FIELD THEORY OF GUIDED WAVES

Second Edition

CASE WESTERN RESERVE UNIVERSITY

Jürgen-Knor-Bibliothek Spende der Siemens AG an den FB Elektrotechnik

IEEE Antennas and Propagation Society, Sponsor

The Institute of Electrical and Electronics Engineers, Inc. New York

Oxford University Press Oxford

Contents

1

2

Pre	iace	ix
Basic Electromagnetic Theory		1
1.1	Maxwell's Equations 2	
1.2	Relation between Field Intensity Vectors and Flux Density Vectors 5	
1.3	Electromagnetic Energy and Power Flow 10	
1.4	Boundary Conditions and Field Behavior in Source Regions 17	
1.5	Field Singularities at Edges 23	`
1.6	The Wave Equation 28	
1.7	Auxiliary Potential Functions 30	
1.8	Some Field Equivalence Principles 34	
1.9	Integration of the Inhomogeneous Helmholtz	
	Equation 44	
1.10	Lorentz Reciprocity Theorem 49	
	References and Bibliography 50	
	Problems 52	
Gre	en's Functions	55
2.1	Green's Functions for Poisson's Equation 56	
2.2	Modified Green's Functions 59	
2.3	Sturm–Liouville Equation 61	
2.4	Green's Function $G(x, x')$ 63	· ·
2.5	Solution of Boundary-Value Problems 66	
2.6	Multidimensional Green's Functions and Alternative	
- -	Representations 72	
2.7	Green's Function for a Line Source in a Rectangular Waveguide 78	
2.8	Three-Dimensional Green's Functions 86	
2.9	Green's Function as a Multiple-Reflected Wave Series 87	,
2.10	Free-Space Green's Dyadic Function 91	

- 2.11 Modified Dyadic Green's Functions 92
- 2.12 Solution for Electric Field Dyadic Green's Function 96
- 2.13 Reciprocity Relation for Dyadic Green's Functions 102
- 2.14 Eigenfunction Expansions of Dyadic Green's Functions 103

iii

- 2.15 Expansion of the Electric Field in Spherical Modes 114
- 2.16 Dyadic Green's Function Expansion in Cylindrical Coordinates 121
- 2.17 Alternative Representations for Dyadic Green's Functions 130
- 2.18 Dyadic Green's Functions and Field Equivalence Principles 134
- 2.19 Integral Equations for Scattering 139
- 2.20 Non-self-Adjoint Systems 153
- 2.21 Distribution Theory 157 References and Bibliography 161 Problems 162

3 Transverse Electromagnetic Waves

- 3.1 Plane TEM Waves 173
- 3.2 TEM Waves in Orthogonal Curvilinear Coordinate Systems 178
- 3.3 Reflection and Transmission at a Discontinuity Interface 181
- 3.4 Wave Matrices 184
- 3.5 Transmission through Dielectric Sheets 192
- 3.6 Reflection from a Finite Conducting Plane 199
- 3.7 Plane Waves in Anisotropic Dielectric Media 202
- 3.8 TEM Waves in a Ferrite Medium 211
- 3.9 Dyadic Green's Function for Layered Media 219
- 3.10 Wave Velocities 231
- 3.11 Point Source Radiation in Anisotropic Media 236
 References and Bibliography 241
 Problems 242

4 Transmission Lines

- 4.1 General Transmission-Line Theory 247
- 4.2 The Characteristic Impedance of Transmission Lines 259
- 4.3 The Schwarz-Christoffel Transformation 263
- 4.4 Characteristic Impedance by Variational Methods 273
- 4.5 Characteristic Impedance of a Strip Line Determined by Variational Methods 279
- 4.6 Integral Equations for Planar Transmission Lines 286
- 4.7 Inhomogeneous Transmission Lines 297
- 4.8 Spectral-Domain Galerkin Method 299
- 4.9 Potential Theory for Microstrip Lines 305
- 4.10 Potential Theory for Coupled Microstrip Lines 319 References and Bibliography 323 Problems 324

173

5 Waveguides and Cavities

- 5.1 General Properties of Cylindrical Waveguides 330
- 5.2 Orthogonal Properties of the Modes 333
- 5.3 Power, Energy, and Attenuation 337
- 5.4 The Rectangular Waveguide 349
- 5.5 Circular Cylindrical Waveguides 354
- 5.6 Green's Functions 356
- 5.7 Analogy with Transmission Lines 367
- 5.8 The Tangent Method for the Experimental Determination of the Equivalent-Circuit Parameters 373
- 5.9 Electromagnetic Cavities 377
- 5.10 Cavity with Lossy Walls 387
- 5.11 Variational Formulation for Cavity Eigenvalues 395
- 5.12 Cavity Perturbation Theory 400 References and Bibliography 402 Problems 404

