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Coupling of Modes Analysis of Resonant
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Abstract— The operation principle of resonant channel
add–drop filters based on degenerate symmetric and
antisymmetric standing-wave modes has been described
elsewhere using group theoretical arguments. In this paper, the
analysis is carried out using coupling of modes in time. A possible
implementation of such a filter is a four-port system utilizing
a pair of identical single-mode standing wave resonators. The
analysis allows a simple derivation of the constraints imposed
on the design parameters in order to establish degeneracy.
Numerical simulations of wave propagation through such a filter
are also shown, as idealized by a two-dimensional geometry.

Index Terms—Coupled-mode analysis, FDTD method, optical
filters, optical waveguides, resonators, wavelength division mul-
tiplexing.

I. INTRODUCTION

T HE WIDE USE of optical wavelength division multi-
plexing (WDM) calls for compact, convenient channel

add–drop filters. The “Dragone” filter [1] provides a means
of simultaneously separating all the channels, which can then
be dropped and/or added individually. After recombination
via an inverse filter, the full WDM distribution is restored.
This type of filter is now widely used. Resonators have
also been considered for channel dropping devices. If the
resonators are small enough so that the spacing of the res-
onant frequencies accommodates the set of WDM channels
within the communications window, the goal of dropping one
channel by one filter without affecting the other channels
is achieved. One proposed version uses distributed feedback
(DFB) resonators side-coupled to the signal bus [2]. In order to
remove all of the power in one channel, two such resonators
are required. Another version uses ring resonators between
two optical waveguides, one guide acting as the signal bus
and the other as the receiving waveguide. This structure
has the advantage that a single resonator can remove all of
the power in one channel [3]. The filter responses of these
structures are Lorentzian (single pole). By combining a number
of resonators with appropriate coupling, more sophisticated
transfer characteristics could be achieved [3], [4]. This concept
has already been studied in the context of microwave circuit
design.
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Fig. 1. General four-port system consisting of a resonator between two
waveguides.

While a ring resonator between two optical waveguides
provides an ideal basic structure for removal of a channel from
the signal bus, the performance of ring resonator filters can be
affected adversely by the coupling between counterpropagating
waves caused by surface roughness [5]. Smooth surfaces are
required of a high quality not yet achievable with existing
fabrication technology. This fact raises the question as to
whether the performance of a ring channel dropping filter
could be realized with a resonant structure not as sensitive
to surface roughness. The principle of operation of such a
structure was explained using group theoretical arguments in
[6]–[8]. Here we recast the description and the explanation of
its operation into coupled-mode theory (CMT) in time.

Briefly summarized, we show that an optical resonator with
degenerate symmetric and antisymmetric modes side-coupled
to two waveguides performs the same function as a ring
resonator. For a symmetric system consisting of two identical
coupled resonators between two waveguides, the expected
splitting of the degeneracy can be counteracted by proper
coupling to the waveguides. This concept is also demonstrated
by finite-difference time-domain (FDTD) simulations of wave
propagation through such a filter.

II. FOUR-PORT SYSTEM EMPLOYING

A SINGLE-MODE RESONATOR

The basic implementation of the channel add–drop filters
considered in this paper is a four-port system that consists of
a resonator placed between two waveguides. A schematic is
shown in Fig. 1. The resonator is evanescently coupled to the
waveguides which we shall refer to as the bus and the receiver,
respectively. In general, the resonator modes interact with the
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forward and backward propagating modes of the waveguides
over a finite length. The interaction length in each waveguide is
the region where the fields of the resonator modes overlap with
the waveguide fields, and it is assumed to be fully contained
between the input/output reference planes, defined on either
side of the resonator, as shown in the schematic. In this
section, we consider the case of a resonator that supports only
one mode in the frequency range of interest, with amplitude
denoted by . The squared magnitude of this amplitude is equal
to the energy in the mode. The waveguides are assumed to be
single mode and the waveguide dispersion is ignored in our
analysis. This simplification is justified if the resonance peak
is narrow. The amplitudes of the incoming (outgoing) waves
in the bus are denoted by ( ) and ( ) and in the
receiver waveguide by ( ) and ( ), respectively.
The squared magnitude of these amplitudes is equal to the
power in the waveguide mode. The equation for the evolution
of the resonator mode in time is given by

