the system to the one with scalar observations, we will multiple a proper
post-processing matrix which combines vector observations to scalar observations. Then, we estimate the m1,1th element of x1,1,
which associated with the largest eigenvalue. Then, we subtract the estimation from the system. The resulting system becomes a
(m − 1)-dimensional system, and by the induction hypothesis, we can estimate the remaining states. As we mentioned before,
this idea is called successive decoding in information theory [31].

Let’s start from the down-sampling and reduction to scalar observation systems.
• Down-sampling the System by p and Reduction to Scalar Observation Systems: The main difficulty in estimating the m1,1th

element of x1,1 is the periodicity of the system. To handle this difficulty, we down sample the system. Let p =
∏

1≤i≤µ pi.
Remind that in (76), pi was the period of each eigenvalue cycles. We can see when the system is down sampled by p, the resulting
system becomes aperiodic. Thus, we can reduce the original periodic system to p number of aperiodic systems.

We can further reduce vector observation systems to scalar observation systems. Thus, the system reduces to aperiodic system
with scalar observations, and by Lemma 29 we can estimate the m1,1th element of x1,1.

Since we are using induction for the proof, we can focus on the first eigenvalue cycle of the system.
Let T1, · · · , TR be all the sets T such that T := {t1, · · · , t|T |} ⊆ {0, 1, · · · , p1 − 1} and

C1A1
−t1

C1A1
−t2

...
C1A1

−t|T |

 is full rank. (209)

Here, the definition of A1 and C1 is given in (76) and


C1diag{α1,1, · · · , α1,ν1}−t1
C1diag{α1,1, · · · , α1,ν1}−t2

...
C1diag{α1,1, · · · , α1,ν1}−t|T |

 is also full rank. The number of such

sets, R, is finite since p1 is finite.
Therefore, for each Tr := {tr,1, · · · , tr,|Tr|} (1 ≤ r ≤ R), we can find a matrix Lr such that

Lr


C1diag{α1,1, · · · , α1,ν1}−tr,1
C1diag{α1,1, · · · , α1,ν1}−tr,2

...
C1diag{α1,1, · · · , α1,ν1}

−tr,|Ti|

 = I.
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Denote
[
Ltr,1,r Ltr,2,r · · · Ltr,|Tr|,r

]
be the first row of Lr where Lt,r are 1× l matrices. Then,

[
Ltr,1,r Ltr,2,r · · · Ltr,|Tr|,r

]


C1diag{α1,1, · · · , α1,ν1}−tr,1
C1diag{α1,1, · · · , α1,ν1}−tr,2

...
C1diag{α1,1, · · · , α1,ν1}−tr,|Tr|

 =
[
1 0 · · · 0

]
. (210)

We also extend this definition of Lq,r to all q ∈ {0, · · · , p − 1}, r ∈ {1, · · · , R} by putting Lq,r := Lq( mod p1),r for
q ≥ p1. Then, we can easily check that (210) still holds as long as tr,i remains the same in mod p1.

Claim 7: For given q ∈ {0, · · · , p − 1} and r ∈ {1, · · · , R}, let Lq,rC1 be not 0. Then, there exists C̄q,r, Āq,r, Ūq,r,
x̄q,r that satisfies the following conditions:
(i) Āq,r is a ¯̄mq,r × ¯̄mq,r square matrix given in a Jordan form. The eigenvalues of Āq,r belong to {λp1,1, λ

p
2,1, · · · , λ

p
µ,1}, and

no two different Jordan blocks have the same eigenvalue. Therefore, Āq,r has no eigenvalue cycles. Furthermore, the first Jordan
block(left-top) of Āq,r is a m1,1 ×m1,1 Jordan block associated with eigenvalue λp1,1.
(ii) C̄q,r is a 1× ¯̄mq,r row vector and (Āq,r, C̄q,r) is observable.
(iii) Ūq,r is a ¯̄mq,r × ¯̄mq,r invertible upper triangular matrix.
(iv) x̄q,r is a ¯̄mq,r × 1 column vector. There exists a nonzero constant gq,r such that

(x̄q,r)m1,1 = gq,r
(
Lq,rC1diag{α1,1, · · · , α1,ν1}

−(q+(m1,1−1))
)

(x1,1)m1,1

(x′1,2)m1,1

...
(x′1,ν1)m1,1

 .
where (x′1,i)m1,1 = (x1,i)m1,1 when the size of x1,i is greater or equal to m1,1, and (x′1,i)m1,1 = 0 otherwise.
(v) For all k ∈ Z+, Lq,rCA−(pk+q)x = C̄q,rĀ

−k
q,rŪq,rx̄q,r.

This claim tells that by sub-sampling with rate p, we get systems without eigenvalue cycles. Moreover, by multiplying proper
row vector to observations, we can reduce the system to a scalar observation system while keeping required information to estimate
(x1,1)m1,1 . When Lq,rC1 is 0, the observation is not useful in estimation (x1,1)m1,1 . Thus, we can ignore it.

