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Fast Implementations of Algebraic Methods
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from Cone-Beam Data
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Abstract—The prime motivation of this work is to devise This paper is a continuation of a previous paper [13]
techniques that make the algebraic reconstruction technique that dealt with accuracy issues for cone-beam reconstruction.
(ART) and related methods more efficient for routine clinical use, Please refer to that paper for background and references

while not compromising their accuracy. Since most of the com- . . .
putational effort of ART is spent for projection/backprojection ON ART and related methods. ART is an iterative method,

operations, we first seek to optimize the projection algorithm. reconstructing an object by a sequence of reconstruction grid
Existing projection algorithms are surveyed and it is found projections and backprojections. Hence, if one wants to make

that these algorithms either lack accuracy or speed, or are not ART faster and more competitive with the more common
suitable for cone-beam reconstruction. We hence devise a NeW tarad backprojection (FBP) methods, one must keep the

and more accurate extension to the splatting algorithm, a well- b fi . Il and h . d h
known voxel-driven projection method. We also describe a new NUmber of iterations small and, at the same time, reduce the

three-dimensional (3-D) ray-driven projector that is considerably overall cost for the projection—backprojection operations.
faster than the voxel-driven projector and, at the same time, more  Several groups of researchers have worked on reducing
accurate and perfectly suited for the demands of cone beam. We the number of iterations for ART. An important aspect in
then devise caching schemes for both ART and simultaneous ART _— : : : : At

(SART), which minimize the number of redundant computations achieving .thls gqal |s_the order in WhICh the projections are
for projection and backprojection and, at the same time, are accessed in the iterative reconstruction procedure. In a recent
very memory conscious. We find that with caching, the cost study, Mueller [14] contrasted various previously published
for an ART projection/backprojection operation can be reduced projection access schemes with a new scheme, the weighted
to the equivalent cost of 1.12 projections. We also find that gistance scheme. It was found that for low-contrast objects,

SART, due to its image-based volume correction scheme, is .
considerably harder to accelerate with caching. Implementations such as the Shepp-Logan brain phantom [17], usually three to

of the algorithms yield runtime ratios Tsarr/Tart between 1.5 four iterations are sufficient for good reconstruction quality.
and 1.15, depending on the amount of caching used. The choice of the relaxation coefficiehtis another important
Index Terms—Algebraic reconstruction technique (ART), parameter, which was studied by Herman and Meyer [7].

computed tomography (CT), cone-beam reconstruction, 1he impact ofA was also examined by us in [13], along
three-dimensional reconstruction. with the effects of various other ART parameters, such as
grid initialization and the correction algorithm. There, it was
confirmed that within three iterations, a reconstruction of a
quality close to the maximum can be obtained.
N this paper we explore several techniques that are gearegince most of the computational expense of ART is spent
toward making algebraic reconstruction methods, such & projection and backprojection, we must improve the speed
the algebraic reconstruction technique (ART) or simultaneogs ART's projection engine. It turns out that the computational
ART (SART), more efficient, without making any comprocost of this projection engine is greatly affected by the
mises in terms of accuracy. Although our discussion is mostharspective cone-beam projection. In the following sections,
focussed on the three-dimensional (3-D) cone-beam cagg will give a detailed description of two new highly accurate
many of the presented principles are also valid in the twgrgjection algorithms, one voxel-driven and one-ray-driven,
dimensional (2-D) fan-beam and in the 2-D and 3-D parallejnd analyze their efficiency in both the parallel-beam and
beam case. cone-beam setting. Although other voxel-driven projectors
[19] and ray-driven projectors [9], [10] have been described,
Manuscript received February 6, 1998; revised February 22, 1999. TiiRese algorithms are only efficient for the parallel-beam case
O o o, o s CL% S, i 8 do nt allow the sietched iterpolation kemels prescrbed
review of this papelr and recommending its pEincation was R. Hues?n!ﬁ [13] as necessary for a.ccurate Cone'.beam r.eCO_nStrUCtmn'
Asterisk indicates corresponding author. Furthermore, our voxel-driven perspective projection algo-
*K. Mueller is with the De_partment of C(_)mputer an(_j Inf(_)rmation Sciencgithm is considerably more accurate than the one described by
and the Department of Pediatrics, The Ohio State University, Columbus, (Westover [19]. Our ray-driven algorithm, on the other hand,
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to do the computational equivalent of one projection operatidinus due to the integral of the ray traversing the voxel kernel
per image instead of one projection and one backprojectiat. the respective table position.) Then, all one has to do is
This can only be achieved by reusing some of the earliscale the footprint by the voxel value (in grid projection)
computed results for later calculations, which is a technique the ART correction factors (in grid backprojection). Two
termed caching. Our paper will give caching schemes for badipproaches to perform this projection have been proposed.
ART and SART which will bring the computational cost ofOne way is the voxel-based approach in which one maps all
these popular algebraic methods closer to the theoretical cgskel footprints to the screen, scaled by the voxel value, where
of FBP methods. they accumulate into a projection image. This is done in the
The outline of this paper is as follows. Section Il gives somgplatting approach for volume rendering, devised by Westover
background on previous ART implementations. Section IflL9]. In backprojection, the voxel footprints are again mapped
then describes a voxel-driven projection algorithm for cong the screen, but this time they pick up (corrective) energy,
beam that is more accurate for perspective projection thgtead of emitting it. In the second approach, one can use
existing ones, but does not improve the state of the art iglys to intersect the footprint tables in volume space, again
terms of speed. Section IV gives a new ray-driven projectijtale the indexed value by the voxel value, and accumulate the
algorithm for cone-beam ART that is both accurate and effensity integrals (or distribute the correction factors) ray by
cient. Section V details various caching schemes to speed AF&'{,_ Since this is inherently also a splatting approach, we term
and SART. Finally, Section VI puts everything together anghis method ray-driven splatting, while the voxel-based method
presents a variety of results obtained with our ART testbgg)|| pe referred to as voxel-driven splatting. Since the voxel-
software. driven approach produces a whole image or at least an image
region at a time, it only makes sense to use it in conjunction
Il. PRELIMINARIES AND PREVIOUS WORK with an image-based correction algorithm, such as SART. The
Please refer to our paper [13] for notations and relevakgy-driven approach, on the other hand, processes one pixel at
background on algebraic methods. There we have derived tAdime and can thus be used with either the pixel-based ART
the number of necessary projections for a single source rotati®igthe image-based SART.
in a circular orbit isSsrr = 0.67n wheren is length of The preintegrated footprint method has several advantages.
the cubic reconstruction grid. The single-source, circular orbit1) The ray integrals are calculated very accurately, since
configuration gives rise to a spherical reconstruction region.  each footprint table entry can be integrated analytically
The twin-cone source arrangement described by Schlindwein  or with good quadrature. Thus, the accumulation of the

