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Quantum Inelastic Conductance through Molecular Wires
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We calculate nonperturbatively the inelastic effects on the conductance through a conjugated
molecular-wire–metal heterojunction, including realistic electron-phonon coupling. We show that at
subband-gap energies the current is dominated by quantum coherent transport of virtual polarons through
the molecule. In this regime, the tunneling current is strongly increased relative to the case of elastic
scattering. It is essential to describe the full quantum coherence of the polaron formation and transport
in order to obtain correct physics. Our results are generally applicable to one-dimensional atomic or
molecular wires.

PACS numbers: 85.30.Vw, 73.40.Gk, 73.50.–h, 73.61.Ph
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Truly one-dimensional conducting structures, where t
confinement lengths for electrons in two directions are
the order of atomic diameters, are currently the subje
of much experimental work. Examples include fulleren
nanotubes [1], organic molecules bonded to metallic ele
trodes [2], and dangling-bond (DB) wires created by sca
ning tunneling microscope lithography of the H-saturate
Si(001) surface [3,4]. The conductance properties of su
structures are of great importance when one consid
their potential as atomic or molecular scale electron
devices. There have been many recent theoretical
vestigations of electron transport in these systems:
example, Joachimet al. studied Xe atom “wires” [5]
and organic molecules [6] using the “elastic scatterin
quantum chemistry” approach; idealized one-dimension
atomic wires sandwiched between jellium electrodes ha
been studied using density functional theory [7] and
recursion transfer matrix method [8], while Datta an
collaborators studied organic molecules on metal ele
trodes [9].

All the above theoretical work was done within th
approximation of elastic transport, where the electro
phonon (e-ph) coupling plays no role. But there are goo
reasons to doubt the validity of this approximation i
one-dimensional atomic or molecular scale systems.
small systems, the coupling between electron and ot
excitations is enhanced. Furthermore, a one-dimensio
metal is generally unstable towards a Peierls distorti
[10]. Once such a distortion has occurred and produc
a band gap, charges added into the system tend to s
localize and cause distortions of the system which low
the band gap. Such polaronic phenomena have b
studied in conducting polymers for decades [11]; electr
transport usually proceeds via tunneling into polaro
states arising from lattice fluctuations [12].

Motivated by this physics and the possibility of mea
suring the transport through one-dimensional atomic a
molecular wires, we report in this Letter the first ca
culations of the inelastic electronic transport through
atomic-scale wire including realistice-ph coupling. In
our calculations, the quantum coherence of the states
2 0031-9007�99�83(2)�452(4)$15.00
he
of
ct
e
c-
n-
d
ch
ers
ic
in-
for

g
al
ve
a
d
c-

e
n-
d
n
In

her
nal
on
ed
elf-
er
een
on
n

-
nd
l-
an

is

fully retained, i.e., no adiabatic separation between t
electronic and phonon degrees of freedom is made. W
have chosen to study a conjugated molecular chain as
example since thee-ph coupling in such materials is rela-
tively well understood. However the same physical prin
ciples (and therefore the qualitative features of our resul
are widely applicable to all one-dimensional atomic an
molecular wires.

For energies within the gap, the coherent transport
dominated by tunneling. Here we study the equivale
of the polaronic phenomena in conducting polymers fo
virtual (i.e., tunneling) electron injection. This has previ
ously been included in very few transport calculations: th
elastic conductivity was found for a conjugated molecu
containing static solitons [13] and the classical response
a conjugated oligomer to an injected electron wave pack
has been considered [14]. However, the quantum coh
ence between the electron and the lattice was not retain
Such coherence is kept in our approach since it is ess
tial to treat the tunneling of objects such as polarons
solitons.

Our approach for studying the couplede-ph system is
inspired by the Su-Schrieffer-Heeger (SSH) Hamiltonia
[11], in which a tight-binding treatment for thep electrons
is combined with a classical ball-and-spring model for
one-dimensional atomic�CH�x chain. In our model, the
phonons are treated on a quantum level, thee-ph coupling
is linear, and the electronic part is expressed in terms of t
one-electron eigenstates, labeled byn. The Hamiltonian
is

