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Abstract

A novel approach to correcting for intensity non-uniformity in MR data is described
that achieves high performance without requiring supervision. By making relatively
few assumptions about the data. the method can be applied at an early stage in an
automated data analysis. before a tissue intensity or geometric model is available.
Described as Non-parametric Non-uniform intensity Normalization (N3), the method
is independent of pulse sequence and insensitive to pathological data that might oth-
erwise violate model assumptions. To eliminate the dependence of the field estimate
on anatomy, an iterative approach is emploved to estimate both the multiplicative
bias field and the distribution of the true tissue intensities. The performance of this
method is evaluated using both real and simulated MR data. Preprocessing of MR
data using N3 is shown to substantially improve the accuracy of anatomical analysis

techniques such as tissue classification and cortical surface extraction.
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Résumé

Une nouvelle fagon de corriger le probleme de non-uniformité d’intensité d’images de
résonnance magnétique (RM) est décrite. Cette méthode atteint de hautes perfor-
mances sans surveillance. Etant donné que la méthode fait peu de suppositions issues
des données, elle peut étre utilisée des le premier stade d’analyse automatique, avant
méme qu'un modele d’intensité des tissus ou de géometrie ne devienne disponible.
Décrite comme une Normalization Non-paramétrique d’intensité Non-uniforme (N3),
cette méthode est indépendante de la série de RN et est insensible aux données
pathologiques qui auraient violé les suppositions du modele. Pour que la correction
estimée ne dépende pas de 'anatomie, un algorithme itératif est utilisé pour estimer
le champ multiplicatif correctif et la distribution d’intensités du tissu reel. La per-
formance de cette méthode est évaluée avec les données de RM réelles et simulées.
Le traitement des données RN avec N3 fait preuve d'une grande amélioration sur la
précision d’analyvse anatomique comme la classification de tissus et la démarcation de

la surface du cortex.
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Chapter 1

Introduction

An artifact often seen in MRI is for the signal intensity to vary smoothly across
an image. Variously referred to as RF inhomogeneity. shading artifact. or intensity
non-uniformity. it is usually attributed to such factors as poor radio frequency (RF)
field uniformity, eddy currents driven by the switching of field gradients. and patient
anatomy both inside and outside the field of view.

In the past. much of the effort on the correction of intensity non-uniformity has
been directed at reducing the extreme variations seen in surface coil images. How-
ever. recent interest in automatic segmentation has driven expectations of better
uniformity for routine volume acquisitions. While the intensity variations of between
10% and 30% often seen in clinical scanners have little impact on visual diagnosis.
the performance of automatic segmentation techniques. which assume homogeneity
of intensity within cach class. can be significantly degraded by clinically acceptable
levels of intensity non-uniformity. As automated methods are increasingly used to
process large volumes of data for longitudinal studies and clinical trials [15], a robust.
automatic, and inexpensive means of correcting for this artifact is essential for such
techniques to be accurate in labelling cach voxel with a tissue type.

In considering MR intensity non-uniformity it is important to distinguish between
the rapid inter-slice variations sometimes observed with two dimensional multi-slice
sequences and the smooth intensity variations present in most acquisitions including

those using 3D sequences. The former can be dealt with by methods which normalize




the intensities of individual slices [6. 43. 46. 58. 60]. Correction for the latter is the
subject of this thesis.

A wide variety of techniques have been proposed to correct for intensity non-
uniformity. These can be categorized as those relying on theoretical modelling. those
requiring specialized scanning techniques. and those that estimate the non-uniformity
directly from the data. Theoretical modelling techniques have not gained widespread
acceptance because detailed models of the MR machine and subject are seldom avail-
able in a clinical setting. Similarly. specialized scanning is often impractical and
precludes retrospective correction of the data. Methods that estimate non-uniformity
directly from the data are the most practical and economical: however, the need
for expert supervision. in choosing a set of sample voxels expected to have similar
intensities for example. has prevented their widespread use.

This thesis describes a novel method of retrospectively correcting for intensity
non-uniformity in clinical MR scans of the head. Referred to as non-parametric
intensity non-uniformity normalization (N3). the method is shown to be robust. ac-
curate, and fully automatic. These results are validated using both real and simulated
MR data. In comparison with other methods. the N3 method is shown to perform
favorably. which given that the method is automated and requires few assumptions
about the nature of the data. makes it suitable for a broad range of applications. As
examples. the tasks of tissue classification. cortical surface extraction. and non-linear

co-registration are demonstrated to benefit from using N3.
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Chapter 2

Intensity non-uniformity

2.1 Physical causes of non-uniformity

Intensity non-uniformity is the smooth intensity variation often seen in MR images

caused by such factors as:
e inhomogeneous radio-frequency (RF) excitation
e non-uniform reception sensitivity
e electrodynamic interactions with the object often described as RF penetration
and standing wave effects.
Other less important effects contributing to non-uniformity include:
e eddy currents driven by the switching of field gradients
e mistuning of the RF coil
e bandwidth filtering of the data
e geometric distortion.

Reviewing this list of causes in reverse order. the impact of geometric distortion on
intensity non-uniformity can normally be neglected for clinical scanners. Since routine
calibrations show at most a few millimetres of in plane geometric distortion over a
field of view the size of a head. and these distortion fields are slowly varyving, one

can expect corresponding changes in intensity on the order of 1%, which is small
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compared to the non-uniformity caused by other factors. Investigation by Simmons
et al. [46] did not find intensity variations caused by geometric distortion in a 1.5 T
scanner.

In MR. the imaging process encodes spatial location in terms of resonant fre-
quency; hence. frequency dependent variations in the sensitivity of the RF reception
system cause corresponding intensity variations in the resulting image along its fre-
quency encoding direction. A similar problem arises if the filter used to limit the
bandwidth of the received signal has a frequency response that is non-uniform. Since
the sensitivity of an RF coil is most uniform near its resonant frequency and the coil’s
resonant frequency depends on the subject within. intensity uniformity is improved
by tuning the coil to the MR resonant frequency before each scan. Modern scanners
tune themselves to each patient and use filters with relatively flat frequency responses;
hence, intensity variations due to mistuning of the RF coil and bandwidth filtering
of the data can be considered deficiencies in the scanner.

Simmons et al. [46] have observed that intensity non-uniformity increases as the
repetition time of the acquisition sequence decreases. Since the frequency of field
gradient switching also increases with decreasing repetition time, it has been postu-
lated that this non-uniformity is caused by eddy currents in the subject induced by
the switching of gradients. Although the magnitude of this effect is currently small
compared to other effects. the trend in MR technology is towards faster switching
gradients for more rapid image acquisition. so the significance of this effect should
increase.

MR imaging involves excitation of the subject using a radio-frequency (RF) mag-
netic field and the subsequent reception of the RF magnetic field emitted by the
subject. Spatial variations in both excitation field strength and reception sensitivity
can produce significant variations in measured signal intensity. These effects have re-
ceived considerable attention in the literature and have led to the use of the somewhat
misleading term “RF inhomogeneity” being used to describe intensity non-uniformity.

Sensitivity is the ratio of measured signal intensity to emitted signal intensity. As

the sensitivity of the reception coil and data acquisition system is generally assumed




to be linear. spatial variations in sensitivity can be modelled as a multiplicative field
that scales the measured intensities. Given the simple geometry of the receiving coil,
this multiplicative field can be assumed to varv smoothiv across the field of view.

The relationship between the strength of the excitation field and the measured
intensity is non-linear and may also depend on the magnetic relaxation properties.
T, and T3, of the subject. Hence. the variations in intensity caused by variations
in the excitation field strength cannot be exactly modelled by a smoothly varving
multiplicative field.

Assuming linearity of the RF syvstem and coils. one can expect sensitivity varia-
tions to have the same form and relative magnitude as variations in the excitation
field strength. However. since the impact of sensitivity variations on the measured
intensity is more simply modeled than those due to excitation. steps are usually taken
to minimize the intensity variations introduced by excitation. For example, standard
spin echo sequences are designed to minimize flip angle errors caused by variations in
the excitation field. In addition. as signal to noise ratio is not an issue during exci-
tation. a body coil is often used for excitation during head scans to take advantage
of the greater uniformity of the larger coil. These factors have led to the widely used
model of intensity non-uniformity as a multiplicative field corrupting the measured

intensities. The validity of this model is considered further in Section 2.3.2.

2.2 Review of intensity non-uniformity models

A number of authors have conducted theoretical analvses of the excitation field (B,)
and reception sensitivity variations that contribute to intensity non-uniformity. This
kind of analysis is greatly simplified by treating the excitation field as static and
using the Biot-Savart law to compute magnetic field strength by integrating the con-
tributions of nearby currents [36. 38]. While this approach simplifies the modelling
of complicated coil shapes. it neglects penetration and standing wave effects that
are present under the true dynamic conditions. Since the MR resonant frequency

increases with main magnetic field strength By, this approximation of a quasi-static




excitation field becomes less valid at higher field strengths.

The results of an analysis assuming static fields will at best match measurements
made by placing a small pickup coil within the unloaded RF coil. Head coils have been
measured in this manner to have in-plane uniformity with as little as 1% variation
when operating at 64 MHz (suitable for a standard 1.5T magnet). However, since
intensity variations of 20% are typically observed at this field strength, a model that
predicts 1% variation is clearly unsatisfactory.

Initial attempts at dyvnamic modelling of the MR imaging process [4. 35] predicted
that penetration effects would significantly degrade performance at frequencies above
30MHz. As 64MHz (1.5T) machines have since become standard for clinical imag-
ing, these predictions were overly pessimistic. Some authors [44. 46] account for this
discrepancy by suggesting that insulating structures in biological tissue prevent large
current loops from forming. However. calculations by Glover et al. [19] show sub-
stantially greater field penetration' which have been confirmed by experiments with
a cylindrical phantom at 64MHz. Zypman [62] has performed a similar calculation
taking into account the influence of the RF coil. Analysis of this kind predicts in-
tensity variations of 10% to 20% in a head size structure. which is consistent with
what is typically observed. The magnitude of these variations suggest that electrody-
namic interactions. rather than other effects such as deficiencies in the scanner. are
the primaryv cause of intensity non-uniformity for 1.5 T machines.

A difficulty with analytic modelling is that closed form solutions are only available
for simple geometries. Finite element analysis offers a more flexible approach to
dvnamic modelling of complicated structures. The problem of modelling the human
head at 64MHz and 175\ Hz has been considered by Simunié et al. {47] and Vaughan et
al [35] respectively. Simuni¢ has validated a model of the fields generated by a linearly
polarized saddle coil in wivo using the dual flip-angle technique described in [50].
These results predict variations on the order of 30%. Similar measurements [50]

using a bird cage head coil to scan a human head showed less than 10% variation in

'A sign error in equation (7) on p. 632 of {4] accounts for this discrepancy. This equation is

presented in its correct form in Glover et al. [19)].



B, field strength. Provided a model of the subject is available. finite element analysis

is an accurate method of predicting the field variations in a scan.

2.3 Characterization of intensity non-uniformity

While simulation of intensity non-uniformity is not always a practical method of
correcting for it. simulation is a useful tool for investigating its character under a

variety of conditions.

2.3.1 Simulated spin echo images

The analytic modelling method described in [19. 48] can be used to derive expressions
for the excitation field and reception sensitivity present when scanning a uniform
cvlinder with elliptic cross section. Using dimensions similar to those of a human head.
these expressions are useful to illustrate the form of non-uniformity one can expect
to observe. Assuming uniform circularly polarized fields from the unloaded coil and
neglecting magnetic relaxation effects vields simulated spin echo images for circular
and elliptic geometries as shown in Figures 2.1a and 2.1b. Also shown are profiles
through the principal axes for the two cases. Note that the eiliptic cvlinder shows
a diagonal pattern of non-uniformity. while the pattern for the circular cyvlinder is
radially symmetric. The magnitude of the non-uniformity is consistent with the levels
of non-uniformity seen in tvpical brain scans. 13% to 20% variation. Although these
simulations only account for non-uniformity caused by electrodynamic interaction
with the subject. the evidence suggests that this is the primary cause of intensity
non-uniformity. For comparison. three T1 weighted scans of the head are shown in

Figure 2.2. All three show a diagonal non-uniformity pattern in the white matter.

2.3.2 Pulse sequence sensitivity

The choice of imaging sequence has an impact on the magnitude of the non-uniformity.

The signal measured at location x for a spin echo pulse sequence. neglecting relaxation
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Figure 2.1: Simulated spin echo images through a cvlinder with circular or ellip-
tic cross section, using nominal 90° and 180° flip-angles. The main magnetic field
strength (By) is 1.5 T. The cvlinders have a relative permittivity ¢, = 80 times that
of free space and a resistivity p = 2{m. (a) spin echo image of circular section with
diameter 15 cm. (b) spin echo image of elliptic section. The major and minor diame-
ters are 20cm and 15 cm respectively. (c¢) profile along diameter for circular section.

(d) profile along principal axes for elliptic section.




