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Quantum Inelastic Conductance through Molecular Wires
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We calculate nonperturbatively the inelastic effects on the conductance through a conjugated
molecular-wire—metal heterojunction, including realistic electron-phonon coupling. We show that at
subband-gap energies the current is dominated by quantum coherent transport of virtual polarons through
the molecule. In this regime, the tunneling current is strongly increased relative to the case of elastic
scattering. It is essential to describe the full quantum coherence of the polaron formation and transport
in order to obtain correct physics. Our results are generally applicable to one-dimensional atomic or
molecular wires.

PACS numbers: 85.30.Vw, 73.40.Gk, 73.50.—h, 73.61.Ph

Truly one-dimensional conducting structures, where thdully retained, i.e., no adiabatic separation between the
confinement lengths for electrons in two directions are oklectronic and phonon degrees of freedom is made. We
the order of atomic diameters, are currently the subjechave chosen to study a conjugated molecular chain as an
of much experimental work. Examples include fullereneexample since the-ph coupling in such materials is rela-
nanotubes [1], organic molecules bonded to metallic electively well understood. However the same physical prin-
trodes [2], and dangling-bond (DB) wires created by scaneiples (and therefore the qualitative features of our results)
ning tunneling microscope lithography of the H-saturatedare widely applicable to all one-dimensional atomic and
Si(001) surface [3,4]. The conductance properties of sucmolecular wires.
structures are of great importance when one considers For energies within the gap, the coherent transport is
their potential as atomic or molecular scale electronicdominated by tunneling. Here we study the equivalent
devices. There have been many recent theoretical iref the polaronic phenomena in conducting polymers for
vestigations of electron transport in these systems: fovirtual (i.e., tunneling) electron injection. This has previ-
example, Joachinet al. studied Xe atom “wires” [5] ously been included in very few transport calculations: the
and organic molecules [6] using the “elastic scatteringelastic conductivity was found for a conjugated molecule
guantum chemistry” approach; idealized one-dimensionatontaining static solitons [13] and the classical response of
atomic wires sandwiched between jellium electrodes hava conjugated oligomer to an injected electron wave packet
been studied using density functional theory [7] and &as been considered [14]. However, the quantum coher-
recursion transfer matrix method [8], while Datta andence between the electron and the lattice was not retained.
collaborators studied organic molecules on metal elecSuch coherence is kept in our approach since it is essen-
trodes [9]. tial to treat the tunneling of objects such as polarons or

All the above theoretical work was done within the solitons.
approximation of elastic transport, where the electron- Our approach for studying the coupleebh system is
phonon ¢-ph) coupling plays no role. But there are goodinspired by the Su-Schrieffer-Heeger (SSH) Hamiltonian
reasons to doubt the validity of this approximation in[11], in which a tight-binding treatment for the electrons
one-dimensional atomic or molecular scale systems. lis combined with a classical ball-and-spring model for a
small systems, the coupling between electron and othane-dimensional atomi@CH), chain. In our model, the
excitations is enhanced. Furthermore, a one-dimensionghonons are treated on a quantum level,dtph coupling
metal is generally unstable towards a Peierls distortiornis linear, and the electronic part is expressed in terms of the
[10]. Once such a distortion has occurred and producedne-electron eigenstates, labeled/by The Hamiltonian
a band gap, charges added into the system tend to sel&
localize and cause distortions of the system which lower
the band gap. Such polaronic phenomena have been H = anc;rcn + qua*aq
studied in conducting polymers for decades [11]; electron 7 q !
transport usually proceeds via tunneling into polaron ¢ +
states arising from lattice fluctuations [12]. + Z Yanm(ag + ag)c,cm 1)

Motivated by this physics and the possibility of mea- g
suring the transport through one-dimensional atomic ansvherec/ (c,) creates (annihilates) an electron in
molecular wires, we report in this Letter the first cal- electronic state with energy, anda;r (ay) creates (annihi-
culations of the inelastic electronic transport through arates) a phonon in modg This is a general Hamiltonian,
atomic-scale wire including realistie-ph coupling. In  describing couple@-ph systems going beyond the Hol-
our calculations, the quantum coherence of the states sein model.
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In this work, the electronic energies ¢, the phonon fre-
quencies w,, and the coupling matrix elements vy, are
obtained from the SSH Hamiltonian for an isolated molec-
ular chain [15]. The one-electron eigenstates and energies
€, are calculated self-consistently with the atomic distor-
tions for a given number of atoms N, and 7 electrons
N.. The ground state of the neutral (N. = N,) dimer-
ized chain is our reference system, from which the phonon
modes and frequencies are obtained by perturbation the-
ory [16]. The energy change, taken to second order in the
atomic displacements x;, gives the dynamical matrix from
which phonon eigenmodes V, (i) and frequencies are ob-
tained. We have checked that this second-order expansion
of the elastic energy is sufficient to describe the formation
of a static polaron in the chain. The e-ph coupling ma-
trix elements are calculated from the variation of the elec-
tronic Hamiltonian due to phonon displacements. They
are transformed from a real-space representation into the
electron eigenstate representation to get the y,,,,, €lements
in Eqg. (1).