H �
X

n
ency

n cn 1
X

q
vqay

q aq

1
X

q,n,m
gqnm�ay

q 1 aq�cy
n cm , (1)

wherecy
n (cn) creates (annihilates) an electron in thenth

electronic state with energyen anday
q (aq) creates (annihi-

lates) a phonon in modeq. This is a general Hamiltonian,
describing couplede-ph systems going beyond the Hol-
stein model.
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In this work, the electronic energies en, the phonon fre-
quencies vq, and the coupling matrix elements gqnm are
obtained from the SSH Hamiltonian for an isolated molec-
ular chain [15]. The one-electron eigenstates and energies
en are calculated self-consistently with the atomic distor-
tions for a given number of atoms Na and p electrons
Ne. The ground state of the neutral (Ne � Na) dimer-
ized chain is our reference system, from which the phonon
modes and frequencies are obtained by perturbation the-
ory [16]. The energy change, taken to second order in the
atomic displacements xi , gives the dynamical matrix from
which phonon eigenmodes Vq�i� and frequencies are ob-
tained. We have checked that this second-order expansion
of the elastic energy is sufficient to describe the formation
of a static polaron in the chain. The e-ph coupling ma-
trix elements are calculated from the variation of the elec-
tronic Hamiltonian due to phonon displacements. They
are transformed from a real-space representation into the
electron eigenstate representation to get the gqnm elements
in Eq. (1).

We choose the eigenstate representation because we
wish to consider the action of H on the �Na 1 1�-electron
[or �Na 2 1�-electron] Hilbert space obtained by adding
(or removing) one electron to (or from) the ground state
of the neutral chain. It is most straightforward to project
out the addition of an electron (or hole) to the already
occupied (or empty) states if we work entirely with the
eigenstates. Then the n, m sums in Eq. (1) run over the
occupied valence band states (for hole transport) or over
the unoccupied conduction band states (for electron trans-
port). We note that it is essential to keep the Na elec-
trons of the reference system implicitly in the calculation
since they drive the Peierls distortion in the system. We
justify the inclusion of only �Na 6 1�-electron states in
the transport by noting that the mean time between elec-
tron (or hole) passages (�1027 s for a current of 1 pA) is
much longer than a typical residence time in the molecule
(�10215 s for a molecule strongly coupled to the elec-
trodes [17]). Furthermore, we have verified that the static
lattice distortions due to charging are well reproduced
by considering only one half of the electronic spectrum
(Fig. 1).

The degree of dimerization is conveniently repre-
sented by the staggered difference di between adjacent
bond lengths. Figure 1 shows the di pattern induced
when one additional electron is injected into the neu-
tral isolated chain. As expected, we find a reduction
of dimerization, corresponding to a polaronlike defect
in the middle of the chain. For short chains (Na � 40,
for example), the difference of the dimerization calcu-
lated with (a) the full electronic spectrum and an ex-
act classical treatment of the lattice (SSH model), and
(b) half of the electronic spectrum and a harmonic treat-
ment of the lattice does not exceed 7% [18]. We
also checked that only the longest wavelength opti-
cal phonon modes [19] contribute to the polaron dis-
tortion.
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FIG. 1. Dimerization pattern di � �21�i�xi11 2 2xi 1 xi21�
(in Å) induced by an additional electron in the isolated wire
(Na � 40; Ne � 41): classical SSH model (dashed line), half
electronic spectrum and all classical phonons (solid line),
Nph � 6 (lowest optical modes) classical phonons (circles), and
Nph � 6 (same modes) quantum phonons with nmax

occ � 6 (dot-
dashed line).

The basis states for the Hamiltonian equation (1) are
expressed as jn, �nq�� where n indexes the one-electron
eigenstates and �nq� represents the set of occupation num-
bers for the different phonon modes q. The elastic states
jn, �0�� have no excited phonon modes and the inelastic
states jn, �nq�� have phonon modes q excited with nq �
1, 2, 3, . . . , nmax

occ . In all the calculations, the dynamical
(i.e., energy dependent) correlation between the electron
and the phonons is fully kept. Even for a relatively short
wire the size of the complete basis set quickly becomes in-
tractable for reasonable numerical calculations. However
using a limited but sufficient number of phonon modes to
describe the polaron formation permits us to treat a range
of chain lengths with reasonable computing times. Fur-
thermore, our results show that only a few excitations in
each phonon mode are needed to give converged results.

Knowing en, vq, and gqnm for a realistic description
of the wire, we then calculate the transport properties
through the electrode�wire�electrode junction. The con-
jugated chain is connected to two semi-infinite 1D metal-
lic electrodes of bandwidth 6 eV via the use of embedding
potentials SL and SR [20] . The propagation of an elec-
tron or hole through the junction is treated as a scatter-
ing problem with many channels [21–23]. Full scattering
boundary conditions are applied for an incident electron or
hole plane wave with the wire in a given vibrational state.
For the results given in this paper, the chain configu-
ration before scattering is the ground state (no phonons
present). The solution of the scattering problem can be
obtained by solving the following linear system:

�E 2 H 2 SL�E� 2 SR�E�	 ja�E�� � js�E�� , (2)

where js�E�� is the source term, representing the injected
carrier at energy E. The ket ja�E�� is the wave function
453
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of the scattering state; it is represented as an expansion
over the basis set jn, �nq��. We can derive the transmis-
sion and reflection coefficients for the different channels,
the currents, and the average atomic displacements from
the solution [22,23] of Eq. (2) obtained by a conjugate
gradient technique.