Proof: The proof of the claim consists of two parts, down-sampling and reduction to a scalar observation system.
(1) Down-sampling the System by p:
By the definition of C, A, Ci,j, Ai,j, for all k ∈ Z, q ∈ {0, · · · , p− 1} we have

CA−(pk+q)x = C1,1A1,1
−(pk+q)x1,1 + C1,2A1,2

−(pk+q)x1,2 + · · ·+ Cµ,νµAµ,νµ
−(pk+q)xµ,νµ (211)

Since the dimensions of xi,1, · · · ,xi,νi may be different, we will make them equal by extending the dimensions to the
maximum, i.e. mi,1. For the extension, we will append zeros at the end of the matrices. Let C′i,j be a l ×mi,1 matrix given
as
[
Ci,j 0l×(mi,1−mi,j)

]
, A′i,j be a mi,1 × mi,1 Jordan block matrix with eigenvalue λi,j , and x′i,j be a mi,1 × 1 column

vector given as
[

xi,j

0(mi,1−mi,j)×1

]
. Then, by the construction, we can see that (x′1,1)m1,1 = (x1,1)m1,1 , and if m1,i is greater

or equal to m1,1 (x′1,i)m1,1 = (x1,i)m1,1 and otherwise (x′1,i)m1,1 = 0. Therefore, x′i,j satisfies the condition (iv) of the claim.
Furthermore, the first column of C′i,j is equal to the first column of Ci,j by construction.

We also define αi,j to be λi,j
λi,1

. Remind that λi,j was defined as the eigenvalue corresponds to Ai,j in (75). Then, by the
definitions αpii,j = 1.
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Then, (211) can be written as follows:

CA−(pk+q)x = C′1,1A′1,1
−(pk+q)

x′1,1 + C′1,2A′1,2
−(pk+q)

x′1,2 + · · ·+ C′µ,νµA′µ,νµ
−(pk+q)

x′µ,νµ

= C′1,1A′1,1
−(pk+q)

x′1,1

+ C′1,2


α
−(m1,1−1)

1,2 0 · · · 0

0 α
−(m1,1−2)

1,2 · · · 0
...

...
. . .

...
0 0 · · · 1

A′1,1
−(pk+q)


α
−(pk+q)+(m1,1−1)

1,2 0 · · · 0

0 α
−(pk+q)+(m1,1−2)

1,2 · · · 0
...

...
. . .

...
0 0 · · · α

−(pk+q)
1,2

x′1,2 + · · ·

+ C′µ,νµ


α
−(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · 1

A′µ,1
−(pk+q)


α
−(pk+q)+(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(pk+q)+(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · α
−(pk+q)
µ,νµ

x′µ,νµ

(212)

= C′1,1A′1,1
−(pk+q)

x′1,1

+ C′1,2


α
−(m1,1−1)

1,2 0 · · · 0

0 α
−(m1,1−2)

1,2 · · · 0
...

...
. . .

...
0 0 · · · 1

A′1,1
−(pk+q)


α
−q+(m1,1−1)

1,2 0 · · · 0

0 α
−q+(m1,1−2)

1,2 · · · 0
...

...
. . .

...
0 0 · · · α−q1,2

x′1,2 + · · ·

+ C′µ,νµ


α
−(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · 1

A′µ,1
−(pk+q)


α
−q+(mµ,1−1)
µ,νµ 0 · · · 0

0 α
−q+(mµ,1−2)
µ,νµ · · · 0

...
...

. . .
...

0 0 · · · α−qµ,νµ

x′µ,νµ . (213)

Here, (212) follows from Lemma 30 and (213) follows from αpi,j =
(
αpii,j

)∏
j 6=i pj = 1. Remind that mi,j was defined as the size

of Ai,j in (75).
Define

C′′i,j := C′i,j


α
−(mi,1−1)

i,j 0 · · · 0

0 α
−(mi,1−2)

i,j · · · 0
...

...
. . .

...
0 0 · · · 1

 , (214)

x′′i,j :=


α
−q+(mi,1−1)

i,j 0 · · · 0

0 α
−q+(mi,1−2)

i,j · · · 0
...

...
. . .

...
0 0 · · · α−qi,j

x′i,j. (215)

Here, we can notice that the first column of C′′i,j is α−(mi,1−1)

i,j times the first column of C′i,j. Here, we know the first column
of C′i,j is equal to the first column of Ci,j. The last element of x′′i,j is α−qi,j times the last element of x′i,j. (213) can be written as

CA−(pk+q)x = C′′1,1A′1,1
−(pk+q)

x′′1,1 + C′′1,2A′1,1
−(pk+q)

x′′1,2 + · · ·+ C′′µ,νµA′µ,1
−(pk+q)

x′′µ,νµ . (216)

We can see all x′′i,1, · · · ,x′′i,νi are multiplied by the same matrix A′1,1. Eventually, we will merge x′′i,1, · · · ,x′′i,νi by taking linear
combinations.

(2) Reduction to the scalar observation: Now, we reduce C′′i,j to row vectors by multiply Lq,r to (216).

Lq,rCA−(pk+q)x = Lq,rC
′′
1,1A′1,1

−(pk+q)
x′′1,1 + Lq,rC

′′
1,2A′1,1

−(pk+q)
x′′1,2 + · · ·+ Lq,rC

′′
µ,νµA′µ,1

−(pk+q)
x′′µ,νµ . (217)

Here, the systems (A′i,1,Lq,rC
′′
i,1), · · · , (A′i,1,Lq,rC

′′
i,νi

) have the same dimension, but none of them might be observable.
Therefore, we will make at least one of the systems to be observable by truncation. Since A′i,1 is a Jordan block matrix and
Lq,rC

′′
i,j is a row vector, (A′i,1,Lq,rC

′′
i,j) is observable if and only if the first element of Lq,rC

′′
i,j is not zero. Let m′i be the

smallest number such that at least one of the m′ith elements of Lq,rC
′′
i,1, · · · ,Lq,rC

′′
i,νi

becomes nonzero, and let Lq,rC
′′
i,ν?

i
be

the vector that achieves the minimum.
Then, we will reduce the dimension of (A′i,1,Lq,rC

′′
i,νi

) by truncating the first (m′i − 1) vectors. Define C′′′i,j as the matrix
obtained by truncating first (m′i− 1) columns of C′′i,j, A′′i,j as the matrix obtained by truncating first (m′i− 1) rows and columns
of A′i,j, and x′′′i,j as the column vector obtained by truncating first (m′i − 1) elements of x′′i,j.