Figure 2.2: T1 weighted brain scans showing diagonal non-uniformity, brighter at the
top left and bottom right. The gray scale has been compressed to exaggerate the

tntensity variations.

effects. is given by the expression [19]

S(x) = R(x)Sse(x) (2.1)
Sse(x) = Sysin’f(x) (2.2)
B(x) = (7/2)B(x)|/Bm (2.3)
R(x) = RoB*(x) (2.4)

where Sqr is the emitted signal. S is the measured signal. 6 is the flip angle. B is the
excitation field. B,, is the field strength needed to produce a 90° flip-angle. and R is
the reception sensitivity. Consider a first order perturbation on the measured signal
S = S, + 4S5 caused by a perturbation B = By, + dB to the excitation field strength
and a corresponding perturbation to the reception sensitivity. Substituting these
expressions into equation (2.1) and treating the signal as real leads to an expression

for the sensitivity of a spin echo imaging sequence

Sm+d6S  B,+0B .4 EB,,,+(>‘B
S5e  B. U \27 B.

1+65 = l-i-{SB cos? LT-?-B—
Sm - B"l o 2 m




reception excitation
4S §B  37% [6B\* 5B\’
e - () (®) (20

where the notation o(r)" denotes terms in r of order n and greater. This expression
represents the fractional change in measured signal caused by a given fractional change
in field magnitude and reception sensitivity.

It should be noted from equation (2.3) that. while the dependence on reception
sensitivity is first order. the dependence on excitation uniformity is second order.
Hence the sequence is less sensitive to variations in the excitation field than variations
in sensitivity, which supports the argument that intensityv variations can be modelled
as a multiplicative field.

The comparable expression for a gradient echo sequence which only involves a

single 90° RF excitation is

65 _ 0B _=* (4BY' (4BY’
Sm - Bm 8 Bm ¢ Bm

While the sensitivities of 90¢ gradient echo and 90°-180° spin echo sequences differ

—~
()
‘
~1

p—

only in the second order terms. it should be noted that gradient echo sequences
are commonly used with smaller flip-angles. For example. the expression for the

sensitivity of a gradient echo sequence with a 15° degree flip-angle is given by

JS =\ 6B = =\ (6B sB\’
= =(1+= +2(1-2 = 2.
S (1 * 4) By 1 (1 8) (B,,.) o (Bm) (2:8)

which means that this sequence is 78% more sensitive to field variations than the

either the spin echo or 90° gradient echo sequences.

2.3.3 Influence of media properties

In continuing to investigate the character of intensity non-uniformity. consider the
effect that the properties of the media have on the shape of the non-uniformity ob-

served. Simulated images for a number of combinations of relative permittivity e,

10




and resistivity p are shown in Figure 2.3. These values span the typical ranges for bi-
ological tissue. Increasing the resistivity of the media from its nominal value of 2 Q2m
to 20 2m. as shown in Figure 2.3a. decreases the image uniformity by enhancing the
signal in the center of the cvlinder. This cup shaped intensity variation is referred
to as a standing wave effect. Decreasing the resistivity to 0.3 Qm. as shown in 2.3b.
reverses the cup shaped variation and produces the strongest intensity in a rim at the
edge. The reduced intensity at the center is often described as an RF penetration ef-
fect. caused by induced currents. Reducing the relative permittivity to 20. as in 2.3c.
produces the most uniform image. This is consistent with making the properties of
the media more like the surrounding space. Increasing the relative permittivity to
160, a value larger than typically found in biological tissue. produces the wave like
non-uniformity pattern shown in 2.3d. This behaviour is consistent with the reduced
wavelength being smaller than the dimensions of the cylinder. To some extent. RF
penetration and standing wave effects are complementary in that one enhances the
intensity near the center while the other diminishes it. The properties of biological
tissue are such that there is cancelation between the two effects. perhaps accounting

for the better than predicted uniformity of 1.5T MR images.

2.4 Practical implications of non-uniformity

While a number of effects contribute to intensity non-uniformity, spatial variation
in the reception sensitivity is the most important. In clinical scanners a significant
portion of this variation is due to clectromagnetic interaction with the subject. Con-
sequently. the artifact is difficult to manage since each scan potentially has a different
pattern of variation. In addition. the form of the variation has a complex dependence
on pulse sequence. so one cannot assume that the pattern of non-uniformity will be
the same for different echos of a multi-echo scan. Given this qualitative understanding
of intensity non-uniformity. one is in a position to evaluate proposals for correcting

for it.

11




(a) p=20Qm and ¢, = 80 (b)

(¢c) p=20m and e, = 20 (d) p=2Qm and ¢, = 160
Figure 2.3: Simulated spin echo images of a cvlinder with elliptic section for various
values of ¢, and p. Compare with Figure 2.1 where ¢, = 80 and p = 2Qm. i.e. normal

values.




Chapter 3

Review of intensity non-uniformity

correction methods

Existing methods for non-uniformity correction can be grouped into three categories:
analytic modelling of the non-uniformity [36. 38]: modified acquisition protocols that
measure non-uniformity [1. 10. 18. 39. 41. 50. 38]: and data-driven postprocessing [5.
11. 12, 20, 23. 27, 31. 32. 37. 40. 49. 54. 537]. With the exception of [3. 12]. all of
these methods assume a multiplicative non-uniformity field that is corrected for by
dividing it from the acquired image.

Analytic methods as described in the previous chapter are a useful tool for
understanding the mechanisms that produce the intensity variations. However. the
dependence of the non-uniformity on the subject geometrv makes these approaches
impractical since a new model is needed for each scan. While a patient independent
analytic model may be satisfactory when correcting for the severe non-uniformity
caused by surface coils. a paticent-independent approach is not sufficiently accurate
to correct for the diverse and relatively mild intensity variation seen with standard
volume coils.

Among the techniques that involve modified acquisition protocols. the fact
that the non-uniformity is strongly subject-dependent at 1.5 T is grounds to dismiss
those that involve regular scanning of a calibration phantom [1. 10. 17, 38|. Besides,

frequent scanning of calibration phantoms is not practical in a clinical setting.
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A modified acquisition protocol that can be used in vive is to image with a second
reception coil [41] that is more uniform. For example. one might image with both
a head coil and a body coil. Differences between the two images that are smoothly
varying can be attributed to intensity non-uniformity. However. since the intensity
variations caused by electrodynamic interaction with the subject will appear in both
images. this method can only detect the variations caused by deficiencies in the head
coil.

An alternative approach described by Stollberger and Wach [50] measures the RF
excitation field in vivo based on the change in non-uniformity with excitation flip
angle. While this approach does not vield a map of reception coil sensitivity. one
could assume it is related to the excitation field. then use the two maps to correct
for intensity non-uniformity using the Bloch equations {3]. However. modified acqui-
sition protocol methods have not been widely used because the extended scan time
is impractical in a clinical setting and precludes retrospective analysis of previously
acquired data.

The most popular of the data-driven postprocessing methods is to use ho-
momorphic filtering to estimate a multiplicative non-uniformity field and divide it
from the image. A number of variations on this method have been presented that
differ for the most part in their handling of background regions [23. 27. 31. 32. 46].
These approaches assume that the frequency content of the non-uniformity field is
lower than that of the anatomy. While this approximation may be satisfactory for
surface coil images. the non-uniformity seen in volumetric acquisitions is too subtle
for this approximation to apply since one cannot neglect the low frequency inten-
sity variations caused by anatomy. In particular. the contrast seen in T1 weighted
scans between regions of grev and white matter is such that when taken together the
whole volume appears to have low frequency spatial variations corresponding to the
distribution of these regions.

A number of authors have presented schemes to eliminate the low frequency com-
ponents of the anatomy when estimating non-uniformity. These methods can be

distinguished by their modelling assumptions as: (i) tissue intensity model based; (ii)
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spatial homogeneity based: and (iii) field model based. Tissue intensity model
based methods such as those described in [12. 40| segment and remove the bright
cerebrospinal fluid from T2 and proton density (PD) weighted scans and then apply
a homomorphic filter and divide approach to the remaining. approximately isointense,
brain tissue. These approaches cannot be applied to T1 weighted scans due to the
contrast between grev and white matter intensity.

An alternative tissue model approach described in [11] is to segment the white
matter, estimate the non-uniformity in it. and extrapolate that estimate to the rest of
the brain. A difficulty with this approach is that there are regions of the brain without
white matter in which the quality of the extrapolated non-uniformity estimate may
suffer. Tissue intensity methods which address this problem by taking into account
the non-uniformity of several classes of tissue have been proposed in [5. 20, 57]. These
methods also achieve better accuracy through some form of iteration.

A common difficulty with tissue intensity model based methods is the determina-
tion of the model. In general. a different model is needed for each pulse sequence and
perhaps for different scanners. While automated methods of developing such a model
can be devised. the need for such a model limits the application of these methods.

An alternative model assumption is that of spatial homogeneity. The method
described in [37] uses LCJ [33] segmentation to identify contiguous regions irrespective
of their tissue type. A smooth field is globally fit to the log intensities of all regions
allowing for a constant offset in cach regions to reflect its tissue type. Given a robust
segmentation, this method can be applied to images of any pulse sequence. However,
since this method requires contiguous regions of homogeneous tissue, the correction
may suffer in areas of the brain such as the cerebellum where such regions are not
present. A second difficulty arises if contiguous regions are mistakenly broken into
smaller regions creating additional undesired degrees of freedom: the smaller the
regions, the less information they contribute to the field estimate. In the limiting
case an isolated voxel contributes no information. Since this technique is heavily
dependent on a successful segmentation. one can expect it to perform best on images

with large scale structure.




A third type of modelling assumption is that of a field model: the assumption
that non-uniformity blurs the histogram of the data in a way that it can be identified.
quantified, and removed. This is the basis of the N3 method. described in the following

chapter.
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Chapter 4

The N3 method

Non-parametric intensity non-uniformity normalization (N3) is a new data-driven
method for correcting for intensity non-uniformity in MRI data. [t is non-parametric
in the sense that it requires neither a parametric model of tissue intensities nor the
decomposition of the intensity distribution into a limited number of tissue classes.
While making no assumptions about the kind of anatomy present in a scan. the
method is well suited to removing the relativelv subtle intensity variations seen in

standard clinical scans of the head.

4.1 Non-uniformity model

The problem of correcting for intensity non-uniformity is greatly simplified if it is
modelled as a smooth multiplicative field. As described in Chapter 2. this model
is consistent with the multiplicative non-uniformity arising from variations in the
sensitivity of the reception coil and to a lesser extent the non-uniformity due to
induced currents and non-uniform excitation.

Consider the following model of image formation in MR
v(x) = u(x)f(x) + n(x) (4.1)

where at location x. v is the measured signal. « is the true signal emitted by the tissue.

f is an unknown smoothly varving bias field. and n is white Gaussian noise assumed
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to be independent of u. The problem of compensating for intensity non-uniformity is
the task of estimating f. The combination of additive and multiplicative interference
makes this task difficult.

Consider a noise free case in which the true intensities u at each voxel location x
are independent identically-distributed random variables. Using the notation &(x) =

log(u(x)) the image formation model becomes additive:
H(x) = w(x) + f(x) (1.2)

Consider the distribution of valies that f takes over the region of interest to be the
probability distribution of a random variable. For example. if f is a linearly increasing
field aligned on a rectangular region then f will have a uniform distribution.

Let L". 1", and F be the probability densities of 4. . and f respectivelv. Making
the approximation that & and f are independent or uncorrelated random variables.
the distribution of their sum is found by convolution as follows (for details see Ap-
pendix B.)

V(8) = F(i) % U(#) = /F(e — W)U (2)da (4.3)
The non-uniformity distribution F can be viewed as blurring the intensity distribu-

tion L.

4.2 Correction strategy

From a signal processing perspective. the blurring due to the field reduces the high
frequency components of L. The task of correcting for intensity non-uniformity is
that of restoring the frequency content of L. Since the shape of the blurring kernel
F is not known. it is not clear what frequency components of L" need to be restored
to get from the observed distribution 1”7 to the true distribution I". However. since
the non-uniformity field f is restricted to be smooth and slowly varving, there are
relatively few possible distributions [ corresponding to a given distribution V. In

N3, the approach to correcting for non-uniformity is to find the smooth,
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slowly varying, multiplicative field that maximizes the frequency content
of U.

As evidence of the simple form of the distribution F. consider the distributions
shown in Figure 4.1. These have been derived from putative fields obtained by fitting
the intensities of manually identified points of nominally isointense white matter on
twelve individuals. Each individual was scanned using the same pulse sequences but
on a different MR machine (data collected as part of a multi-center clinical trial).
Included in the twelve are machines made by Philips. Siemens. and GE. As shown,
the large scale features of F vary little between scans. In particular, F is well approx-
imated by a unimodal distribution. These results suggest that the full width at half

maximum (FWHM)} of the distribution F lies between 0.1 and 0.4 for typical brain

scans.
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Figure 4.1: Probability densities for non-uniformity fields estimated from white mat-
ter on MR scans of twelve individuals taken with twelve different MR scanners. Note
that these are the distributions of the dimensionless scale factors f rather than the log
of these values f. The T1 scan is a gradient echo 3D acquisition with TE = 11 ms and
TR = 35 ms, while the proton density (PD) and T2 scans are two echoes TE = 30 ms

and TE = 80 ms of a multi-slice spin echo acquisition with TR = 3s.

