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Abstract

.-\ novel approach to carrccting for intensity non-uniformity in ~vIR data is clescribed

that achieves high performance without requiring supervision. By making relatively

few assumptions about the data. the rnethod can be applied at an early stage in an

automated data analysis. beforE' a tissue intensity or geometric model is available.

Described as ~on-parametric :\"on-uniform intensity )Jormalization (N3L the method

is independent of pulse sequence and insensitive to pathological data that might oth­

envise violate model assumptions. To elinlinat.e the dependenLe of the field estimate

on anatomy~ an iterative approach is enlployed to pstÏInatc both the multiplicative

bias field and the distribution of the truc tissue intcnsities. The performance of this

method is evaluated using bath real and simulated ~[R data. Preprocessing of :\:IR

data using :"i3 is shown ta substantially inlprOVE' the accuracy of anatomical analysis

techniques such as tissue classification and cortical surface extraction.
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Résumé

Cne nouvelle façon de corriger le problènle de non-uniformité d ~intensité crimages de

résonnance magnétique (R.\I) est décrite. Cette méthode atteint de hautes perfor­

mances sans surveillance. Etant donné que la nléthode fait peu de suppositions issues

des données, elle peut être utilisée dès le prernier stade (ranalyse automatique! avant

même qu ~un modèle dïntensité des tissus ou de géometrie ne devienne disponible.

Décrite comme une ~ornlalization :\on-paramétrique dïntensité Non-uniforme (N3L

cette méthode est indépendantp de la série de R.\I et est insensible aux données

pathologiques qui auraient \"iolé les suppositions du modèle. Pour que la correction

estinlée ne dépende pas de l·anatolnie~ un algorithme itératif est utilisé pOlIr estimer

le champ multiplicatif correctif et la distribution crintensités du tissu reel. La per­

formance de cette méthode pst (;yaluée (n·ee les données de R~d réelles et simulées.

Le traitement des données R:\I an'c \"3 fait prpuyp d·uue grande anlélioration sur la

précision cranalyse anatonlÎqlle cornlne la classification de tissus et la démarcation de

la surface du cortex.
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Chapter 1

Introduction

An artifact often seen in ~IRI is for tlw signal intensity to vary smoothly across

an image. Variously referred to as R.F inhonlogeneity. shading artifact. or intensity

non-uniformity. it is usually attributed to such factors as poor radio frequency (RF)

field uniformity~ eddy eurrents dri"en br the switching of field gradients. and patient

anatomy both inside and outside the field of \"iew.

In the pasto much of the effort on the correction of intensity non-uniformity has

been directed at reducing the extnlme variations seen in surface coil images. How­

ever. recent interest in autOluatic segmentation has driven expectations of better

unifornüty for routine volume acquisitions. \Vhile the intensity variations of between

10% and 30% often seen in clinical scanners have little impact on visual diagnosis.

the performance of autornatic segnlentation techniques. which assume homogeneity

of intensity within each dass. can be significantly degraded by clinicaUy acceptable

levels of intensity non-unifarnüty. :\.5 éllltonlated rnethods are increasingly used ta

process large \"olurnes of data for longitudinal studies and clinical trials [15J ~ Cl robust.

automatic~ and inexpensive nH'ans of correcting for this artifact is essential for such

techniques to be aCCllrate in labelling each vaxel with a tissue type.

In cansidering ~'1R intensity non-unifarnlity it is irnpartant ta distinguish between

the rapid inter-slice variations sornetimes observed with two dimensional multi-slice

sequences and the smooth intensity variations present in most acquisitions including

those using 3D sequences. The fornler can he rIealt with by nlethods which narmalize

1
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the intensities of indi\'idllal slices [6. -13. 46. 58. 60}. Correction for the latter is the

subject of this thesis.

A wide variety of techniques have been proposed to correct for intensity non­

uniformity. These can he cëltegorized as those relying on theoretical modelling. those

requiring specialized scanning techniques. and those that estimate the non-uniformity

directly From the data. Theoretical Illodelling techniques have not gained widespread

acceptance because detailed Inodels of the ~IR machine and subject are seldom avail­

able in a clinical setting. Sirnilarly. specializecl scanning is often impractical and

precludes retrospective correction of the data, ~[ethocls that estimate non-uniformity

directly from the data are the most practical and economical: however! the neecl

for expert supervision. in choosing a set of saInpIe \·oxels expected ta have similar

intensities for example. has prp\·ented their wiclespread use.

This thesis describes a no\·pl nlCthod of retrospectively correcting for intensity

non-uniformity in cIinical ~IR scans of the head. Referred to as non-parametric

intensity non-uniforrnity nornlalization (:\3). the Inethod is shown to be rabusL ac­

curate! and fully automatic. These reslllts are validated using both real and simulated

:\JR data. In comparison with other methods. the :\"3 method is shown ta perfarm

favorably! which given that the rnethod is automated and requires few assumptions

about the nature of the data. Illakes it suitable for a broacl range of applications . .-\S

examples. the tasks of tissue classification. cortical surface extraction. and non-linear

co-registration are demonstratpd to bpnpfit frOIn llsing :\":3.

2
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Chapter 2

Intensity non-uniformity

2.1 Physical causes of non-uniformity

Intensity non-uniformity is the smooth intensity variation often seen in ~·[R images

caused by snch factors as:

• inhornogeneous radio-frequency (RF) excitation

• non-uniform reception sensitiyity

• electrodynamic interactions with the abject often described as RF penetration

and standing waye effe('ts.

Other less important cffects contributing to non-uniformity include:

• eddy currents drivpn by tllP switching of field gradients

• mistuning of the RF coil

• bandwiclth filtering of the data

• geometric distortion.

Reviewing this list of causes in reverse order. the irnpact of geometric distortion on

intensity non-uniformity can nornlally be neglected for clinical scanners. Since routine

calibrations show at most a few rnillimctres of in plane geometric distortion over a

field of view the size of a head. and these distortion fields are slowly varying, one

can expect corresponding changes in intensity on the order of 1%, which is small

3
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compared ta the non-uniformity eaused by other factors. Investigation by Simmons

et al. [46] did not find intensity variations caused by geometric distortion in a 1.5 T

scanner.

In 1IR. the imaging process pncodes spatial location in terms of resonant fre­

quency-; hence. frequency deppndent variations in the sensitivity of the RF reception

system cause corresponding intensity variations in the resulting image along its fre­

quency encoding direction. .-\ similar problem arises if the filter used to limit the

bandwidth of the received signal ha.."i Cl freqlleney response that is non-lluiform. Since

the sensitivity of an RF coil is most uniform near its resonant frequency and the coirs

resonant frequency depends on the subject within. intensity uniformity is improved

by tuning the coil to the ~,IR resonant frequeney before each scan. :\tlodern scanners

tune themselves to cach patient and use filters \Vith relatively fiat frequency responses;

hence~ intensity variations clup to rnistllning of the RF cail and bandwidth filtering

of the data can he eonsidel'Pcl deficiencies in the scanner.

Sinlmons et al. [46] han~ observecl that intensity non-uniformity increases as the

repetition time of the acquisition sequence decreases. Since the frequency of field

gradient switching also iU(Teases with decreasing repetition time. it has been postu­

lated that this non-uniformity is cë:lllsed by eddy Cllrrents in the subject induced by

the switching of gradients. .-\lthollgh the rnagnitudc of this effect is cl1rrently small

conlpared ta othcr cffects. the trend in }'IR technology is towards faster switching

gradients for more rapid inlélge acquisition. sa the significance of this effect should

increase.

~IR imaging involves excitation of the subject llsing Cl radio-frequency (RF) nlag­

netic field and the subsequent reception of the RF rnagnetic field emitted by the

subject. Spatial variations in both pxcitation field strength and reception sensitivity

can produce significant variations in measured signal intensity. These effects have re­

ceived considerable attention in the literature and have led ta the llse of the somewhat

misleading term ·'R.F inhomogeneity~~ being used ta describe intensity non-uniformity.

Sensitivity is the ratio of rneasured signal intensity to emitted signal intensity. As

the sensitivity of the reception coil and data acquisition system is generally assumed
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ta be linear. spatial variations in sensitivit~· can be mocIelled as a. multiplicative field

that scales the measured intensities. Given the simple geometry of the receiving coil.

this multiplicative field can be assumed ta vary smoothly across the field of view.

The relationship between the strength of the excitation field and the measured

intensity is non-linear and rnay also depend on the magnetic relaxation properties.

Tl and T2 ! of the subjeet. Henee. the variations in intensity eaused by variations

in the excitation field strenp;th cannot be exactly rnodelled by a smoothly varying

multiplicative field.

Assuming linearity of the RF system and coils. one can expect sensitivity varia­

tions to have the same fonn and relative magnitude as variations in the excitation

field strength. However. sincr the inlpaet of sensitivity variations on the measured

intensity is more simply rnodeled than thosc due to excitation. steps are usually taken

to minimize the intensity varia.tions introdllced by excitation. For example~ standard

spin echo sequences are designed to rnininlÏze flip angle errors caused by variations in

the excitation field. In addition. as signal ta noise ratio is not an issue during exci­

tation. a body coil is often llsed for excitation during heacl scans ta take advantage

of the greater uniformity of the larger coi!. Thcsc factors have led ta the widely used

model of intensity non-llniformity as a nnIltiplicativc field corrupting the measured

intensities. The valiclity of this modcl is considered further in Section 2.3.2.

2.2 Review of intensity non-uniformity models

A number of authors have C'onducted theoretical analyses of the excitation field (Bd

and reception sensitivity variations that contribute ta intensity non-uniformity. This

kind of analysis is greatly sinlplifieci by treating the excitation field as statie and

using the Biot-Savart law to compute nlagnetïc field strength by integrating the con­

tributions of nearby currcnts [36. 38}. \'Vhile this approach simplifies the modelling

of complicated coil shapes~ it ncglects penetration and standing wave effects that

are present under the truc dynanlÎc conditions. Sinee the ~[R resonant frequency

increases with main magnetic field strength Ba, this approximation of a quasi-statie
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excitation field becomes less valid at higher field strengths.

The results of an analysis asslllning static fields will at best match measurements

made by placing a small pickup coil within the unloacled RF coil. Head coils have been

measured in this manner to ha\·e in-plane llniformity with as little as 1% variation

when operating at 64 ~,IHz (suitable for a standard 1.5 T magnet). HoweveL sinee

intensity variations of 207{· are typically observed at this field strength~ a mode! that

prediets 1% variation is clearly unsatisfactory.

Initial attempts at dynanlÎc modelling of the 1IR inlaging process [.t 35] predicted

that penetration effects woulcl significantly degrade performance at frequencies above

30~IHz. As 6411Hz (l.5T) machines have since hecome standard for clinical imag­

ing~ these predictions were ovprly ppssimistic. SOlne authors [44. -16] account for this

discrepancy by suggesting that inslliating structures in biological tissue prevent large

current loops from fornling. Howcvpr. calclliations by Clover et al. [19] show sub­

stantially greater field penetration 1 which ha\"e been confirmed by experiments \Vith

a cylindrical phantom at G-L\IHz. Zypnlan [62] has performecl a sinlilar calculatian

taking into accaunt the inftllencp of the RF coil. .-\.nalysis of this kind predicts in­

tensity variations of lOCX, to 209[; in a head size structure. which is consistent \Vith

what is typically observpcl. The [Ila~nitlldeof t hese variations suggest that electrody­

namic interactions. rather t han other dfects snch as deficiencies in the scanner. are

the primary cause of intensity non-uniforrnity for 1.5 T rnachines.

A difficulty with analytic nlodelling- is that closed fornl solutions are only available

for simple geometries. Finitc pleUlent analysis offers a Inore flexible approach ta

dynarnic modelling of complicatecl structures. The problenl of modelling the human

head at 64~IHz and 1i5:\IHz has bef'Il considered by Simunié et al. [-1 i] and Vaughan et

al [55] respectively. Simllnié has validated a moclel of the fields generated by a linearly

polarized saddle coil in vivo llsing the dual flip-angle technique described in [50].

These results predict variations on the order of 30%. Similar measurements [50]

using a bird cage head c:oil to scan a hunlan heacl showed less than 10% variation in

1 A sign error in equation (i) on p. 632 of (-1] accounts for this discrepancy. This equation is

presentcd in its correct form in Glm·er et al. [19].

6



.{ BI field strength. Provided a model of the subject is available. finite element analvsis

is an accurate method of predicting the field \"élriations in a scan.

2.3 Characterization of intensity non-uniformity

\Vhile simulation of intensity non-unifornIity is not always a practical method of

correcting for it. simulation is a nseful tooi for investigating its character under a

variety of conditions.

2.3.1 Simulated spin echo images

The analytic modelling nlCthod described in [19. -t8] can be nsed to deri,"e expressions

for the excitation field and recpption sensitivity present when scanning a uniform

cyIinder with elliptic cross section. L"sing dimensions similar to those of a human head.

these expressions are useful to illustratc the form of non-uniformity one can expect

to observe. .-\.ssurning unifornl Lircularly polarized fields from the unloaded coil and

neglecting magnetic rela.\:ation cffects yields simulated spin echo images for circular

and elliptic geometries as shawn in Figures :2.1a and :2.1 b. .-\lso shown are profiles

through the principal axes far thp twa cases. :\ote that the eiliptic cyIinder shows

a diagonal pattern of non-uniforrllity. while the pattern for the circular cylinder is

radially symmetric. The Inagnitude of the non-uniformity is consistent with the levels

of non-uniformity seen in typical brain scans. 15'* ta 209t variation..-\lthough these

simulations only account for nall-uniformity caused by electrodynamic interaction

\Vith the subject. the p\'ideuc(' suggests that this is the primary cause of intensity

non-llniformity. For conlparison. three Tl weighted scans of the head are shown in

Figure 2.2. AIl tluee show a diagonal non-llnifornlÏty pattern in the white matter.

2.3.2 Pulse sequence sensitivity

The choice ofimaging sequence has an impact on the magnitude of the non-uniformity.

The signal measured at location x for a spin ccho pulse sequence. neglecting relaxation
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Figure 2.1: Simulatecl spIn peho inlages through a cylinder with circular or ellip­

tic cross section. using noruinal 90° and 1800 fiip-angles. The main magnetic field

strength (Bo) is 1.5 T. The cylinders han~ a relative permittivity é r = 80 times that

of free space and a resistivity p = 2 nnl. (a) !';pin echo iInage of circular section with

diameter 15 cm. (b) spin (lcho irnage of elliptic section. The rnajor and minor diame­

ters are 20 cm and 15 cm respectivcly. (c) profile along diameter for circular section.