In the claim, we assumed that Lq,rC1 is not 0. Remind that the elements of Lq,rC1 correspond to the first elements of
Lq,rC1,1, · · · ,Lq,rC1,ν1 , which are again equal to the first elements of Lq,rC

′
1,1, · · · ,Lq,rC

′
1,ν1 . Since the first column of
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C′′i,j is the first column of C′i,j times α−(mi,1−1)

i,j , at least one of the systems (A′1,1,Lq,rC
′′
1,1), · · · , (A′1,1,Lq,rC

′′
1,ν1) has to

be observable.
Therefore, we can see m′1 = 1 and

C′′′1,i = C′′1,i,A
′′
1,i = A′1,i,x

′′′
1,i = x′′1,i. (218)

Now, (217) becomes

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,1A′′1,1

−(pk+q)
x′′′1,1 + Lq,rC

′′′
1,2A′′1,1

−(pk+q)
x′′′1,2 + · · ·+ Lq,rC

′′′
µ,νµA′′µ,1

−(pk+q)
x′′′µ,νµ .

Let c′′′i,j,1 be the first element of Lq,rC
′′′
i,j. By Lemma 32, we can find upper triangular matrices Ti,j such that their diagonal

elements are
c′′′i,j,1
c′′′
i,ν?
i
,1

and

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,ν?1

A′′1,1
−(pk+q) (

T1,1x′′′1,1 + T1,2x′′′1,2 + · · ·+ T1,ν1x′′′1,ν1
)

+ · · ·

+ Lq,rC
′′′
µ,ν?µ

A′′µ,1
−(pk+q) (

Tµ,1x′′′µ,1 + Tµ,2x′′′µ,2 + · · ·+ Tµ,νµx′′′µ,νµ
)

(219)

where c′′′i,ν?i ,1 is guaranteed to be nonzero by the construction.
Define x′′′′i as (

Ti,1x′′′i,1 + Ti,2x′′′i,2 + · · ·+ Ti,νix
′′′
i,νi

)
. (220)

Here, A′′i,1
−(pk+q) is not in a Jordan block. However, since A′′i,1 is a Jordan block, by Lemma 31 the Jordan decomposition

of A′′i,1
p is UiΛiUi

−1 where Λi is a Jordan block whose eigenvalue is pth power of the eigenvalue of A′′i,1 and Ui is an upper
triangular matrix whose diagonal entries are non-zero. Thus, (219) can be written as

Lq,rCA−(pk+q)x = Lq,rC
′′′
1,ν?1

U1Λ1
−kU1

−1A′′1,1
−q

x′′′′1 + · · ·+ Lq,rC
′′′
µ,ν?µ

UµΛµ
−kUµ

−1A′′µ,1
−q

x′′′′µ

=
[
Lq,rC

′′′
1,ν?1

U1 Lq,rC
′′′
2,ν?2

U2 · · · Lq,rC
′′′
µ,ν?µ

Uµ
] 

Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λµ


−k

·


U1
−1A′′1,1

−q
0 · · · 0

0 U2
−1A′′2,1

−q · · · 0
...

...
. . .

...
0 0 · · · Uµ

−1A′′µ,1
−q




x′′′′1

x′′′′2

...
x′′′′µ

 .

Let’s define C̄q,r as
[
Lq,rC

′′′
1,ν?1

U1 Lq,rC
′′′
2,ν?2

U2 · · · Lq,rC
′′′
µ,ν?µ

Uµ
]
, Āq,r as


Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λµ

, Ūq,r as


U1
−1A′′1,1

−q
0 · · · 0

0 U2
−1A′′2,1

−q · · · 0
...

...
. . .

...
0 0 · · · Uµ

−1A′′µ,1
−q

, x̄q,r as


x′′′′1

x′′′′2

...
x′′′′µ

 and m̄q,r as the dimension of Āq,r.

Here, we can see that Āq,r has no eigenvalue cycles and satisfies the condition (i) of the claim. Furthermore, since Ui is an
upper triangular matrix whose diagonal elements are non-zero, the first elements of Lq,rC

′′′
i,ν?

i
Ui are still non-zeros. Thus, the

system (Λi,Lq,rC
′′′
i,ν?

i
Ui) is observable and (Āq,r, C̄q,r) is also observable, which satisfies the condition (ii) of the claim. We

also have

Lq,rCA−(pk+q)x = C̄q,rĀ
−k
q,rŪq,rx̄q,r (221)

which is the condition (v) of the claim.
Let c1,j,1 be the first element of Lq,rC1,j. Then, we have