To check the validity of our quantum approach, we first
calculate the mean atomic displacements 
xi� induced by
adding an electron to an isolated chain in the ground state
[24]. The corresponding dimerization pattern, also shown
in Fig. 1, reproduces the results obtained with classical
phonons. The dip in the dimerization is slightly shallower
in the fully quantum case; this may result from quantum
delocalization of the polaron state.

We now turn to calculations on a current-carrying wire
between two electrodes. Figure 2 shows the differential
conductance s�E� of the junction. Calculations are
performed with different numbers of phonon modes and
with different maximum occupation numbers nmax

occ . We
also calculate the elastic conductance through a static
neutral chain and a charged chain containing a static
polaron in the center. One important result of our
approach is that the inclusion of inelastic scattering
strongly enhances the current in the tunneling regime
compared to the case of elastic scattering. The transport
becomes increasingly dominated by resonant tunneling
through virtual polaron states as the injection energy
approaches the top of the band gap. The first resonance
in s�E� occurs at an injection energy very close to the
charging energy Ech of the isolated molecular chain (for
Na � 40, we calculate Ech � 0.53 eV). As expected, for
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FIG. 2. Differential conductance s�E� (in units of 2e2�h)
through the wire (Na � 40). s�E� with inelastic scattering
is represented by the symbols corresponding to different Nph
optical modes and nmax

occ . The thin solid line is a guide for
the eye. The elastic conductance through the static neutral
chain (solid line) and charged chain containing a static polaron
(dashed line) is also shown (E � 0 is at mid-band-gap).
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any injection energy within the tunneling gap, the current
decreases exponentially as the length of the wire increases
(Fig. 3) for both elastic and inelastic calculations. The
absolute value of s�E� is much larger when the e-ph
coupling is included, and the apparent band gap (related
to the slope of the curve) is smaller. Such effects become
more important for longer molecular wires (Na $ 100).
For shorter wires (Na # 10), both calculations seem to
converge; the tunneling process is too fast for the lattice
to respond significantly to the presence of the electron, so
the effects of e-ph coupling are less pronounced [25].

Finally, we present in Fig. 4 the quantum averaged
induced atomic displacement x

�i	
j of an atomic site j when

the tunneling electron is found on site i [26]. These
results are characteristic of phonon fluctuation-assisted
tunneling via the dynamical formation of a virtual polaron
inside the chain. The bond alternation, and hence the
band gap, are locally suppressed around the tunneling
electron. This distortion accompanies the electron through
the chain, leaving a “wake” of distortion behind it. Such
a persistent response of the lattice is not surprising in
the absence of damping [22]. The displacements are
slightly less than those for an isolated chain (not shown)
because the lattice cannot respond fully to the tunneling
electron. This effect manifests itself in the calculated
conductance (Fig. 2); when tunneling, the current in the
full quantum coherent calculations is less than the current
that flows through a static chain where the polaron is
“ frozen in.” This is because (a) the effective distortion
in the quantum calculations is slightly smaller, and (b)
the frozen-in polaron already exists so no elastic energy
is needed to create it. Only fully quantum coherent
calculations give qualitatively correct physics; it cannot be
obtained from elastic scattering calculations through static
chains (with or without disorder) or using a classical lattice.
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FIG. 3. Wire length dependence of s�E� (in units of 2e2�h)
for an injection energy E � 0.3 eV inside the tunneling gap.
The inelastic calculations are obtained for Nph � 4 lowest
optical modes, nmax

occ � 2 (circles), and nmax
occ � 3 (diamonds).

The elastic conductance through the static neutral chain is also
shown (squares).
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FIG. 4. Induced atomic displacements x
�i	
j (in Å) due to a

tunneling electron (injection energy at midgap) for a Na � 100
chain. The curves are shifted vertically (by 0.02) for clarity.
The electron-projection P̂i sites are i � 1, 11, 31, 41, 51, 71, and
91 for the top to the bottom curve, respectively. Calculations
are performed for Nph � 8 optical modes and nocc

max � 2.

To conclude, we have presented the first calculation
of inelastic effects on the conduction through molecular
wires by explicitly considering realistic electron-phonon
coupling. We have shown that the quantum coherent dy-
namical formation and transport of virtual polarons inside
the molecular wire is crucial to describe the electronic
transmission properties of such a system, and leads to a
strongly increased current in the tunneling regime. This
is the small-bias regime in which molecular wires will
normally operate. Therefore, whenever tunneling conduc-
tion occurs in these or other one-dimensional atomic-scale
wires [27] and most probably in conducting polymer wires
[12], it will be by the mechanism identified here.
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