(1)

where is the resonant frequency, is the decay rate
due to loss, and are the rates of decay into
the bus and the receiver, respectively, and are the
input coupling coefficients associated with the forward and
backward propagating modes in the bus, andand are
similarly defined for the receiver. The decay rates are related to
the unloaded quality factor and the external quality factors

and of the resonator by , ,
and .

By power conservation, the outgoing waves are (see the
Appendix)

(2)

(3)

(4)

(5)

where and are the propagation constants in the bus and
the receiver, respectively. Equations (2)–(5) show that if the
resonator is not excited then the incident waves appear at the
output undisturbed, with a phase shift that is due to the finite
distance between the reference planes, for simplicity taken to
be the same in both waveguides. The coupling coefficients are
found in the Appendix following a treatment similar to [9].
Their squared magnitudes are equal to the respective decay
rates into the waveguides due to power conservation, and
their phases are related to the phase mismatch between the
waveguide and resonator modes and the choice of reference
planes. So we can write

(6)

with and defined as the decay rates in the
forward and backward direction, respectively, satisfying

(7)

(8)

and are the respective phases. We choose 1 as the input port
and we set , , and to zero. If has a time
dependence, then we find from (1) at steady state

(9)

Substituting from (9) into (2)–(5), we get the filter response
of the system

(10)

(11)

(12)

(13)

where is the reflection from the input port, is the
transmission through the bus, and and represent the
transmission (channel dropping) into the left and right ports of
the receiver, respectively. Using (10)–(13), we can show the
different behavior of a traveling wave and a standing-wave
mode in this configuration.

In a traveling-wave mode, such as the mode supported by
a ring or a disk resonator, the power flows continuously in
only one direction in the resonator. For example, the forward
traveling mode of the bus waveguide excites the clockwise
propagating mode of a ring or disk, as shown in Fig. 2(a).
Then, from (7) and (8), we have ,

, and , and (10) and (13) give
, over the entire bandwidth. At , the

incident power in the bus in the forward direction is partially
transferred to the receiver in the backward direction, limited
only by the loss. If, in addition

(14)

then, at resonance, (11) and (12) give and
, so the input signal power at is completely

removed from the bus and is dropped into port 3 of the
receiver, reduced by a fraction due to loss. Thus, the
system operates as a channel dropping filter.

If the resonator mode consists of a pure standing wave,
such as the mode of a quarter-wave-shifted DFB resonator
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(a) (b)

(c)

Fig. 2. Four-port systems using (a) a traveling wave, (b) a standing wave resonator, and (c) an example of the corresponding filter response with
Qe = Q0

e
= 2000 and negligible loss. Solid line: traveling wave; dashed line: standing wave.

[Fig. 2(b)], there is no net power flowing in either direction
in the resonator. Thus, the resonant mode decays equally
into the forward and the backward propagating waveguide
mode, so from (7) and (8), we have
and . If (14) is satisfied, the power
transfer into the receiver at resonance is maximized, and from
(10)–(13) we find and

. That is, at best, half the input power at
frequency remains in the bus and is equally distributed
into ports 1 and 2 while the other half, reduced by a fraction

due to loss, is equally distributed into ports 3 and 4 of
the receiver.

An example of the filter response for the two cases described
above is shown in Fig. 2(c) as a function of normalized
frequency, with and negligible loss.

Clearly, a single-mode traveling wave resonator side-
coupled to the bus and the receiver can fully transfer a channel
at the resonance frequency from the bus to the receiver while
a single-mode standing wave resonator is not adequate for
channel dropping. However, as we show next, it is possible
to get the response of a single-mode traveling-wave resonant
filter using two standing-wave modes.