Returning to the optimization criterion. one could in principle search through all
possible fields f to find the one that maximizes the high frequency content of U.
However, there are two problems with this approach: the search space of all 3D fields

f is extremely large; and spectral estimates and related measures such as entropy are
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difficult to compute with sufficient accuracy to detect subtle changes in U'.

The approach adopted is to propose a distribution for " by sharpening the distri-
bution V'. and then to estimate the corresponding smooth field f which produces a
distribution L close to the one proposed. While searching through the space of all dis-
tributions " may seem no more tractable than searching through the space of all fields
f. there is an important difference in that one can take advantage of the simple form
of the distribution F. Suppose that the distribution of F is Gaussian. Then one need
only search the space of all distributions (" corresponding to Gaussian distributed F
having zero mean and given variance. In this wayv the space of all distributions U is
collapsed down to a single dimension. the width of the F distribution.

In practice. F is only approximately Gaussian and some of our assumptions. such
as zero noise. are violated. These difficuities are contended with by taking an iterative
approach to estimating the distribution {” and corresponding field f. Since any
Gaussian distribution can be decomposed into a convolution of narrower Gaussian
distributions. the space of all L distributions corresponding to Gaussian distributed
F can be searched incrementally by deconvolving narrow Gaussian distributions from
subsequent estimates of {". The benefit of this approach is that between subsequent
estimates of {". a corresponding smooth field f is estimated. The constraint that
the field be smooth changes the shape of the proposed distribution L to one that
is consistent with the field. These perturbations of LU perturb F from its Gaussian
shape and compensate for the distortion of 1" caused by noise and other factors. The
iterative process can be viewed as traveling in the space of all U distributions along
a path corresponding to smooth fields f with increasingly wider distributions. These
iterations proceed until no further changes in f or L result from deconvolving narrow

Gaussian distributions from 1°.

4.3 Field estimation

Further theory is presented here to explain the process of proposing distributions for

{7 and estimating corresponding fields. For notational simplicity, assume that the true
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distribution of intensities L” can be arrived at in a single iteration by deconvolving
a distribution F'. which is Gaussian. from V°. The full iterative description of the
method is left for a subsequent Section.

Given the distribution . the method of estimating the corresponding field is as
follows. For a measurement ¢ at some location x. i is estimated using the distributions
U and F. Since the choice of the location x is arbitrary, the measurement ¢ can be
treated as a random sample from the distribution 1". The expected value of & given

a measurement ¢ is as follows

Efali] = / i p(ic | #)di (4.4)
/ PRI (4.5)
R p(t)
Writing p(¢) as V7(¢) and using equation (4.3) gives
Eli}i] = I'(le)_[o ip(&. ©)di (4.6)
[ iF (6 - a)U(i)di
= IX (4.7)

[ F(i - a)U()di

An estimate of f can be obtained using the estimate of & from equation (4.7) as
follows

fole) =E[f| 8] =¢—Ela}?] (4.8)
where £, is an estimate of f at location x based on the single measurement of ¢ at x.

This estimate can be smoothed by the operator S to produce
f(&) = S{f(&)} = S{& ~ E[a] o]} (4.9)

an estimate of f based on all of the measurements in a neighbourhood of x. Smoothing
is described in Section 4.5.

This process of estimating f is illustrated in Figure 4.2 for the one dimensional
case with 7 as a square wave. The square wave can be viewed as two tissue classes

-

corresponding to the low and high parts of the cvcle. The log intensities %, f. and
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¢ are shown in Figure 4.2a. To make the example non-trivial. the magnitude of the
non-uniformity field is large enough that the low intensity tissue on the left overlaps
by roughly 10% with the intensity of the high intensity tissue on the right.

One obtains the probability densities L. 17, and F by computing a histogram of
the signals 4. f. and ¢. These distribution are shown in Figures 4.2b. 4.2c. and 1.2d
respectively. These histograms are interpreted as the probability distributions of the
given signal. In practice. only 17 will be known while U and F have to be estimated.
Shown in Figure 4.2e is the Gaussian kernel used in place of the actual distribution
of F in equation (4.7).

The distributions {” and the Gaussian kernel F are used to compute from equa-
tion (4.8) the mapping. shown in Figure 4.2f. which maps measured intensities v to
field estimates f.. Estimating the distribution U from V" is described in the follow-
ing section. This mapping when applied to the measured signal produced the field
estimate shown in 4.2g. Note the sharp jumps in this estimate in the regions where
the intensities of the upper and lower tissue classes overlap. This field estimate is
smoothed to produce f, shown in 4.2h. While the degree of smoothing is arbitrary,
in filtering terms the smoothing filter should be chosen to have as small a bandwidth
as possible vet still pass the non-uniformity field undistorted. In particular. it is not
necessary to have a smoothing filter able to completely remove the sharp jumps in
fe shown in Figure 4.2g since the residual discontinuities disappear in subsequent
iterations.

While the smooth field estimate after one iteration is not sufficient to completely
remove the non-uniformity. it is enough of a correction that the tissue distributions no
longer overlap. By correcting the measured signal ¢ using the the smooth estimate of
the field f, and repeating the entire estimation process again. one arrives at a second
estimate of the non-uniformity field that is indistinguishable from the true field. The

second estimates of f, and f, are shown in Figures 4.2g and 4.2h.
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4.3.1 Estimating the distribution U

Given a distribution F" and the measured distribution of intensities V. the distribution

U can be estimated using a deconvolution filter as follows

W
[ &4
]

(4.10)

U i (4.11)

4

where * denotes complex conjugate. F is the Fourier transform of F, and Z is a
constant term to limit the magnitude of G. This estimate of U is then used to

estimate a corresponding field f.

4.3.2 Field estimation in 3D

As an illustration of the field estimation process in 3D, consider the simulation of
a T1 weighted MR scan shown in Figure 4.3a. This simulation is based on a three
tissue model of the brain and incorporates intensity non-uniformity, noise, and par-
tial volume effects. The measured intensity distribution 1" is shown in 4.3b. The
mapping between measured intensity and field estimate for this volume based on the
distributions of 1™ and a Gaussian distribution F with full width at half maximum
(FWHM) of 0.15 is shown in Figure 4.3d. This mapping is applied to produce the
volume in 4.3c. Measurement noise causes this estimate to be noisy. Smoothing this
estimate produces the field shown in 4.3c. For comparison. the actual field imposed
on the data during simulation is shown in 4.3f. Although the estimated field is much
smaller in magnitude than the true field. the shape is similar. Experiments, described
later, show that with subsequent iterations the field estimates will grow to narrow
this difference. A progression of field estimates with iterations is shown for a real
MR scan in Figure 4.4. It should be noted that while the initial local field estimates
have brain-like structure. this bias diminishes. particularly in the ventricles, with

iterations.
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Figure 4.3: Field estimates for a simulated MR volume.  (a) A slice from a simulated
MR volume. (b) The histogram of the volume shown in (a). This is considered an
estimate of the distribution V. (c¢) Bias field estimates f, created by applyving the
mapping in (d) to the image in (a).  (d) The mapping between image intensity ¢ and
bias field estimate f,, derived from the histogram in (b). (e} A smoothed estimate f,
of the bias field created by smoothing the volume shown in (¢). (f) The actual bias

field present in the volume shown in (a).
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Figure 1.4: Evolution of field estimates with iterations using real data. Local and

smooth field estimates are shown during correction of a T1 weighted MR scan.

4.4 Implementation details

A flow chart describing the N3 correction process is shown in Figure 4.5. Besides the
processing steps described previously. there are a number of steps needed for practical
implementation of the algorithm.

The first step shown in Figure 4.5, “identify foreground.” is to segment and remove
empty regions from the volume. Besides the numerical problems associated with
transforming values near zero to the log domain. these background regions provide
no information about the non-uniformity field. The foreground can be determined
using a simple threshold chosen automatically by analvzing the histogram of the
volume [42].

Another consideration in implementing the N3 approach is measuring the distri-
bution V" from the unprocessed MR data. For simplicity, a histogram with equal size

bins and a triangular Parzen window [14] is used to estimate 1". Given a set of .V
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measurements ¢(X;) and locations x,. 1" is estimated as follows

N 8 - #(x,

1(8,) = iz ( h(x)) (4.12)

A(s) = {1‘” sl <1 (4.13)
elsewhere

where u; are the centers of the bins and & is the distance between them. For a
typical 20% bias field. the scale factor f ranges from 0.9 to 1.1 which corresponds to
f between -0.1 and 0.1. MR volumes generally have sufficient data to estimate V™ at
a resolution h better than a tenth of this range.

Smoothing the non-uniformity field at full resolution is computationally expen-
sive. so the MR data is subsampled to a lower resolution. Since the non-uniformity
field is slowly varving, reducing a 1 mm isotropically sampled volume to 3mm has a
negligible effect on the field estimate and substantially accelerates computation (see
Appendix C)}. The processing of a volume with ten iterations of the N3 method is re-
duced from 12 hours to twenty minutes of CPU time on an SGI workstation (floating
point performance: 99 SPEC{p92) by resampling to the coarser resolution. The final
field estimate is resampled to the original resolution and used to correct the original
volume.

The measure used to terminate the iterations is the coefficient of variation in the

ratio between subsequent field estimates. computed as follows

= Zi::i n=1...V (4.14)

where r, is the ratio between subsequent field estimates at the nth location, o denotes
standard deviation. and p denotes mean. This measure is chosen so as to be insensitive
to global scale factors that may accumulate with iterations. Iteration is stopped when

e drops below 0.001. typically after ten iterations.

4.5 Smoothing

The manner in which the field estimate is smoothed has a significant impact on the

performance of the correction method. Smoothing is particularly challenging for this
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problem because the scale over which the field varies is comparable to the size of the
region being smoothed. Conventional filtering techniques proved unsatisfactory for
this application since boundary effects significantly degraded overall performance.

A computationally tractable approach to smoothing that performs well on
bounded domains is to approximate the data by a lincar combination of smooth
basis functions. An attractive basis for this is the compactlyv-supported spline known
as a B spline. Spline approximation incorporating smoothness constraints is superior
to filtering techniques in dealing with missing data since the behaviour of a spline
curve can be constrained even if there is insufficient data to support a basis function.

As an illustration in 1D of the kinds of difficulties that can arise with conventional
filtering, consider Figure 4.6 which compares B spline approximation to adaptive
filtering. While the smoothing properties of the two are comparable on an infinite
domain. the fact that data is only available on the interval [—1. 1] causes the filter to
produce an artifact at the boundary. This artifact occurs despite the fact that the
filter adapts to the boundary by only making use of data within the domain. Without
this adaptive property. the filter produces an even larger artifact. In contrast. the
B spline approximation is largely unaffected by the boundaryv, and in general requires
no special treatment to deal with missing data.

Details of computing a B spline approximation can be found in the Appendix A.
The smoothness of the approximation is determined by two parameters: w. referred to
as the smoothing parameter. and d. the distance between basis functions. Since splines
are being used as a filter for this application. the smoothness of the approximation
must be chosen rather than derived from the data [45. 52]. The relationship between
the smoothness of the approximation and the smoothing parameter is non-linear.
However. since the normalization of the B spline has been chosen to eliminate the
dependence of w on scale and number of data points, & can be fixed and the distance
between basis functions varied instead.

In summary, bevond the task of choosing the smoothing parameter w. the basis
function distance d. and the deconvolution kernel parameters FWHM and Z. N3 is

a fully automated method of correcting for intensity non-uniformity that makes few
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Figure 4.6: Comparison of spline smoothing and adaptive filtering. The true curve is
given by the function f(r) = —0.54 + 0.75¢™* + r?. The curves shown in (b) are an
expanded view of the right portion of (a). While both the adaptive filter and B spline
have comparable performance at the left boundarv where the slope of f(r) is small.

the large slope at the right causes the adaptive filter to produce an artifact.

assumptions about the data. As will be shown in the next chapter. these parameters

can be fixed at values that are nearly optimal for broad classes of images.




Chapter 5

Validation of the N3 method

A two fold approach was taken to validating the N3 algorithm: (i) the method was
established to work on data which satisfies its assumptions: (ii) the method’s be-
haviour was characterized on realistic simulated data for which the assumptions that
voxel intensities are independent identically distributed random variables and that
measurement noise is negligible are less valid. At the same time. the sensitivity of

the method to its parameters was investigated.

5.1 Correcting random fields

5.1.1 Experiments

As a first step in validating the N3 method, consider a case in which the measure-
ments are independent and identically distributed random variables. Suppose the
distribution of the true intensities L is as shown in Figure 5.1a. While this distribu-
tion was taken from a T1 weighted MR scan, the choice of U for the purpose of this
example is arbitrarv. The volume is a cube with thirty-two voxels on an edge and the
non-uniformity field to be removed is a parabolic function aligned with the center of
the volume. The corresponding distribution F' of the non-uniformity field is shown in
Figure 5.1b along with the distribution 1" in 5.1c. A slice through the center of this

idealized volume is shown in Figures 5.1d and 5.1f before and after the non-uniformity
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field is applied. Although the volume itself appears noise-like. measurement noise n
is zero. Such a volume fully satisfies the assumptions of N3.