(d) profile along principal axes for elliptic section.
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Figure 2.2: Tl weighted brain scans showing diagonal non-uniformity~brighter at the

top left and bottom right. The gray scale has been compressed to exaggerate the

intensity variations.

effects. is given by the expression [19)

S(x) - R(X)SSE(X)

SSE(X) - 50 sin:l B(x)

fJ(x) (il-j2)IB(x)I/Bm

R(x) R-oB-(x)

(2.1)

(2.2)

(2.3)

(2.-1 )

where SSE is the emitted signal. S is the measured signal. () is the flip angle. B is the

excitation field. B m is the field strength needed to produce a 90° flip-angle. and R is

the reception sensiti\'ity. Consider a first order perturbation on the measured signal

S = Sm + 5S caused by a perturbation B = B m + 6B ta the excitation field strength

and a corresponding perturbation ta the reception sensitivity. Substituting these

expressions into equation (2.1) and treating the signal as real leads to an expression

for the sensitivity of a spin echo imaging sequence

6S
1+~

Sm

B m +6B '1 (iïB rn +6B)----sin· -----
Hm 2 Bm

(
1 + _e5B) cos.1 (~_6B)

Bm 2 Bm

9



.( 6S
1+­

Sm (

1 riB) ( 3ïï
2 (6B):! (cSB):l)1,- 1-- - +0-

Bm 8 B m Bm
.."... ,

(.) -)_.u

reception excitation

JB :37ï
2 (6B):! (6B):l---- -- +0 -

Bm 8 Bm B m
(2.6)

where the notation o(x)n denotes terms in l of order n and greater. This expression

represents the fractional chan~e in measured signal caused by a given fractional change

in field magnitude and reception sensitivity.

It should be noted from equation (2 ..3) that. while the dependence on reception

sensitivity is first arder. the dependence on excitation uniformity is second arder.

Hence the sequence is less sensitive to variations in the excitation field than variations

in sensitivity~ which supports the argunlent that intensity ,"ariations can be modelled

as a multiplicative field.

The comparable expression for a gradient echo sequence which only in,"olves a

single 90° RF excitation is

cS S _ âB ,,2 (6B ) 2 ( 6B ) :J
----- - +0 -
Sm Hm 8 Bm Bm

( .) -)-" /

\VhiIe the sensitÎ\'ities of 90° gradient echo and 90° -180n spin echo sequences differ

only in the second order terms. it should be noted t hat gradient echo sequences

are commonly used with snIaller flip-angles. For flxanlple. the expression for the

sensitivity of a gradient eeha sequence with a -l5D degree flip-angle is gi"en by

6S _( iï) âB , iT ( :7) (6B):! (6B)3-- 1+- -j- 1-- - +0-
Sm -l Bm -l 8 Bm Bm

(2.8)

which means that this sequence is 78CX more sensitive to field \'ariations than the

either the spin eeha or 90° ~radient echa sequences.

2.3.3 Influence of media properties

In continuing to investigate the character of intensity non-uniformity. consider the

effect that the properties of the media haye on the shape of the non-uniforrnity ob­

served. Simulated images for il number of combinat ions of relative permittivity €r

10



and resistivity p are shawn in Figure 2.:3. These values span the typical ranges for bi­

ological tissue. Increasing the resisti\'ity of the media from its nominal value of 2 nm

to 20 nm. as shawn in Fi~un~ 2.3a. decreases the inlage uniformity by enhancing the

signal in the center of the cylinder. This cup shaped intensity variation is referred

to as a standing wave effect. Decreasing the resistivity ta 0.5 nm. as shown in 2.3b.

reverses the cup shaped variation and produces the strongest intensity in a rim at the

edge. The reduced intensity at the center is often described as an RF penetration ef­

fect. caused by induced currents. Reducin~ the relative permittivity to 20. as in 2.3c.

produces the most unifarnl irnage. This is consistent with making the properties of

the media more like the surrounding space. Increasing the relative permittivity to

l60~ a value larger than typically found in biological tissue. produces the wave Iike

non-uniformity pattern shawn in 2.:3d. This behaviour is consistent with the reduced

wavelength being smaller than the dimensions of the cylinder. Ta sorne extent. RF

penetration and standing wan' effects are cornplenlentary in that one enhances the

intensity near the center while the other diminishes it. The properties of biological

tissue are such that there is caneelation between the t\Va effects. perhaps accaunting

for the better than predicted llniformity of 1.5T ~IR images.

2.4 Practical implications of non-uniformity

\Vhile a number of effects ('ontribute ta intensity non-uniformity~ spatial variation

in the reception sensitivity is the nInst important. In clinical scanners a significant

portion of this variation is due to electromaglletic interaction with the subject. Con­

sequently. the artifact is difficult ta manage since each scan potentially has a different

pattern of variation. In addition. the form of the variation has a complex dependence

on pulse sequence. sa one cannat assurue that the pattern of non-uniformity will be

the same for different echos of a rnlllti-echo seau. Civen this qualitative understanding

of intensity non-unifornüty. Olle is in a position ta evaluate proposaIs for correcting

for it.
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(a) p = 20 Ont and f r = 80

(c) p = 2 Qnl and Er = 20

(b) p = 0.5 nm and Er = 80

(d) p = 2~}m and Er = 160

Figure 2.3: Simulated spin echo images of a cylinder with elliptic section for various

values of Er and p. Compare with Figure 2.1 where Er = 80 and p = 2 nnz. i.e. normal

values.
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Chapter 3

Review of intensity non-uniformity

correction methods

Existing methods for non-uniformity correetion can be grouped into three categories:

analytic modelling of the non-llniformity [36~ 38J: modified acquisition protocols that

measure non-uniformity [1. 10. 18. 39. -H. 50. 58J: and data-driven postprocessing [5.

ll~ 12~ 20~ 23. 27~ 31. 32. :3'i. 40. -t9. 5-1. 57}. \Vith the exception of [5. 12}. aIl of

these methods assume a. rllultiplicative non-llnifornlity field that is corrected for by

dividing it from the acquired ilnage.

Analytic methods as described III the previous chapter are a useful tool for

understanding the mecha.nisms that produce the intensity variations. Ho\vever. the

dependence of the non-llniforn1Ïty on the subject geometry makes these approaches

inlpractical since a new nlodel is needed for each scan. \Vhile a patient independent

analytic model may be satisfactory when correcting for the severe non-uniformity

caused by surface coils. a patient-independent approach is not sufficiently accurate

to correct for the diverse and relatively mild intensity variation seen \Vith standard

volume coils.

:\.mong the techniques that involve modified acquisition protocols. the fact

that the non-uniformity is strongly subject-dependent at 1.5 T is grounds ta dismiss

those that involve regular scanning of a calibration phantom [1. 10. 17 l 58J. Besides,

frequent scanning of calibration phantoms is not practical in a clinieal setting.
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A modified acquisition protocol that can he used in vivo is to image \vith a second

reception coil [41] that is more uniform. For example. one might image \Vith bath

a head coil and a body coil. Differences bet\veen the two images that are smoothly

varying can be attributed to intensity non-uniformity. However. since the intensity

variations caused by electrodynamic interaction with the subject will appear in both

images. this method can only cletect the \'ariations caused by deficiencies in the head

coil,

A.n alternative approach described by Stollberger and \Vach [50J measures the RF

excitation field in vivo based on the change in non-uniformity with excitation flip

angle. vVhile this approach cIoes not yield a map of reception coi! sensitivity. one

could assume it is related to the excitation field. then use the two maps to correct

for intensity non-uniformity llsing the Bloch equations [3J. However~ modified acqui­

sition protocol metbods have not been widely used because the extended scan time

is impractical in a clinical setting and precludes retrospective analysis of previously

acquired data.

The most popular of the data-driven postprocessing methods is to use ho­

momorphie filtering to estimate a rnultiplicative non-uniformity field and divide it

from the image. .-\. nunluer of variations on this method have been presented that

differ for the most part in their handling of background regions [23. 27. 31. 32. -16J.

Tbese approaches assunlC that tll(' [requeney content of the non-uniformity field is

lower than that of the anatorny. \Vhile this approximation may be satisfactory for

surface coil images. the non-uniformity seen in \'olumetric acquisitions is too subtle

for this approximation to apply since one cannot neglect the low frequency inten­

sity variations caused by anatolny. In particular. the contrast seen in Tl weighted

scans between regions of grcy and white nlatter is such that \vheu taken together the

whole volume appears to have Ion- frequency spatial variations corresponding to the

distribution of these regions.

A number of authors ha\'c presented schemes to eliminate the low frequency com­

ponents of the anatorny when estirnating non-uniformity. These methods can be

distinguished by their rnodelling assumptions as: (i) tissue intensity model based; (ii)

14



( spatial homogeneity based: and (iii) field model based. Tissue intensity model

based methods such as those described in [12. --ID) segment and remove the bright

cerebrospinal fluid from T2 and proton density (PD) weighted scans and then apply

a homomorphie filter and divide approach to the remaining. approximately isointense,

brain tissue. These approaches cannot be applied to Tl weighted scans due to the

contrast between grey and white matter intensity.

An alternative tissue model approach described ln [Il J is to segment the white

matteL estimate the non-uniforrnity in it. and extrapolate that estimate to the rest of

the brain. A difficulty \Vith this approach is that there are regions of the brain without

white matter in which thp quality of the extrapolated non-uniformity estimate rnay

suffer. Tissue intensity nlethods which address this problenl by taking into account

the non-uniformity of several classes of tissue have been proposed in [5. 20, 57J. These

methods also achieve better acellracy through sorne form of iteration.

.-\. common difficulty with tissue intensity model based methods is the determina­

tian of the mode!. In general. a different nlodei is needed for each pulse sequence and

perhaps for different scanners. \Vhile automated methods of developing such a model

can he devised. the Ileed for such a model limits the application of these nlethods.

An alternative model assunlptioll is that of spatial homogeneity. The method

described in [37) uses Le.J [33] segmentation to identify contiguous regions irrespective

of their tissue type..-\. smooth field is globally fit to the log intensities of aIl regions

allowing for a constant offset in eadi regions to reReet its tissue type. Given a robust

segmentation~ this method can he' applied to images of any pulse sequence. However,

since this method requires contiguous regions of homogeneous tissue. the correction

may suffer in areas of the hrain snch as the cerebellum where such regions are not

present. A second difficulty arises if contiguous regions are mistakenly broken inta

smaller regions creating additional undesired degrees of freedom: the smaller the

regions. the less information they contribute to the field estimate. In the limiting

case an isolated voxel contributes no information. Since this technique is heavily

dependent on a successful segnlentation. one can expect it to perform best on images

with large scale structure.
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A third type of modelling- assumption is that of a field model: the assumption

that non-uniformity blurs the histograrn of the data. in a way that it can be identified.

quantified, and removed. This is the basis of the N3 method. described in the following

chapter.
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Chapter 4

The N3 method

Non-parametric intensity non-uniformity nornmlization (~3) is a new data-driven

method for correcting for intensity non-uniformity in :\IRI data. ft is non-parametric

in the sense that it requires neithcr a parametric model of tissue intensities nor the

decomposition of the intensity distribution into a limited number of tissue classes.

\Vhile making no assumptions about the kind of anatomy present in a scan. the

method is weil suited to removing the relatin~ly subtle intensity variations seen ln

standard clinical scans of the head.

4.1 Non-uniformity model

The problem of torrecting for intensity Ilon-llniformity is greatly simplified if it is

modelled as a smooth multiplicatin~ field. :\.s described in Chapter 2. this model

is consistent with the mllitiplicatin~ non-uniformity arising from variations in the

sensitivity of the reception coil and to a lesser extent the non-uniformity due to

induced currents and non-uniforrn excitation.

Consider the following rnadel of image fornlation in ~[R

l'(X) = ll(x)f(x) + n(x) (-1.1)

.{ where at location x. v is the nleélsured signal. Il is the truc signal emitted by the tissue.

f is an unknown smoothly nuying bias field. and n is white Gaussian noise assumed

li



.{ to he independent of Ll. The problem of compensating for intensity non-uniformity is

the task of estimating f. The combination of additive and multiplicative interference

makes this task difficult.

Consider a noise free case in which the truc intensities il at each voxel location x

are independent identically-distrihuted random variables. Csing the notation û(x) =

log(u(x)) the iUlage fornlation ruodel becomes additive:

"'(x) = ù(x) + f(x) (4,2)

Consider the distribution of \'allleS that f takes over the region of interest ta he the

probability distribution of a ralldom \Oariable. For example, if f is a linearly increasing

field aligned on a rcctangular re~ion then f will ha\"(~ a uniforrn distribution,

Let C, l-. and F he the probability densitips of il. r·. and f respectively. ~Iaking

the approximation that iL and j are independent or llncorrelated random variables.

the distribution of their SUIn is found by convolution as follows (for details see .-\.p­

pendix B.)

(4,3)

.(

The non-uniformity distribution F ('an be \'icwcd as blurring the intcnsity distribu­

tion LO,

4.2 Correction strategy

From a signal processing perspective, the blurring due to the field reduces the high

frequency components of U. The task of correcting for intcnsity non-uniformity is

that of restoring the frequency content of C. Since the shape of the blurring kernel

F is not known. it is not clear \Vhat frequeney conlponents of [J need to he restored

ta get From the observcd distriblltion \ ° ta the true distribution Co. However. since

the non-uniformity field j is rflstricted to be srllooth and slowly varying~ there are

relatively few possible distributions [0 eorresponding to a given distribution \ -. In

N3, the approach to correcting for non-uniformity is to find the smooth,
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-( slowly varying, multiplicative field that maximizes the frequency content

ofU.

As evidence of the sinlple fonn of the distribution F. consider the distributions

shown in Figure 4.1. These have bpen derived from putative fields obtained by fitting

the intensities of manually identified points of nominally isointense white matter on

twelve individuals. Each individual was scanned using the same pulse sequences but

on a different ~IR machine (data eoIIeeted as part of il multi-center dinical trial).

Included in the twelve are machines ruade by Philips. Siemens. and GE. .-\s shown!

the large seale features of F vary little between seans. In particular! F is weIl approx­

imated by a unimodal distribution. These results suggest that the full width at half

ma.ximum (F\VH~I) of the distribution F lies between 0.1 and 0.4 for typical brain

scans.
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Figure 4.1: Probability densities for non-unifornlity fields estinlated from white mat­

ter on ~[R seans of twelve individuals taken \Vith tweIve clifferent ~[R scanners. Note

that these are the distributions of the dinIensionless seale factors f rather than the log

of these values Î. The Tl scan is a gradient eeho 3D acquisition with TE = Il ms and

TR = 35 ms~ whiIe the proton dcnsity (PD) and T2 scans are two echoes TE = 30 ms

and TE = 80 ms of a muIti-slice spin echo acquisition with TR = 3 s.