(x̄q,r)m1,1 = (x′′′′1 )m1,1 =

(
c′′′1,1,1
c′′′1,ν?1 ,1

(x′′′1,1)m1,1 + · · ·+
c′′′1,ν1,1
c′′′1,ν?1 ,1

(x′′′1,ν1)m1,1

)
(222)

=

(
c′′′1,1,1
c′′′1,ν?1 ,1

α−q1,1(x′1,1)m1,1 + · · ·+
c′′′1,ν1,1
c′′′1,ν?1 ,1

α−q1,ν1
(x′1,ν1)m1,1

)
(223)

=
1

c′′′1,ν?1 ,1

(
c1,1,1α

−q−(m1,1−1)

1,1 (x′1,1)m1,1 + · · ·+ c1,ν1,1α
−q−(m1,1−1)

1,ν1
(x′1,ν1)m1,1

)
(224)

=
1

c′′′1,ν?1 ,1

(
Lq,rC1diag{α1,1, · · · , α1,ν1}

−(q+(m1,1−1))
) (x′1,1)m1,1

...
(x′1,ν1)m1,1

 (225)
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(222) follows from (220). (223) follows from (215), (218). (224) follows from (214), (218) and that the first column of C′i,j is
the same as the first column of Ci,j as we mentioned above. Furthermore, as we mentioned above, (x′1,1)m1,1 = (x1,1)m1,1 .
Therefore, the condition (iv) of the claim is also satisfied, and this finishes the proof.
• Estimating (x)m1,1 : Now, we have systems without eigenvalue cycles and with scalar observations. Thus, by applying

Lemma 29, we will estimate the state (x)m1,1 .
Claim 8: We can find a polynomial p̄(k), m̄ ∈ N and a family of stopping time {S̄(ε, k) : k ∈ Z+, ε > 0} such that for all

ε > 0, k ∈ Z+ there exist k ≤ k̄1 < k̄2 < · · · < k̄m̄ ≤ S̄(ε, k) and M̄ satisfying:
(i) β[k̄i] = 1 for 1 ≤ i ≤ m̄

(ii) M̄

CA−k̄1

...
CA−k̄m̄

x = (x)m1,1

(iii)
∣∣M̄∣∣

max
≤ p̄(S̄(ε,k))

ε
|λ1,1|S̄(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P{S̄(ε, k)− k = s} ≤ p
l1
p1
e

This claim tells that there exists an estimator M̄ for (x)m1,1 which use observations at time k̄1, · · · , k̄m̄.
Proof: For each q ∈ {0, · · · , p − 1}, we have the down-sampled systems (Āq,1, C̄q,1), · · · , (Āq,R, C̄q,R) such that all

systems are observable, Āq,i have no eigenvalue cycles, and C̄q,i are row vectors. By Lemma 29, we can find a polynomial
pq(k) and a family of random variable {S̄q(ε, k) : k ∈ Z+, ε > 0} such that for all ε > 0, k ∈ Z+ and 1 ≤ i ≤ R there exist
m̄q,i and d k−q

p
e ≤ ki,1 < ki,2 < · · · < ki,m̄q,i ≤ S̄q(ε, k) and Mi satisfying:

(i) β[pki,j + q] = 1 for 1 ≤ j ≤ m̄q,i

(ii) Mi


C̄q,iĀ

−ki,1
q,i

C̄q,iĀ
−ki,2
q,i

...

C̄q,iĀ
−ki,m̄q,i
q,i

 = Im̄q,i×m̄q,i

(iii) |Mi|max ≤
pq(S̄q(ε,k))

ε
(|λ1,1|p)S̄q(ε,k)

(iv) limε↓0 exp lim sups→∞ supk∈Z+
1
s

log P{S̄q(ε, k)− d k−q
p
e = s} = pe.

By the property (iv) of S̄q(ε, k), we get

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{pS̄q(ε, k)− pdk − q

p
e = s} = p

1
p
e

which implies

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{(pS̄q(ε, k) + q)− k = s} = p

1
p
e .

Moreover, S̄q(ε, k) depends on only β[q], β[p+ q], β[2p+ q], · · · . Thus, S̄0(ε, k), · · · , S̄p−1(ε, k) are independent.
Now, we can estimate the state of each sub-sampled system. We will leverage these estimations to the estimation of the state

(x)m1,1 .
First, notice that the down-sampling rate p is much larger than p1. Therefore, we make the corresponding definition to (209)

for the longer period p. Let T ′1, · · · , T ′R′ be all the sets T ′ such that T ′ := {t′1, · · · , t′|T ′|} ⊆ {0, 1, · · · , p− 1} and
C1A1

−t′1

C1A1
−t′2

...
C1A1

−t′|T ′|

 is full rank. (226)

Here, we can ask how many observations have to be erased to make the observability Gramian of (A1,C1) rank deficient
during the period p. Obviously, the answer is l1

∏
2≤j≤µ pj where the definition of l1 is shown in (77). The reason for this is

that we have to erase at least l1 observations for each period p1 to make the observability Gramian rank deficient. Formally, it
can be written as follows:

min{|T | : T = {t1, · · · , t|T |} ⊆ {0, 1, · · · , p− 1}, T ′i 6⊆ T for all 1 ≤ i ≤ R′} = l1
∏

2≤j≤µ

pj .