The idealized volume shown in Figure 5.1 was used to evaluate the performance
of N3. Different widths of the deconvolution kernel were compared for convergence
rate and accuracy in removing the non-uniformity field. In addition. N3 was com-
pared with direct B spline filtering of the data. While direct B spline filtering is
not acceptable for data that is structured. it is suitable for the random field of this
example.

The performance of a correction method is best evaluated by comparing the field
estimate to the true field if it is known. For example. a field estimate made for
the random volume of Figure 5.1f is shown in Figure 5.1h along with the actual
field in 5.1g. Besides differing subtly in shape. the two surfaces also differ by a
multiplicative factor. This scale factor has no impact on the qualityv of the correction
since MR intensity is relative. However. in quantifving the performance of the method
this factor needs to be removed. Equation (4.14) can also be used for this purpose if
rn is taken as the ratio of estimated to actual field intensity at location x,. For the

example of Figure 5.1. this is the coefficient of variation of the field shown in 5.11.

5.1.2 Results

Correcting for intensitv non-uniformity in a random field illustrates that N3 is able to
correct volumes that lack regions of contiguous tissue. The improvement in the field
estimate with iterations for four different widths of the estimated field distribution
F is shown in Figure 5.2. In all four cases the method was converging in the sense
that the distance between subsequent field estimates. computed using equation (4.14),
became small (less than 0.02%). Note that the FWHMI of the distribution F had an
impact on both convergence rate and and. to a secondary degree, on performance.
While there was a subtle reduction in final accuracy. there was a substantial increase
in convergence rate as the FVWWHM increased.

For comparison. the same B spline approximation that is used in the N3 method

was applied to the uncorrected data directly. The smoothness of the two is comparable
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Figure 5.1: (a) Intensity distribution U for an idealized volume. Random samples

from this distribution were used to create the volume in (d).  (b) Distribution F for
a parabolic non-uniformity field.  (c) Distribution V" corresponding to the volume
shown in (f). (d) A slice through a random volume. (e and g) A parabolic
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(h) Estimated field. (i) Ratio of actual field to estimated field.
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since the N3 method, unlike conventional iterative filtering, has been designed such
that field smoothness does not accumulate with iterations. As expected, since the
N3 method takes advantage of the structure of the distribution U, it outperformed

simple smoothing in all four cases.
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Figure 5.2: Error measure versus iterations for four different widths of the decon-
volution kernel F. The FWHNMIs of the field distributions F' used in deconvolution
were 0.1, 0.2, 0.3, and 0.4. The maximum coeflicient of variation 4.5% corresponds
to no correction. The horizontal line is the result of smoothing the uncorrected data

directly using B splines.

5.2 Simulated MR volumes

Non-uniformity correction methods such as N3 can be validated indirectly with real
data using subjective measures of image quality and by assessing the reduction of
variability in tasks such as segmentation. However, the large number of uncontrolled
factors in such experiments confound attempts to evaluate and optimize performance.

In particular, partial volume effects. true anatomical variability, and an unknown non-
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uniformity field prevent a sensitive analysis of the influence of various methodological
parameters. These technical issues were circumvented in this analysis by the use of
an MR simulator which incorporates realistic models for noise and partial volume.
Slices through simulated T1. T2. and PD volumes are shown in Figure 5.3.

The anatomical model for the simulations was derived from high quality TI1,
T2, and proton density (PD) weighted scans formed from the average of twenty-
seven. twelve. and twelve scans respectively [25. 26] of a normal individual. The
three volumes were corrected for intensity non-uniformity using the N3 method and
resampled into a standardized three dimensional. so-called stereotaxic. coordinate
system' [51, 9]. The brain region of the T1 weighted scan was then segmented into
the three tissue classes using a manually trained minimum distance [2, 30| classifier.
Among the results of several different classifiers. this segmentation was chosen and
manuallv edited by a trained neuroanatomist to improve the classification of deep
structures and brain stem. Partial volume regions were formed by eroding each of
the tissue regions using a six neighbour structuring element. The proportions of each
tissue class in the partial volume regions were taken from a segmentation of the T1
volume using a Bayesian classifier [14. 28|. Non-brain structures such as scalp were
not of interest for the present analyvsis and not included in the anatomical model.

The MR simulator is designed to produce volumes with an intensity histogram
similar to that of real data. based on a discrete labelling of cach voxel as either cere-
brospinal fluid (CSF), grey matter. or white matter. However. representing an MR
volume in terms of a few classes of homogeneous tissue is unsatisfactory for simulation
since it does not reflect the variability seen in real data. Often the properties within
a given tissue class vary for different structures included in that class [22], which
leads to a broadening of the tissue peaks in the intensity histogram. The approach
taken to produce a simulation with a realistic histogram is to color each region with

random noise having medium to low spatial frequency and an intensity distribution

!'This device allows for any neuroanatomical location to be addressed by a Cartesian coordinate
and, by removal of affine differences among individual brains, for population statistic images to be

built [29, 16].




T1 T2 PD

Figure 5.3: Simulated T1. T2. and PD weighted volumes. Non-uniform sensitivity of
the reception coil has been simulated causing the intensity to drop off at the bottom
right. The noise distribution has a standard deviation 3% of the mean intensity of

white matter.

appropriate for the given tissue tyvpe. This noise can be viewed as “pseudo-anatomy.”
representing low frequency spatial variations within tissue due to anatomy which gives
rise to a ‘lumpy’ appearance in the image (e.g. see the T, image in Figure 5.3). By val-
idating the correction algorithm on a number of realizations of this pseudo-anatomy.
the results were not biased towards any preferred shape of the non-uniformity field.

To complete each simulation. a multiplicative intensity non-uniformity field was
imposed and Rician distributed noise added throughout. Rician noise. typical of that
found in real MR images. is simulated by adding a complex Gaussian distributed
random intensity to a voxel. then computing its absolute value.

The intensity distributions used to generate the pseudo-anatomy were created by
computing the histogram of intensities within the eroded or pure tissue regions for
each of the T1, T2. and PD averages. These distributions are shown in Figure 3.4.
[t is assumed that these distributions reflect the range of intensities intrinsic to the
tissue class uncorrupted by noise. intensity non-uniformity, and partial volume ef-

fects. Random fields having these intensity distributions are created by rejection
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sampling [13]. Each random field is first constructed at 10 mm resolution and subse-

quently resampled to the desired 1 mm resolution using tricubic interpolation.
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Figure 5.4: Intrinsic intensity distributions for each tissue class in T1. T2. and PD

weighted simulations.

5.3 Correcting simulated data

Although N3 does not require a model of the expected tissue distributions. there are
still a number of model-independent parameters that need to be selected (see Fig-
ure 4.3). These are the smoothing parameter w. the distance between basis functions
d. the noise term in the deconvolution filter Z. and the FWHM of the deconvolution
kernel F. Experiments with simnulated data show little dependence on Z. which was
fixed arbitrarily to be 0.1 for the purpose of this analvsis. The parameters w and
d both control smoothness, but the relationship between smoothness and w is more
complex than the one between smoothness and d. As a result. « was fixed arbitrarily

at 1.0. The remaining two parameters. FWHMI and d. are considered further.

5.3.1 Characterizing the FWHM parameter

Simulated MR volumes like those shown in Figure 5.3 were used to evaluate the
effect of FWHM on correction performance. Recall from Chapter 4 that FWHM
refers to the width of the deconvolution kernel used to compute local estimates of

the non-uniformity field. For this analvsis, two different non-uniformity fields were
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generated from combinations of linear. quadratic. and Gaussian terms. Both fields
vary in magnitude by 20% within the brain volume. which is typical for brain scans
(see Figure 4.1), however. the second field has more curvature. Slices from these two
fields are shown in Figure 5.5. The first field was used to create the simulations shown
in Figure 5.3. The performance of the correction method was evaluated using equa-
tion (4.14) to compute the difference between the estimated field and that imposed

explicitly during simulation.

Field #1 Field #2
Figure 5.5: Slices through two non-uniformity fields used to construct simulated MR

scans.

The performance curves for four simulated brains and a range of the FWHM
parameter are plotted in Figure 5.6 for the two different non-uniformity fields shown
in Figure 5.5 and fixed basis function distance d = 200 mm. A coefficient of variation
below the lines corresponding to no correction in Figure 5.6 indicates a reduction
in intensity non-uniformity. Within most of the range of the FWHM shown, the
N3 method substantially improved uniformity. However. the quality of the result
depended on the choice of the FWHM parameter. The general trend in Figure 5.6
is for performance to improve with decreasing FWHM. Although much weaker. the

same trend is present in the results for random fields shown in Figure 5.2.
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Another trend, not reflected in Figure 5.2. is that the rate of convergence is sub-
stantially slower as the FWHM parameter is decreased. For these experiments the
stopping criterion was reduced to e = 0.0002 from its default value of 0.001 so that
iteration would not stop prematurely in cases where the convergence was extremely
slow. For example, with a FWHM of 0.05 the method typically required 50 iterations
to reach this threshold. significantly longer than the the 20 iterations needed at a
FWHM of 0.2. In practical terms. the choice of the FWHM requires a tradeoff be-
tween computation time and accuracy. For all subsequent experiments, the FWHM
parameter was fixed arbitrarily at 0.15.

It should be noted that zero estimation error is not achievable for these experi-
ments since even if an algorithm were insensitive to the low spatial frequency com-
ponents of the pseudo-anatomy and partial volume. there is still a low frequency
component to the broad-band Gaussian noise that is indistinguishable from intensity
non-uniformity. Furthermore. smoothness constraints imposed on the spline fitting
operation preciude an exact match to the field. The lower bound imposed by spline
approximation, computed on the imposed field directly. is also shown in Figure 5.6.

Noise and pseudo-anatomy make the true lower bound somewhat higher.

5.3.2 Characterizing the basis function distance parameter

In addition, an analysis of the effect of basis function distance d on correction perfor-
mance, for a fixed FWH)I, was done using the same simulated data. Recall that the
field estimate becomes smoother as d increases. These results were compared against
the results of fitting B splines to the imposed field directly.

The results of correcting simulated brains for a range of basis function distances
d are shown in Figure 5.7. The greater curvature of the second field produces broad
minima in the error curve. As in Figure 5.6. the lower bound on the estimation error
given by directly fitting splines to the non-uniformity field is also shown. Basis func-
tion distances of 100 mm to 200 mm are nearly optimal for these two cases. It should
be noted that due to the need to suppress noise in the simulations, the optimal basis

function distance is greater than that which can exactly match the non-uniformity
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Figure 5.6: Field estimation error on simulated data for a range of the FWHM pa-
rameter and two different non-uniformity fields. Lines are shown for the coefficients
of variation corresponding to no correction for the two cases. Also shown is the lower
bound on estimation error given by fitting splines to the non-uniformity field directly.
The error bars are at plus and minus two standard deviations. These results are based

on four realizations of the psendo-anatomy.

field. In other words, the optimal d for suppressing noise introduces some distortion
in the underlving field.

These results show not only that the N3 method is able to substantially reduce
non-uniformity in realistic simulated data but also that the parameters FWHNMI and d
can be chosen to be nearly optimal for a broad class of data. This allows the method
to be fully automated, freeing the user from determining suitable parameters for each

type of scan.
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Figure 5.7: Correction performance as a function of basis function distance on sim-
ulated T1. T2. and PD scans. The FWHM parameter for this analysis was 0.13.
Also shown is the approximation error for fitting splines to the non-uniformity field
directly. The discontinuities in this curve are caused by changes in the number of
basis functions. which for efficiency is the minimum needed for full support at the

given distance between basis functions.
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Chapter 6

Comparison with other methods

Simulated and real data were used to evaluate the performance of the N3 method
relative to three other techniques. While these results do not show the N3 method
to be superior in everyv category. the method distinguished itself for uniformly good

performance across a range of different of tests.

6.1 Non-uniformity correction methods

Three non-uniformity correction methods were selected to compare their performance
to that of N3 in removing typical levels of non-uniformity from volumetric scans of
the human head. The methods are referred to respectively as the expectation max-
imization (EM) [56]. revised expectation maximization (REM). and white matter
(WMI) [11. 60] methods. All four methods are fully automated three dimensional
implementations formulated to detect and remove a multiplicative intensity non-
uniformity field by iterative approximation.

To facilitate automatic training of the classifiers which the EM. REM. and WM
methods rely on, all MR volumes were first resampled into 3D stereotaxic space. This
standardized coordinate system was also used to construct 3D tissue probability maps
(TPM) for grev matter. white matter. and cerebrospinal fluid (CSF). based on the
classification of 53 normal subjects [59].