{

Returning ta the optinlization criterion. one could in principle search through aIl

possible fields Î ta find the one that maximizes the high frequency content of U.

However, there are two problems with this approach: the search space of aIl 3D fields

Î is extremely large; and spectral estimates and related measures such as entropy are

19



{

..{

difficult to compute with sufficient accuracy to detect subtle changes in [T.

The approach adopted is to propose a distribution for C by sharpening the distri­

bution \ .. and then to estimate the corresponding smooth field Î \vhich produces a

distribution [,- close to the one proposed. \Vhile searehing through the space of aIl dis­

tributions [-:- may seem no nlore tractable than searching through the space of aIl fields

f. there is an important difference in that one can take advantage of the simple form

of the distribution F. Suppose that the distribution of F is Gaussian. Then one need

only search the space of aIl distributions [. corresponding to Gaussian distributed F

having zero mean and given variance. In this way the space of aIl distributions [;- is

collapsed down to a single dinlension. the width of the F distribution.

In practice. F is only approximatel.\" Gaussian and sorne of our assumptions. such

as zero noise. are \"iolated. These difficllitips are contended with by taking an iterative

approach to estimating the distribution C and corresponding field f. Since any

Gaussian distribution can bp decomposed into a convolution of narrower Gaussian

distributions. the space of aIl [- distributions corresponding to Gaussian distributed

F can be searched increluentally by decon\·oh-ing narrow Gaussian distributions from

subsequent estimates of C. The henefit of this approach is that between subsequent

estimates of [-. a correspondiIl~ snl00th field j is pstimated. The constraint that

the field be smooth changes t he shape of the proposed distribution C to one that

is consistent \Vith the field. Tll(lsf' perturbations of [. perturb F from its Gaussian

shape and compensate for the distortion of ,. caused by noise and other factors. The

iteratiye process can be \"ip,,-ed as tra\·eling in the space of aH [" distributions along

a path corresponding to smooth fields j with increasingly wider distributions. These

iterations proceed until no further changes in f or [. resnlt frorn deconvolying narro\\"

Gaussian distributions frOln l·.

4.3 Field estimation

Further theory is presented here to explain the process of proposing distributions for

[i and estimating corresponding fields. For notational simplicity~assume that the true

20



.( distribution of intensities [~ can be arrived at in a single iteration by deconvolving

a distribution F. which is Gaussian. fronl \'. The full iterative description of the

method is left for a subsequent Section.

Given the distribution [0. tlH\ method of estimating the corresponding field is as

follows. For a measurement ü at some location x. Li is estimated using the distributions

U and F. Since the choice of the location x is arbitrary. the measurement ù can he

treated as a randorn sample from the distribution \ 0. The expected value of û given

a measurement û is as foliO\\'5
x

E [ii j l~'! - J iL p(il 1 ;;) ri il
-:x:.

Jx - !J(il. ê) r
Il ( A) (ilP L'

-'X.

\Vriting p(û) as \ "(û) and llsing eqllation (..1.3) gi\·cs

x

E [ 1'] 1 f A (A A)d-il 1 l' = l "( 1.") IIp Ll. L' U

-')0

x

l ùF(û - û)U(il)dù
-:x:;

= :x:;

.r F (i' - il) C (ù)dù
-x

(4...1)

(4.5)

(4.6)

(4.ï)

An estimate of f can be obtained using the estimate of ii. from equation (-1. ï) as

follows

j"U') = E[j 1 t'J = l~ - E[ill ['J (4.8)

where jf' is an estimate of j at location x based on the single measurement of i' at x.

This estimate can be smoothed hy the operator S ta prodllce

(4.9)

an estimate of j based on ail of the llleasurements in a neighbourhood of x. Smoothing

is described in Section 4.0.

This process of estinlélting j is illustrated in Figure 4.2 for the one dimensional

case with û as a square WëlVP. The square wa\-c can he viewed as two tissue classes

corresponding ta the low and high parts of the cycle. The log intensities û~ j~ and
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{ û are shown in Figure -L2a. To make the exanlple non-trivial. the magnitude of the

non-uniformity field is large enough that the lo\\" intensity tissue on the left overlaps

by roughIy 10% with the intensity of the high intensity tissue on the right.

One abtains the probability densities C·. {.. and F by computing a histogram of

the signaIs ù, j. and Ù. These distribution are shown in Figures -!.2b. -!.2c, and 4.2d

respectively. These histograms are interpreted as the probability distributions of the

given signal. In practice. only {. will be known while L~ and F have to be estimated.

Shawn in Figure 4.2e is the Gaussian kernel used in place of the actual distribution

of F in equation (-1. 7).

The distributions C and the Gaussian kernel Fare used ta compute from equa­

tion (4.8) the mapping, shown in Figure 4.2f. which maps measured intensities il to

field estimates Je. Estimating the distribution [~ from F is described in the follow­

ing section. This nlapping when applied ta the nlCasured signal produced the field

estimate shawn in 4.2g. \"ate the sharp jumps in this estimate in the regions where

the intensities of the upper and lawer tissue classes o\'erlap. This field estimate is

smoothed ta produce f.., shawn in 4.2h. \Vhile the degree of srnoothing is arbitraIJ'~

in filtering terms the smoothing tilter should be chosen to have as small a bandwidth

as possible yet still pass the non-uniformity field undistorted. In particular, it is not

necessary to have a smoothing filter able to completely remove the sharp jumps in

Je shown in Figure 4.2g- sinCl' thp residual discontinuities disappear in subsequent

iterations.

\Vhile the snlooth field pstinultp after one iteration is not sufficient to completely

remove the non-uniformity. it is enough of a correction that the tissue distributions no

longer overlap. By correcting the nleasllred signal û using the the smooth estimate of

the field Îs and repeating the entire estinlation pracess again, one arrives at a second

estimate of the non-uniformity field that is indistinguishable from the true field. The

second estimates of Ît, and Î~ are shawn in Figures 4.2g and -t.2h.
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.( 4.3.1 Estimating the distribution U

Given a distribution F and the measured distribution of intensities V. the distribution

[f can be estimated using a clecon\'olution fil ter as follows

- .
è F

= - .) (..1.10)
IFI- + Z2

(r
:::::::: G {" (4,11)

where * denotes complex conjugate. F is the Fourier transform of F~ and Z is a

constant term to limit the rnagnitude of G, This estimate of U is then used to

estimate a corresponding field f.

4.3.2 Field estimation in 3D

As an illustration of the field estimation process in 3D. consider the simulation of

a Tl weighted ~vIR scan shown in Figure -l.3a. This simulation is based on a three

tissue model of the brain and incorporates intensity non-uniformity~ noise, and par­

tial volume effects. The measured intensity distribution \' is shown in 4.3b. The

mapping between measured intensity and field estimate for this volume based on the

distributions of Ir and a Gaussian distribution F with full width at half maximum

(F"VH:\I) of 0.15 is shown in Figure -L:3d. This mapping is applied to produce the

volume in ..!.3c. :\Jeasurenlent noise causes this estinlate to be noisy. Smoothing this

estimate produces the field shown in ..1.:3e. For comparison. the actual field imposed

on the data during simulation is shown in -1 ..3f. Although the estimated field is much

smaller in magnitude than the true field. the shape is similar. Experiments. described

lateL show that with subsequent iterations the field estimates will grow to narrow

this difference. .-l progression of field cstimates \Vith iterations is shawn for a rcal

1[R scan in Figure 4...1. It should he noted that while the initial local field estimates

have brain-like structure. this bias dinlinishes. particularly in the ventricles~ \Vith

iterations.
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Figure 4.3: Field estimates for a sirnulated .\IR volume. (a) :\. slice from a simulated

:\tIR volume. (b) The histogranl of the volunle shawn in (a). This is considered an

estimate of the distribution ~'. (c) Bias field estimates Je created by applying the

mapping in (d) ta the image in (a). (cl) The mapping between image intensity vand

bias field estimate fe~ derived frOIn the histogram in (b). (e) A smoothed estimate fs

of the bias field created by SIIloothing the volume shawn in (c). (f) The actual bias

field present in the volunle shawn in (a).
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Local estimates: If'

Iteration a 1 la

Srnooth estimates: f.~

Figure -l.4: Evolution of field estinlë1tl'S \Vith iterations using real clata. Local and

smooth field estimates are shown during correction of a Tl weighted ?\,IR scan.

4.4 Implementation details

:\. fla\\" chart describing the ~:3 COITection process is shown in Figure -l.5. Besicles the

processing stcps described previously. there are a number of steps needed for practical

implementation of the algorithm.

The first step shown in Figure -l.5. ··identify foreground:' is to segment and remove

empty regions from the volunIe. Besides the nunlerical problems associated with

transforming values near zero to the log domain. these background regions provide

no information about the non-uniformity field. The foreground can be determined

using a simple threshold chosen ëllltomatically by analyzing the histogram of the

volume [42].

:\.nother consideration in inlplementing the ~3 approach is nleasuring the distri­

bution F from the unprocessed \[R data. For sinlplicitY1 a histogram with equal size

bins and a triangular Parzen window [14] is used to estimate F. Given a set of lV
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Rectangles are processing steps. The flow of volunletric data is represented by solid

Hnes and other data by dashed lines. Circles perform arithmetic operations on a voxel

by voxel basis. The result of the process is a corrected volume.
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(4.14)

·(

(

measurements 'Ü(Xi) and locations XI' \" is estimated as follows

\"(l!J) - ~ t!.- Cl -Û(X,)) (4.12).V h'r h
L=1

';(.0; ) {1 - Isi Isi < 1
(4.13)

() elsewhere

where Ûj are the centers of the bins and h is the distance between them. For a

typical 20% bias field. the scale factor franges from 0.9 to 1.1 which corresponds to

f between -0.1 and 0.1. .\IR ,"olumes generally have sufficient data to estimate V at

a resolution h better than a tenth of this range.

Smoothing the non-uniformity field at full resolution is computationally expen­

sive. so the ~iIR data is suhsampled to a lower resolution. Since the non-uniformity

field is sIowly varying~ reducing a 1 nlm isotropically sampied volume to 3 mm has a

negIigible effect on the field estimate and substantially accelerates computation (see

Appendix C). The processing of a vaiunie \Vith ten iterations of the 0:3 mf:thod is re­

duced from 12 hours to twenty minutes of CPC time on an SCI workstation (floating

point performance: 99 SPECfpD2) by resampling to the coarser resolution. The final

field estimate is resampled to the original resolution and used to correct the original

volume.

The measure used to terIniuate tllP. iterations is the coefficient of variation in the

ratio between subsequent field cstinlates. computed as follows

fT {rrl}
(' = Tl = 1 ....v
. Jl {ru} .

where ru is the ratio between subsequent field estinlates at the nth location. Œ denotes

standard deviation. and Jl denotcs nlean. This measure is chosen sa as to be insensitive

ta global scale factors that may accunnl1ate with iterations. Iteration is stopped when

e drops below 0.001. typically after ten iterations.

4.5 Smoothing

The manner in which the field estimate is smoothed has a significant impact on the

performance of the correction method. Smoothing is particularly challenging for this
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problem because the scale O\'er which the field varies is comparable to the size of the

region being smoothed. Conventional filtering techniques proved unsatisfaetory for

this application since boundary effects significantly degraded overaIl performance.

A computationally tractable approach to snloothing that performs weIl on

bounded domains is to approximate the data by a linear combinat ion of smooth

basis funetions. AIl attractive basis for this is the compactly-supported spline known

as a B spline. Spline approxinlation incorporating smoothness constraints is superior

to filtering techniques in dealing with missing data since the behaviour of Cl. spline

curve can be constrained eVPIl if there is insufficient data to support a basis function.

As an illustration in 10 of the kinds of difficulties that can arise \Vith conventional

filtering, consider Figure -LG which compares B spline approximation to adaptive

filtering. vVhile the smoothing properties of the two are comparable on an infinite

domain. the faet that data is only ël\·ailable on the interval [-1. 1] causes the tilter to

produce an artifact at the bOlllldar:v. This artifact occurs despite the fact that the

filter adapts to the boundary by only ruaking use of data within the domain. \Vithout

this adaptive property. the filter produces an even larger artifact. In contrasL the

B spline approximation is lar~ely llnaffected by the bounclary. and in general requires

no special treatment ta deal with nlÎssing data.

Details of computing a B spline approximation can he found in the .-\ppendix A.

The smoothness of the approximation is determined by t\\"o parameters: -.v. referred to

as the smoothing parameter. and d. the distance between basis funetions. Sinee splines

are being used as a tilter for this application. the smoothness of the approximation

must be chosen rather than deriyed from the data [45. 52J. The relationship between

the smoothness of the approxirnation and the snloothing parameter is non-lïnear.

However. since the normalizatioll of the B spline has been ehosen to eliminate the

dependence of w on seale and Illlnlber of data points~ ;.;.: can be fixed and the distance

between basis funetions varied instead.

In summary~ beyond the task of choosing the snloothing parameter :.J. the basis

function distance d. and the deconvolution kernel parameters F\VH~I and Z. ~3 is

a fully automated method of correcting for intensity non-uniformity that makes few
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Figure 4.6: Comparison of spline snloothing and adaptive filtering. The true curve is

given by the function f(x) = -0.54 +O.ï5e-.r +.r:!. The curves sho\vn in (b) are an

expanded view of the right portion of (a). \Vhile hoth the adaptive filter and B spline

have comparable perfonnance at th(' left boundary whefe the slope of f (x) is smal!.

the large slope at the right causes the adapti\'e tilter to produce an artifact.

assumptions about the data..-\s will be shawn in the next chapter. these parameters

can be fixed at values that are nearly optimal for hroad classes of images.

{
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Chapter 5

Validation of the N3 method

A t\Vo foId approach ,vas taken to \'alidating the :\3 algorithm: (i) the method was

established ta work on data whieh satisfies its assumptions: (ii) the method's he­

haviour was characterizcd on realistic sirnulated data for which the assumptions that

voxel intensities are independcnt identically distributed random variables and that

measurement noise is negligible are less valid. At the same time. the sensitivity of

the method ta its parameters was investigated.