Denote a stopping time S̄(ε, k) as the minimum time until we have enough observations to make the observability Gramian
of (A1,C1) full rank. Formally,

S̄(ε, k)− k := inf{s : ∃i ∈ {1, · · · , R′} s.t. T ′i = {t′1, t′2, · · · t′|T ′i |} and

(pS̄t′1(ε, k) + t′1)− k ≤ s, (pS̄t′2(ε, k) + t′2)− k ≤ s, · · · , (pS̄t′
|T ′
i
|
(ε, k) + t′|T ′i |)− k ≤ s}.

Then, by Lemma 7 we have

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S̄(ε, k)− k = s} ≤ p

l1
∏
j 6=1 pj
p

e = p
l1
p1
e . (227)
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Without loss of generality, let T ′1 be the set that satisfies the definition of S̄(ε, k). Then, by the definition of T ′1 and Ti, there
must exist Ti such that T ′1 contains Ti in mod p1. Let T1 be such a set without loss of generality. Then, we can find {t′1, · · · , t′|T1|}
which is included in T ′1 and includes T1 in mod p1. Formally, {t′1, · · · , t′|T1|} ⊆ T

′
1 and {t′1(mod p1), · · · , t′|T1|(mod p1)} = T1.

Then, from the definition of S̄(ε, k) and S̄q(ε, k), for each q ∈ {t′1, · · · , t′|T1|} we can find d k−q
p
e ≤ kq,1 < kq,2 < · · · <

kq,m̄q,1 ≤ S̄q(ε, k) and Mq satisfying the following conditions:
(i’) β[pkq,j + q] = 1 for 1 ≤ j ≤ m̄q,1

(ii’) Mq


C̄q,1Ā

−kq,1
q,1

C̄q,1Ā
−kq,2
q,1

...

C̄q,1Ā
−kq,m̄q,1
q,1

 = Im̄q,1×m̄q,1

(iii’) |Mq|max ≤
pq(S̄q(ε,k))

ε
(|λ1,1|p)S̄q(ε,k).

(iv’) pS̄q(ε, k) + q ≤ S̄(ε, k)



78

Then, we have

diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}diag{Lt′1,1

,Lt′1,1
, · · · ,Lt′|T1|

,1}

·



CA
−(pkt′1,1

+t′1)

CA
−(pkt′1,2

+t′1)

...

CA
−(pkt′1,m̄t′1,1

+t′1)

CA
−(pkt′2,1

+t′2)

...

CA
−(pkt′|T1|

,m̄
t′|T1|

,1
+t′|T1|

)


x

= diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}



Lt′1,1
CA

−(pkt′1,1
+t′1)

x

Lt′1,1
CA

−(pkt′1,2
+t′1)

x
...

Lt′1,1
CA

−(pkt′1,m̄t′1,1
+t′1)

x

Lt′2,1
CA

−(pkt′2,1
+t′2)

x
...

Lt′|T1|
,1CA

−(pkt′|T1|
,m̄
t′|T1|

,1
+t′|T1|

)

x



= diag{Ū−1
t′1,1

Mt′1
, Ū−1

t′2,1
Mt′2

, · · · , Ū−1
t′|T1|

,1Mt′|T1|
}



C̄t′1,1
Ā
−kt′1,1
t′1,1

Ūt′1,1
x̄t′1,1

C̄t′1,1
Ā
−kt′1,2
t′1,1

Ūt′1,1
x̄t′1,1

...

C̄t′1,1
Ā
−kt′1,m̄t′1,1
t′1,1

Ūt′1,1
x̄t′1,1

C̄t′2,1
Ā
−kt′2,1
t′2,1

Ūt′2,1
x̄t′2,1

...

C̄t′|T1|
,1Ā

−kt′|T1|
,m̄
t′|T1|

,1

t′|T1|
,1

Ūt′|T1|
,1x̄t′|T1|

,1



(228)

=



Ū−1
t′1,1

Mt′1


C̄t′1,1

Ā
−kt′1,1
t′1,1

...

C̄t′1,1
Ā
−kt′1,m̄t′1,1
t′1,1

 Ūt′1,1
x̄t′1,1

...

Ū−1
t′|T1|

,1
Mt′|T1|


C̄t′|T1|

,1Ā
−kt′|T1|

,1

t′1,1

...

C̄t′|T1|
,1Ā

−kt′|T1|
,m̄
t′|T1|

,1

t′1,1

 Ūt′|T1|
,1x̄t′|T1|

,1



(229)

=


x̄t′1,1

...
x̄t′|T1|

,1

 . (230)

Here, (228) comes from the condition (v) of Claim 7. (230) comes from the definition of Mq.
Now, we will estimate (x)m1,1 based on x̄t′1,1

, · · · , x̄t′|T1|
,1. Let e

¯̄mq,r
m1,1 be a 1 × ¯̄mq,r row vector whose elements are all
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zeros except m1,1th element which is 1. Then, we have the following equation:

[
1

gt′1,1
e

¯̄mt′1,1
m1,1 · · · 1

gt′|T1|
,1

e
¯̄m|t′|T1|

|,1

m1,1

]
x̄t′1,1

...
x̄t′|T1|

,1


=

1

gt′1,1
(x̄t′1,1

)m1,1 + · · ·+ 1

gt′|T1|
,1

(x̄t′|T1|
,1)m1,1

=
(
Lt′1,1

C1diag{α1,1, · · · , α1,ν1}
−(t′1+(m1,1−1))