Classifier training sets were created for each individual brain by randomly select-
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ing voxels in stereotaxic space corresponding to voxels in the TPM thresholded at
the 90% level. This approach allows automatic training of the classifier regardless
of the volume’s pulse sequence [30]. In addition. non-brain tissues were removed au-
tomatically using a standard brain mask derived from an average of normal brains
previously defined in stereotaxic space [9]. While this mask. which was derived from
an average of 305 T1 weighted brain scans. may include non-brain tissues or exclude
small portions of cortex in some individuals. this does not limit the use of these cor-
rection methods since the derived correction field can be extrapolated to the whole
volume using B splines (see Appendix A).

With the exception of the W) method. which terminates after two iterations, all
of the methods terminate when the coefficient of variation of the ratio between con-
secutive field estimates. computed at all intracranial voxels. drops below a threshold
of 0.001. Typically, the methods terminated after ten iterations.

While all of the volumes used in this analysis were 1mm isotropically sampled
data, for efficiency these volumes were subsampled without blurring to a 3mm reso-
lution to speed up the correction process. At this resolution all four methods took
between twenty and thirty minutes to complete on a workstation with floating point

performance of 99 SPEC{p92.

6.1.1 Expectation maximization method

The first method considered is the EM method described in [56]. This method iterates
between a classification stage. designed to remove anatomical features from the image,
and a filtering stage that smoothes the field estimate. This filtering is done with a
Gaussian filter whose kernel is truncated to remain within the volume of interest. A
Bayesian classifier [14. 29] was used in this implementation: Wells et al. have since
described an implementation {57] based on a Parzen window classifier. Both the EM
and REM methods use 256 training samples for each of the white matter. grev matter,
and CSF tissue classes.

Experiments, not shown here. on simulated data with various widths of the

smoothing kernel suggested that a Gaussian kernel with full width at half maxi-
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mum (FWHM) of 30 mm was nearly optimal. While results produced with a 30 mm
kernel appeared visually “lumpy”. larger kernels produced a significant edge artifact.
This artifact was caused by the increasing phase lag as the filter was truncated when
approaching the edge of the volume of interest. For example, if the magnitude of the
field was rising as it approached an edge then the truncated filter tended to under-
estimate the field strength at the edge. This effect is the 3D generalization of that

shown in Figure 4.6.

6.1.2 Revised expectation maximization method

The second method evaluated is a revised version. developed by the author. of the
EM method. This method takes better advantage of the TPMs by using them as
probability priors during classification. These priors stabilize the method by limiting
the extent of misclassification in volumes that are extremely non-uniform.

The second difference between the REM method and the EM method is the use of
tensor cubic B splines for smoothing (see Appendix A for details). Unlike truncated
filtering, B splines do not produce an edge artifact. The distance between basis
functions used throughout was 200 mm, significantly larger than the 30 mm kernel

used by the EM method.

6.1.3 White matter method

The third method, the W)\l method. is a revised version of that described in [11,
60]. It relies on an artificial neural network classifier [61] to identify white matter
in the brain region. The classifier is trained on 500 points per class selected from
TPMs thresholded at the 100% level. that is stereotaxic voxels that were classified as
belonging to the same class for all 53 normal subjects. Partial volume voxels are then
eliminated from the white matter region using gradient information. Tensor cubic
B splines are used to fit a smooth field to the remaining white matter voxels and
extrapolate this field to the rest of the volume. For the experiments described here,

the smoothing parameters are the same as those used by the REM method.
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Once estimated, the non-uniformity field is used to correct the original volume
and the process is repeated once. Experiments with real data suggested that beyond

two iterations the field estimate is essentially unchanged.

6.1.4 N3 method

On the basis of the results of Chapter 5. the parameters of the N3 method were
fixed throughout this analysis. irrespective of the type of volume. In particular,
the FWHM of the histogram blurring kernel was fixed at 0.15. the deconvolution
parameter Z = 0.1. and the smoothing parameters d = 200mm and w = 1. These

smoothing parameters are the same as those used by the REM and WM methods.

6.2 Correcting simulated data

Simulated MR volumes like those shown in Figure 5.3 were used to evaluate the
performance of the four methods at various levels of noise and non-uniformity. The
non-uniformity field used in these experiments was Field #1 shown in Figure 5.5. This
field was created using a real MR scan as a guide and has typical curvature. Correction
performance was computed in terms of the coefficient of variation in the ratio of the
estimated non-uniformity field to the known field imposed during simulation using

equation (4.14).

6.2.1 Sensitivity to noise level

A Rician noise distribution with standard deviation 3% of the mean intensity of white
matter is typical of T1 weighted volumes. A comparable level of noise was chosen for
T2 and PD volumes and termed 3% noisc.

The resuits of experiments on simulated data with varying noise level are shown
in Figures 6.1a through 6.1c. Also shown is the level of non-uniformity present before
correction (baseline). Results above this line indicate that the method has made

the non-uniformity worse. To estimate the intersubject variability in these results



the experiments were repeated for four realizations of the pseudo-anatomyv. This
variability is reflected in the error bars shown on Figure 6.1.

To address concerns about the sensitivity of the EM method to the training set, its
performance was also measured using an ideal training set. This training set consists
of samples chosen within regions of pure tissue taken directly from the model used to

generate the simulated data. These results are also shown on Figure 6.1.

6.2.2 Sensitivity to non-uniformity magnitude

A similar set of experiments was conducted for increasing levels of non-uniformity
using the same shape of the non-uniformity field. but different magnitudes. Fifty
percent non-uniformity denotes a non-uniformity field that varies between 0.75 and
1.25, that is, the range of field variations within the brain region is £25%. The results
of these experiments are shown in Figures 6.1d through 6.1f. Also shown is the level
of non-uniformity corresponding to no correction. As described in Section 5.3.1. this
level does not include the implicit field. which is present even at zero non-uniformity,

due to the noise and random anatomy.

6.3 Correcting real data

The second type of experiment performed was a comparison of the reduction in vari-
ability in the intensity of tissue manually labelled on real data. For this experiment.
regions of pure grev and white matter were manually labelled on twelve sets of T1.
T2, and PD weighted scans acquired on twelve different MR scanners. Included in
the twelve are machines made by Philips. Siemens, and GE. The volumes were trans-
formed into stereotaxic space so that the same labelling could be applied to each
of the three modalities. All twelve individuals are MS patients having a moderate
number of white matter lesions.

For each volume. the coefficient of variation in white and greyv matter intensity
was computed before and after correction. Since for real data, this measure cannot

distinguish between intensity non-uniformity. noise. and anatomical intensity vari-
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Table 6.1: Mean coefficient of variation in white matter tissue intensity.

| T1 weighted | T2 weighted | PD weighted
no correction 5.8% 10.0% 6.1%
EM || 7.2% (+) 8.4% (1) | 4.4% (-)
REM 6.6% (+) 8.4% (-) 1.7% (-)
WM 1.4% (-) 8.6% (-) 4.8% (-)
N3 51% () 9.0% (-) | 4.9% (-)

ations, it is onlyv suitable for showing that intensity non-uniformity is qualitatively
reduced.

The coefficient of variation. the ratio of standard deviation to mean. for white
and grey matter intensity was computed for each patient in each modality. The mean
across patients is shown in Tables 6.1 and 6.2 for white and grev matter respectively,
before and after correction for intensity non-uniformity. The statistical significance of
these results was computed using a one sided Wilcoxon signed rank test for a paired
difference experiment. The notation (—) and (+) denotes significant decreases and
increases in non-uniformity tested at the 95% confidence level.

It should be noted that when these experiments were first conducted, the EM and
REM methods performed extremely poorly. tending to make non-uniformity worse.
Hypothesizing that this was caused by dark regions in the sinuses that occasionally
lie within the average brain mask [9]. the experiments were repeated using an inten-
sity threshold to removed low intensity and background voxels. This threshold was
chosen automatically using the technique described in [42]. These results are the ones
presented in Tables 6.1 and 6.2.

As a final result. the T1 weighted twenty-seven average scan is shown before and
after correction by cach method in Figure 6.2. This low-noise volume is useful for
illustration since intensity non-uniformity that would normally be obscured by noise
is clearly visible.

The three types of comparisons made between the methods have their respective
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Figure 6.2: Intensity non-uniformity correction of a T1 weighted gradient-echo MR
scan by each of the four methods.
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Table 6.2: Mean coefficient of variation in grev matter tissue intensity.

T1 weighted | T2 weighted | PD weighted
no correction 10.1% 15.4% 8.8%
EM 12.6% (+) 14.3% (-) 6.8% (-)
REM 9.6% 13.8% (-) 6.4% (-)
WM 9.7% 15.7% 7.3% (-)
N3 9.8% 14.3% (-) 6.8% (-)

merits. Comparison using simulated data is well controlled and quantitative, vielding
an absolute measure of the reduction in non-uniformity. As shown by Figure 6.1,
the individual algorithms have their strengths. With the possible exception of T1
data, the REM method performed best in these trials. However, the validity of
simulation experiments is limited by the fact that neither the MR imaging process
nor the anatomy have been completely characterized.

Real data, while unable to provide quantitative results. is important for uncovering
limitations of a method that are caused by factors not reflected in the simulations.
For example, the EM and REM methods proved unexpectedly sensitive to the choice
of brain mask. Even when this masking problem was fixed. these methods performed
poorlv on T1 data, tending to make non-uniformity worse. \While it is not clear what
aspect of real T1 data causes the REM method to perform poorly. it should be noted
that the REM method is highly model dependent. relving on a three class tissue
model and TPMs as probability priors. It is possible that the mild atrophy present in
MS patients or perhaps merely natural anatomical variability is a sufficient violation
of these model assumptions to cause the method to fail.

Consulting the T1 volume shown in Figure 6.2 sheds some light on the way the
methods behave. The EM and REM methods have excessively reduced the intensity
at the top of the head. a tyvpical failing of these methods. In contrast, both the
WM and N3 methods have reduced the intensity of the anterior portion of the head.

The N3 method has also significantly raised the intensity of the cerebellum, the
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large structure at the bottom left. Visual inspection of the results suggests these
corrections are appropriate. Although. it is useful to show that non-uniformity can be
substantially reduced in an absolute sense. these results need to be put in perspective
by determining what impact the reduction has on real applications. This is the subject

of the next chapter.



Chapter 7

Applications

Growing interest in measuring anatomical differences in brain structure among normal
and disease populations has led to the development of a variety of techniques for
automatically identifving these structures on standard MRI scans. However. such
analyvsis may be compromised by MRI intensity non-uniformity artifacts. In this
investigation, simulated MRI data was used to assess the impact of non-uniformity
on three different anatomical brain mapping techniques: (i) tissue classification, (ii)
cortical surface extraction. and (iii) non-linear co-registration. The advantage of using
simulated data is that anatomical structures identified by the three techniques can

be compared to the anatomical model upon which the simulations are based.

7.1 Tissue classification

Tissue classification experiments were conducted using an artificial neural network tis-
sue classifier (ANN) trained using probability priors defined in stereotaxic space [30].
This is a fully automated method of labelling each voxel as belonging to a particular
tissue class. which for these experiments means one of grev matter. white matter.
or cerebrospinal fluid (CSF). The training data was created using 1000 samples! per

tissue class chosen with prior probability of at least 90% using tissue probability maps

ANN classifiers require more training data than Bayesian or minimum distance classifiers since

they have more degrees of freedom.

1]
N



(TPM).

The quality of the classification was evaluated by comparing the labelled volume
to the original discrete tissue model from which the simulations were derived. For
example. a slice from the simulation model is shown in Figure 7.1¢. This model was
used to create the simulation with 20% non-uniformity shown in 7.1a. A slice from
the labelled volume created by classifving this simulation is shown in Figures 7.1d.
Non-uniformity causes white matter at the bottom right of the volume shown in 7.1d
to be misclassified as grev matter. The volume in 7.le is the same except that it has
been corrected using the N3 algorithm prior to classification, resulting in improved
classification of the white matter at the bottom right. The measure kappa [7. 30], a
similarity measure corrected for chance. is used to quantify the improvement between
the two cases. A kappa of unity indicates perfect agreement. while a kappa of zero
indicates that anv agreement is purely coincidental. Kappa values computed within
the brain region are shown for each labelling in Figure 7.1. Note that the classifier
does not achieve a kappa of unity even in the absence of non-uniformity because noise
and partial volume degrades its performance.

To assess the impact that non-uniformity has on correction and the benefits of
using N3. T1 weighted simulated volumes like those described in Chapter 5 were
classified before and after correcting for non-uniformity. These volumes have field #1
from Figure 5.5 at various levels of severity. For the experiments. four realization of
the pseudo-anatomy at six levels of non-uniformity were used. The results. plotted
in Figure 7.2. show a clear reduction in classification performance for uncorrected
volumes as non-uniformity increases. However. this degradation is avoided by first
correcting the volume using the N3 method. The low variability in these results
suggest that all of the differences are significant. Given that classifiers such as ANN
work by choosing intensity thresholds that differentiate the various tissue classes, it

is not surprising that their performance depends on having uniform data.