5.1 Correcting random fields

5.1.1 Experiments

As a first step in validating the ~3 nlethod! consider a case in which the measure­

ments are independent and identically distributed randoni variables. Suppose the

distribution of the truc intensities C is as shown in Figure 5.la. \Yhile this distribu­

tion \Vas taken from a Tl wpip;hted ~IR scan. the choice of [J for the purpose of this

example is arbitrary. The voltune is a cube \Vith thirty-t'vo voxels on an edge and the

non-uniforrnity field to bp rerno\'ed is a parabolic function aligned \Vith the center of

the volume. The corresponding distribution F of the non-uniformity field is shown in

Figure 5.1 b along with the distribution ,. in 5.lc. :\ slice through the center of this

idealized volume is shown in Figures 5.ld and 5.lf before and after the nan-uniformity
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field is applied. Although the volume itself appears noise-like. measurement noise n

is zero. Such a volume fully satisfies the assunlptions of :\3.

The idealized volume shown in Figure 5.1 \Vas used to evaluate the performance

of ~3. Different widths of the deconvolution kernel were compared for convergence

rate and accuracy in removing the non-uniformity field. In addition. ~3 was com­

pared with direct B spline filterin~ of the data. \Vhile direct B spline filtering is

not acceptable for data that is structured. it is suitable for the random field of this

example.

The performance of a correction method is best evaluated by comparing the field

estimate to the true field if it is known. For example. a field estimate made for

the random volume of Figure 5.If is shown in Figure 5.1h along \Vith the actual

field in 5.1g. Besides differing subtly in shape. the two surfaces also differ by a

multiplicative factor. This scale factor has no impact on the quality of the correction

since .\IR intensity is relatin~. However. in quantifying the performance of the method

this factor needs to be removed. Equation (-1.14) can also he used for this purpose if

rn is taken as the ratio of estimated to actual field intensity at location Xn- For the

example of Figure 5.1. this is the coefficient of variation of the field shown in 5.1i.

5.1.2 Flesults

Correcting for intensity non-llniformity in a random field iIlustrates that :\3 is able ta

correct volumes that lack re~ians of cantiguous tissue. The improvement in the field

estimate with iterations for four different widths of the estimated field distribution

F is shown in Figure 5.2. In aIl four cases the rnethod was converging in the sense

that the distance bet\veen subsequent field estimates. computed using equation (4.14),

became small (less than 0.02%). :\ote that the F\VH~I of the distribution F had an

impact on both convergence rate and and. to a secondary degree. on performance.

\Vhile there \Vas a subtle reduction in final accuracy. there was a substantial increase

in convergence rate as the F\VH~I increased.

For comparison. the same B spline approximation that is used in the N3 method

was applied to the uncorrected data directly. The smoothness of the two is comparable
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Figure 5.1: (a) Intensity distribution U for an idealized volume. Random samples

from this distribution \vere llsed to create the volume in (cl). (b) Distribution F for

a parabolic non-uniformity field. (c) Distribution F corresponding to the volume

shown in (f). (d) A slice through a random volume. (e and g) A parabolic

non-uniformity field. (f) The \"OIUllle in (d) multiplied by the parabolic field in (e).

(

(h) Estimated field. (i) Ratio of actual field to estimated field.
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( since the N3 method~ unlike conventional iterative filtering, has been designed such

that field smoothness does not accumulate \Vith iterations. As expected, since the

N3 method takes advantage of the structure ùf the distribution U, it outperformed

simple smoothing in aIl four cases.
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Figure 5.2: Error measure versus iterations for four different widths of the decon­

volution kernel F. The F\YH.\[s of the field distributions F used in deconvolution

were 0.1, 0.2, 0.3, and 0.-1. The rnaximum coefficient of variation 4.5% corresponds

to no correction. The horizontal line is the result of smoothing the uncorrected data

directly using B splines.

5.2 Simulated MR volumes

Non-uniformity correction methods such as ~3 can be validated indirectly with real

data using subjective measures of image quality and by assessing the reduction of

variability in tasks such as segmentation. However, the large number of uncontrolled

factors in such experiments confound attempts to evaluate and optimize performance.

In particular, partial volunle effects, true anatomical variability, and an unknown non-
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uniformity field prevent a spnsitive analysis of the influence of various methodologïcal

parameters. These technical issues \Vere circumvented in this analysis by the use of

an NIR simulator which incorporates realistic models for noise and partial volume.

Slîees through simulated Tl. T2. and PD volumes are shown in Figure 5.3.

The anatomical model for the simulations was derived from high quality Tl,

T2, and proton density (PD) weighted scans formed from the average of twenty­

seven, twelve. and twelve scans respectively [25. 26} of a normal individual. The

three volumes were corrected for intensity non-uniformity using the X3 method and

resampled into a standardized three dimensiona1. so-called stereota...xie. coordinate

system l [51. 9J. The brain regian of the Tl weighted scan was then segmented into

the three tissue classes using a mannally trained minimum distance [2, 30] classifier.

Arnong the results of spveral different classifiers. this segmentation was chosen and

manually edited by a trained neuroanatomist to improve the classification of deep

structures and brain stenl. Partial volume regions were formed by eroding each of

the tissue regions using a six neighbour strllcturing element. The proportions of each

tissue class in the partial \'olunle regions were taken from a segmentation of the Tl

volume using a Bayesian classifier [I ..!. 28]. ~on-brain structures such as scalp \Vere

not of interest for the present analysis and nat included in the anatomical mode!.

The :vIR simulator is dcsigned to proclllcc \'olumes with an intensity histogram

similar ta that of real data. based on a discrete labelling of cach \toxel as either cere­

brospinal fluid (CSF), grey matter. or white matter. However. representing an ~IR

volume in terms of a fe\\' elasses of hornogeneous tissue is unsatisfactory for simulation

since it does not reflect the variability seell in rcal data. Often the properties within

a given tissue class nlry for diffC'rent structures included in that class [22], which

leads to a broadening of the tissue peaks in the intensity histogram. The approach

taken to produce a simulation with a realistic histogranl is to color each region with

random noise having medium ta lnw spatial frequency and an intensity distribution

1This de\'ice allows for an)" nf'uroanatomical location to be addressed by a Cartesian coordinate

and, by rcmoval of affine differences among individual brains, for population statistic images to be

built [29, 161.
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Figure 5.3: Simulated Tl. T2. and PD weighted volumes. ~on-uniform sensitivity of

the reception coil has been sirIlulated causing the intensity to drop off at the bottom

right. The noise distribution has a standard deviation 3% of the mean intensity of

white matter.

appropriate for the given tissue type. This noise can be viewed as '''pseudo-anatomy~~~

representing low frequency spatial variations within tissue clue to anatomy which gives

rise to a ïumpy~ appearance in thp image (e.g. see the T1. image in Figure 5.3). By val­

idating the correction algorithnl on a nunlbcr of rcalizations of this pseudo-anatomy.

the results were not biased towards any preferred shape of the non-uniformity field.

To conlpletc each siInulation. a multiplicative intensity non-uniformity field \Vas

irnposed and Rician distrihllted noise added throughout. Rician noise. typical of that

found in real :\'IR images. is sinlulated by adding a complex Gaussian distributed

random intensity to a voxe!. then computing its absolute value.

The intensity distributions llsed ta generate the pseudo-anatomy were created by

computing the histogram of intensities within the eroded or pure tissue regians for

each of the Tl, T2. and PD averages. These distributions are shawn in Figure 5.4.

lt is assumed that these distributions reflect the range of intensities intrinsic to the

tissue class uncorrupted by noise. intensity non-uniformity, and partial volume ef­

fects. Random fields having these intensity distributions are created by rejection
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( sampling [13]. Each random field is first constructed at 10 mm resolution and subse­

quently resampled to the desired 1 IIlm resolution using tricubic interpolation.
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Figure 5.4: Intrinsic intensity distributions for each tissue dass in Tl. T2. and PD

wcighted simulations.

5.3 Correcting simulated data

Although N3 does not reqllire ct model of the expected tissue distributions. there are

still a number of rnodel-independent parameters that need ta be selected (see Fig­

ure 4.5). These are the snlOothing parameter ...;J, the distance between basis functions

d. the noise term in the deconvolution filter Z. and the F\VH1\;I of the deconvolution

kernel F. Experiments with sirnulated data show little dependence on Z. which \Vas

fixed arbitrarily to he 0.1 for the purpose of this analysis. The parameters w and

d both control smoothness, but the relationship betwecn smoothness and ..ù is more

complex than the one between smoothness and d. As a result, w was fixed arbitrarily

at 1.0. The renlaining two parameters. F\VH;\I and d. are cansidered further.

5.3.1 Characterizing the FWHM parameter

-{

Simulated ~IR volumes like thasp shawn in Figure 5.3 \Vere used to evaluate the

effect of F\VHN[ on correction performance. Recall from Chapter -! that F\VH~I

refers to the width of the deconvolution kernel used to compute local estimates of

the non-uniformity field. For this analysis~ two different non-uniforrnity fields were
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generated from combinatians of linear. quadratic. and Gaussian terms. Both fields

vary in magnitude by 20% within the brain \'olume~ which is typical for brain scans

(see Figure 4.1), ho\vever. the second field has more curvature. Slices from these two

fields are shown in Figure 5.5. The first field was used ta create the simulations shawn

in Figure 5.3. The performance of the correction method was evaluated using equa­

tion (4.14) to compute the difference between the estimated field and that imposed

explicitly during simulation.

Field #1 Field #2

Figure 5.5: Slices through two non-uniformity fields usee! ta construct simulated :'vIR

scans.

The performance cun'es for four simulated brains and a range of the F\VHNI

parameter are plotted in Figure 5.6 for the two different non-uniforrnity fields shown

in Figure 5.5 and fixed basis fllnction distance d = 200 mm. A coefficient of variation

below the Hnes corresponding to no correction in Figure 5.6 indicates a reduction

in intensity non-uniformity. \Yithin most of the range of the F\VHNI shown, the

N3 method substantially improved uniformity. However~ the quaIity of the result

depended on the choice of the F\VH:\,I parameter. The general trend in Figure 5.6

is for performance to improve with decreasing F\VHj\L Although much weaker. the

same trend is present in the results for random fields shown in Figure 5.2.
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Another trend, not reflected in Figure 5.2. is that the rate of convergence is sub­

stantially slower as the FvVH~I parameter is decreased. For these experiments the

stopping criterion was redllced to e = 0.0002 from its default value of 0.001 so that

iteration would not stop prematurely in cases where the convergence \Vas extremely

slow. For example, with a F\VH:\I of 0.05 the method typically required 50 iterations

to reach this threshold. significantly longer than the the 20 iterations needed at a

FvVHNI of 0.2. In practical ternIS. the choice of the F\VHNI requires a tradeoff be­

tween computation time and accuracy. For aIl subsequent experiments, the F\VHM

parameter was fixed arbitrarily at 0.15.

It should be noted that zero estimation error is not achievable for these experi­

ments since even if an algorithm were insensitive to the low spatial frequency com­

ponents of the pseudo-allatomy and partial volume. there is still a low frequency

component to the broad-band Gaussian noise that is indistinguishable from intensity

non-uniformity. Furthermore. smoothness constraints imposed on the spline fitting

operation preclude an exact match ta the field. The lo\ver bound imposed by spline

approximation, computed on the imposecl field directly. is also shawn in Figure 5.6.

Noise and pseudo-anatomy make the true lower bound somewhat higher.

5.3.2 Characterizing the basis function distance parameter

In addition. an analysis of the effect of basis function distance d on correction perfor­

mance, for a fixed F\VH:\·L was done using the same simulated data. Recall that the

field estimate becomes smoother as d increases. These results were compared against

the results of fitting B splines to the imposed field directly.

The resul ts of correcting simulated brains for a range of basis function distances

d are shown in Figure 5.7. The greater curvature of the second field produces broad

minima in the errar curve..-\s in Figure 5.6. the lower bound on the estimation error

given by directly fitting splines ta the non-uniformity field is also shown. Basis func­

tion distances of 100 mm to 200 rnm are nearly optimal for these two cases. It should

be noted that due to the neecl to suppress noise in the simulations, the optimal basis

function distance is greater than that which can exactly match the non-uniformity
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Figure 5.6: Field estimation error on simulated data for a range of the FvVHNI pa­

rameter and two different non-uniformity fields. Lines are shown for the coefficients

of variation corresponding to no correction for the two cases. Aiso shown is the lower

bound on estimation error given hy fitting splines to the non-uniformity field directly.

The error bars are at plus and rninus two standard deviations. These results are based

on four realizations of the pselldo-anatomy.

field. In other words~ the optinul1 d for suppressing noise introduces same distortion

in the underlying field.

These results show not only that the :\3 nlethod is able to substantially reduce

non-llniformity in realistic sirnulated data but also that the parameters FvVH?vI and d

can be chosen to be nearly optirnal for a broad class of data. This allows the method

to be fully automated~ freeing the user from determining suitable parametcrs for each

type of scan.
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Figure 5. ï: Correction perfonnanee as a funetion of basis function distance on sim­

uiated Tl. T2. and PD seans. The F\VH:\[ parameter for this analysis \va..'i 0.15.

Aiso shown is the approximation prror for fitting splines ta the non-uniformity field

directly. The discontinuities in this curve are eaused by changes in the number of

basis functions. which for efficieney is the minimum needed for full support at the

given distance between basis funetions.

(

41



Chapter 6

Comparison with other methods

Simulated and real data wcre llsed ta cvaluate the performance of the .:'i3 method

relative to three other techniques. \Yhile these results do not show the :\3 method

ta be superior in e\'ery eategory. the method distinguished itself for uniformly good

performance across a range of different of tests.

6.1 Non-uniformity correction methods

Three non-uniformity correction Illethods \Vere selected to compare their performance

to that of :\"".3 in renloving typical levels of non-nniformity from volumetric scans of

the human head. The rnethods are referred to respecti\-ely as the expectation max­

imization (E),1) [56]. re\'ised expectation nULximization (RE),!). and white matter

(\V),1) [Il. 60] methods. .-\11 four rrlethods are fully alltomated three dimensional

implementations formulated to detect and remm'e a multiplicative intensity non­

uniformity field by iterative approximation.