[16] (see also the conclusions of [13]), on the other hand, re-  footprints on the image plane is very close to an analytic
constructs a cylindrical region of interest. Here, the necessary integration of the volume.

number of projections is 2) The complexity for interpolation is reduced frafi(n?)
(1/4)mn? in volume space (as required for raycasting)Qon?)
Sarr = ~—— 53— = 0.78n 1) in image space. Fast incremental algorithms can then

be used to index the footprint tables in volume space
(in ray-driven splatting) or image space (in voxel-driven
splatting).

3) Due to these fast projection algorithms we can afford
interpolation kernels that are larger but have supe-

(half-) projections per detector to reconstruct the cylindrical
reconstruction region sandwiched between the two circular
orbits.

This numberSgr, just given, ensures that the ART equa-
tion system is determined. However, ART can also be applied . L a
without change ifS is smaller or greater than this number. In rior, smc—hke, frequ_ency characterlsncs., such as the
this context, an interesting observation was made by Guan Bessel-Kaiser function devised by Lewitt [9].
and Gordon [5] for the 2-D case. They showed that, in Before we describe the existing projection algorithms in
theory, the number of required projections in ART is abodtrther detail, let us recall (from [13]) that for accurate cone-
half the number of the projections required for FBP. MorB€am reconstruction it is necessary to stretch and scale the
precisely Spsp = 1.57n. This happens because the Fouridpterpolation kernels, depending on their distance from the
Slice Theorem arranges the projections onto a polar grid $8urce to prevent aliasing in projection and backprojection.
frequency space and, in order to provide adequate samplinglfis stretching occurs along two orthogonal axes, perpendic-
the periphery, one must oversample in the interior frequentiar to the direction of the ray(s) traversing the interpolation
regions. This may be part of the reason for the strength kgrnel. In [13], the stretching of the 3-D interpolation function
ART in the limited projection data case. was approximated by a stretching of the 2-D footprint (the