) (x1,1)m1,1

...
(x′1,ν1)m1,1

+ · · ·

+
(
Lt′|T1|

,1C1diag{α1,1, · · · , α1,ν1}
−(t′|T1|

+(m1,1−1))
) (x1,1)m1,1

...
(x′1,ν1)m1,1

 (231)

=
[
Lt′1,1

· · · Lt′|T1|
,1

]
C1diag{α1,1, · · · , α1,ν1}−t

′
1

...
C1diag{α1,1, · · · , α1,ν1}

−t′|T1|



α
−m1,1+1

1,1 (x1,1)m1,1

...
α
−m1,1+1

1,ν1
(x′1,ν1)m1,1


= α

−m1,1+1

1,1 (x1,1)m1,1 = α
−m1,1+1

1,1 (x)m1,1 . (232)

Here, (231) follows from the condition (iv) of Claimi 7. (232) follows from (210) and {t′1(mod p1), · · · , t′|T1|(mod p1)} = T1.
Now, we merge the results from (230) and (232) to make an estimator for (x)m1,1 . Define

M̄ :=α
m1,1−1

1,1

[
1

gt′1,1
e

¯̄m|t′1|,1
m1,1 · · · 1

gt′|T1|
,1

e
¯̄m|t′|T1|

|,1

m1,1

]
· diag{Ū−1

t′1,1
Mt′1

, Ū−1
t′2,1

Mt′2
, · · · , Ū−1

t′|T1|
,1Mt′|T1|

}diag{Lt′1,1
,Lt′1,1

, · · · ,Lt′|T1|
,1}

and

CA−k̄1

...
CA−k̄m̄

 :=



CA
−(pkt′1,1

+t′1)

CA
−(pkt′1,2

+t′1)

...

CA
−(pkt′1,m̄t′1,1

+t′1)

CA
−(pkt′2,1

+t′2)

...

CA
−(pkt′|T1|

,m̄
t′|T1|

,1
+t′|T1|

)


.

Then, by (iii’) and (iv’) we can find a positive polynomial p̄(k) such that∣∣M̄∣∣
max

. max
1≤i≤|T1|

{|Mt′
i
|max} ≤

p̄(S̄(ε, k))

ε
|λ1,1|S̄(ε,k). (233)

Moreover, by (230) and (232) we have

M̄

CA−k̄1

...
CA−k̄m̄

x = (x)m1,1 . (234)

This finishes the proof of the claim
• Subtracting (x)m1,1 from the observations: Now, we have an estimation for (x)m1,1 . We will remove it from the system.
Ã, C̃ and x̃ are the system matrices after the removal. Formally, Ã is obtained by removing m1,1th row and column from

A, C̃ is obtained by removing m1,1th row from C, and x̃ is obtained by removing m1,1th component from x respectively.
Denote m1,1th column of CA−k as R(k). Then, we have the following relation between the original system (A,C) and

the new system (Ã, C̃):

CA−kx−R(k)(x)m1,1 = C̃Ã−kx̃ (235)

which can be easily proved from the block diagonal structure of A. From the definition of R(k), we can further see that there
exists a polynomial p̃(k) such that |R(k)|max ≤ p̃(k)|λ1,1|−k. Thus, when |λ1,1| > 1 we can find a threshold kth ≥ 0 such that
all k ≥ kth, p̃(k)|λ1,1|−k is a decreasing function. When |λ1,1| = 1, we simply put kth = 0.
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• Decoding the remaining element of x: We decoded and subtracted the state (x)m1,1 from the system. After subtracting, the
remaining system matrices Ã ∈ C(m−1)×(m−1) and C̃ ∈ Cl×(m−1) become one-dimension smaller. Therefore, we can apply the
induction hypothesis to estimate x̃.

We can also write Ã and C̃ in the same way that we write A and C as (75), (76) and (77), and define the corresponding
parameters shown in (75), (76) and (77). To distinguish the parameters for Ã and C̃ from the parameters for A and C, we use
tilde. For example, the dimension of A was m×m, and we define the dimension of Ã as m̃× m̃. Likewise, the parameters µ̃,
ν̃i, λ̃i,j , m̃i,j , p̃i, l̃i are defined for the system matrices Ã and C̃ in the same ways as (75), (76) and (77).

By the induction hypothesis, for 1 ≤ i ≤ µ̃ we can find m̃′1, · · · , m̃′µ̃ ∈ N, positive polynomials p̃1(k), · · · , p̃µ̃(k) and
families of stopping times {S̃1(ε, k) : k ∈ Z+, 0 < ε < 1}, · · · , {S̃µ̃(ε, k) : k ∈ Z+, 0 < ε < 1} such that for all 0 < ε < 1 there
exist max{S̄(ε, k), kth} ≤ k̃1 < · · · < k̃m̃′1 ≤ S̃1(ε, k) < k̃m̃′1+1 < · · · < k̃∑

1≤i≤µ̃ m̃
′
i
≤ S̃µ̃(ε, k) and a m̃ × (

∑
1≤i≤µ̃ m̃

′
i)l

matrix M̃ satisfying the following conditions:
(i”) β[k̃i] = 1 for 1 ≤ i ≤

∑
1≤i≤µ̃ m̃i

(ii”) M̃


C̃Ã−k̃1

C̃Ã−k̃2

...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i

 = I

(iii”) |M̃|max ≤ max1≤i≤µ̃

{
p̃i(S̃i(ε,k))

ε
|λ̃i,1|S̃i(ε,k)

}
(iv”) limε↓0 exp lim sups→∞ ess sup 1

s
log P{S̃i(ε, k)−max{S̄(ε, k), kth} = s|FS̄(ε,k)} = max1≤j≤i

p
l̃j
p̃j
e

 for 1 ≤ i ≤ µ̃

(v”) limε↓0 exp lim sups→∞ ess sup 1
s

log P{S̃a(ε, k) − S̃b(ε, k) = s|FS̃b(ε,k)} ≤ maxb<i≤a

{
p
l̃i
p̃i
e

}
for 1 ≤ b < a ≤ µ̃.