III. SYMMETRIC STANDING-WAVE

CHANNEL ADD–DROP FILTER

We now consider a resonant structure with two standing-
wave modes placed between the bus and the receiver, with a
symmetry plane perpendicular to the waveguides, at
[Fig. 3(a)]. The two modes of the system are symmetric and
antisymmetric with respect to this plane. With the reference
planes defined at , the phases of the coupling
coefficients differ by even (odd) multiples of in the case
of the symmetric (antisymmetric) modes. Thus, the forward
and backward incident waves couple into the symmetric mode
in phase and into the antisymmetric mode out of phase. The
symmetric mode has amplitude and the antisymmetric mode
has amplitude . Using the analysis of the previous section
simplified for the case of a symmetric structure, we have

(15)

(16)
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(a)

(b)

Fig. 3. (a) Channel dropping filter using a resonant structure with a sym-
metry plane perpendicular to the waveguides. (b) Filter response when a pair
of degenerate symmetric and antisymmetric standing-wave modes is excited
with Qo = 5000, Qe = 2000, and1=Q0

e
= 1=Qe � 1=Qo for maximum

power transfer.

where are the resonant frequencies are the decay
rates due to loss, and are the rates of decay
into the signal bus and the receiver, respectively, and
and are the input coupling coefficients associated with
the bus and the receiver, respectively. The amplitudes of the
outgoing waves are found by generalizing (2)–(5) to the case
of two excited modes

(17)

(18)

(19)

(20)

In analogy with (6), the input coupling coefficients can be
written as

(21)

With as the input signal at frequency, we find the filter
response at the four ports of the system, as defined in the
previous section:

(22)

(23)

(24)

(25)

The two resonant modes are degenerate if they have equal
frequencies and equal decay rates

(26)

(27)

(28)

(29)

Under these conditions, (22) gives over the entire
bandwidth of the resonator and (23)–(25) become

(30)
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(31)

(32)

where

(33)

At the resonance frequency , from (30) the transmission
through the bus is

(34)

Thus, as in the case of a traveling wave resonator discussed
in Section II, if the decay rates satisfy (14), the input signal
power is completely removed from the bus and transferred to
the receiver reduced by a fraction due to loss. Under
this condition, the bandwidth of the Lorentzian response is
determined entirely by the coupling to the bus waveguide, and
its peak is set by the ratio . As we can see in (31) and
(32), the distribution of the dropped signal power into the left
and the right port of the receiver is determined by the phase
difference .

1) If , where is an integer, then
for all frequencies so the channel is dropped in the
forward direction. This means that if the resonator
has a horizontal symmetry plane as well, i.e., parallel
to the waveguides, the symmetric and antisymmetric
modes have the same symmetry (even or odd) with
respect to this plane. An example for this case is a
composite system made up of two identical standing
wave resonators, as we will see in the next section.

2) If , then for all frequencies
so the propagation in the receiver waveguide is only in
the backward direction. This means that if the resonator
has a horizontal symmetry plane as well, the symmetric
mode has even (odd) symmetry and the antisymmetric
mode has odd (even) symmetry with respect to this
plane. An example for this case is a ring resonator, if we
consider its traveling-wave modes as superpositions of
degenerate symmetric and antisymmetric standing-wave
modes that are excited with a -phase difference.

3) In any other case, both and are nonzero.

In Fig. 3(b), we show an example of the filter response
of case 1), with , , and

for maximum power transfer.

Fig. 4. Symmetric channel dropping filter based on two coupled identical
single-mode resonators.

Thus, in agreement with [6]–[8], we found that, in order
for a resonant system to operate as a channel dropping
filter employing standing-wave modes, the excitation of two
degenerate modes is necessary. The superposition of these
modes with the appropriate phase relation gives the behavior
of a traveling-wave mode.