Ta facilitate alltomatic training of the c1assifiers which the E),.1. RE)'I. and \V),-1

nlethods rely on~ aIl ),1R ,"alunIes \Vere first resampled into 3D stereotaxie space. This

standardized coordinate systeni was also used ta COIlstruct 3D tissue probability maps

(TP:\I) for grey matter. white matter. and cerebrospinal fluid (CSF). based on the

classification of 53 nornlal subjects [59]-

Classifier training sets \Vere:' created for each individual brain by randomly select-
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ing voxels in stereotaxie space corresponding to voxels in the TPl\:I thresholded at

the 90% level. This approach allows automatic training of the classifier regardless

of the volume's pulse sequence [30]. In addition. non-brain tissues \Vere removed au­

tomatically using a standard hrain mask derived from an average of normal brains

previollsly defined in stereotaxie space [9]. \Vhile this rnask. which \Vas derived from

an average of 305 Tl weip;hted brain scans. may include non-brain tissues or exclude

small portions of cortex in sorne individuals. this does not limit the use of these cor­

rection methods since the deri"ed correction field can be extrapolated to the whole

volume using B splines (see .-\ppendix A).

\Vith the exception of the \V:\[ method. which terminates after two iterations, aIl

of the methods terminate when the coefficient of variation of the ratio between con­

secutive field estimates. conlputed at aIl intracranial voxels. drops below a threshold

of 0.001. Typically, the rnethods terminated after ten iterations.

"Vhile ail of the volumes used in this anal~'sis were Imm isotropicaIly sampIed

data, for efficiency these volunws were subsampled without blurring to a 3mm reso­

lution ta speed up the correction process. At this resolution aIl four methods took

between twenty and thirty minutes to complete on a workstation with floating point

performance of 99 SPECfp92.

6.1.1 Expectation maximization method

The first method considered is the E:\I rnethod described in [56]. This method iterates

between a classification stage. designed to rcrnove anatomical features from the image,

and a filtering stage that smoathes the field estimate. This filtering is done with a

Gaussian filter whase kernel is truncated ta remain within the volume of interest. A

Bayesian classifier [14. 29} was llsed in this implementation: \'VeIls et al. have sinee

described an implementation [57] based on a Parzen window classifier. 80th the ENI

and RENI methods use 256 training sanlples for each of the white matter. grey matter,

and CSF tissue classes.

Experiments, not shown here. on simulated data with various widths of the

smoothing kernel suggested that a Gaussian kernel \Vith full width at half maxi-
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mum (F"VH~)f) of 30 mm \Vas nearly optimal. "Vhile results produced \Vith a 30 mm

kernel appeared visually ·~Iulnp~i·. larger kernels produced a significant edge artifact.

This artifact \Vas caused by the increasing phase lag as the filter was truncated when

approaching the edge of the volume of interest. For example~ if the magnitude of the

field was rising as it approached an edge then the truncated fUter tended to under­

estimate the field strength at the edge. This effect is the 3D generalization of that

shown in Figure 4.6.

6.1.2 Revised expectation maximization method

The second method evaluated is a revised version~ developed by the author. of the

ENI method. This method takes better advantage of the TP:\Is by using them as

probability priors during classification. These priors stabilize the method by linliting

the extent of misclassification in volumes that are extremely non-uniform.

The second differencp between the RE~[ method and the E~[ method is the use of

tensor cubic B splines for srnoothint:?; (sep .-\ppendix A for details). linlike truncated

filtering~ B splines do not produce an edge artifact. The distance between basis

functions used throughout was 200 nlm~ significantly larger than the 30 mm kernel

used by the E~I method.

6.1.3 White matter method

The third method~ the \V~I method. is a re\·ised version of that described in [Il,

60]. It relies on an artificial neural network classifier [61 J to identify white matter

in the brain region. The classifier is trained on 500 points per class selected from

TPj\;Is thresholded at the 1009(: leveL that is stereotaxie voxels that \Vere classified as

belonging to the same dass for aH 53 normal subjects. Partial volume voxels are then

eliminated from the white matter region using gradient information. Tensor cubic

B splines are used to fit a smooth field ta the remaining white matter voxels and

extrapolate this field to the rest of the volume. For the experirnents described here,

the smoothing parameters are the same as those used by the RENI method.
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Once estimated~ the non-uniformity field is nsed to correct the original volume

and the process is repeated once. Experinlents \Vith real data suggested that beyond

two iterations the field estimate is essentially unchanged.

6.1.4 N3 method

On the basis of the results of Chapter 5. the parameters of the ~3 method were

fixed throughout this analysis. irrespective of the type of volume. In particular~

the F\VH1'I of the histogratll blurring kernel was fixed at 0.15. the deconvolution

parameter Z = 0.1. and the srnoothing parameters d = 200mm and \.J.J = 1. These

smoothing parameters are the same as those used by the RE~vI and \V~-[ methods.

6.2 Correcting simulated data

Sinlulated :\IR volumes like those shawn in Figure .5.3 were used to evaluate the

performance of the four rnethods at varions levels of noise and non-uniformity. The

non-uniformity field used in these experiments was Field # 1 shown in Figure 5.5. This

field \Vas created using a real :\IR sean as a guide and has typical curvature. Correction

performance was conlputed in terms of the coefficient of variation in the ratio of the

estimated non-uniformity field ta the known field imposed during simulation using

equation (4.14).

6.2.1 Sensitivity to nOIse level

A Ridan noise distribution with standard deviation 3% of the mean intensity of white

matter is typical of Tl weighted volumes. :\. comparable level of noise \Vas chosen for

T2 and PD volumes and termed 3% noise.

The results of experiments on sinmlated data \Vi th varying noise level are shown

in Figures 6.1a through 6.1c. :\.lso shawn is the le\'el of non-uniformity present before

correction (baseline). Results abo\"e this line indicate that the method has made

the non-uniformity worse. To estinlate the intersubject variability in these results
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the experiments \Vere repeated for four realizations of the pseudo-anatomy. This

variability is reflected in the crror bars shown on Figure 6.1.

To address concerns about the sensitivity of the E~1 method to the training set, its

performance was also nleasured using an ideal training set. This training set consists

of samples chosen within regions of pure tissue taken directly from the model used to

generate the simulated clata. These results are also shown on Figure 6.1.

6.2.2 Sensitivity to non-uniformity magnitude

A similar set of experiments was eonducted for increasing levels of non-uniformity

using the same shape of the Ilon-uniformity field. but different magnitudes. Fifty

percent non-uniformity denotes a non-uniformity field that varies between 0.75 and

1.25, that is, the range of field variations within the brain region is ±25%. The results

of these experiments are shawn in Figures 6.ld through 6.lf. .-\lso shown is the level

of non-uniformity corrcspollding ta no correction. As described in Section .5.3.1. this

level does not include the inlplicit fielcl. which is present cven at zero non-uniformity.

due ta the noise and random anatomy.

6.3 Correcting real data

The second type of experiment perforrned \Vas a eornparison of the reduction in vari­

ability in the intensity of tissue Inanually labdlrd on rcal data. For this experiment.

regions of pure grey and white Inatter were manually labelled on t\Velve sets of Tl,

T2, and PD weighted scans aequired aIl t\Velve clifferent :\IR scanners. Included in

the twelve are machines ruade by Philips. Siemens. and GE. The volumes were trans­

formed into stereotaxie spaec su that the same labelling could be applied to each

of the three modalities. AlI tWf'lve individuals are :\-1S patients having a moderate

number of white matter lesiuns.

For each volume. the cOf'fficient of variation in white and grey matter intensity

\Vas computed before and after correction. Since for real data, this measure cannot

distinguish between intensity non-unifornlity. noise. and anatonlÎcal intensity vari-
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Figure 6.1: .-\. comparison using simulated data of the four non-uniformity correction

methods. (a) through (c) are for increasing noise levcl and (d) through (e) are for

increasing levels of intensity non-llniformity. The trace '~E~'I - ideal" is the perfor­

mance of the Ej\I algorithm \Vith an ideal training set (see text). The crror bars are

at ±l standard deviation based on four trials.
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Table 6.1: ~Iean coefficient of variation in white matter tissue intensity.

Tl weighted T2 weighted PD weighted

no correction ;J.8'X: 10.0% 6.4%

E:\I - )~ ( ) 804% (-) -1.4% (-)(.:.. c +

RE:\I 6.6% (+) 8.-1% (-) -1.7% (-)

\V~[ -1.-t% (-) 8.6% (-) ~t8% (-)

~3 .5.1CX: (-) 0.0% (-) -1.9% (-)

ations, it is only suitable for showing that intensity non-uniformity is qualitatively

reduced.

The coefficient of variation. the ratio of standard deviation to mean~ for \vhite

and grey matter intensity was cOInputed for each patient in each Illodality. The mean

across patients is shawn in Tables 6.1 and 6.2 for white and grey matter respectively,

before and after correction for intpnsity non-uniformity. The statistical significance of

these results was conlputed Ilsing a one sided \Vilcoxon signed rank test for a paired

difference experiment. The notation (-) and (+) denotes significant decreases and

increases in non-unifonnity tested at the 95% confidence level.

It should be noted that when these experiments were first conducted~ the E~I and

RE~I nlethods perfornled extremely poorly. t(~nding to nlake non-uniformity worse.

Hypothesizing that this \Vas caused by clark rcgions in the sinuscs that occasionally

lie within the average brain nlask [9]. the pxperirnents were repeated using an inten­

sity threshold to removecl low intensity and background voxels. This threshold \Vas

chosen automatically using the technique clescribed in (42]. Thcse results are the ones

presented in Tables 6.1 and 6.2.

As a final result. the Tl \\·pighted twenty-seven average scan is shawn before and

after correction by each rnethod in Figure 6.2. This law-noise volume is useful for

illustration since intensity non-uniformity that would normally be obscured by noise

is clearly visible.

The three types of comparisons nUlde between the methods have their respective
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Figure 6.2: Intensity non-unifornlity correction of a Tl weighted gradient-echo wIR
scan by each of the four methods.
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Tl weighted T2 weighted PD weighted

no correction 10.1% 1504% 8.8%

E:\I 12.6% (+) 1-1.3% (-) 6.8% (-)

RE~I 9.6% 13.8% (-) 604% (-)

\'/:\1 D.7ck 15.7% 7.3% (-)

~3 D.8% 1-1.3% (-) 6.8% (-)

Table 6.2: ~'Iean coefficient of variation in grev matter tissue intensity.

merits. Comparison using sinllllated data is weIl controlled and quantitative, yielding

an absolute measure of the reduction in non-unifarmity. As shown by Figure 6.1,

the individual algorithms have their strengths. \Vith the possible exception of Tl

data~ the RE:\'I method performed best in these trials. However. the validity of

simulation experiments is limited by the faet that neither the :\;IR imaging process

nor the anatomy have been eompletely characterized.

Real data~ while unablc to providc quantitati\'e n~sults. is important for uncovering

limitations of a method that are eaused by factors not reftected in the simulations.

For example~ the E~vI and RE~I methods prm'ed llnexpectedly sensitive to the choice

of brain mask. Even when this masking problern \Vas fixed. these methods performed

pooriy on Tl data, tending to make non-uniformity ,,·orse. \Vhile it is not dear what

aspect of real Tl data causes the RE~[ Inethod ta perfornl poorly. it should be noted

that the REl\[ method is hip;hly ruodel dependent. relying on a three cIass tissue

model and TP;\Is as probability priors. It is possible that the mild atrophy present in

NIS patients or perhaps rnerely natural anatornical variability is a sufficient violation

of these model assumptians tn cause the rnethod to fail.

Consulting the Tl volunlc shown in Figure 6.2 sheds sorne light on the \Vay the

rnethods behave. The E~vI and RE~I rnethods haye excessively reduced the intensity

at the top of the head. a typical failing of thcse methods. In contrast. both the

vVNI and N3 methods have reduced the intensity of the anterior portion of the head.

The N3 method has also sip;nificantly raised the intensity of the cerebellum, the
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.( large structure at the bot tom left. \ïsual inspection of the results suggests these

corrections are appropriate. .-\.lthough. it is usefui ta show that non-uniformity can be

substantially reduced in an absolute sense. these reslllts need ta be put in perspective

by determining what impact tllP. rf'duction has on real applications. This is the subject

of the next chapter.
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Chapter 7

Applications

Growing interest in measurin~ anatonlical differences in brain structure among normal

and disease populations has Icd ta the developnlent of a variety of techniques for

automatically identifying these structures on standard )"IRI scans. However. such

analysis may be c:ompronlised by :\IRI intensity non-uniformity artifacts. In this

investigation, simulated :\IRI data was used to assess the impact of non-uniformity

on three different anatomical brain nlapping techniques: (i) tissue classification. (ii)

cortical surface extraction. and (iii) non-lïnear co-registration. The advantage of using

simulated data is that anatomical structures identified by the three techniques can

be compared to the anatonücal ruodel llpon which the sinlulations are based.

7.1 Tissue classification

Tissue classification experiments were conducted using an artificial neural network tis­

sue classifier (ANN) traincd tlsing probability priors defined in stereotaxie space [30].

This is a fully automated ructhod of labelling each voxel as belonging to a particular

tissue class. which for thcse experiments means one of grey matter. white matter.

or cerebrospinal fluid (CSF). The training data was created using 1000 samples 1 per

tissue class chosen \Vith prior probability of at Ieast 90% using tissue probability maps

l ANN c1assifiers require more training data than Baycsian or minimum distance c1assifiers since

they have more degrees of freedom.

-.)û_
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The quality of the classification was e\"aluated by cornparing the labelled volume

to the original discrete tissue model from whieh the simulations were derived. For

example. a slice from the simulation model is shown in Figure 7.le. This model was

used ta create the simulation with 20% non-uniformity shawn in 7.la. A slice from

the labelled volume ereated hy dassifying this simulation is shawn in Figures 7.ld.

Non-uniformity causes white nlatter at the bottom right of the volume shown in 7.Id

ta be misclassified as grey nlattpr. The \"olume in ï.le is the same except that it has

been corrected using the X3 algorithm prior to classification~ resulting in improved

classification of the white nlatter at the bottonl right. The measure kappa [7. 30], a

simiIarity measure corrected for chance. is used to quantif:y the improvement between

the two cases. :\. kappa of unity indieates perfect agreement. while a kappa of zero

indicates that any agreernent is purely coincidental. Kappa values computed within

the brain region are shawn for Pëleh labelling in Fi~ure 7.1. ~ote that the classifier

does not achie\"e a kappa of unity f'ven in the absence of non-uniformity because noise

and partial volume degrades ilS perfornlance.