Compared to Lemma 3, we can notice that the condition (iv”) is slightly different from the condition (iv) of Lemma 3. The sup
over k of (iv) in Lemma 3 is replaced by the ess sup. However, if we remind that max{S̄(ε, k), kth} is a constant conditioned
on20 FS̄(ε,k), we just replaced k of Lemma 3 with max{S̄(ε, k), kth}.

20More proper notations for S̃1(ε, k), · · · , S̃µ(ε, k) are S̃1(ε,max{S̄(ε, k), kth}), · · · , S̃µ(ε,max{S̄(ε, k), kth}) since max{S̄(ε, k), kth} plays the
role of k of Lemma 3 after conditioning. However, we use the notations of the paper for simplicity.
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Here, we have

x̃ = M̃


C̃Ã−k̃1

C̃Ã−k̃2

...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i

 x̃

= M̃


C̃Ã−k̃1 x̃

C̃Ã−k̃2 x̃
...

C̃Ã
−k̃∑

1≤i≤µ̃ m̃
′
i x̃



= M̃


CA−k̃1x−R(k̃1)(x)m1,1

CA−k̃2x−R(k̃2)(x)m1,1

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
ix−R(k̃∑

1≤i≤µ̃ m̃
′
i
)(x)m1,1

 (∵ (235))

= M̃




CA−k̃1

CA−k̃2

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i

x−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 (x)m1,1



= M̃




CA−k̃1

CA−k̃2

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i

x−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 M̄


CA−k̄1

CA−k̄2

...
CA−k̄m̄

x

 (∵ the condition (ii) of Claim 8)

= M̃

−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 M̄ I





CA−k̄1

...
CA−k̄m̄

CA−k̃1

...

CA
−k̃∑

1≤i≤µ̃ m̃
′
i


x. (236)

When |λ1,1| > 1, we have∣∣∣∣∣∣∣∣∣∣
M̃

−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 M̄ I


∣∣∣∣∣∣∣∣∣∣
max

. |M̃|max ·max



∣∣∣∣∣∣∣∣∣∣


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)


∣∣∣∣∣∣∣∣∣∣
max

∣∣M̄∣∣
max

, 1


. max

1≤i≤µ̃

{
p̃i(S̃i(ε, k))

ε
|λ̃i,1|S̃i(ε,k)

}
·max

{
p̃(k̃1)|λ1,1|−k̃1

p̄
(
S̄(ε, k)

)
ε

|λ1,1|S̄(ε,k), 1

}
(237)

where the last inequality follows from (iii”), |R(k)| ≤ p̃(k)|λ1,1|−k, kth ≤ k̃i, and the condition (iii) of Claim 8.Moreover, since
S̄(ε, k) ≤ k̃1 ≤ S̃i(ε, k), there exists some positive polynomials p′i(k) such that

(237) . max
1≤i≤µ̃

{
p′i(S̃i(ε, k))

ε2
|λ̃i,1|S̃i(ε,k)

}
(238)
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When |λ1,1| = 1, |λ̃1,1| is also 1. Thus, we have∣∣∣∣∣∣∣∣∣∣
M̃

−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 M̄ I


∣∣∣∣∣∣∣∣∣∣
max

. |M̃|max ·max



∣∣∣∣∣∣∣∣∣∣


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)


∣∣∣∣∣∣∣∣∣∣
max

∣∣M̄∣∣
max

, 1


. max

1≤i≤µ̃

{
p̃1(S̃1(ε, k))

ε

}
·max

{
p̃(k̃∑

1≤i≤µ̃ m̃
′
i

p̄
(
S̄(ε, k)

)
ε

, 1

}

.
p′(S̃µ̃(ε, k))

ε2
(239)

for some polynomial p′µ̃(k).
Since we can reconstruct x from x̃ and (x)m1,1 , we can say there exists M such that

M



CA−k̄1

...
CA−k̄m̄

CA−k̃1

...

CA
−k̃∑

1≤i≤µ̃ m̃i


= I.

By the condition (ii) of Claim 8 and (236), such M satisfies the following:

|M|max ≤ max


∣∣M̄∣∣

max
,

∣∣∣∣∣∣∣∣∣∣
M̃

−


R(k̃1)

R(k̃2)
...