Algebraic methods typically represent the volume grid @sppendix justifies this approximation). Let us now clarify
a collection of spherical interpolation kernels, placed at tiBese concepts in more detail. In 3-D, the rays emanate from
voxel positions and scaled by the voxel values. This ensemite source along a curved rayfront of equal grid sampling rate
of scaled voxel kernels then makes up a continuous represima raster composed of two orthogonal sets of sheets (see also
tation of the volume. Since each voxel kernel projects arkdg. 3). Each 3-D ray is part of one sheet in each set and is
backprojects in the same way (as a so-called footprint), madgfined by the intersection of these two sheets. Constrained
authors [6], [9], [10], [19] precompute this kernel projectiomy the divergent cone-beam geometry, the distance of two
and store it in a lookup table. (An entry in the footprint table iadjacent sheets within a set increases with distance from the
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source. This means that, depending on the location of a kereahbles the efficient use of the same footprint table for all
with respect to each sheet set, its 2-D footprint must undergmjection rays everywhere in the volume.
different distortions in the two principal coordinate axes. Thus, The splatting techniques are in contrast to the fast in-
our projection algorithm must be able to stretch a footprint kigrpolative grid-traversal methods proposed by Siddon [18]
different amounts in the two-sheet raster directions. and Joseph [8]. These methods employ nearest neighbor
While the concept of representing a volume by a field afterpolation or bilinear interpolation, respectively, which,
interpolation kernels and preintegrating a 3-D kernel into a 24wever, are functions far inferior to the ones that can ef-
footprint is common to all existing splatting implementationdjciently be used in splatting. Matej has conducted a study
the strategy chosen to map the footprint table onto the screébat compared ART using Sidden’s algorithm and ART using
(in the voxel-driven approach) or to map the rays into thBessel kernels and found that the latter produced considerably
footprint table (in the ray-driven approach) varies. The mapetter reconstruction results [12]. In addition, the splatting
ping task is facilitated since we only use spherically symmetrépproaches, due to their efficient implementation, do not
kernels and cubic grids which yield a circular footprint. Foneed to be any costlier than the interpolative grid traversal
voxel-driven splatting, both Westover [19] and Matej [10$chemes as far as the cost-per-kernel crosssection is concerned.
simply map the circular footprint to the projection screeifthe added expense comes from the fact that these better
for one voxel and use incremental shifts for the remainirigterpolation kernels must have a larger extent (typically a
voxels at that projection angle. This, however, is only corrediameter of 4.0, as compared to an extent of 2.0 and 1.0 for
for parallel projections, since in perspective projection thfe bilinear and nearest neighbor kernel, respectively).
elliptical shape and size of the footprint is different for
every voxel. (More detail is given in Section lll.) In the
case of ray-driven splatting we again assume a spherically
symmetric interpolation kernel. Here, the approaches are more
diverse. For instance, Lewitt [9] computes the magnitude Let us first introduce some terminology. As suggested by
of the crossproduct of the ray unit vector with the vectdgrawfis and Max [2], we can think of the interpolation kernel
from a point on the ray to the voxel center. This yie|dg)otprint as a polygon with a superimposed texture map that is
the perpendicular distance of the ray to the voxel centBlaced in object (volume) space. Here, the texture map is given
which can be used to index a one-dimensional (1-D) footpripy the projected kernel function, i.e., the array of line integrals
table storing the radially symmetric projection of the 3-fthe ones stored in the footprint table). For the remainder of
kernel. An efficient incremental algorithm can then be usét’ discussion we will refer to the footprint in object space as
to find all other voxel distances along the ray. This approadhe footprint polygon, while the projection of the footprint
however, is not appropriate for cone-beam reconstruction, R@ygon onto the image plane will be called the footprint
it does not allow independent footprint stretching in the twnage. Recall that splatting accumulates the same value in a
ray sheet directions, as is necessary for accurate cone-bd@kfg! on the image plane as a ray would accumulate when
reconstruction. In another approach, Matej and Lewitt [1faversing the volume. Thus, when projecting the footprint
decompose the voxel grid into a set of 2-D slices. Here, tl!;)@lygon to obtain the line integral for_ t_he pixel in the footprint
orientation of the slices is that orientation most parallel t"age, we must ensure that we position the footprint polygon
the image plane. Recall that a footprint is the preintegrat@fthogonal to the direction of the sight ray in object space. The
kernel function in the direction of a ray, thus, a footprint i§ne integrals are remeved from Fhe footp.nnt taple by indexing
not necessarily planar with the slice planes. The authors projéc@t the ray-footprint polygon intersection point. Thus, for
this footprint function onto a slice plane which results in afPlatting to be accurate, the 2-D footprint must be mapped to
elliptical footprint. Since in parallel projection all rays for ath€ pixel as if the ray emanating from the pixel had traversed
given projection angle have the same angle with the volurffe@t @ perpendicular angle. Only then does the looked-up
slices, this remapped elliptical footprint can be used for fireintegrated integral mgtch the true kernel integration of Fhe
slices and all rays that are spawned for a given projectié®- We_stover’s perspective extension to voxel-driven splatting
orientation. Simple incremental algorithms can be designed{d9]) violates this condition in three instances.
trace a ray across the volume slices, computing all indexess He does not align the footprint polygon perpendicularly
into the elliptical footprints that are intersected. However, for to the voxel center ray when calculating the projected
perspective projection, every ray has a different orientation, screen extent. Rather, he aligns it parallel to the screen
necessitating a footprint remapping for every ray, which is and stretches it according to the perspective viewing
inefficient both to compute on the fly and to store. A more  transform.
appropriate approach was outlined for the 2-D case by Hanson When mapping the footprint to the screen pixels he uses
and Wecksung [6]. These authors model a 2-D ray as an @ linear transform rather than a perspective one.
implicit line equation. If one runs a line parallel to the ray ¢ The footprint polygon is not rotated for every mapped
across the center of a given voxel, then the offset difference Pixel such that the corresponding pixel ray traverses it at
of the equations of these two lines vyield the perpendicular @ perpendicular angle.
distance of the ray to the voxel center, which then can beWhile the error for the last approximation is rather small
used to index a 1-D footprint table. Our ray-driven approadsee [15, Sec. 5.7.1]), the former two are more significant.
is a 3-D extension of this algorithm, optimized for speed, thathe first approximation computes footprint screen extents that

I1l. AN ACCURATE VOXEL-DRIVEN
SPLATTING ALGORITHM FOR CONE-BEAM ART



MUELLER et al. FAST IMPLEMENTATION OF ALGEBRAIC METHODS 541

Eszight(vy,z)

Pr()j(vy’ 2

projected kernel
(footprint image)

Exty (v, ) source

) footprint table
image plane in object space '
(footprint polygon)

Fig. 1. Perspective voxel-driven splatting. First, the footprint polygon of vexel is mapped onto the image plane, then the affected image pixels
pi---pi+4 are mapped back onto the footprint table.

are smaller than the actual ones. For example, for a cahe 2-D case depicted in Fig. 1). These four vertices are
half angle of 30 and a 128 volume, the maximum error perspectively projected onto the image plane. This yields the
ratio between correct and approximate footprint extent is 1.1&8ctangular extent of the footprint image, aligned with the
and the maximum absolute difference between the two is 0r8age axe$Extrigni(vy,.) andExtrer (vy,-) in the 2-D case).
pixels (see [15, Sec. 5.7.2]). Here, the absolute error is ag&y expressing the intersections of the pixel rays with the
largest for those voxels that are located close to the view cdig@tprint polygon in a parametric fashion, we can then set up
boundary. It causes the footprints of these voxels to cowvai incremental scheme to relate the image pixels within the
less area on the projection plane than they really should. Tie@tprint image with the texture map entries of the footprint
second approximation has a similar effect. In that case, thble.
mapping of the footprint table entries to the screen is slightly The computational effort to map a footprint polygon onto
squashed. Again, voxels close to the view-cone boundary #€ screen and to set up the incremental mapping of the
most affected. pixels into the footprint table is quite large: Almost 100
Consider now Fig. 1, where we illustrate a new and accurdpltiplications, additions, and divisions and two square root
solution for perspective voxel-driven splatting. For simplicitpPerations are necessary. No incremental scheme can be used

of drawing, we show the 2-D case only. Note that the cdo accelerate the mapping of neighboring grid voxels. The high

ordinate system is fixed at the eye point. To splat a voxgPSt is amplified by the fact that the expensive mapping has

— O(n3 : i i
it is first rotated about the volume center such thap b€ done ab(N) = O(»®). Indeed, in our implementation,
(HRerspective projection was more than twice as expensive as

r_@arallel projection.