IV. SYMMETRIC SYSTEM USING TWO

IDENTICAL SINGLE-MODE RESONATORS

The symmetric resonant system analyzed in the previous
section can be implemented using two identical coupled res-
onators, each supporting only one standing-wave mode in
the frequency range of interest. The resonator pair is placed
between the bus and the receiver waveguides, so that the
total system has a symmetry plane at . A schematic
is shown in Fig. 4. Normally, the mutual coupling of the
two resonators would split the resonant frequencies, lifting
the degeneracy. In this section, we show that the coupling
to the waveguides can be designed to cancel the effect of
frequency splitting due to the mutual coupling and reestablish
the degeneracy.

The mode amplitudes of the resonator on the left and
on the right of the symmetry plane are denoted by and

, respectively. The resonant frequency, decay rates, and
coupling constants for the left resonator are defined as in
Section II and for the right resonator are found by mirror
symmetry.

The resonator on the left is excited from the left by and
and from the right by the outputs of the right resonator.

The resonator on the right is excited from the right by and
and from the left by the outputs of the left resonator. The

distance from the left (right) reference plane of the resonator
on the left of the symmetry plane to the left (right) reference
plane of the resonator on the right of the symmetry plane is
denoted by, as shown in Fig. 4, and for simplicity is the same
in both waveguides. The equations for the mode amplitudes
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of the two resonators are

(35)

(36)

where is the mutual coupling coefficient between the res-
onators and is real by power conservation. For the decay
rates, we have used the fact that a standing-wave mode decays
equally into both directions in the waveguide as discussed in
Section II. Expressions analogous to (2)–(5) have been used
for the outgoing waves of the left (right) resonator that appear
as inputs to the right (left) resonator. In (35) and (36), we
can see that, in addition to the direct coupling expressed by

, the two resonators are also indirectly coupled through the
waveguides. We define the amplitude of the symmetric and
antisymmetric modes of the total system as

(37)

(38)

which, due to (35) and (36), satisfy

(39)

where

(40)

(41)

Comparing (39) with (15) and (16), we have

(42)

(43)

(44)

(45)

(46)

(47)

From (44) and (45), we can see that the symmetric and the
antisymmetric excitations couple into the system with a
phase difference. In the special case thatand are even
(odd) multiples of , only the symmetric (antisymmetric)
mode is excited, leading to the behavior of the standing wave
resonant system described in Section II, with decay rates
and into the bus and the receiver, respectively, and
due to loss.

The conclusions derived for the filter response of the sym-
metric system shown in Section III apply to this system as
well: the system can operate as a channel add–drop filter if its
symmetric and antisymmetric modes satisfy the degeneracy
conditions (26)–(29). The decay rates due to loss are already
equal, as seen in (43). From (42), the condition for frequency
degeneracy is satisfied if

(48)

From (44) to (47), the conditions for equal decay rates are
satisfied if

(49)

(50)

Therefore, there are two degrees of freedom in designing this
system: knowing the propagation constantsand and the
phase differences and , we must choose the
distance so that the symmetric and antisymmetric modes have
decay rates equal to those of the individual resonatorsand

. Then, by varying the coupling between the waveguides
and the resonators, we must make and such that the
splitting of the resonance frequencies due to direct coupling
between the two resonators is cancelled.

The signal power at resonance is completely removed from
the bus if the degenerate decay rates satisfy the maximum
power transfer condition (14). In this special case, the band-
width of the Lorentzian response is then set byand the peak
power at the output ports of the receiver by the ratio .
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As discussed in Section III, the direction of the channel
dropping is determined by the phase difference

. Here, and are the phases of the
coupling constants defined in (44) and (45), respectively. From
(44) and (45), we can see that

if

if
(51)

if

if .
(52)

Therefore, , if the degeneracy conditions are satisfied
with , where is an integer, and the channel is
dropped in the forward direction, i.e., in port 4. If

, then , and the channel is dropped
backward, i.e., in port 3. In this particular case, it is possible
to satisfy (48) even if the resonators are not directly coupled
( ) provided that .