R(k̃∑
1≤i≤µ̃ m̃

′
i
)

 M̄ I


∣∣∣∣∣∣∣∣∣∣
max


. max

{
p̄(S̄(ε, k))

ε
|λ1,1|S̄(ε,k), max

1≤i≤µ̃

{
p′i(S̃i(ε, k))

ε2
|λ̃i,1|S̃i(ε,k)

}}
(240)

≤ 1

ε2
max

{
p̄(S̄(ε, k))|λ1,1|S̄(ε,k), max

1≤i≤µ̃

{
p′i(S̃i(ε, k))|λ̃i,1|S̃i(ε,k)

}}
. (241)

Here, (240) follows from the condition (iii) of Claim 8, (238), (239).
Moreover, since kth is a constant, the condition (iv) of Claim 8 implies

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P

{
max

{
S̄(ε, k), kth

}
− k = s

}
= p

l1
p1
e . (242)

Therefore, by applying Lemma 6 together with (242) and (iv”) we get

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S̃i(ε, k)− k = s} = max

p l1p1
e , max

1≤j≤i

p
l̃j
p̃j
e


 . (243)

We finish the proof by dividing into two cases depending on µ̃. Since Ã is obtained by erasing just one row and column of
A, the relation between µ̃ and µ is either µ̃ = µ or µ̃ = µ− 1.

(1) When µ̃ = µ.
In this case, the number of the eigenvalue cycles remains the same. We can see that |λ̃i,1| = |λi,1|. A1 and Ã1 may be the

same or Ã1 has smaller dimension than A1. Thus, the new system Ã1 becomes easier to estimate, and l̃1
p̃1
≥ l1

p1
, i.e. p

l̃1
p̃1
e ≤ p

l1
p1
e .

Ai and Ãi are the same for all 2 ≤ i ≤ µ, so l̃i
p̃i

= li
pi

for 2 ≤ j ≤ µ. Define Si(ε2, k) := S̃i(ε, k), p1(k) := p̄(k) + p′1(k), and
pi(k) := p′i(k) for 2 ≤ i ≤ µ. Then, (241), (243) and (v”) reduces as follows:

|M|max ≤ max
1≤i≤µ

{
pi(Si(ε, k))

ε
|λi,1|Si(ε,k)

}
,
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lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{Si(ε, k)− k = s} ≤ max

1≤j≤i

{
p

lj
pj
e

}
,

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
log P{Sa(ε, k)− Sb(ε, k) = s|FSb(ε,k)} ≤ max

b<i≤a

{
p
li
pi
e

}
.

Here, we reparametrized ε2 to ε. Therefore, the lemma is true for this case.
(2) When µ̃ = µ− 1.
Since one eigenvalue cycle is disappeared, we can see that |λ̃1,1| = |λ2,1|, |λ̃2,1| = |λ3,1|, · · · , |λ̃µ̃,1| = |λµ,1|. Moreover,

Ãi = Ai+1 for 1 ≤ i ≤ µ̃ and l̃i
p̃i

=
li+1

pi+1
for 1 ≤ i ≤ µ̃. Define S1(ε2, k) := S̄(ε, k), p1(k) := p̄(k), Si(ε2, k) := S̃i−1(ε, k)

and pi(k) := p′i−1(k) for 2 ≤ i ≤ µ. We will also reparametrize ε2 to ε. Then, (241) reduces to

|M|max ≤ max
1≤i≤µ

{
pi(Si(ε, k))

ε
|λi,1|Si(ε,k)

}
.

By the definition of S1(ε, k), the condition (iv) of Claim 8 reduces to

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{S1(ε, k)− k = s} ≤ p

l1
p1
e .

By (243) and the definition of Si(ε, k), we have for all 2 ≤ i ≤ µ,

lim
ε↓0

exp lim sup
s→∞

sup
k∈Z+

1

s
log P{Si(ε, k)− k = s} ≤ max

p l1p1
e , max

1≤j≤i−1

p
l̃j
p̃j
e


 = max

1≤j≤i

{
p
li
pi
e

}
.

By (iv”), (v”) and the definition of Si(ε, k), we have for all 1 ≤ b < a ≤ µ,

lim
ε↓0

exp lim sup
s→∞

ess sup
1

s
log P{Sa(ε, k)− Sb(ε, k) = s|FSb(ε,k)} ≤ max

b<i≤a

{
p
li
pi
e

}
.

Therefore, the lemma is also true for this case.
Thus, the proof is finished.

REFERENCES

[1] A.Dembo and O.Zeitouni. Large Deviations Techniques and Applications. Springer, second edition, 1998.
[2] A.S. Willsky A.V. Oppenheim and S.H. Nawab. Signal and Systems. Springer-Verlag, New York, NY, second edition, 1991.
[3] J Baillieul. Feedback designs for controlling device arrays with communication channel bandwidth constraints. In ARO Workshop on Smart

Structures, Pennsylvania State Univ, pages 16–18, 1999.
[4] J Baillieul. Feedback coding for information-based control: operating near the data-rate limit. In Decision and Control, 2002, Proceedings

of the 41st IEEE Conference on, volume 3, pages 3229–3236. IEEE, 2002.
[5] B.Gelbaum and J.Olmsted. Counterexamples in Analysis. Dover, 1964.
[6] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[7] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press, New York, NY, third edition, 1999.
[8] C.W.Gardiner. Handbook of Stochastic Methods. Springer, third edition, November 2003.
[9] D.L. Donoho. Compressed sensing. Manuscript.

[10] Nicola Elia. Remote stabilization over fading channels. Systems and Control Letters, 54(3):239–249, March 2005.
[11] E. Garone, B. Sinopoli, A. Goldsmith, and A. Casavola. Lqg control for distributed systems over tcp-like erasure channels. Proceedings of

IEEE Conference on Decision and Control, 2007.
[12] Vijay Gupta, Babak Hassibi, and Richard M Murray. Optimal lqg control across packet-dropping links. Systems & Control Letters,

56(6):439–446, 2007.
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