To assess the irnpact that non-uniformity has on correction and the benefits of

using ~3. Tl weighted siUlulatf'd \"(llunles like those described in Chapter .S were

classified before and after corrf'("ting for non-uniformity. These volumes have field # 1

from Figure 5.5 at \ë:lrious l('\"("\ls of severity. For the experiments. four realization of

the pseudo-anatonlY at six h.. \"eis of non-uniformity were used. The results. plotted

in Figure 7.2. show a clear reduction in classification performance for uncarrected

volumes as nan-unifarnlÎty increases. Ho\\"ever. this degradation is avoided by first

correcting the volume using the \"3 method. The law variability in these results

suggest that aIl of the differeneps are significant. Given that classifiers snch as .-\~~

work by choosing intensity thresholds that differentiate the various tissue classes~ it

is not surprising that their perfarnlance depends on having uniform data.
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Figure t.l: \ ·olumes labelled hy tissuE' t~·pe using an artificial neural network classifier.

(a) .-\ simulated Tl weighted "oltuue with 20C)f non-uniformity. (b) The "olume in

(a) after correction with \-:3. (e) The discrete model used ta generate the simulation.

(d) A labellingofthe "olurne in (al. (el Alabellingofthe '-olume in (b).
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7.2 Cortical surface extraction

Similar experiments were performed using the cortical surface extraction method

described in [3-1J. This method starts with an inflated surface model of the cortex

that is iteratiyely shrunk to fit tightly around the cortex defined by the change in

image intensity at the brain-CSF interface.

The standard to which the extracted cortical surfaces were compared was created

by fitting a surface to the grey matter portion of the simulation mode!. _-\ rendering
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Figure 7.2: Classification performance versus severity of intensity non-uniformity for

corrected and uncorrected Tl weighted volumes. The erraI' bars are at plus and minus

one standard deviation computed for four individuals.

of this surface is shown in Figure 7.3 along \vith a map indicating the displacement

of a surface extracted from Cl sirnulation \Vith 20% non-uniformity. Surfaces are rep­

resented internally by the software as being tessellated by triangles. The method is

designed to match anatornical features in the surface model ta those found in the

data. For example. in a correct fit to the data. major su1ci on the extracted surface

should Hne up \Vith those marked on the nloclel. Hence. if t\Vo surfaces are the same

in this sense. then vertices of the corresponding tessellations shoulcl match. The error

measure used in these experirnents is the root Ulean squared (R~IS) distance between

corresponding vertices of the tessellated surfaces.

The results of fitting cortical surfaces to the same simulated data as used to evalu­

ate tissue classification performance are shawn in Figure 7...1. Like tissue classification,

the quality of the surface fitting dcteriorates as the severity of the non-uniformity in­

creases. Once again. these effects are largely eliminated by first correcting for inten­

sity non-uniformity. These rpsults are consistent \Vith the dependence of the surface

extraction method on intensity thresholds.
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;\IRI and those of the anatomical ruodel. The appearance of white around the sulci

indicates that the rnethod has the greatpst difficultly finding the cortical surface in

these regions. The density range is black for zero displacement through to white for

displacenlents of 1.2 nlm or nlorc.
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Figure 7.4: Cortical surface extraction error versus severity of intensity non­

uniformity. These results arc for four realizations of Tl weighted simulated ~[R

volumes. Error bars are at one standard deviation.
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7.3 N on-linear co-registration
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The third brain mapping application eonsidered is non-linear eo-registration. This

technique determines the geometrie deformation needed to match the anatomy of

one brain to another. One of its applications is in automatically labelling brain

structures by warping a labelled model to mateh a given brain. For these experiments~

the ANlrvIAL method [8J has becn used to recover a random but known deformation

applied to a simulated vol UnIE'. \Yhile this test does not mimic the typical application

of the method which is to match the anatomies of different individuals. it is suitable

for assessing the impact that intensity non-uniformity has on the ANLvIAL method.

In eonducting the experiments. il random deforrnation \Vas created which \Vas

then used to distort a simulated volurne containing sanIe level of non-uniformity.

ANINIAL \Vas then llsed to match the deformed simulation to an undeformed uniform

(i.e. 0% intensity non-uniformity) sirnulation of the same individual. For example~

the deformed volume shown in Figure 7.5a whieh suffers from miId intensity non­

uniformity was co-registered to the uniform simulation shown in 7.5b ta produce the

volume shawn in 7.5c. For these experiments the reeovered deformation is computed

at a resolution of 8 mm. i.e. the defornlation field is represented as displacement

vectors on an 8 mnl lattice with intcrrnediate displacement veetors determined by

interpolation. Even under icleal conditions the recoverecl deformation will not exactly

cancel features of the applied defornlation that are beyond this resolution. To measure

the quality of this cancellatioll the R~IS of the residual deformation field is computed

within the brain region.

The results of co-registering simulatcd volumes \Vith and without correction for in­

creasingly severe levels of non-uniformity are shown in Figure 7.6. \Vhile performance

does decrease as the nlagnitude of the non-uniformity increases~ the difference is only

significant at extreme magnitudes. where correcting for non-uniformity does imprave

the results. However. it should he noted that 100% non-uniformity is extreme and

rarely found in volumetrie scans. The robust behavior of the A:'Jlj\IAL algorithm is

due to its use of image gradients rather than image intensities ta define the deforma-
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(a): deformed (b): uniform (c): co-regjstered

(

Figure 7.5: Simulated Tl weighted ~·IRI volumes deformed and co-registered. (a) a

deformed simulated volume having intensity non-uniformity. (b) a uniform and

undeformed volume. (c) the VOIUITle in (a) after co-registration \Vith the volume in

(b) .

tion fields. Image gradients are largely llnaffected by the smooth variations associated

with intensity non-uniformity.

The experiments described in this chapter show that intensity non-uniformity sig­

nificantly degrades the perfornlance of the tissue classification and cortical surface

extraction methods tested. This is attributable to their reliance on intensity thresh­

olds. In contrast. the co-registration nlCthod. whidl relies on ilnage gradients rather

than absolute intensities. \Vas unaffected except by severe levels of Ilon-uniformity.

In combination \Vith the ~3 Inethod aIl three mapping techniques provide good per­

formance independent of the le"el of non-uniformity present . .-\S anatomical analysis

using these techniques can oc employed to answer a broad range of questions of scien­

tiflc and clinical interest. thesc results emphasize the need for intensity non-uniformity

correction.
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Chapter 8

Discussion and conclusions

8.1 Characteristics of the N3 method

.-\ new method~ called ~3. for corn~cting for intensity non-uniformity in 3D ~[R images

has been described. ~3 does not rely on a parametric model of tissue intensities~ nor

on segnlenting a volume into contiguous regions. Instead. non-uniformity is assumed

to blur the histogram of the data in a way that can be identified~ quantified. and

removed. The assumption that aIl of the information neederl to derive a smooth

correction field for the \"olunH' is present in the histogram is a major advantage of

the N3 method. as it does nat need to know anything about what an ),tIR scan

contains or ho,,," it \Vas acqllired. Howcyer. relying heavily on the histogram also

has drawbacks, as it involves restrictive assumptions about the statistical properties

of the data that are rarely satisfiecl in practice. To understand why the method is

robust and accurate in correcting y,IRI data despite this apparent weakness. we must

consider the assumptions of the rnethod in more detail.

The first of these is that non-llniformity can be nl0delled as a smooth multi­

plicative field. \Nhile this nlodPl is shared by most othcr correction methods. it is

particularly important tu ~3. .-\S described in Chapter 2. the multiplicative field

ruodel accurately describes non-uniform sensitivity of a reception coil, but it is only

an approximation to the tissue dependent character of excitation field non-uniformity.

One can make two arguments that the discontinuities in the smooth field, caused by
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dependence of excitation non-unifornlÏty on tissues properties, are small. First, stan­

dard spin echo sequences are designed to he insensitive to low levels of excitation field

inhomogeneity. Second. excitation is often done with a scanner:s body coil. which is

larger and more unifornl than the head coil used for reception. HoweveL neither ar­

gument applies in aIl situations since other imaging sequences. such as gradient echo.

can be sensitive to excitation field yariations and. as was described in Chapter 2:

much of the non-uniformity observed with clinical scanners is due to electrodynamic

interaction \Vith the subjeet rather than uniformity of the coils. Instead, one can

draw upon the observation that. while sorne tissues may he more sensitive to exci­

tation field variations than others for a particular pulse sequence. the trend in the

non-uniformity field is still thp sanle. Given that excitation non-llniformity accounts

for at most half of the combined excitation-reception non-uniformity and that dif­

ferences in sensitivity betwepn tissues are a fraction of that half. one should accept

that the multiplicative field estinlated is an a"erage of the similar but not identical

multiplicative fields present in individual classes of tissue.

The second assumption of the ~;3 rnethod is that tissue intensities are independent

identically distributed random variables. This stationarity assumption essentially

says that the various tissues present should be well mixed. much like a random field.

Clearly. in abjects of interest for ~[RI this is not the case. The brain. for example,

has regions of homogeneous tissup corrp.sponding ta the various anatomical structures.

'let despite this difficulty. thp IlH'thod is able to correct for non-uniformity in brain

scans.

Two factors allow ~3 to tolerate violations of the stationarity assumption. The

first is the simple fonn of the Ilon-uniformity field. Since the field is required to

be smooth. field variations introdllced by localized structures in the image are sup­

pressed by smoothing the estirnatecl field. This is the same argument that \Vas given

for the filter and di\·ide approach [23. 2ï. 31. 32. -1G] to Ilon-uniformity correction.

Ho\vever. smoothing alone is not sufficient ta separate intensity nan-uniformity from

large anatomical structures. It is the second factor that distinguishes the ~3 method

from these other methods.
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The N3 method is able to tolerate violations of the stationarity assumption because

it is the local field estimates that are smoothed rather than the images intensities. For

example~ two different brain structures having widely different image intensities can

still yield field estimates that are consistent \Vith the true field since this information

is derived from the sharpening of the histogram rather than the image intensity alone.

However. not aU tissues are eqnaI in their power for estimating non-uniformity.

Consider correcting the non-uniformity in a brain scan using only grey and white

matter. Since white rnatter is found in large contiguous regions, the peak in the

histogram corresponding to white matter is narrower and better resolved than that for

grey matter which is more prone to partial volume l . As a result of this weIl resolved

peak. white matter is more powerful for estimating non-uniformity. Since there is

a relatively narrow range of intensities corresponding to white matter. intensities

outside of this range are more likely to be caused by non-uniformity. This estimation

power is refiectecl in the ~3 rncthocrs more aggressive correction of white matter.

At first glance, this would seenl to ensure that the field estimate will be biased

by the anatomy. Howc\·cr. n"!call that :'\3 is an iterative optimization, not a single

estimate. By iterating; towards a field estimate that is both smooth and ma.ximizes

the high frequencies in the histogram. the faet that certain types of tissue are more

powerful estimators of non-uniforIllity becomes less important. \Vhile the field esti­

mate near structures containing these Inore powerful estimators will converge more

rapidly, the field estimate in other regions can continue ta improve after these regions

have converged. This trend is apparent in the first ten iterations of the correction of

the Tl volunlC shown in Figure -1.-1 where the field estiInate grows nlore rapidly in

white matter regions than in grey matter or CSF.

.-\ potential difficulty with iterativC' optinlÎzation methods such as ~3 is that one

is never certain whether the solution found is the global or a local minimum in the

objective function. \Vhile it cannot he proven exhaustively that the method converges

to a global minimum. the fact that the method has always been observed to converge

LNote that resolved peaks corresponding ta isointense classes of tissue are not necessary for the

proper functioning of N3. This is merely an illustrative example.
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to the same solution regardless of the initial field suggests that the optimization is

not prone to local minima. This observation has been confirmed with random fields~

other kinds of simulated data. and real data.

Ta summarize. the ::\3 method makes the assumptions that non-uniformity can be

modelled as a smooth multiplicati\'e field and that the image intensities are indepen­

dent identically distributed randoIn variables. \Vhile neither assumption is strictly

valid for ;\-IR data. the ::\3 method is tolerant of data that violates these assumptions~

suffering a degradation in performance rat lIer than failure. The strongest argument

in support of this is the experinlental e\·idence.

8.2 Experimental results

Correcting for non-uniforrnity in a random field is useful to understand the behaviour

of ~3. Aside from the trivial illustration that the method is able to correct volunles

lacking contiguous regions of hamogeneous tissue. the experiment described in Sec­

tion 5.1 is important as an illustration of the benefits of using a statistical approach.

.-\ random field is fair data upan which to compare :\3 ta a filter and divide ap­

proach. Since there is no structure in the \·olunle. the usual criticism of filter and

divide methocls. that the spatial frequencies of the anatomy overlap with those of

the non-uniformity field. cIoes not apply. Despite this fact. the performance of the

~3 method was significantly bettf'r than direct filtering since it takes advantage of

structure in the histogram of thf' data.

Simulatecl data was uSf~d ta ndidate the ~3 method under a variety of conditions.

These experiments show that it is able ta correct Tl. T2. and PD weighted scans

for a range of noise levels and a number of non-uniformity fields. Furthermore. aIl

of these results were obtained wit hout adjustment of the algorithm. In typical trials

non-uniformity \Vas reduced ta 25%-50% of its previous leve!. It should be noted that

this is a conservative estimate since it daes Ilot take into account the non-uniformity

implicit in the noise and natural yariability of tissue. Since in practice the goal of

correction is to produce a uniform volume. the performance of :\'3 is even better since
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smooth variations due to noise. natural tissue variability~ and true non-uniformity are

aIl reduced. Experiments measuring this combined variability using real data. while

not quantitative~ showed significant reductions in non-uniformity using N3.

To put these results in perspective the benefits of correcting for non-uniformity

\Vere investigated for three different anatomical lllapping applications: tissue classi­

fication~ cortical surface extraction. and non-linear co-registration. :\3 created sub­

stantial improvements in accllracy on volumes with typical levels of non-uniformity.

Furthermore. the performance of these techniques became largely independent of the

severity of the non-uniformity when used in conjunction with the N3 method.

8.3 Implementation issues

For the practical use of the :\:3 nIethod one needs ta consider how to choose the various

parameters. In particular. one needs ta choose the Sllloothing parameter:.ù~ the basis

function distance d. the initial field estinlate. the stopping threshold e~ the working

resolution~ and the two pararneters controlling the deconvolution kernel, F\VHNI and

Z. Fortunately~ there are critf'ria for choosing these parameters.

As described previollsl~·. since both .;.) and ri control the smoothness of the field

estimate~ one of these paralucters can he fixed arbitrarily. Throughout the analysis,

w has been fixed at 1.0. The basis function distance cl is then used to control the

smoothness of the estimated field. with larger d corresponding to smoother fields.

Experiments on sinlulated data showed performance to have little dependence on this

parameter (see Figure 5.7) and it \Vas fixed at 200 mm.