Va,y,z
the volume is aligned with the projection plane. Then,
footprint polygon is placed orthogonal to the vector, starti
at the eye and going through the centervgf, .. Note that
this yields an accurate line integral only for the center ray, IV. A FAST AND ACCURATE RAY-DRIVEN

all other rays traverse the voxel kernel function at a slightly SPLATTING ALGORITHM FOR CONE-BEAM ART

different orientation than that given by the placement of the \\ie saw in the previous section that perspective voxel-
2-D (1-D in Fig. 1) footprint polygon in object space. Thusgriven splatting can be made accurate, however, the expense of
the first error in Westover's approximation still survives. Thigerspective voxel-driven splatting seems prohibitive for use in
error, however, can be shown to be less than 0.01 pixels, eyghe-beam reconstruction. In this section, we take advantage
for voxels close to the source. of the fact that, in contrast to voxel-driven approaches, ray-
The coefficients of the footprint polygon’s plane equatiofiriven methods are generally not sensitive to the nonlinearity
are given by the normalized center ray (thector source of the perspective viewing transform. It can thus be expected
vz,y,-). From this equation we compute two orthogonal vectogaat ray-driven splatting is more advantageous to use in the
» and w on the plane (onlyw is shown in Fig. 1). Here, perspective cone-beam situation. The new ray-driven approach
u and w are chosen such that they project onto the twig, in some respects, a 3-D extension to the 2-D algorithm
major axes of the image. Using and w, we can compute sketched by Hanson and Wecksung [6] and will work both
the spatial z,y, z positions of the four footprint polygon for constant-size kernels, as used in cone-beam SART, and
vertices in object space Vrignt(vy,-) and Vier(v,,.) in  variable-size kernels, as required for cone-beam ART.
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Fig. 2. Ray-driven splatting. (a) Determining the range of voxels within a given volume slice plane that are traversed by a ray originating;at pixel
(b) Computing the indexdr into the footprint table.

A. Ray-Driven Splatting with Constant-Size For the 3-D case, we need to replace the linear ray by
Interpolation Kernels two planes. A 3-D ray is defined by the intersection of two

In ray-driven splatting, voxel contributions no longer acorthogonal planes cutting through the voxel field. The normal

cumulate on the image plane for all pixels simultaneousl{P’ ©N€ Plane is computed as the crossproduct of the ray and

In contrast, each pixel accumulates its raysums separat@j€ Of the image plane axis vectors. The normal of the second

which makes also makes it more suitable for ART thafl@ne is computed as the crossproduct of the ray and the
voxel-driven splatting. Our algorithm proceeds as follows. TH&¥'mal of the first plane. Thus, the two planes are orthogonal
volume is divided into 2-D slices formed by the planes mo&® €ach other and are also orthogonal to the voxel footprint
parallel to the image plane. When a pixel ray is shot into tHRPIYgons. Thus, the ray pierces the footprint polygon in a
3-D field of interpolation kernels, it stops at each slice arR]erpend_lcular fashpn, as required. Int_ersectmg the ho_rlzon_tal
determines the range of voxel kernels within the slice thRtane with a footprint polygon and using plane equations in
are traversed by the ray. This is shown in Fig. 2(a) for tHge spirit of (3) results in the horizontal row indéx..,, into

2-D case. The ray originating at pixg} pierces the volume the footprint table, while the intersection with the vertical
slice located atr, aty = y(i,2). The voxel kernels within Plane yields the vertical column indedrci. Using these
the slicez, that are intersected by the ray are given by tH¥/0 indexes, the value of the ray integral can be retrieved

interval [Ceil(yp.es (i, ), FIOO yRrignt (4, 25))]. We compute frpm _the 2-D footprint table. Note that the two orthogonal
URighi (i, 75) @s directions of the indexe#lr.,; and dr.,, on the footprint

polygon plane allow us to implement the bidirectional footprint
stretching required for the variable-size interpolation kernels
in cone-beam ART.

There are now three nested loops. The most outer loop sets
where « is the inclination of the ray. The computation forup a new ray to pierce the volume, the next inner loop advances
yrer: (i, 25) is analogous. After determining the active voxelhe ray across the volume slice by slice and determines the
interval [yres (¢, 7s), Yrignt (¢, 75)], We must compute the in- set of voxels traversed per slice, and, finally, the most inner
dexes into the voxel footprint table. This can be efficientljop retrieves the voxel contributions from the footprint tables.
implemented by realizing that the index into the footprint tab'ﬁor perspective projection, the p|ane equations have to be
of a grid voxelv located at coordinate§y,, z,) is given by computed for every ray. This amounts to approximately 50
the distancel,. of the two parallel lines (planes in 3-D) thatextra additions, multiplications, and divisions, and three square
traverseuv’s Centerpoint and the slice intersection point of thﬂ)ots per pixe]_ The cost of advancing a ray across the volume

eXtenI{ernel
cos(«)

Yright (4, 25) = y(i,25) + (2

ray aty(i, zs), respectively [see Fig. 2(b)]. One finds and determining the footprint entries is comparable to the cost
of rotating a kernel and splatting it onto the image plane in the

dr=a-zs+b-y(i,z) —a -2 —b-yy orthographic voxel-driven approach. The ray-driven approach

= (yli,2zs) — yn)) (3) changes the splatting algorithm from voxel order to pixel order.