6 Inhomogeneously Filled Waveguides and Dielectric Resonators

- 6.1 Dielectric-Slab-Loaded Rectangular Guides 411
- 6.2 The Rayleigh–Ritz Method 419
- 6.3 A dielectric Step Discontinuity 430
- 6.4 Ferrite Slabs in Rectangular Guides 433
- 6.5 Dielectric Waveguides 441
- 6.6 Dielectric Resonators 459 References and Bibliography 467 Problems 470

7 Excitation of Waveguides and Cavities

- 7.1 The Probe Antenna 471
- 7.2 The Loop Antenna 483
- 7.3 Coupling by Small Apertures 499
- 7.4 Cavity Coupling by Small Apertures 523
- 7.5 General Remarks on Aperture Coupling 531
- 7.6 Transients in Waveguides 533 References and Bibliography 537 Problems 539

8 Variational Methods for Waveguide Discontinuities

- 8.1 Outline of Variational Methods 547
- 8.2 Capacitive Diaphragm 569

329

471

· ·

411

- 8.3 Thin Inductive Diaphragm in a Rectangular Guide 578
- 8.4 Thick Inductive Window 581
- 8.5 A Narrow Inductive Strip 588
- 8.6 Thin Inductive Post 591
- 8.7 General Formulas for Waveguide Scattering 594 References and Bibliography 598 Problems 599

9 **Periodic Structures**

- 9.1 Floquet's Theorem 605
- 9.2 Some Properties of Lossless Microwave Quadrupoles 608
- 9.3 Propagation in an Infinite Periodic Structure 612
- 9.4 Terminated Periodic Structure 615
- 9.5 Capacitively Loaded Rectangular Waveguide 621
- 9.6 Energy and Power Flow 625
- 9.7 Higher Order Mode Interaction 627
- 9.8 The Sheath Helix 637 References and Bibliography 640 Problems 641

10 Integral Transform and Function-Theoretic Techniques

- 10.1 An Electrostatic Problem 646
- 10.2 An Infinite Array of Parallel Metallic Plates 664
- 10.3 Application to Capacitive-Loaded Parallel-Plate Transmission Line 671
- 10.4 Inductive Semidiaphragm in a Rectangular Guide 673
- 10.5 Application to H-Plane Bifurcation 679
- 10.6 Parallel-Plate Waveguide Bifurcation 681
 References and Bibliography 692
 Problems 693

11 Surface Waveguides

- 11.1 Surface Waves along a Plane Interface 697
- 11.2 Surface Waves along an Impedance Plane 701
- 11.3 Conducting Plane with a Thin Dielectric Coating 705
- 11.4 Surface Waves along a Corrugated Plane 708
- 11.5 Surface Waves along Dielectric Slabs 712
- 11.6 Surface Waves on Cylindrical Structures 718
- 11.7 Field Orthogonality Properties 723
- 11.8 Excitation of Surface Waves 725 References and Bibliography 744 Problems 746

697

645

605

12 Artificial Dielectrics

	12.1 Lorentz Theory 751	
	12.2 Electrostatic Solution 754	
	12.3 Evaluation of Interaction Constants 756	
	12.4 Sphere- and Disk-type Artificial Dielectrics 763	
	12.5 Transmission-Line Approach for a Disk Medium 766	
	12.6 Two-Dimensional Strip Medium 774	
	References and Bibliography 782	
	Problems 783	
	Mathematical Appardix	707
	Mathematical Appendix	101
	A.1 Vector Analysis 787	
	A.2 Dyadic Analysis 801	
	A.3 Matrices 803	
	A.4 Calculus of Variations 806	
	A.5 Infinite Products and the Gamma Function 807	
	A.6 Summation of Fourier Series 811	
	A.7 Fourier Transform in the Complex Domain 821	
	A.8 Wiener-Hopf Factorization 827	
	A.9 Asymptotic Evaluation of Integrals by the	
	Saddle-Point Method 828	
·	A 11 Vector Analysis Formulas 927	
	R.11 VCCIOI Allalysis Follillulas 657	
	References and Dibilography 839	
	Name Index	840
	Subject Index	944
	Subject muex	044
	About the Author	852
		~~ -
		· · · · · · · · · · · · · · · · · · ·

.

749

,