Experiments with simulated data ha\'e aiso shown performance to have little de­

pendence on the choice of the deconvolution parallleter Z. It has been fixed at O.l.

The choice of the second deconvolution parameter F\\'Hi\{ involves a compromise.

The results shown in Figure 5.6 suggests that performance generally improves as the

F\VHNI parameter is reduced: however. the rate of convergence drops rapidly. Choos­

ing this paramcter involves a tradeoff between accuracy and computation time and

should take into account the working resolution and stopping condition. both of which
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affect computation tinle. Throu~hout this analysis the F\VH~I \Vas fi.xed at 0.15.

:\s mentioned earlier. the );3 method has been round to converge to the same

solution irrespective of the initial field estimate. For simplicity, the initial estimate is

taken to be zero field. Another consideration is the choice of working resolution. The

results of :\ppendix C suggcst that substantial reductions in computation time can be

gained with little or no reduction in accuracy by subsarnpling a volume to a coarser

resolution. In light of this data. it appears that the decision to use 3mm isotropie

sampling as the working resolution throughout this analysis was conservative.

Another consideration is the choice of the threshold e used to stop iteration. The

idea behind rneasuring the difference between subsequent field estimates is that this

measure will becorne small when the nlCthod has converged. As shown by Figure 5.2,

the convergence of the algorithnl is regular and preclictable. Hence~ the parameter

e should be chosen basecl on the convergence rate for a given F\VHNI. In summary~

criteria are available for choosing al! of the parameters needed by the ~3 method.

The choicc of these various paranleters control the smoothness of the field cstimate

and the tradeoff bet\veen accuracy and cornputation tinle; they do not determine the

success or failure of the algorithm.

8.4 Comparison with other methods

To put the strengths and weaknesses of the :\3 rnethod in perspective it is \vorthwhile

ta compare it ta other nlethods. \rhile the results of the experiments with simulated

data described in Chapter 6 snggest that no one mcthod is best in aIl cases, the

relative performance of the nlethods in each case can be rationalized from their design.

Consider the vV~vI method which relies on segmenting the white matter from the rest

of the brain. On Tl weighted volumes. where the contrast between white matter and

other tissues is greatest. the white matter mcthod gave the best performance. On PD

weighted volumes where contrast is low. the performance of the white matter method

is relatively pOOf.

Unlike the white matter method. the contrast seen in Tl scans works against the
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EÀ1 method. In principle the E~'I niethod has an advantage over the vV~I method in

that, by using the whole volunie. it is less affected by noise. However. a number of

authors have described this method as overly sensitive to the training of its classifier [5,

20, 31]. The autho(s experience has been that the method makes excessively large

corrections ta voxels that faH olltside the classifier~s tissue mode!. These outliers may

dominate the correction process and cause poor results. If one trains the classifier

on samples of pure tissue and the intensity distributions of the different classes are

well resolved~ as is the case in Tl scans. then regions of partial volume will produee

intensities outside the tissue nloclel and reeeive extreme corrections. This is reflected

in the data by the faet that the method performed \Vorst given an ideal training set

consisting entirely of pure tissue (see Figure 6.1). In addition, in sorne cases as the

level of noise increased. the E)'I rnethod performed bettpr (see Figure 6.1a). This

is due to the greater variability in the training data and redllced contrast in these

images. Similarly, on PD weighted scans. with less contrast. the method performed

better. Overall. the performance of this rnethod was erratic.

Compared to the E~I method. the RE~I rnethod perfornled substantially better.

suggesting that the use of probahility priors and spline smoothing significantly im­

proves overall perforrnance. Like the E)'I method, RE),I performed better on PD than

Tl weighted scans.

The non-parametric rilethod also gave consistently good performance on aIl three

modalities for the tests shown in Figure 6.1. Although RE)"I performed better than

N3 on simulated T2 and PD data. what distinguished the ~3 method from the RE;\I

rnethod is the results for real data. \Vhile real data is llnable to provide quantitative

results, it uncovered limitations of the methods caused by factors not reflected in

the simulations. :\.s discussed in Section 6.3. the E~vI and RE:\I methods proved

unexpectedly sensitive to the choice of brain nlask. Even when this rnasking problem

was fixed, the RE~I method performed poorly on real Tl data, tending to make

non-uniformity \Vorse. \Vhile it is not clear what causee' this failure. it is likely

that sorne aspect of the data violates the sophisticated nlodel employed by the RE~vI

method. In contrasL the ~3 Iltethod showed no such sensitivity and required no
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special precautions in mo\·ing; l'ronI simulated to real data.

The comparison of the four methods on a sagittal slice of a Tl weighted scan in

Figure 6.2 illustrates the typical behuviour of the four methods. 80th the E~I and

RENI methods make their greatest correction at the top of the head. Diminished

intensity at the top of the head is often seen in gradient eeho Tl weighted scans.

However, both of these methods have made the problem \Vorse. This is likely due to

a poor initial classification of this region. It should be noted that the field estimated

by the E~vI nlethod has higher frequency content than that of the other methods due

the use of the truncated filter.

\-Vhile the fields estimated by the \\'~I and :'\3 nH~thods are similar, the \VJ\rI

method makes its greatest correction at the front edge of the brain while the ?'i3

method corrects most stron~ly the fflgion jllst forward of the middle of the brain.

This latter behaviour is typical of the ~3 method and may be due to a breakdown of

the stationarity assumption discussed in Section 8.1.

Another difference betwpen the .\"3 nlethod and the other methods is that it tends

to raise the intensity of the cerebellurn. This difference is likely due to the mi-xing

of grey and white matter in this region. \Yhile:\""3 is designed to correct randomly

mixed fields of tissue. the other illethods may have difficllltly finding pure tissue on

which to base their correction.

8.5 Conclusions

An iterative method for correction of intensity non-uniformity in ~,IR volumes has

been described that avoiels sonle of the restrictive model assumptions that plague

other methods. In particular. this :'\on-parametric intensity :\Ton-uniformity :'-J"ormal­

ization (N3) rnethod does not [('quire a model of the tissue intensities in terms of

discrete tissue classes. Bor does it rely on a segmentation of the volume into homo­

geneous regions. Instead. a nOll-parametric model of the tissue intensities is derived

directly from the data. The behaviour of :\3 is tontrolled by two parameters: one

controlling the smoothness of the estimated non-uniformity~ the other controlling the
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tradeoff between convergence rate a.nd accuracy. Experiments with simulated data

have shown that both of these parameters can be chosen to provide uniform perfor­

mance independent of pulse sequence. subject. and field shape. This is a considerable

advantage in automated data analysis as the method can oe applied at an early stage,

without prior knowledge of the data. For instance. no special precautions need to be

taken for pathological data that nlight otherwise violate tissue model assumptions.

A wide variety of experiments with simulated :\tIR volumes show that by conserva­

tive estimates N3 reduces non-llniformity from a typicaI level of 20% to a level of 5%­

10%. Furthermore. real data corrected by the method is visually uniform and shows

a statistically significant reduction in tissue intensity variation. These improvements

in uniformity were shown to translate into substantial improvements in the accuracy

of three different anatonlÎcal ruapping techniques. Robust. fully automatic. and re­

quiring little domain specifie knowledge. ~3 is attractive as a preprocessing step for

a variety of l\IRI analysis applications.

8.6 Future Work

\Vhile this work establishes the core ideas of the \i3 ruethod. there are a number

avenues that remain unexplored. The first of these is the optimization of accuracy

and convergence rate. \Vhilp one LOllicl further explore the relationship between the

stopping condition. decoIlyolutioIl kernel F\VH?\L and working resolution in ternIS

of accuracy and computation tinle. a more interesting investigation is to vary the

F\rVHNI \Vith iterations. If the final accuracy is determined by the F\VH~I of the

final deconvolution kernel. then one can en\'ision a scheme in which the width of the

deconvolution kernel starts large to increase the initial convergence rate but ends

small ta improve final accuracy.

Another aspect of ~3 that remains to ue explored is the choice of the kernel

function for deconvolution. In fact. the whole process of proposing new intensity dis­

tributions could be replaced by a different heuristic such as one that proposes intensity

distributions \Vith higher entropy rather than enhanced high frequency content. Any
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scheme that could propose illcrcmentally sharper histograms based on the measured

histogram would be suitable.

:\. third avenue of investigation is to apply the method to other types of data.

vVhile aU of the analysis described here has focused on correction of volumetrie brain

scans, there are no anatomy specifie assumptions in N3. Any ~IR image used for

quantitative analysis would likely benefit from reduced intensity non-uniformity. Fur­

thermore, any imaging nlodality that suffers from a srnooth multiplicative or, with

sorne modification. additive bias fipld could benefit [rom correction using N3.
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Appendix A

Spline smoothing

The tensor cubic B spline approximation of a function is given by

.\/~ .\I!} .\{=

p(x) = 2:: L L BijkBi(L')Bj(y)Bk(:)
1=1 )=1 k=l

(A.1)

where x = [x y z] and B is a one climensional cubic 8 spline in the variable L·. y~ or

z. For example. the B spline for J7 is giyen by

, _ ~ (-l)'~ (--1) ( . (x) ):1 (.. (X))
Bi(x) - .~ --;p-:; J. - '\-.0; Il.r - '\i-.~ (A.2)

J: > 0

elsewhere
(:\.3)

where I.\~.r) is referred to as a knot location and d is the distance between knots. :\

spline Bi (x) only takes non-zero ,"alues on the interval [)'~~~I' ).~X)J"

The B spline coefficients Bijk for least squares approximation of a set of data are

found by minimizing as follows

min E(B) + wR(B)
o

(A.4)

(

where E reflects the closeness of fit to the data and R reflects the roughness of the

approximate function. Choosing the parameter '..1.,.' deternlÎnes the tradeoff between

the two.
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Suppose there are .V rueasurcnlents P n at locations X n . Then E and R are as

follows

E(B)

R(B)

(A.5)

(A.6)

where D contains the region of interest and \. is the volurIle of D.

In matrix form. the solution of equation (.-\..-1) for f} is ~iYen by

T -1 TB = (A A + w'J) A Z (A.7)

where

An,l]k -

Q

J

.lU) . -
X l.J

8z(xrJarr. = Bi(.L"n)Bj(f/n)Bd::n) is an elenlent ofan ~V by Q matrix.
l]k

.\I.eJI'/ JI::

1 j '1) (i)-: Bi (.r}B
J

(.r:)d:r is an clement of an .lIx by 1lx matrix.
\' D

The symbol ® denotes Kronecker product. fJ and Z are colunln vectors with elements

in their natural order. D is most convcniently taken as

D [\ (.L) \(.e) ] [\('1) \(Y) ] [\(=) \(=) ]= , 0 ., .\fr-:l X , ri ." .\f!J-:~ X ,. 0 . ,. .\[:-:1 (.-\.8)

(

although this [Ilay be larger than the region of interest.

Equation (.-\..7) [Hay not be solvable directly if the smoothing parameter is very

small or zero since the matrix A'~-l is often ill conditioned. Hayes and Halliday [24]

have proposed a technique using Householder transformations ta stabilize the method.

However. in practice ~' can he ('hosen large enough ta avoid numerical difficulties.
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Appendix B

Sum of Random Variables

The idea that adding a field j to the log intensity image li. has the effect of blurring

the intensity distribution C is cpntral ta the .\'"3 method. To clarify this relationship!

the mathematics of adding independent randonl variables are described here. For

further detaiis. l'onsuit [1:3].

Suppose j and ü arc independent ranclom variable with probability distributions

given by F(f) and U(ù). f E lI? il E ~R

The distribution ,- (i') wherp l~' = j + il. can be conlputed as fa 110\\'5. The joint

probability distribution of f~' and lÎ. is gin~n by

P( ' ') F( . . ) r "( ~ ) 1 au-· li) 1L'. Il = ft - Il v Li •
8(f. ù)

where the term~ is the .J acabian factor for the change of variables from (j. û) ta
iJ(f.Ù)

(D. û).

Hence

1 D( I~. il) 1 = 1 :~; ~:~ 1 _

1a(J. li) 1 ih~ ~l~ 0
il f rJu

1
= 1 (B.2)

P (f.. ti.) = F (Î' - il) [J ( il ) (8.3)

The distribution '"(v) is given by the nlarginal distribution of P( i~. ù) as follows

(BA)

( which is the same as equation (-1.3) on page 18 and corresponds ta the convolution of

F and U.
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Appendix C

Working resolution

Simulated Tl weighted :\IR \·olumes. described in Section 5.2. were used to investigate

the connection bctween working [esolution. correction accuracy. and computation

time. For these experiments. four realizations of the pseudo-anatomy \Vere tested

for both of the non-llniformity fif'Ids shown in Figure 5.5. The estimation error and

computation time for the5(> pxperirnents are plotted in Figure C.l. These results

show no significant differencp in pstirnation error for the range of working resolutions

shown. .-\.lthough the data poiut in Figure C.la for 1 mm \"orking resolution is not

available. other experiments not shown here suggest no irnprovement in accuracy at

1 mm resolution .

.-\.S shown by Figure C.I b. therp is a substantial decrease in computation time as

the voxel size of the workin~ resolution increases. This trend rcfiects the fact that at

larger working resolutions therc are [ewer \'oxcls ta process. It should noted that data

is converted to the coarser resolution by sl1bsarnpling without filtering. effect.ively

throwing away sorne fraction of the data. The faet that so rnuch of the data can

be removed with little impact on correction accuracy suggests that the problem of

estimating non-uniformity is highly overdeterrnined.
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Appendix D

Glossary

artificial neural network classifier .-\n artificial neural network classifier (ANN)

employs a non-lînear functian formed fram simple terms. corresponding to nodes

in a network. to label measurements as belonging ta a particular class [61]. The

coefficients of this function are deri\"ed using a set of correctly labelled exaInples.

See classifier.

B o The notation Bo denotcs the stati~ magnetic field produeed by an ~'IR scanner.

BI In ~IR. the notation BI denotes the magnetic field. oscillating in the radio

frequency range. usee! to inducc magnetic resonance in the subject.

B splines B splines are smooth piccewise polynonlial functions of limited extent

that can be used as a basis for constructing srllooth funetions. See Appendix A.

bandwidth filter In :\IR. a tilter. referred to as a bandwidth tilter. is used to select

the range of frequencies present in the measllred signal. Since spatial location

is encoded as frequency. frequcncy dependent variations in the sensitivity of

this fUter lead to intensity \ë:uiations in the frequency encoding direction of the

rcsulting image.

basis function A set of funetions that are linearly independent. in the sense that

no member can be constructed from a linear combination of the others. is termed
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a basis and the indi\'idual funetions are called basis funetions. See B spline and

.-\ppendi.x .-\.