Thus, the most outer loop is 6¥(n?). This has the advantage
wherea andb are the coefficients of the implicit line equatiorthat the complexity of any extra work that has to be done
a-zs+0b-y(i,zs) = 0 of the ray and are also given by thefor perspective projection (e.g., recomputing the two planes
components of the (normalized) ray vector. Maintaining thbat define the ray in 3-D) is roughly one order of magnitude
variablesyr et (4, 2), Yright (¢, 2) anddr along a ray can all be less than in voxel-driven splatting. Note also that ray-driven
done using incremental additions. splatting does not introduce inaccuracies. As a matter of fact,
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Fig. 3. Determining the local sampling rate of the arrangement of diverging rays. The arrangement of rays traverses the volume grid in two orthogonal
sets of ray sheets (two horizontal sheets, i.e., the cutting planesndcp;, 1, are shown). Each 3-D ray is part of one sheet in each set and is defined

by the intersection of these two sheets. Depending on the location of the kernel with respect to each sheet set, the 2-D kernel footprint must undergo
different distortions in its two principal coordinate axes.

it prevents the indexing errors in the voxel-driven approacke cannot realize this nonuniform distortion function. Hence,

by design. as an approximation, we only estimate at the location of
each kernel center and distort the generic 2-D footprint. This

B. Ray-Driven Splatting with Variable-Size approximation is justified in the Appendix.

Interpolation Kernels Consider again Fig. 3. The coordinates of an image pixel

We have proposed in [13] and mentioned in Section |l thgf" bg expresged B35 = Imageorigun i+ jw. The.grld of
%lvergmg rays is organized into horizontal and vertical sheets,

the aliasing artifacts caused by the diverging set of rays in i | that int tthe i | q d
cone beam can be eliminated by progressively increasing goutting pianes, thatintersect the image plane and are space

interpolation-filter extent (and scaling the filter amplitude) a y u andw. The ray ,g”d sampling rate,. is then a 2'_D

a linear function of ray depth. To make these concepts moffctor (wru,wrw) that is related to the local sheet spacings.
clear, let us define an image coordinate sysfemu, r) with F|g: 3 |IIustrate_s howy,.,, is calculated. Here, we see the two
« andw being the orthogonal image vectors antbeing the Norizontal cutting planesp; and cp;, embedding the rays
vector normal to the image plane (see Fig. 3). Typicaly, 7ii @1d 7i 11, respectively. To approximat#, = 1/w..
connects the source with the center of the image plane. THethe location(z,, v., z,) of the kernel center of voxel
amount of stretching and scaling of the voxel kernels deperitisv.=» We measure the distance betwegn andcp;, along

on their location with respect to the image coordinate systefi€ vector orthogonal tep; passing throughz., ww, z).

To determine the proper amount of kernel distortion we neddis distance can be written &5, = az, + by, + cz, + &

to express the sampling rate. of the arrangement of rayswhere(a b ¢) is a linear function of the plane equations of
in (z,y,z) coordinates. Once the functian, is known, we cp; andcp;1 and can thus be updated incrementally for all
can then determine the required interpolation filter width dftersected voxels along a ray. If we select the horizontal and
magnitude at each location along a ray. It was shown Wertical cutting planes such that the image plane veatasd
[13] that w, is constant along curved rayfront isocontoury’, respectively, are embedded in them, then we can simply
and decreases linearly with the increasing distance of thgetch the footprint polygon by a scale factor of amplitude
isocontours from the source. This linear dependency on réy to achieve the proper lowpassing in thedirection of the
depth means that each voxel kernel must undergo a nonunifoiay grid. (Recall that, in foward projection, we also have to
distortion along a ray. However, since we use identicacale the kernel's amplitude by a factofZ,,.) An analogous
preintegrated kernels in the form of 2-D footprint polygonsaargument can be given for the vertical cutting planes and
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V. CACHING SCHEMES FORFASTER
- EXECUTION OF ART AND SART

In the previous section, we discussed a ray-driven pro-
jection algorithm that minimizes the number of necessary
calculations per projection by utilizing fast incremental ray
traversal schemes. In this section we will investigate to what

{ extent previously computed results can be reused, i.e., stored
or cached, so the number of redundant calculations can be
minimized.

z image plane Caching can be performed at various scales, with the
Source < Y largest scale being iteration based, in which all weights are

Kemel of voxel vy, precomputed and stored on disk. The number of weights to be

Fig. 4. Error for different schemes of measuring the ray grid sampling rat_%t.ored can be estimated as fOIIOW_5- If we only consider voxels
in the spherical reconstruction region, then the total number of
relevant voxelsV ~ 0.5n%. With a square footprint extent of

4.0, the average number of rays traversing a footprint polygon

the'foctnltpn;} p<oli/gonT|fT<u 1>thl Orﬂ?“’ > 1. (ij n foPNardt is 16. Thus, the number of relevant weights per projection is
projection, £, = 1 0r £, = 2, In€n the ray grnd sampiing rat€q .3 p- 5 numper of projections = 80 and a voxel grid

in that d|re_ct|on IS SL_Jff|c_|ent such that no aliasing can 0CCUEt 1083 voxels, the total number of relevant weight factors
However, in backprojection we do need to scale the amplitude

of the kernel whenevef, < 1 or 7, < 1. Here, the scale iIS"then about 1.3 trillion floating point values and 5.3 GB of