We choose the eigenstate representation because we
wish to consider the action of H on the (N, + 1)-electron
[or (N, — 1)-electron] Hilbert space obtained by adding
(or removing) one electron to (or from) the ground state
of the neutral chain. It is most straightforward to project
out the addition of an electron (or hole) to the already
occupied (or empty) states if we work entirely with the
eigenstates. Then the n,m sums in Eq. (1) run over the
occupied valence band states (for hole transport) or over
the unoccupied conduction band states (for electron trans-
port). We note that it is essential to keep the N, elec-
trons of the reference system implicitly in the calculation
since they drive the Peierls distortion in the system. We
justify the inclusion of only (N, * 1)-electron states in
the transport by noting that the mean time between elec-
tron (or hole) passages (=107 sfor acurrent of 1 pA) is
much longer than a typical residence time in the molecule
(=101 s for a molecule strongly coupled to the elec-
trodes[17]). Furthermore, we have verified that the static
lattice distortions due to charging are well reproduced
by considering only one half of the electronic spectrum
(Fig. 1).

The degree of dimerization is conveniently repre-
sented by the staggered difference d; between adjacent
bond lengths. Figure 1 shows the d; pattern induced
when one additional €electron is injected into the neu-
tral isolated chain. As expected, we find a reduction
of dimerization, corresponding to a polaronlike defect
in the middle of the chain. For short chains (N, = 40,
for example), the difference of the dimerization calcu-
lated with (a) the full electronic spectrum and an ex-
act classical treatment of the lattice (SSH model), and
(b) half of the electronic spectrum and a harmonic treat-
ment of the lattice does not exceed 7% [18]. We
aso checked that only the longest wavelength opti-
cal phonon modes [19] contribute to the polaron dis-
tortion.
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FIG. 1. Dimerization pattern d; = (—1)'(x;+1 — 2x; + x;—1)
(in A) induced by an additional electron in the isolated wire
(N, = 40; N, = 41): classicd SSH model (dashed line), half
electronic spectrum and al classical phonons (solid line),
Npn = 6 (lowest optical modes) classical phonons (circles), and
Npn = 6 (same modes) quantum phonons with nJ2* = 6 (dot-
dashed line).

The basis states for the Hamiltonian equation (1) are
expressed as |n,{n,}) where n indexes the one-electron
eigenstates and {n, } represents the set of occupation num-
bers for the different phonon modes ¢. The elastic states
|n,{0}) have no excited phonon modes and the inelastic
states |n,{n,}) have phonon modes ¢ excited with n, =
1,2,3,...,n50% . |In al the calculations, the dynamical
(i.e., energy dependent) correlation between the electron
and the phonons is fully kept. Even for a relatively short
wire the size of the complete basis set quickly becomesin-
tractable for reasonable numerical calculations. However
using a limited but sufficient number of phonon modes to
describe the polaron formation permits us to treat a range
of chain lengths with reasonable computing times. Fur-
thermore, our results show that only a few excitations in
each phonon mode are needed to give converged results.

Knowing €,, w,, and y,,, for a realistic description
of the wire, we then calculate the transport properties
through the electrode/wire/electrode junction. The con-
jugated chain is connected to two semi-infinite 1D metal-
lic electrodes of bandwidth 6 eV viathe use of embedding
potentials 3; and 2 [20] . The propagation of an elec-
tron or hole through the junction is treated as a scatter-
ing problem with many channels [21-23]. Full scattering
boundary conditions are applied for an incident electron or
hole plane wave with the wire in a given vibrational state.
For the results given in this paper, the chain configu-
ration before scattering is the ground state (no phonons
present). The solution of the scattering problem can be
obtained by solving the following linear system:

[E — H = Z.(E) = Z(E)]a(E) = |s(E)), (2

where |s(E)) is the source term, representing the injected
carrier at energy E. The ket |a(E)) is the wave function
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of the scattering state; it is represented as an expansion
over the basis set |n,{n,}). We can derive the transmis-
sion and reflection coefficients for the different channels,
the currents, and the average atomic displacements from
the solution [22,23] of Eq. (2) obtained by a conjugate
gradient technique.