Bayesian classifier The restricted definition of a Bayesian classifier used for this

\York is that eaeh tissue class is model1ed as having normally distributed in­

tensities of given mean and co\·ariance. The classifier labels a measurement as

belonging to the class ha\'ing nUlximum apostcrior probability (~L-\P) [1 ..1. 29J.

bias field For the purposes of this work. the smooth multiplicati\'e field assoeiated

with intensity non-uniformity is termed the bias field.

Biot-Savart law The Biot-Sanl.rt la\\" is an expression for the magnetic field at a

point expressed as an intcgral of current dcnsity over aIl space. This expression

is valid when the distribution of current density is statie.

bird cage coil .-\ kind of antenna for transmittiug and recei\'ing RF pulses. the

bird cage coil is often llscd for \'olumetric .\IR scans of the head. It is formed

from two loops connectcd by a number of spokes and produces a circularly

polarized field oriented perpendieular to the coirs ëLxis of symmetry. See [53J.

Bloch equations The Bloch pquations [3] are a set of coupled differential equa­

tions that empirical1y describp the time e\'olution of the net nlagnetization of a

subject in an .\IR scanner gi\'cn knowledge the magnetic fields present.

body coil The large antenna fixed pernlanently in an .\IR scanner and suitable for

whole body scans is callcel the body coil.

broad-band noise :\oisf' having a frequency spectrum \Vith a wide range of fre­

quencies is said to he ln·oad-band.

cerebellum The cerebelluIll is a largp dorsally projeeting brain structure \Vith thin

layers of gray and white matter harely resoh'able at the resolution of a typical

'\;IR scan.
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.{ cerebrospinal fluid Cerebrospinal fluid is a substance sinlilar ta blood plasma

found surrounding the brain and within the ,·entrides.

circularly polarized coil .-\ circ1l1arly polarized coil prodnces a magnetic field of

constant magnitude but rotating; orientation. Snch a coil can be formed from

two linearly polarized coils oriented at right angles and dri"en in quadrature.

classifier .-\ tool for la})f'lling each "oxel as belonging to a particular class on the

basis on one or more featllrps associated with that "oxel is said to be a classifier.

This definition can he re1a...x:ed ta allow fuzzy or partial membership in a c1ass.

co-registration The task of determining the transformation that relates measure­

ments in one coordinate to measurements of the same object in another is that

of co-registration. This definition can be relaxed ta include abjects that are not

the same. but merely sinlilar.

compactly-supported spline _-\ conlpact1y supported spline is anly non-zero ln

a finite region. The matrices associated with soh-ing the linear problem of ap­

proximating a function in thp le~~t squares sense by splines ha,-ing This property

are sparse.

cortical surface The l'ortiral surface is the outermost surface of the brain.

cortical surface extraction Cortical surface extraction is a brain nlapping tech­

nique for identif.\·ing the cortical surface in an ~IR scan.

echo The reappearance of the ~IR signal after the initial signal caused byexcitation

has died away is r('ferred to as an echo. See [21].

echo time Denoted TE. the ('l'ho tinH~ is the time after an initial excitation at

which the eeho signal occurs. The peho tinle of a pulse sequence is one of the

factors determining the weighting or contrast in the resulting ~IR image.

eddy currents Eddy ('urrents are eleetrical currents induced in an abject by tran­

sient magnetie fields.
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entropy Entropy is a Ulcasure of disorder. For random variables. lower entropy

corresponds to a more tightly dllstered probability distribution.

excitation field The excitation field in an ~IR scanner is the oscillating radio­

frequency magnetic field used to induce magnetic resonance in the subject.

field gradient In :\IR. spatial variations in thc magnitude of the main magnetic

field Ba are used ta encode spatial location. These linear variations are referred

to as field gradients.

finite element analysis Finite elenlent analysis is a numerical method suitable

for solving partial differential equations by approximating the solution in terms

of a number of discretp plenlCuts.

flip angle The angle by which the net magnetization rotates in response to an RF

excitation pulse is the pulse·s ffip angle. ),lore precisely. this angle is Cl nutation

of the net magnetizatiou as it precesses about the direction of the main nlagnetic

field Ba.

frequency encoding direction In a spIn warp imaging sequence. the direction

in which spatial location is encoded by rpsonant frequency is the the frequency

encocling direction.

geometric distortion Geometrie distortion is displaeclnent of voxels in the image

that causes the geornetry of the sllbject ta be misrepresented.

gradient echo pulse sequence An inlaging sequence which produces an echo by

the switching of field ~radients alone without the aid of a second RF excitation

is referred ta as a gradient echo pulse sequence.

grey matter Grey rnatter is brain tissue characterizcd by unmyelinated neurons

and a greyish appearallcc upon dissection.

head coil :\n antenna specifically for imaging the human head is a head coil. :\[ost

head coils are of bird cage design.
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imaging sequence See pulse sequence.

independent random variables Random variables are said to be independent if

the values they take on are unrelated and if any correspondence between them

is purely coincidental.

intensity non-uniformity Intensity non-uniformity is the variation in image in­

tensity caused by the imaging process rather than true variation in the subject.

Distinct from noise. intensity non-uniformity is llsually smoothly varying and

not randoIn.

kappa Kappa is a meé:lSUre of similarity~ corrected for chance [7. 30J. A kappa

of unity indicates perfect agreenlenL while a kappa of zero indicates that any

agreement is purely coincidental.

kernel In signal processing ternlinology. a kernel is a function describing the re­

sponse of il filter to an impulse at its input.

LCJ segmentation :\.n acronynl for Liou. Chiu. and .Jain~ LeJ segmentation [33J

is an llnsupervised technique for identifying homogeneous regions within an

Image.

linearly polarized magnetic coil A linearly polarized coil produces an oscillat­

ing magnetic field oriented in a particular direction. See (1 9J.

magnetic relaxation In ~IR. magnetic relaxation is the process by which the

signal emitted following excitation decays away and the net magnetization of

the subject returns to its equilibrium state.

minimum distance classifier A nlÏnimum distance classifier labels a given mea­

surement as belonging to a particular class on the basis of which class has the

prototypical example to which the measurement is closest [2~ 30J.

multiple sclerosis \Iultiple sclerosis is Cl degenerative brain disease. The associ­

ated brain lesions can be observed with ~'IRI.
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( multi-slice sequence :\ nnl1ti-slice sequence is a pulse sequence in which the sUces

that together form the inla~e volume are acquired one at a time.

net magnetization For ~IR imaging~ the net magnetization refers to the magnetic

field produced by the hydrogen atoms within the subject. The phenomenon of

nlagnetîc resonance occurs when the net magnetization is rotated away from its

equilibrium orientation. parallel to the main magnetic field (Bo).

non-parametric method Parametric methods use a limited number of parame­

ters to specify a model whose form is chosen to fit the problem at hand. In

contrast~ non-parametric rnethods use a large number of parameters to specify

a nlodel whose form is generaI ta a broad class of problems.

partial volume effect The process of image formation in :\IR is such that voxels

that are partially filled with tissue have a proportionally smaller signal strength.

\Vhen this process leads to \'oxels of intermediate intensity at the boundary

between regions of honl0geneous ruateriaI. it is referred ta as a partial volume

effect.

Parzen window .-\. nlethad of estinlating the distribution of a random variable

from Cl set of meaSllrements is to intcrpret each nleasurement as a distribution

of measurements clustered around the actual nleasnrement. This latter dis­

tribution is termed the Par'zen window [1--1]. Distributions estimated using a

Parzen windaw tend ta be more accurate than traditional approaches when the

number of measurements is smal!.

penetration effect \Yhen Cl time nuying electromagnetic field is attenuated or

prevented from entering a material by the currents it induces in that material~

the phenomenon is tcrmed a penetration effect.

permittivity Permittivity is a measurc of a materiafs ability to store electrical

potential energy.
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phantom A phantom is an object llsed as a subjeet of an :\·IR scan for the purpases

of calibration or testing.

pickup coU In analyzing an RF coil for use in ~IR. éln antenna small enough ta

have little effect on the coil being analyzed, yet suitable to detect the magnetic

field fluctuations produced by that coil is referred to as a pickup coil.

proton density weighted .-\n 'IR image is said ta be proton density weighted

if the image contrast is largely determined by the density of hydrogen atoms

present.

pulse sequence A particular orchestration of RF pulses, switched field gradients.

and data acquisition periods used to produce an image is referred ta as a pulse

sequence.

quasi-static A system in which electronlagnetic fields are changing slowly enough

that magnetostatic equations (i.f'. Ampere's law and the Biot-Savart law) apply

is said to be quasi-static.

reception coil The ant(!llna llsed in ~IR to nleasure the radio waves emitted by

the subject is a receptian coil.

reception sensitivity The ratio of the measured signal to that which is emitted

by the subjeet is the rp("eption scnsitivity. Reception sensitivity that is spatially

varying contributes ta intensity non-uniformity in the resulting image.

rejection sampling Rejection sampling is a technique for generating random sam­

pIes with an arbitrary probability distribution. The method uses the probability

density of the desired distribution to randomly reject samples from a uniform

distribution. See [13J.

relative permittivity The relative permittivity of a rnaterial is the ratio of its

permittivity to that of free space. Permittivity is a measure of a material's

ability to store electrical potential energy.
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.( relaxation See magnetic rehL"~ation.

repetition time The perioci of the repeating eycle of excitation followed by data

acquisition during a pulse sequence i5 the repetition time (TR). The repetition

time of a pulse sequence determines the Tl weighting of the resulting image.

resample Resampling is an image processing technique for transforming a sam­

pied representation of an image to another representation sampled at different

locations but corresponding to the same inlage.

resonant frequency The frequency. proportional to the strength of the static

nlagnetie field Bo~ at which net nlagnetization precesses i5 the resonant fre­

quency.

Rician distribution .-\ Rician distribution is formed by computing the magnitude

of the sum of a complex Gaussian clistributed randoITl variable and a constant.

saddle coil .-\. saddle coil is Cl pair of saddle shaped loop antennas used to produce

or receive a linearly polarized RF field.

scan .-\ scan is a volunlc of data èlcquired in a single session \Vith an ~iIRI machine.

scanner In this context. a scanner refers ta an )'IRI machine. a device capable of

volumetrie inlëlging of the anatomy.

segmentation The set of labels identifying the dass that each voxel in a volume

belongs to is the segmentation of that volunle.

sensitivity See reception sensitivity.

sharpening Sharpening is a signal processing technique that enhances the high

frequency components of a signal.

spatial frequency An image can be decomposed in terms of sinusoidal basis func­

tions. The number periocls Cl basis function has within a given distance is its

spatial frequency. Low spatial frequencies are associated with smooth image

feature~ while high frequencies are associated with abrupt changes and edges.
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SPECfp92 SPECfp92 is a measure of a computer~s fioating point performance

developed by the Standard Performance Evaluation Corporation (SPEC).

spectral estimation The task of estimating a signars power within a given fre­

quency range is that of spectral estimation.

spin echo pulse sequence A spin eeho sequence is a pulse sequence that employs

a 90° and a 1800 RF pulse to produce an signal echo~ during which data is

acquired.

spin warp acquisition The process of ~IR data acquisition can be viewed as sam­

pling the Fourier transforrn of the image. A spin warp acquisition sequence

samples this image on a grid. one rO\v at a time. The rows and columns of

this grid correspond ta the frequency encoding and phase encoding directions

respectively.

standing wave effect .-\ standing wave oscillates but does not travel. In ~IIR, the

radio waves reflected within a subject rIlay interfere constructively and appear

not to travel. This enhancement of BI field strength is referred ta as a standing

wave effect.

stationarity An lillage is said to be stationary if the statistics describing each

clement and relating its nei~hbollrs do not change with position in the image.

stereotaxie space Stcreotaxic space is a coordinate systenl in which affine differ­

cnces among individual hrains ha\"e been removed sa that any neuroanatomical

location can be addresspd hy a Cartesian coordinate [51. 9].

structuring element In binary nlorphology. the structuring element is a binary

mask that defines which voxels are considered neighbours of a given voxel.

sulcus A sulcus is an inward rold of the cortical surface.

surface coil A fiat antenna placed on the surface of the subject is a surface coil.

Surface coils have high sensiti\"ity that drops off rapidly with distance from the

coil.
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Tl weighted An image is said to be Tl weighted if its contrast is largely due ta

differences in the intrinsic tissue property Tl. Tl is the time constant describing

the rate at which the net ruagnetization returns to equilibrium after excitation.

This process is refern'd ta as spin-iattice rela..'\:ation.

T 2 weighted T2 weighting indicates that the :\IR image contrast is largely depen­

dent on the intrinsic tissue property T'2~ a property describing the rate of 50

called spin-spin relaxation.

tessel1ate .-\. surface is tessellated by approximating it in ternIS of simple geometric

surface elements.

tissue classification Tissue classification is the task of labelling each voxel by

tissue type. See classifier.

tissue probability map .\laps showing the probability that each location in

stereota..'\:ic space has a ~in~Il tissue type a:-e calI tissue probability maps (TP~I).

training set .-\. set of corrflctly labelled example measurements from which a clas­

sifier learns its behaviollI" is a training set.

tricubic interpolation Tricubic interpolation is a method employing cubic splines

to estinulte the value of Cl function on the basis of nearby mea..'iurements taken

in three dimensions.

unloaded eoi! An :\IR scanner·s RF coil is said to bp llnloaded if there is no

subject within it. \ïcwed as an electrical circuit the RF coil is magnetically

coupled ta the subject. which presents an irnpedance during excitation. Since,

this impedance absorbs energy it is said to be a load on the electrical circuit,

hence the terminology of loaded and unloaded coils.

volumetrie acquisition \Vhile any imaging sequence in which a 3D volume of

data is acquired is tpchnically a volumetrie acquisition. the term is used here

to refer to scans in which the sensitivity is relatively llniform throughout the

volume~ such as \Vith hcad or hody coils.
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.( voxel Analogous to a pixel. a \·oxel is an element of a 3D or volumetrie data set.

warping Resampling an iInage to produce a possibly non-linear spatial distortion

is called warping.

white matter \,Vhite matter 15 brain tissue characterized by rnyelinated nerve

fibers and a whitish color upon dissection.

Wilcoxon signed rank test The \Yilcoxon signed rank test is a non-parametric

statistical test to detf'rrninp if two sets of observation come from the same or

different populations.
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