. . . I . This is clearl much to hold in RAM. On th
factor isT,, or T, respectively. Note that in order to preservaCtua data s is clearly too much to hold On the

e : ; - _
. . . other hand, if we just held the coefficients for one projection
the orthogonality of the two cutting planes, in the general case _ .. o -
) L . . ar a time, we would need 67 MB of RAM. This is in addition
one cannot achieve thatlies in the horizontal cutting planes ) .
) LT . to the volume data and other data structures, but is feasible
and, at the same timey lies in the vertical planes. However,

since we flip the main viewing direction as soon as the ang‘\f\é'th today’s w_orkstat|ons. Howeve_r, then we would have to
d a 67-MB file for every new projection that we work on. It

between the ray direction and the major viewing axis exceeds,. . . . )
y J 9 likely that the disk transfer time exceeds the savings in that

45°, the angular deviation of the true orientation of the cuttin? In addition. th d d d tically f
plane and the correct orientation is small (less than 5 ase. n addition, the memory demands grow dramaticaly Tor

The incremental scheme to compute the distance betwé%‘?ger volumes, since the number of weights to store Is eight

two cutting planes requires about one addition per voxel Hﬁne_s the nl;r_nber O; Vﬁxﬁlsj . dthei level i
each slice. Since in a single-orbit reconstructioties in the ~ >Nce caching on both the iteration and the image level is not

-z plane andw is aligned with they-axis of the volume practical, one may exploit caching on the ray level. ART is an
grid, a more efficient way is to measure the vector for a €Sy candidate for this form of caching since a pixel projection
ray r;; in the volume slice most parallel to the projectioﬂs immediately follpwed by a pixel backprpjection. S_o one can
plane and use this,. vector for all footprint polygons in this just cache the weight factors calculated in the projection step
plane. This is shown for the 2-D case in Fig. 4. Hefg,,, [OF the backprojection step and speedups of close to 2.0 can
is the distance measured by the scheme described first, whiferealistically expected, with only little memory overhead.
Topprox iS the slice-based measurement. The error is given byFOr SART, two special problems need to be addressed. One
Trore & Tapprox - €08 @;. This means that the simpler method@s to do with the use of a ray-driven projection algorithm,
underestimates the grid sampling rate by some amount. WRile the other deals with caching. While ART was easy to
the case ofu,,, the maximum error occurs for voxels on thd?@ir with a ray-driven projection algorithm since it is itself
view-cone boundary. Here, for a cone half-angle= 30°, ray-driven, the backprojection step of SART is inherently
the simpler method would choose a kernel that is abov@xel based and requires some adaption in order to limit

1/0.86 = 1.15-times larger than it needs to be and thugiemory requirements. In a brute-force implementation, a
lead to a greater amount of lowpassing of voxgl, . in backprojection would require two additional volumes, one to

the « direction than is required. However, the fact that thetore the weight accumulation and one to store the correction
factor cos(y) is rather small and approaches values close &cumulation per voxel (see [13, eq. (4)]). Only after all
1.0 quickly as we move away from the view-cone boundarpackprojection rays have been traced can the correction buffer
makes this approximation a justifiable one. In the case,of ©Of each voxel be divided by the weight buffer to form the
which determines the kernel stretching factor in the plane, Vvoxel correction value. Thus, we need extra memory to hold
the error can get a bit larger. Here, the rays can meet the® floating point values. We can reduce this amount by an
volume slice plane most parallel to the viewing plane at ader of magnitude t@n? by tracing all rays simultaneously
angle of up to 45. Greater angles are avoided since we flip thi& form of a ray front. Since the projection algorithm is slice-
major viewing direction as soon as an angle of #exceeded, based, i.e., it considers all voxels in one volume slice before
as was mentioned above. Thus, the efff,.ox/Teorr When it moves to the next, we can step the entire ray front from
determining the kernel stretch factor for thedirection can one slice to the next, buffering and updating only the voxels
grow up tol/cos(45%) = 1.41. within the active volume slice.

T, = 1/wp,. Also recall from [13] that we only stretch
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voxel kernels

next projection ray r,, ;
current projection ray r,,
previous projection ray Tp-i
current backprojection ray ry,

previous backprojection ray ry,_;

‘ kernels about to be added to slab, @ kernels presently in slaby,
O kernels presently in slab, @ kernels just removed from slab,,
kernels just added to slab,, ® kernels already backprojected

\//\ kernels waiting to be projected

Fig. 5. Caching in SART (illustrated for the 2-D case). A partial kernel set of the volume is shown. Theg riaythe current projection ray. Kernels

on its path that are not currently in sjatare added to slgb Once kernels have been entered into slaheir computed weights are cached. After the

ray has been cast, all kernels in glathat have just been fully projected are transferred toslalong with their cached weight factors. Ray is the

current backprojection ray. All kernels within its path are present in,stattdl are backprojected along ray. The voxel weight and correction accumulation

buffers are updated in this process. All voxels that have been fully backprojected are then updated by their accumulated correction value and removed
from slah,. In 3-D, the rays become plane sheets (compare Fig. 3).