{a): simulation (b): simulation
without correction with correction

.

(c): model (d): classification te): classification
without correction with correction
kappa = 1.0 kappa = 0.81 kappa = 0.83

Figure 7.1: Volumes labelled by tissue tvpe using an artificial neural network classifier.
(a) A simulated T1 weighted volume with 20% non-uniformity.  (b) The volume in
(a) after correction with N3.  (c¢) The discrete model used to generate the simulation.

(d) A labelling of the volume in (a). (e} A labelling of the volume in (b).

7.2 Cortical surface extraction

Similar experiments were performed using the cortical surface extraction method
described in [34]. This method starts with an inflated surface model of the cortex
that is iteratively shrunk to fit tightlv around the cortex defined by the change in
image intensity at the brain-CSF interface.

The standard to which the extracted cortical surfaces were compared was created

bv fitting a surface to the grev matter portion of the simulation model. A rendering
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Figure 7.2: Classification performance versus severity of intensity non-uniformity for
corrected and uncorrected T1 weighted volumes. The error bars are at plus and minus

one standard deviation computed for four individuals.

of this surface is shown in Figure 7.3 along with a map indicating the displacement
of a surface extracted from a simulation with 20% non-uniformity. Surfaces are rep-
resented internally by the software as being tessellated by triangles. The method is
designed to match anatomical features in the surface model to those found in the
data. For example. in a correct fit to the data. major sulci on the extracted surface
should line up with those marked on the model. Hence. if two surfaces are the same
in this sense. then vertices of the corresponding tessellations should match. The error
measure used in these experiments is the root mean squared (RMS) distance between
corresponding vertices of the tessellated surfaces.

The results of fitting cortical surfaces to the same simulated data as used to evalu-
ate tissue classification performance are shown in Figure 7.4. Like tissue classification,
the quality of the surface fitting deteriorates as the severity of the non-uniformity in-
creases. Once again. these effects are largely eliminated by first correcting for inten-
sity non-uniformity. These results are consistent with the dependence of the surface

extraction method on intensity thresholds.
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Figure 7.3: Cortical surfaces fit to simulated T1 weighted MR data. (a) a rendering of
the cortical surface derived from the anatomical model. (b) the cortical surface in
{(a) texture-mapped with the distance between vertices of the surface fit to a simulated
MRI and those of the anatomical model. The appearance of white around the sulci
indicates that the method has the greatest difficultly finding the cortical surface in

these regions. The density range is black for zero displacement through to white for

displacements of 1.2 mm or more.
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Figure 7.4: Cortical surface extraction error versus severity of intensity non-
uniformity. These results are for four realizations of T1 weighted simulated MR

volumes. Error bars are at one standard deviation.



7.3 Non-linear co-registration

The third brain mapping application considered is non-linear co-registration. This
technique determines the geometric deformation needed to match the anatomy of
one brain to another. One of its applications is in automatically labelling brain
structures by warping a labelled model to match a given brain. For these experiments,
the ANIMAL method [8] has been used to recover a random but known deformation
applied to a simulated volume. While this test does not mimic the typical application
of the method which is to match the anatomies of different individuals. it is suitable
for assessing the impact that intensity non-uniformity has on the ANIMAL method.

In conducting the experiments. a random deformation was created which was
then used to distort a simulated volume containing some level of non-uniformity.
ANIMAL was then used to match the deformed simulation to an undeformed uniform
(i.e. 0% intensitv non-uniformity) simulation of the same individual. For example.
the deformed volume shown in Figure 7.5a which suffers from mild intensity non-
uniformity was co-registered to the uniform simulation shown in 7.5b to produce the
volume shown in 7.5¢. For these experiments the recovered deformation is computed
at a resolution of 8 mm. i.e. the deformation field is represented as displacement
vectors on an 8mm lattice with intermediate displacement vectors determined by
interpolation. Even under ideal conditions the recovered deformation will not exactly
cancel features of the applied deformation that are bevond this resolution. To measure
the quality of this cancellation the RMS of the residual deformation field is computed
within the brain region.

The results of co-registering simulated volumes with and without correction for in-
creasingly severe levels of non-uniformity are shown in Figure 7.6. While performance
does decrease as the magnitude of the non-uniformity increases, the difference is only
significant at extreme magnitudes. where correcting for non-uniformity does improve
the results. However. it should be noted that 100% non-uniformity is extreme and
rarely found in volumetric scans. The robust behavior of the ANIMAL algorithm is

due to its use of image gradients rather than image intensities to define the deforma-
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(a): deformed (b): uniform (c): co-registered

Figure 7.5: Simulated T1 weighted MRI volumes deformed and co-registered. (a) a
deformed simulated volume having intensity non-uniformity. (b) a uniform and

undeformed volume. (c¢) the volume in (a) after co-registration with the volume in

(b).

tion fields. Image gradients are largely unaffected by the smooth variations associated
with intensity non-uniformity.

The experiments described in this chapter show that intensity non-uniformity sig-
nificantly degrades the performance of the tissue classification and cortical surface
extraction methods tested. This is attributable to their reliance on intensity thresh-
olds. In contrast. the co-registration method. which relies on image gradients rather
than absolute intensities. was unaffected except by severe levels of non-uniformity.
In combination with the N3 method all three mapping techniques provide good per-
formance independent of the level of non-uniformity present. As anatomical analysis
using these techniques can be employed to answer a broad range of questions of scien-
tific and clinical interest. these results emphasize the need for intensity non-uniformity

correction.
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Chapter 8

Discussion and conclusions

8.1 Characteristics of the N3 method

A new method, called N3. for correcting for intensity non-uniformity in 3D MR images
has been described. N3 does not relv on a parametric model of tissue intensities, nor
on segmenting a volume into contiguous regions. [nstead. non-uniformity is assumed
to blur the histogram of the data in a way that can be identified, quantified. and
removed. The assumption that all of the information needed to derive a smooth
correction field for the volume is present in the histogram is a major advantage of
the N3 method. as it does not nced to know anvthing about what an MR scan
contains or how it was acquired. However. relving heavily on the histogram also
has drawbacks, as it involves restrictive assumptions about the statistical properties
of the data that are rarely satisfied in practice. To understand why the method is
robust and accurate in correcting MRI data despite this apparent weakness. we must
consider the assumptions of the method in more detail.

The first of these is that non-uniformity can be modelled as a smooth multi-
plicative field. While this model is shared by maost other correction methods. it is
particularly important to N3. As described in Chapter 2. the multiplicative field
model accurately describes non-uniform sensitivity of a reception coil, but it is only
an approximation to the tissue dependent character of excitation field non-uniformity.

One can make two arguments that the discontinuities in the smooth field, caused by
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dependence of excitation non-uniformity on tissues properties, are small. First, stan-
dard spin echo sequences are designed to be insensitive to low levels of excitation field
inhomogeneity. Second. excitation is often done with a scanner’s body coil, which is
larger and more uniform than the head coil used for reception. However, neither ar-
gument applies in all situations since other imaging sequences. such as gradient echo.
can be sensitive to excitation field variations and. as was described in Chapter 2,
much of the non-uniformity observed with clinical scanners is due to electrodvnamic
interaction with the subject rather than uniformity of the coils. Instead. one can
draw upon the observation that. while some tissues may be more sensitive to exci-
tation field variations than others for a particular pulse sequence. the trend in the
non-uniformity field is still the same. Given that excitation non-uniformity accounts
for at most half of the combined excitation-reception non-uniformity and that dif-
ferences in sensitivity between tissues are a fraction of that half. one should accept
that the multiplicative field estimated is an average of the similar but not identical
multiplicative fields present in individual classes of tissue.

The second assumption of the N3 method is that tissue intensities are independent
identically distributed random variables. This stationarity assumption essentially
says that the various tissues present should be well mixed. much like & random field.
Clearly. in objects of interest for MRI this is not the case. The brain. for example,
has regions of homogeneous tissue corresponding to the various anatomical structures.
Yet despite this difficulty. the method is able to correct for non-uniformity in brain
scans.

Two factors allow N3 to tolerate violations of the stationarity assumption. The
first is the simple form of the non-uniformity field. Since the field is required to
be smooth. field variations introduced by localized structures in the image are sup-
pressed by smoothing the estimated field. This is the same argument that was given
for the filter and divide approach {23. 27. 31. 32. 46] to non-uniformity correction.
However. smoothing alone is not sufficient to separate intensity non-uniformity from
large anatomical structures. [t is the second factor that distinguishes the N3 method

from these other methods.
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The N3 method is able to tolerate violations of the stationarity assumption because
it is the local field estimates that are smoothed rather than the images intensities. For
example, two different brain structures having widely different image intensities can
still vield field estimates that are consistent with the true field since this information
is derived from the sharpening of the histogram rather than the image intensity alone.
However. not all tissues are equal in their power for estimating non-uniformity.

Consider correcting the non-uniformity in a brain scan using only grev and white
matter. Since white matter is found in large contiguous regions, the peak in the
histogram corresponding to white matter is narrower and better resolved than that for
grey matter which is more prone to partial volume!. As a result of this well resolved
peak. white matter is more powerful for estimating non-uniformity. Since there is
a relatively narrow range of intensities corresponding to white matter, intensities
outside of this range are more likely to be caused by non-uniformity. This estimation
power is reflected in the N3 method’s more aggressive correction of white matter.

At first glance, this would seem to ensure that the field estimate will be biased
by the anatomy. However. recall that N3 is an iterative optimization, not a single
estimate. By iterating towards a field estimate that is both smooth and maximizes
the high frequencies in the histogram. the fact that certain types of tissue are more
powerful estimators of non-uniformity becomes less important. While the field esti-
mate near structures containing these more powerful estimators will converge more
rapidly, the field estimate in other regions can continue to improve after these regions
have converged. This trend is apparent in the first ten iterations of the correction of
the T1 volume shown in Figure 4.4 where the field estimate grows more rapidly in
white matter regions than in grey matter or CSF.

A potential difficulty with iterative optimization methods such as N3 is that one
is never certain whether the solution found is the global or a local minimum in the
objective function. While it cannot be proven exhaustivelyv that the method converges

to a global minimum. the fact that the method has always been observed to converge

I Note that resolved peaks corresponding to isointense classes of tissue are not necessary for the

proper functioning of N3. This is merely an illustrative example.
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to the same solution regardless of the initial field suggests that the optimization is
not prone to local minima. This observation has been confirmed with random fields.
other kinds of simulated data. and real data.

To summarize. the N3 method makes the assumptions that non-uniformity can be
modelled as a smooth multiplicative field and that the image intensities are indepen-
dent identically distributed random variables. While neither assumption is strictly
valid for MR data. the N3 method is tolerant of data that violates these assumptions.
suffering a degradation in performance rather than failure. The strongest argument

in support of this is the experimental evidence.

8.2 Experimental results

Correcting for non-uniformity in a random field is useful to understand the behaviour
of N3. Aside from the trivial illustration that the method is able to correct volumes
lacking contiguous regions of homogeneous tissue. the experiment described in Sec-
tion 3.1 is important as an illustration of the benefits of using a statistical approach.
A random field is fair data upon which to compare N3 to a filter and divide ap-
proach. Since there is no structure in the volume. the usual criticism of filter and
divide methods. that the spatial frequencies of the anatomy overlap with those of
the non-uniformity field. does not apply. Despite this fact. the performance of the
N3 method was significantly better than direct filtering since it takes advantage of
structure in the histogram of the data.

Simulated data was used to validate the N3 method under a variety of conditions.
These experiments show that it is able to correct T1. T2. and PD weighted scans
for a range of noise levels and a number of non-uniformity fields. Furthermore, all
of these results were obtained without adjustment of the algorithm. In typical trials
non-uniformity was reduced to 25%-50% of its previous level. It should be noted that
this is a conservative estimate since it does not take into account the non-uniformity
implicit in the noise and natural variability of tissue. Since in practice the goal of

correction is to produce a uniform volume, the performance of N3 is even better since
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smooth variations due to noise. natural tissue variability, and true non-uniformity are
all reduced. Experiments measuring this combined variability using real data. while
not quantitative, showed significant reductions in non-uniformity using N3.

To put these results in perspective the benefits of correcting for non-uniformity
were investigated for three different anatomical mapping applications: tissue classi-
fication, cortical surface extraction. and non-linear co-registration. N3 created sub-
stantial improvements in accuracy on volumes with tyvpical levels of non-uniformity.
Furthermore, the performance of these techniques became largely independent of the

severity of the non-uniformity when used in conjunction with the N3 method.

8.3 Implementation issues

For the practical use of the N3 method one needs to consider how to choose the various
parameters. [n particular. one needs to choose the smoothing parameter w, the basis
function distance d. the initial field estimate. the stopping threshold e. the working
resolution, and the two parameters controlling the deconvolution kernel, FWHM and
Z. Fortunately, there are criteria for choosing these parameters.