The design of the filter is simplified when the two resonators
are individually symmetric. With the reference planes defined
symmetrically on either side of each resonator as in Section III,
the distance is equal to the distance between the individual
symmetry planes. In addition, we have and

if the mode supported by each resonator is
symmetric (antisymmetric). So, the conditions for degeneracy
become

(53)

(54)

We can see that, in this case, the choice ofdepends on the
symmetry of the individual modes that make up the symmetric
and antisymmetric modes of the system. For example, in the
case that and , we can see from (53) that the
resonance frequencies are degenerate only if
for symmetric individual modes and only if
for antisymmetric individual modes, where is the
guided wavelength.

In [6] and [7], the concept discussed in this section was
demonstrated numerically by FDTD simulations in a two-
dimensional (2-D) photonic crystal made of dielectric rods
in air. In that case, the two waveguides and two single-
mode microcavities were made from defects and the coupling
constants were controlled by varying the refractive index
of specific rods. In this paper, we perform two-dimensional
FDTD simulations using conventional high index-contrast
waveguides and square resonators. In these simulations, the
structures are viewed as infinite in the third dimension, and the
electric field polarization is perpendicular to the paper. Starting
from the actual three-dimensional structure, the dependence
on the third dimension could be taken into account by the
effective index method. However, this method is of limited
accuracy for high index-contrast structures or near cut-off, so
it is not used here. The computational domain is discretized
into a uniform orthogonal mesh with a cell size of 20 nm.

(a)

(b)

Fig. 5. (a) Electric field amplitude distribution in a square resonator side
coupled to the bus and receiver. (b) Filter response calculated by CMT (solid
line) and by FDTD simulation (dotted line).

The system is excited using a source located at the bus
waveguide with the spatial profile of the fundamental wave-
guide mode and a wide Gaussian spectrum centered at

nm. The frequency response of the system is obtained
by calculating the discrete Fourier transforms of the fields and
integrating the power flux over the waveguide cross section
at the four ports of the system. A square resonator supports
standing-wave modes which have highif the nulls of the
electric field are along the diagonals. Fig. 5(a) shows the
amplitude of the electric field (polarized perpendicular to the
paper) in a square resonator of side 1.54m and refractive
index 3.2 placed symmetrically between two waveguides of
width 0.2 m and index 3.2 that are 2.32m apart center to
center. The width of the waveguides was chosen to ensure their
single-mode operation in the 2-D FDTD model over the entire
bandwidth of the excitation. The theoretical response obtained
using (10)–(13) with and
and a resonance wavelength nm fits very well
the numerical results [Fig. 5(b)]. As expected by the theory
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(a)

(b)

Fig. 6. (a) Implementation of a symmetric channel dropping filter using two
square resonators. (b) Filter response when all degeneracy conditions are
satisfied, as calculated by CMT.

in Section II, the output at all four ports is below 25%. The
electric field pattern of the resonator mode is antisymmetric
with respect to the vertical symmetry plane; therefore, in
order to achieve degenerate decay rates, the distance between
the two square centers must be . In this
case, we choose . Note that, in this example, we do
not have as many degrees of freedom as in [6] and [7] for
manipulating the coupling between the two resonators and the
waveguides. Having fixed the distance, we can only vary the
separation between the waveguides and the resonators, which
determines the external ’s, by the step size of our FDTD
mesh (20 nm). With the separation of the two waveguides
as above, we find , and, assuming that the
degeneracy conditions are satisfied, the filter response obtained
by CMT is shown in Fig. 6. However, the numerical results
suggest that there is a remaining splitting of the frequencies
that deteriorates the performance of the channel dropping
filter. In the field pattern in Fig 7(a), it can be seen that,
although most of the power is dropped forward at the resonant
frequency, there is still some power in the remaining three
outputs. To account for the small splitting of the frequencies,
we choose in (42) so that ,
estimated by the lowering of the received peak power. Then,
the theoretical response matches well the numerical results
[Fig. 7(b)]. Any remaining discrepancies are due to the fact
that the radiation losses for a symmetric and an antisymmetric
mode are not necessarily the same, as we have assumed here

(a)

(b)

Fig. 7. (a) Electric field amplitude distribution in a symmetric channel
dropping filter using two square resonators identical to the one of Fig. 5.
(b) Filter response calculated by CMT (solid line) and by FDTD simulation
(dotted line).