In SART, the caching of weights computed during projedactors and its correction value. As sjatmoves upward as
tion is also more difficult, since first an entire image mustell, voxels at the bottom of slaglcan eventually be updated
be projected before the grid corrections can be backprojectbyg.the accumulated correction buffer term and removed from
Thus, at first glance we may only be able to use caching siah,.
an image level. This would require us to allocate memory Let us now compute the memory requirements. The width of
space for8n? floating point weights, e.g32n3 bytes, which aslab is about four sheets, and a voxel kernel with an extent of
is in addition to other memory requirements. While for= 4.0 is traversed by about 16 rays. Thus, the data structure of a
128 this may be feasible for an average workstation (tHgab voxel consists of an array of 16 weight factors in addition
required memory is then 67 MB), for = 256 the memory t0 two accumulation buffers. Thus, the memory complexity
requirements would be a hefty 536 MB, which may not bfr the two slab buffers is roughlg(18 + 18)n? = 144n°.
readily available in most workstations. Thus, in real worldhis includes the memory for the correction and accumulation
applications, caching on the image level is not feasible, Bgffers of slap. Thus we would require approximately 10 M
least with today’s workstations, and one must design a cachigmemory for a 128 volume. Note that this caching scheme
scheme at a finer granularity. goes well with the variable-size voxel kernels, since here the

For this purpose, we designed a scheme that keeps P Width is constant for all voxels with, > 1 and7,, > 1.

active slabs, composed of sheets of voxel cross sections. These
voxel cross sections are formed by intersecting the voxel VI. RESULTS

kerngls by conseputive hori;ont_al cutting planes (recall Eig. 3).Table | lists the run times of the various ART and SART
In this scheme, illustrated in Fig. 5, one active slab, Sla ncarnations that were discussed in the previous sections. The
composed of voxels that are currently projected, while thgn times were obtained on an SGI Indigaorkstation and

other, slap, is composed of currently backprojected voxelsefer to a reconstruction based on 80 projections with a cone
Here, a slab voxel is a data structure with a weight array agfigle of 40.

an accumulation buffer for weight and correction sums, to be| et us first look at the SART correction algorithm. We
used during backprojection. Slab sjab always trailing slap.  observe in Table | that for parallel-beam reconstruction with
At first, slah, caches the weights computed in the projectioBART the voxel-driven approach is about 33% faster than
step. Then, as slgbmoves upward in the volume, voxels onthe ray-driven approach. Hence, it is more advantageous
the bottom of slap have eventually been completely projecteth the parallel-beam case to perform the grid projection in
and can be removed from slahnd added to slal{along with object order (i.e., to map the footprint polygons onto the
all cached weights). A linked list can be used to facilitate thecreen) than to perform the projection in image order (i.e.,
passing of the data. Once all voxels that a ray can traverse hae@erse the array of footprint polygons by the pixel rays).
been transferred to slabthe ray updates the accumulatiorThe computational savings in the voxel-driven algorithm for
buffers of the affected slabvoxels, using the cached weightparallel-beam projection come from the fact that here the
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TABLE |
RUN-TIMES FOR SART, UsING BOTH VOXEL-DRIVEN AND RAY-DRIVEN SPLATTING, AND FOR ART USING RAY-DRIVEN SPLATTING (VOXEL-DRIVEN
SPLATTING |s NOT APPLICABLE FORART). THE EFFECT OF CACHING AND VARIABLE-SIZE INTERPOLATION KERNELS ON THE RUN TIME |s ALsO
SHOWN. (Tcon: TiME FOR ONE GRID CORRECTION STEP, CONSISTING OF ONE PROJECTION AND ONE BACKPROJECTION Tjter: TIME FOR ONE
ITERATION (ASSUMING 80 PROJECTION IMAGES AND A CONE ANGLE OF 40°) T5;ter: TIME FOR THREE ITERATIONS, THE MINIMUM TIME TO
OBTAIN A RECONSTRUCTION OFGOOD QUALITY [13]. TiMINGS WERE OBTAINED ON A SGI IRis INDIGO 2 wiTH A 200-MHz RS4000 CPU)

Method | beam ﬁl;t]igf cache V[?cr;:gjc Teorr (s€€) | Tier (hrs) | Trjger (hrs)
SART | parallel voxel - - 353 0.78 2.35
SART | parallel ray - - 47.1 1.04 3.14
SART conc voxel - - 144.9 3.22 9.66
SART cone ray - - 60.9 1.35 4.05
SART cone ray - v 73.2 1.63 4.89
SART cone ray v - 43.6 0.97 2.90
SART cone ray v v 52.4 1.16 349

ART cone ray - - 54.2 1.20 3.60
ART cone ray - v/ 68.2 1.51 4.53
ART cone ray v - 30.3 0.67 2.01
ART conc ray v v 38.1 0.85 2.55

footprint-screen mapping is much simpler than the mappimdaborate caching schemes, this speed advantage shrinks to a

described in Section I, since the perspective distortion doctor of 1.15.

not have to be incorporated. In cone-beam reconstruction,

on the other hand, the situation is reversed in favor of the VIl. CONCLUSIONS

ray-driven projector. Here, the speedup for using the ray- . I

y-dariven proj peedup for using Y The prime motivation of the work presented here was to

driven projector over the voxel-driven projector in SART is, . . . .

devise techniques that make algebraic methods more efficient

about 2.4. Thus, since the use of the image-based voxel-dri\fen . o . . .
or routine clinical use, while not compromising their accu-

splatting algorithm is not practical for ART, we conclude thaf cy. In particular, the fact that algebraic methods have been