As described previouslv. since both w and d control the smoothness of the field
estimate, one of these parameters can be fixed arbitrarily. Throughout the analysis,
w has been fixed at 1.0. The basis function distance d is then used to control the
smaoothness of the estimated field. with larger d corresponding to smoother fields.
Experiments on simulated data showed performance to have little dependence on this
parameter (see Figure 5.7) and it was fixed at 200 mm.

Experiments with simulated data have also shown performance to have little de-
pendence on the choice of the deconvolution parameter Z. It has been fixed at 0.1.
The choice of the second deconvolution parameter FWHNM involves a compromise.
The results shown in Figure 5.6 suggests that performance generally improves as the
FWHM parameter is reduced: however. the rate of convergence drops rapidly. Choos-
ing this parameter involves a tradeoff between accuracy and computation time and

should take into account the working resolution and stopping condition. both of which
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affect computation time. Throughout this analysis the FWHM was fixed at 0.15.
As mentioned earlier. the N3 method has been found to converge to the same
solution irrespective of the initial field estimate. For simplicity, the initial estimate is
taken to be zero field. Another consideration is the choice of working resolution. The
results of Appendix C suggest that substantial reductions in computation time can be
gained with little or no reduction in accuracy by subsampling a volume to a coarser
resolution. In light of this data. it appears that the decision to use 3mm isotropic
sampling as the working resolution throughout this analvsis was conservative.
Another consideration is the choice of the threshold e used to stop iteration. The
idea behind measuring the difference between subsequent field estimates is that this
measure will become small when the method has converged. As shown by Figure 5.2,
the convergence of the algorithm is regular and predictable. Hence, the parameter
e should be chosen based on the convergence rate for a given FWHM. In summary,
criteria are available for choosing all of the parameters needed by the N3 method.
The choice of these various parameters control the smoothness of the field estimate
and the tradeoff between accuracy and computation time: they do not determine the

success or failure of the algorithm.

8.4 Comparison with other methods

To put the strengths and weaknesses of the N3 method in perspective it is worthwhile
to compare it to other methods. While the results of the experiments with simulated
data described in Chapter 6 suggest that no one method is best in all cases, the
relative performance of the methods in each case can be rationalized from their design.
Consider the WM method which relies on segmenting the white matter from the rest
of the brain. On T1 weighted volumes. where the contrast between white matter and
other tissues is greatest. the white matter method gave the best performance. On PD
weighted volumes where contrast is low. the performance of the white matter method
is relatively poor.

Unlike the white matter method. the contrast seen in T1 scans works against the
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EM method. In principle the EM method has an advantage over the WM method in
that, by using the whole volume. it is less affected by noise. However, a number of
authors have described this method as overly sensitive to the training of its classifier [5,
20, 31]. The author’s experience has been that the method makes excessively large
corrections to voxels that fall outside the classifier’s tissue model. These outliers may
dominate the correction process and cause poor results. [f one trains the classifier
on samples of pure tissue and the intensity distributions of the different classes are
well resolved, as is the case in T1 scans. then regions of partial volume will produce
intensities outside the tissue model and receive extreme corrections. This is reflected
in the data by the fact that the method performed worst given an ideal training set
consisting entirely of pure tissue (see Figure 6.1). In addition, in some cases as the
level of noise increased. the EM method performed better (see Figure 6.1a). This
is due to the greater variability in the training data and reduced contrast in these
images. Similarly. on PD weighted scans. with less contrast. the method performed
better. Overall, the performance of this method was erratic.

Compared to the EM method. the REM method performed substantially better.
suggesting that the use of probability priors and spline smoothing significantly im-
proves overall performance. Like the EM method, REM performed better on PD than
T1 weighted scans.

The non-parametric method also gave consistently good performance on all three
modalities for the tests shown in Figure 6.1. Although REM performed better than
N3 on simulated T2 and PD data. what distinguished the N3 method from the REM
method is the results for real data. While real data is unable to provide quantitative
results, it uncovered limitations of the methods caused by factors not reflected in
the simulations. As discussed in Section 6.3. the EM and REM methods proved
unexpectedly sensitive to the choice of brain mask. Even when this masking problem
was fixed, the REM method performed poorly on real T1 data, tending to make
non-uniformity worse. While it is not clear what caused this failure. it is likely
that some aspect of the data violates the sophisticated model employed by the REM

method. In contrast, the N3 method showed no such sensitivity and required no
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special precautions in moving from simulated to real data.

The comparison of the four methods on a sagittal slice of a T1 weighted scan in
Figure 6.2 illustrates the typical behaviour of the four methods. Both the EM and
REM methods make their greatest correction at the top of the head. Diminished
intensity at the top of the head is often seen in gradient echo T1 weighted scans.
However, both of these methods have made the problem worse. This is likely due to
a poor initial classification of this region. It should be noted that the field estimated
by the EM method has higher frequency content than that of the other methods due
the use of the truncated filter.

While the fields estimated bv the WM and N3 methods are similar, the WM
method makes its greatest correction at the front edge of the brain while the N3
method corrects most strongly the region just forward of the middle of the brain.
This latter behaviour is tvpical of the N3 method and may be due to a breakdown of
the stationarity assumption discussed in Section 8.1.

Another difference between the N3 method and the other methods is that it tends
to raise the intensity of the cerebellum. This difference is likely due to the mixing
of grev and white matter in this region. While N3 is designed to correct randomly
mixed fields of tissue. the other methods may have difficultly finding pure tissue on

which to base their correction.

8.5 Conclusions

An iterative method for correction of intensity non-uniformity in MR volumes has
been described that avoids some of the restrictive model assumptions that plague
other methods. In particular. this Non-parametric intensity Non-uniformity Normal-
ization (N3) method does not require a model of the tissue intensities in terms of
discrete tissue classes. nor does it rely on a segmentation of the volume into homo-
geneous regions. Instead. a non-parametric model of the tissue intensities is derived
directly from the data. The behaviour of N3 is controlled by two parameters: one

controlling the smoothness of the estimated non-uniformity. the other controlling the
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tradeoff between convergence rate and accuracy. Experiments with simulated data
have shown that both of these parameters can be chosen to provide uniform perfor-
mance independent of pulse sequence. subject. and field shape. This is a considerable
advantage in automated data analysis as the method can be applied at an early stage,
without prior knowledge of the data. For instance. no special precautions need to be
taken for pathological data that might otherwise violate tissue model assumptions.
A wide variety of experiments with simulated MR. volumes show that by conserva-
tive estimates N3 reduces non-uniformity from a typical level of 20% to a level of 5%-
10%. Furthermore. real data corrected by the method is visually uniform and shows
a statistically significant reduction in tissue intensity variation. These improvements
in uniformity were shown to translate into substantial improvements in the accuracy
of three different anatomical mapping techniques. Robust. fully automatic. and re-
quiring little domain specific knowledge. N3 is attractive as a preprocessing step for

a variety of MRI analysis applications.

8.6 Future Work

While this work establishes the core ideas of the N3 method. there are a number
avenues that remain unexplored. The first of these is the optimization of accuracy
and convergence rate. While one could further explore the relationship between the
stopping condition. deconvolution kernel FWHM. and working resolution in terms
of accuracy and computation time. a more interesting investigation is to vary the
FWHM with iterations. If the final accuracy is determined by the FWWHM of the
final deconvolution kernel. then one can envision a scheme in which the width of the
deconvolution kernel starts large to increase the initial convergence rate but ends
small to improve final accuracy.

Another aspect of N3 that remains to be explored is the choice of the kernel
function for deconvolution. In fact. the whole process of proposing new intensity dis-
tributions could be replaced by a different heuristic such as one that proposes intensity

distributions with higher entropy rather than enhanced high frequency content. Any
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scheme that could propose incrementally sharper histograms based on the measured
histogram would be suitable.

A third avenue of investigation is to apply the method to other types of data.
While all of the analysis described here has focused on correction of volumetric brain
scans, there are no anatomy specific assumptions in N3. Any MR image used for
quantitative analysis would likely benefit from reduced intensity non-uniformity. Fur-
thermore, any imaging modality that suffers from a smooth multiplicative or, with

some modification. additive bias field could benefit from correction using N3.
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Appendix A

Spline smoothing

The tensor cubic B spline approximation of a function is given by
p(x) = 0k Bi(x) B (y) Be(z) (A1)

where x = [ryz] and B is a one dimensional cubic B spline in the variable . y, or

z. For example. the B spline for r is given by

4 —~1) /4 RN .
Bi(x) = (‘71_%)_(5) (= 22) 1 (2 = A2) (A.2)
s=0 :
r : r>0
p(r) = (A.3)
0 : elsewhere

where ,\fr) is referred to as a knot location and d is the distance between knots. A
spline B;(x) only takes non-zero values on the interval [/\Ei),;, )\it)].
The B spline coefficients 8, for least squares approximation of a set of data are

found by minimizing as follows
mﬂin E(8) + wR(9) (A.4)

where E reflects the closeness of fit to the data and R reflects the roughness of the
approximate function. Choosing the parameter . determines the tradeoff between

the two.




Suppose there are .V measurements P, at locations x,. Then E and R are as

follows

EO) = 5 X (Pa—p(x))’ (A.3)

o - 5[

1=1 y=1
where D contains the region of interest and 17 is the volume of D.

In matrix form. the solution of equation (A.4) for # is given by

= (A o)Az (A.7)
where
dz(x,) . .
Ak = 50 Bi(x,)B,(y,)Bi(z) 1s an element of an .V by () matrix.
1315
Q = M M.
2
J = S _'_rﬁl Je e gl @ ) s a Q by Q matrix.
.0 Qrlioglag
- -~ .-
JO oy = ‘—/ B}I’(.I:)BJ(”(J:](IJ: is an element of an 1/, by M, matrix.
-~ Jp

The symbol ® denotes Kronecker product. §# and Z are column vectors with elements

in their natural order. D is most conveniently taken as
(.z:) (.r) (:/ (= ) (=
D = [\ A ) > A A x [T Al (A.8)

although this may be larger than the region of interest.

Equation (A.7) may not be solvable directly if the smoothing parameter is very
small or zero since the matrix 4’4 is often ill conditioned. Hayes and Halliday [24]
have proposed a technique using Householder transformations to stabilize the method.

However. in practice w can be chosen large enough to avoid numerical difficulties.




Appendix B

Sum of Random Variables

The idea that adding a field f to the log intensity image @ has the effect of blurring
the intensity distribution { is central to the N3 method. To clarify this relationship,
the mathematics of adding independent random variables are described here. For
further details. consult [13].

Suppose f and & are independent random variable with probability distributions
given by F(f) and U(a). feR aeR

The distribution 17(¢) where & = f + @ can be computed as follows. The joint
probability distribution of ¢ and « is given by
a(e. i)
Af. q)

where the term 252 s the Jacobian factor for the change of variables from (f. &) to

d(f.a)
(@ &).

P(i.i) = F(i — )L (&) (B.1)

;?’_"f) =| W ]: : l{I=1 (B.2)
(foapl | ] o
Hence

P(i.4) = F(i — @)U (1) (B.3)

The distribution 17(¢) is given by the marginal distribution of P(¢. &) as follows
V(o) = /x P(¢. @)di = / F(i - a)U(a)da (B.A)
which is the same as equation (4.3) on page 18 and corresponds to the convolution of

F and U.

=1
[EV]




Appendix C

Working resolution

Simulated T1 weighted MR volumes. described in Section 3.2. were used to investigate
the connection between working resolution. correction accuracy. and computation
time. For these experiments. four realizations of the pseudo-anatomy were tested
for both of the non-uniformity fields shown in Figure 5.5. The estimation error and
computation time for these experiments are plotted in Figure C.1. These results
show no significant difference in estimation error for the range of working resolutions
shown. Although the data point in Figure C.la for 1 mm working resolution is not
available. other experiments not shown here suggest no improvement in accuracy at
I mm resolution.

As shown by Figure C.1b. there is a substantial decrease in computation time as
the voxel size of the working resolution increases. This trend reflects the fact that at
larger working resolutions there are fewer voxels to process. It should noted that data
is converted to the coarser resolution by subsampling without filtering. effectively
throwing awayv some fraction of the data. The fact that so much of the data can
be removed with little impact on correction accuracy suggests that the problem of

estimating non-uniformity is highlyv overdetermined.
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Appendix D

Glossary

artificial neural network classifier An artificial neural network classifier (ANN)
employs a non-linear function formed from simple terms. corresponding to nodes
in a network. to label measurements as belonging to a particular class [61]. The
coefficients of this function are derived using a set of correctly labelled examples.

See classifier.
Bo The notation By denotes the static magnetic field produced by an MR scanner.

B: In MR, the notation B, denotes the magnetic field. oscillating in the radio

frequency range, used to induce magnetic resonance in the subject.

B splines B splines are smooth piccewise polynomial functions of limited extent

that can be used as a basis for constructing smooth functions. See Appendix A.

bandwidth filter In MR. a filter. referred to as a bandwidth filter. is used to select
the range of frequencies present in the measured signal. Since spatial location
is encoded as frequency. frequency dependent variations in the sensitivity of
this filter lead to intensity variations in the frequency encoding direction of the

resulting image.

basis function A set of functions that are linearly independent. in the sense that

no member can be constructed from a linear combination of the others, is termed




.

a basis and the individual functions are called basis functions. See B spline and

Appendix A.