(the antisymmetric mode in our case is expected to have a
higher radiation ), while a small deviation of from
is also possible due to the finite spatial resolution of the FDTD
mesh.

V. DISCUSSION

Using coupling of modes in time as an alternative to the
approach presented in [6]–[8], we have shown that a resonant
structure with two degenerate modes that are symmetric and
antisymmetric with respect to its symmetry plane functions
as a channel add–drop filter. With this simple approach, we
have also shown that the splitting of the degeneracy produced
by the mutual coupling of two resonators can be removed
by adjusting the coupling of the resonators to the adjacent
waveguides and by properly choosing the phase shift intro-
duced by the waveguide section between the coupling regions.
The principle of operation of such filters was demonstrated
using the FDTD method. The numerical simulations verify
our theoretical predictions but also reveal the sensitivity of
the filter performance to fabrication errors as small as our
mesh discretization, here 20 nm, especially in the case of high
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index-contrast structures. In the case of evanescent coupling,
the coupling coefficients have an exponential dependence
on the separation between waveguides and resonators. The
phase shift needed to ensure degeneracy of both the resonant
frequencies and the decay rates is strongly dependent on the
length and propagation constants of the waveguide sections
between the two resonators. For weak mutual coupling of the
two resonators, as was the case in our example, the phase shift
is the parameter that most strongly affects the filter response. In
addition, since, in general, the radiation’s of the symmetric
and antisymmetric modes are not equal, it is very important
that the radiation ’s of the resonators be much higher than
the coupling ’s in order to keep the mismatch of the total

’s of the two modes to a minimum.

APPENDIX

In order to calculate the coupling coefficients involved in
the four-port system of Fig. 1, we examine the coupling to
one waveguide at a time starting with the bus waveguide and
following a treatment similar to [9]. This approach is valid
if we assume weak coupling and small index discontinuity.
Under the same assumption, the spatial variation of the wave-
guide mode amplitudes can be described by coupled mode
equations of the form

(55)

where is the amplitude of the forward/backward wave-
guide mode in the bus, is the propagation constant, and

describes the distributed coupling to the resonator. For
reference planes located at and , we have

(56)

(57)

The rate of change of the waveguide mode power along
is equal to the power coupled per unit length to the

polarization current due to the index perturbation that the
resonator mode experiences in the presence of the waveguide.
The assumed electric field distribution in the waveguide is

where is the un-
perturbed forward/backward mode profile normalized tounit
power.In the resonator, the assumed electric field distribution
is where is the uncoupled res-
onator mode field normalized tounit energy.Using Poynting’s
theorem at steady state, we have

c.c.

(58)
where and are the index distributions
of the background and the resonator, respectively. In this
equation, we have neglected a-dependent self-coupling term

that modifies the propagation constant. From (55), we have

c.c. (59)

Comparing (58) and (59), we have

(60)

We integrate (55) using the boundary conditions (56) and (57)
along with (60) to find the amplitudes of the outgoing waves as

(61)

(62)

The input coupling coefficients can be found by power
conservation. Neglecting the loss, the rate of change of the
energy in the resonator mode must be equal to the difference
between the incoming and outgoing power

(63)

Also, from (1) with and , we have

c.c. c.c.

(64)
Substituting (61) and (62) into (63) and comparing with (64),
we have

and

With , the outgoing waves can be now written as

The same analysis yields analogous expressions for the in-
put and output coupling coefficients related to the receiver
waveguide.
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