. [
cone-beam reconstruction should always be performed Wgtéﬁown to be capable of producing comparable reconstructions

ray-driven prpjectors. . ) nd, in some settings, even better reconstructions than FBP
Now let us investigate the computational differences of AR akes this effort all worthwhile

and SART and the effects of caching and variable-size splattingSinCe the projection algorithm represents the main source

kernels on run time. Comparing the costs for SART and AR[¢ AT computations, we first focused on this portion of the
we notice that uncached SART is about 12% slower tha)ﬂ(h-l- algorithm. We started by describing a new cone-beam
uncached ART. This is due to the extra computations requirggiension to Westover's voxel-driven parallel-beam splatting
for weighting the corrections before a voxel update and dugyorithm [19]. This new extension removes almost all inac-
to the overhead for managing the additional data structurggracies of previously outlined extensions of that sort. Then
The timings also indicate that the use of a depth-dependgi analyzed existing ray-driven projectors in terms of their
kernel size incurs about a 25% time penalty for ART and 20%jtapility for perspective cone-beam reconstruction. It was
for SART. In terms of the benefits of caching, we notice thagyng that, generally, a ray-driven algorithm is far more suited
the straightforward caching for ART speeds reconstruction lyy the perspective cone-beam projection case than a voxel-
a factor of 1.78. Stated in another way, cached ART reducggven splatting algorithm. However, it was also found that
the time for a projection/backprojection operation to the timegor parallel-beam reconstruction with SART, the voxel-driven
equivalent of 1.12 projections. The more involved caching f@platting algorithm is faster. In the quest for an efficient ray-
SART, on the other hand, achieves a speedup of 1.4. Cachiftiyen algorithm for perspective 3-D projection we observed
in conjunction with the variable-size kernels produces simil@#iat most of the existing ray-driven algorithms were not
improvements. Since the reconstruction results for SAR&pplicable for the special needs of cone-beam reconstruction.
using constant-sized kernels, and ART, using variable-sig¢e hence extended a conceptually existing 2-D ray-driven
kernels, are similar [13], it makes sense to compare thessatting algorithm into 3-D and optimized it for speed and
two methods as well. In this respect, ART, with variableaccuracy. We also described how this algorithm is best used
size kernels and easy-to-implement caching, is about 1.5iasonjunction with the depth-dependent interpolation kernels
fast as uncached SART. However, if SART is enhanced wittecessary for cone-beam ART.
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However, a fast projection algorithm is not enough. We
must also reduce the actual complexity of the overall pro- :
jection—backprojection framework. This can be achieved by i
designing schemes that memorize or cache weight calculatioyo/ \ -
2-kernExt ?

2 kernFxt stretching function z,/z,.

performed during projections, for their reuse in subsequelt
backprojections. Since it proves prohibitive with regard tg<
today’s memory cost to perform caching on an iteration-leve T el / /
or image-level, we devised an easy-to-implement ray-based~——"_| erme L

caching scheme for ART and a more elaborate ray sheet- \ tretching function 2/ N
based caching scheme for SART. The latter is more involved stretehing function 72 2,
since ir_1 SART a v.oxe.l must first be fully projegted pefore a (a ()
correctlon/backp-rOjectlon can be performed. on it. Using the'§|e. 6. (a) Stretching the interpolation kernel at= z, according to the

concepts, experiments revealed that caching allows ART d&spective stretching functiosy = which has the form of a trapezoid. (b)
reduce the cost for a projection/backprojection operation $wretching the kernel by the function, /=, which is a box.

the time equivalent of 1.12 projections, while SART has a

more moderate speedup, as was to be expected, due to
more complicated caching mechanism. o[gee Fig. 6a].

The projection methods outlined in this paper for cubic gri But how is this done in practice? The relative kernel

also fully extend to the dodegahedral or body-centered g.r(ijglsstortion varies depending on the kerneks coordinate.
that wehre prc;poszd byﬂl:/latej atr;d L$W|tt [Ill]t. ('kl)'hese gnos; ply preintegrating the distorted kernel for one kernel center
were shown 10 reduce the umber ot VOXe's 0 DE ProCeSIfliion, = z1 and then scaling this footprint for another ker-

by abou'F 30%.) Since the d0(_jecahed_ral grids are rfaally jusFI atz = 7,z 71, based on the ratie, /=, does not yield
stack of interleaved square grids, the incremental grid traver correct ;‘ootprint of a distorted kernel at that location. If

algorithms have to be modified only slightly. we wanted to use preintegrated footprints that bear the correct

While this paper focused mostly on fast |mplementat|0r]§emel distortion, we would have to use a different footprint for

of ART-type methods in the context of 3-D cone-beam ez, '\ emel center location. This is obviously impractical.

construction, it should be noted that different parts of th|<_.=| wever, we realize that in most casess 2. kernExt. For
material presented are also relevant for parallel-beam aiﬂatance,for a 198volume. a 128 prdjection image .and a

fan-beam reconstruction. For instance, the caching sche%I cone angle, the fact@-kernExt /. is about 0.03 volume

that were .desc'rlbed n Section V can be applled for nits. Thus, we may stretch the kernels by a box instead of
beam configurations, while the ray-driven algorithms are al%lo?srapezoid [see Fig. 6(b)] without committing much of an

preferable in the fan-beam se_ttmg. However, aswas mer_mor}ser or (i.e., the error is 0.015 volume units). This minimal error
before, for parallel-beam projection the ray-driven algorlthmes

hables us to use the generic footprint polygons, scaled up in
0,
are gen.erally slower (by about 20%), due to the extra overhet%(fx_ and y direction, depending on their location alorg
for setting up the rays.

With memory costs decreasing at a fast rate, it may be
possible to use image-based caching in the near future, even
for large reconstruction volumes. However, at the present timeThe authors would like to thank the anonymous review-
it seems infeasible to do so, which hampers the efficiency efs for their careful reading of the manuscripts and their
SART. In addition, with disk-to-memory bandwidths increassuggestions.
ing, it may be possible to load precomputed weights faster
from disk than they can be computed on the fly for every REFERENCES
projection. However, as CPU speeds are also increasing at . _ _
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