Bayesian classifier The restricted definition of a Bavesian classifier used for this
work is that each tissue class is modelled as having normally distributed in-
tensities of given mean and covariance. The classifier labels a measurement as

belonging to the class having maximum aposterior probability (MAP) [14. 29].

bias field For the purposes of this work. the smooth multiplicative field associated

with intensity non-uniformity is termed the bias field.

Biot-Savart law The Biot-Savart law is an expression for the magnetic field at a
point expressed as an integral of current density over all space. This expression

is valid when the distribution of current density is static.

bird cage coil A kind of antenna for transmitting and receiving RF pulses. the
bird cage coil is often used for volumetric MR scans of the head. It is formed
from two loops connected by a number of spokes and produces a circularly

polarized field oriented perpendicular to the coil’s axis of symmetry. See [33].

Bloch equations The Bloch equations [3] are a set of coupled differential equa-
tions that empirically describe the time evolution of the net magnetization of a

subject in an MR scanner given knowledge the magnetic fields present.

body coil The large antenna fixed permanently in an MR scanner and suitable for

whole body scans is called the body coil.

broad-band noise Noise having a frequency spectrum with a wide range of fre-

quencies is said to be broad-band.

cerebellum The cerebellum is a large dorsally projecting brain structure with thin
layers of gray and white matter barely resolvable at the resolution of a typical

MR scan.



cerebrospinal fluid Cerebrospinal fluid is a substance similar to blood plasma

found surrounding the brain and within the ventricles.

circularly polarized coil A circularly polarized coil produces a magnetic field of
constant magnitude but rotating orientation. Such a coil can be formed from

two linearlyv polarized coils oriented at right angles and driven in quadrature.

classifier A tool for labelling each voxel as belonging to a particular class on the
basis on one or more featires associated with thart voxel is said to be a classifier.

This definition can be relaxed to allow fuzzy or partial membership in a class.

co-registration The task of determining the transformation that relates measure-
ments in one coordinate to measurements of the same object in another is that
of co-registration. This definition can be relaxed to include objects that are not

the same. but merely similar.

compactly-supported spline A compactly supported spline is onlv non-zero in
a finite region. The matrices associated with solving the linear problem of ap-
proximating a function in the least squares sense by splines having this property

are sparse.
cortical surface The cortical surface is the outermost surface of the brain.

cortical surface extraction Cortical surface extraction is a brain mapping tech-

nique for identifving the cortical surface in an MR scan.

echo The reappearance of the MR signal after the initial signal caused by excitation

has died away is referred to as an echo. See [21].

echo time Denoted TE. the echo time is the time after an initial excitation at
which the echo signal occurs. The echo time of a pulse sequence is one of the

factors determining the weighting or contrast in the resulting MR image.

eddy currents Eddy currents are electrical currents induced in an object by tran-

sient magnetic fields.




entropy Entropy is a measure of disorder. For random variables. lower entropy

corresponds to a mare tightlyv clustered probability distribution.

excitation field The excitation field in an MR scanner is the oscillating radio-

frequency magnetic field used to induce magnetic resonance in the subject.

field gradient In MR. spatial variations in the magnitude of the main magnetic
field By are used to encode spatial location. These linear variations are referred

to as field gradients.

finite element analysis Finite element analysis is a numerical method suitable
for solving partial differential equations by approximating the solution in terms

of a number of discrete elements.

flip angle The angle by which the net magnetization rotates in response to an RF
excitation pulse is the pulse’s flip angle. More precisely. this angle is a nutation

of the net magnetization as it precesses about the direction of the main magnetic

field By.

frequency encoding direction In a spin warp imaging sequence. the direction

in which spatial location is encoded by resonant frequency is the the frequency

encoding direction.

geometric distortion Geometric distortion is displacement of voxels in the image

that causes the geometry of the subject to be misrepresented.

gradient echo pulse sequence An imaging sequence which produces an echo by

the switching of field gradients alone without the aid of a second RF excitation

is referred to as a gradient echo pulse sequence.

grey matter Greyv matter is brain tissue characterized by unmyelinated neurons

and a greyish appearance upon dissection.

head coil An antenna specifically for imaging the human head is a head coil. Most

head coils are of bird cage design.




imaging sequence Sce pulse sequence.

independent random variables Random variables are said to be independent if
the values they take on are unrelated and if any correspondence between them

is purely coincidental.

intensity non-uniformity I[ntensity non-uniformity is the variation in image in-
tensity caused by the imaging process rather than true variation in the subject.
Distinct from noise. intensity non-uniformity is usuallv smoothly varving and

not random.

kappa Kappa is a measure of similarity, corrected for chance [7. 30]. A kappa
of unity indicates perfect agreement. while a kappa of zero indicates that any

agreement is purely coincidental.

kernel In signal processing terminology. a kernel is a function describing the re-

sponse of a filter to an impulse at its input.

LCJ segmentation An acronym for Liou. Chiu. and Jain. LCJ segmentation [33]
is an unsupervised technique for identifving homogeneous regions within an
image.

linearly polarized magnetic coil A linearly polarized coil produces an oscillat-

ing magnetic field oriented in a particular direction. See [19].

magnetic relaxation In MR. magnetic relaxation is the process by which the
signal emitted following excitation decays away and the net magnetization of

the subject returns to its equilibrium state.

minimum distance classifier A\ minimum distance classifier labels a given mea-
surement as belonging to a particular class on the basis of which class has the

prototypical example to which the measurement is closest {2, 30].

multiple sclerosis Multiple sclerosis is a degenerative brain disease. The associ-

ated brain lesions can be observed with MRI.
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multi-slice sequence A multi-slice sequence is a pulse sequence in which the slices

that together form the image volume are acquired one at a time.

net magnetization For MR imaging. the net magnetization refers to the magnetic
field produced by the hydrogen atoms within the subject. The phenomenon of
magnetic resonance occurs when the net magnetization is rotated away from its

equilibrium orientation. parallel to the main magnetic field (Bg).

non-parametric method Parametric methods use a limited number of parame-
ters to specifv a model whose form is chosen to fit the problem at hand. In
contrast, non-parametric methods use a large number of parameters to specify

a model whose form is general to a broad class of problems.

partial volume effect The process of image formation in MR is such that voxels
that are partially filled with tissue have a proportionally smaller signal strength.
When this process leads to voxels of intermediate intensity at the boundary
between regions of homogeneous material. it is referred to as a partial volume

effect.

Parzen window A method of estimating the distribution of a random variable
from a set of measurements is to interpret each measurement as a distribution
of measurements clustered around the actual measurement. This latter dis-
tribution is termed the Parzen window [l4]. Distributions estimated using a
Parzen window tend to be more accurate than traditional approaches when the

number of measurements is small.

penetration effect When a time varving electromagnetic field is attenuated or
prevented from entering a material by the currents it induces in that material,

the phenomenon is termed a penetration effect.

permittivity Permittivity is a measure of a material’s ability to store electrical

potential energy.
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phantom A phantom is an object used as a subject of an MR scan for the purposes

of calibration or testing.

pickup coil In analyzing an RF coil for use in MR. an antenna small enough to
have little effect on the coil being analvzed. vet suitable to detect the magnetic

field fluctuations produced by that coil is referred to as a pickup coil.

proton density weighted An MR image is said to be proton density weighted
if the image contrast is largely determined by the density of hvdrogen atoms

present.

pulse sequence A particular orchestration of RF pulses, switched field gradients.
and data acquisition periods used to produce an image is referred to as a pulse

sequence.

quasi-static A system in which electromagnetic fields are changing slowly enough
that magnetostatic equations (i.e. Ampere’s law and the Biot-Savart law) applyv

is said to be quasi-static.

reception coil The antenna used in MR to measure the radio waves emitted by

the subject is a reception coil.

reception sensitivity The ratio of the measured signal to that which is emitted
by the subject is the reception sensitivity. Reception sensitivity that is spatially

varying contributes to intensity non-uniformity in the resulting image.

rejection sampling Rejection sampling is a technique for generating random sam-
ples with an arbitrary probability distribution. The method uses the probability
density of the desired distribution to randomly reject samples from a uniform

distribution. See [13].

relative permittivity The relative permittivity of a material is the ratio of its
permittivity to that of free space. Permittivity is a measure of a material’s

ability to store electrical potential energy.
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relaxation See magnetic relaxation.

repetition time The period of the repeating cycle of excitation followed by data
acquisition during a pulse sequence is the repetition time (TR). The repetition

time of a pulse sequence determines the T1 weighting of the resulting image.

resample Resampling is an image processing technique for transforming a sam-
pled representation of an image to another representation sampled at different

locations but corresponding to the same image.

resonant frequency The frequency. proportional to the strength of the static
magnetic field Bp. at which net magnetization precesses is the resonant fre-

quency.

Rician distribution A Rician distribution is formed by computing the magnitude

of the sum of a complex Gaussian distributed random variable and a constant.

saddle coil A saddle coil is a pair of saddle shaped loop antennas used to produce

or receive a linearly polarized RF field.
scan A scan is a volume of data acquired in a single session with an MRI machine.

scanner In this context. a scanner refers to an MRI machine. a device capable of

volumetric imaging of the anatomy.

segmentation The set of labels identifving the class that each voxel in a volume

belongs to is the segmentation of that volume.
sensitivity See reception sensitivity.

sharpening Sharpening is a signal processing technique that enhances the high

frequency components of a signal.

spatial frequency An image can be decomposed in terms of sinusoidal basis func-
tions. The number periods a basis function has within a given distance is its
spatial frequency. Low spatial frequencies are associated with smooth image

feature, while high frequencies are associated with abrupt changes and edges.
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SPECfp92 SPECfp92 is a measure of a computer’s floating point performance

developed by the Standard Performance Evaluation Corporation (SPEC).

spectral estimation The task of estimating a signal's power within a given fre-

quency range is that of spectral estimation.

spin echo pulse sequence A spin echo sequence is a pulse sequence that employvs

a 90° and a 180° RF pulse to produce an signal echo. during which data is

acquired.

spin warp acquisition The process of MR data acquisition can be viewed as sam-
pling the Fourier transform of the image. A spin warp acquisition sequence
samples this image on a grid. one row at a time. The rows and columns of
this grid correspond to the frequency encoding and phase encoding directions

respectively.

standing wave effect A standing wave oscillates but does not travel. In MR, the
radio waves reflected within a subject may interfere constructively and appear
not to travel. This enhancement of B field strength is referred to as a standing

wave effect.

stationarity An image is said to be stationary if the statistics describing each

clement and relating its neighbours do not change with position in the image.

stereotaxic space Stercotaxic space is a coordinate syvstem in which affine differ-
ences among individual brains have been removed so that any neuroanatomical

location can be addressed by a Cartesian coordinate [51. 9].

structuring element In binary morphology. the structuring element is a binary

mask that defines which voxels are considered neighbours of a given voxel.
sulcus A sulcus is an inward fold of the cortical surface.

surface coil A flat antenna placed on the surface of the subject is a surface coil.

Surface coils have high sensitivity that drops off rapidly with distance from the

coil.

83



T; weighted An image is said to be T; weighted if its contrast is largely due to
differences in the intrinsic tissue property 7. T is the time constant describing
the rate at which the net magnetization returns to equilibrium after excitation.

This process is referred to as spin-iattice relaxation.

T, weighted T, weighting indicates that the MR image contrast is largely depen-
dent on the intrinsic tissue property T,. a property describing the rate of so

called spin-spin relaxation.

tessellate A surface is tessellated by approximating it in terms of simple geometric

surface elements.

tissue classification Tissue classification is the task of labelling each voxel by

tissue type. See classifier.

tissue probability map Maps showing the probability that each location in

stereotaxic space has a given tissue type are call tissue probability maps (TPM).

training set A set of correctly labelled example measurements from which a clas-

sifier learns its behaviour is a training set.

tricubic interpolation Tricubic interpolation is a method employing cubic splines
to estimate the value of a function on the basis of nearby measurements taken

in three dimensions.

unloaded coil An MR scanner's RF coil is said to be unloaded if there is no
subject within it. Viewed as an electrical circuit the RF coil is magnetically
coupled to the subject. which presents an impedance during excitation. Since,
this impedance absorbs energy it is said to be a load on the electrical circuit,

hence the terminology of loaded and unloaded coils.

volumetric acquisition While any imaging sequence in which a 3D volume of
data is acquired is technically a volumetric acquisition, the term is used here
to refer to scans in which the sensitivity is relatively uniform throughout the

volume, such as with head or body coils.

84




voxel Analogous to a pixel. a voxel is an element of a 3D or volumetric data set.

warping Resampling an image to produce a possibly non-linear spatial distortion

is called warping.

white matter White matter is brain tissue characterized by myelinated nerve

fibers and a whitish color upon dissection.

Wi ilcoxon signed rank test The Wilcoxon signed rank test is a non-parametric

statistical test to determine if two sets of observation come from the same or

different populations.
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