To check the validity of our quantum approach, we first
calculate the mean atomic displacements (x;) induced by
adding an electron to an isolated chain in the ground state
[24]. The corresponding dimerization pattern, also shown
in Fig. 1, reproduces the results obtained with classical
phonons. Thedip in the dimerization is sightly shallower
in the fully quantum case; this may result from quantum
delocalization of the polaron state.

We now turn to calculations on a current-carrying wire
between two electrodes. Figure 2 shows the differential
conductance o(E) of the junction. Calculations are
performed with different numbers of phonon modes and
with different maximum occupation numbers nJi2*. We
also caculate the elastic conductance through a static
neutral chain and a charged chain containing a static
polaron in the center. One important result of our
approach is that the inclusion of inelastic scattering
strongly enhances the current in the tunneling regime
compared to the case of elagtic scattering. The transport
becomes increasingly dominated by resonant tunneling
through virtual polaron states as the injection energy
approaches the top of the band gap. The first resonance
in o(E) occurs at an injection energy very close to the
charging energy E., of the isolated molecular chain (for
N, = 40, we calculate E.;, = 0.53 eV). As expected, for
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FIG. 2. Differential conductance o (E) (in units of 2e¢%/h)
through the wire (N, = 40). o(E) with inelastic scattering
is represented by the symbols corresponding to different N,
optical modes and »f2*. The thin solid line is a guide for
the eye. The éastic conductance through the static neutral
chain (solid line) and charged chain containing a static polaron

(dashed line) is also shown (E = 0 is at mid-band-gap).
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any injection energy within the tunneling gap, the current
decreases exponentially as the length of the wire increases
(Fig. 3) for both elastic and inelastic calculations. The
absolute value of o(E) is much larger when the e-ph
coupling is included, and the apparent band gap (related
to the slope of the curve) is smaller. Such effects become
more important for longer molecular wires (N, = 100).
For shorter wires (N, = 10), both calculations seem to
converge; the tunneling process is too fast for the lattice
to respond significantly to the presence of the electron, so
the effects of e-ph coupling are less pronounced [25].
Finally, we present in Fig. 4 the quantum averaged

induced atomic displacement xEl] of an atomic site j when
the tunneling electron is found on site i [26]. These
results are characteristic of phonon fluctuation-assisted
tunneling via the dynamical formation of a virtual polaron
inside the chain. The bond aternation, and hence the
band gap, are localy suppressed around the tunneling
electron. Thisdistortion accompanies the electron through
the chain, leaving a “wake” of distortion behind it. Such
a persistent response of the lattice is not surprising in
the absence of damping [22]. The displacements are
slightly less than those for an isolated chain (not shown)
because the lattice cannot respond fully to the tunneling
electron. This effect manifests itself in the calculated
conductance (Fig. 2); when tunneling, the current in the
full quantum coherent calculations is less than the current
that flows through a static chain where the polaron is
“frozen in.” This is because (@) the effective distortion
in the quantum calculations is dightly smaller, and (b)
the frozen-in polaron aready exists so no elastic energy
is needed to create it. Only fully quantum coherent
calculations give qualitatively correct physics; it cannot be
obtained from elastic scattering calculations through static
chains (with or without disorder) or using aclassical lattice.
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FIG. 3. Wire length dependence of o(E) (in units of 2¢2/h)
for an injection energy E = 0.3 eV inside the tunneling gap.
The inelastic calculations are obtained for Np, = 4 lowest
optical modes, ni2* = 2 (circles), and nJ2* = 3 (diamonds).
The éastic conductance through the static neutral chain is also
shown (squares).
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FIG. 4. Induced atomic displacements xj’] (in A) due to a
tunneling electron (injection energy at midgap) for a N, = 100
chain. The curves are shifted vertically (by 0.02) for clarity.
The electron-projection P; sitesarei = 1,11,31,41,51, 71, and
91 for the top to the bottom curve, respectively. Calculations
are performed for N,, = 8 optical modes and nps, = 2.

max

To conclude, we have presented the first calculation
of inelastic effects on the conduction through molecular
wires by explicitly considering realistic e ectron-phonon
coupling. We have shown that the quantum coherent dy-
namical formation and transport of virtual polarons inside
the molecular wire is crucia to describe the electronic
transmission properties of such a system, and leads to a
strongly increased current in the tunneling regime. This
is the small-bias regime in which molecular wires will
normally operate. Therefore, whenever tunneling conduc-
tion occursin these or other one-dimensional atomic-scale
wires [27] and most probably in conducting polymer wires
[12], it will be by the mechanism identified here.
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