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Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator,
but have protected conducting states on their edge or surface. These states are possible due to the
combination of spin orbit interactions and time reversal symmetry. The 2D topological insulator
is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state.
A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In
this Colloquium article we will review the theoretical foundation for topological insulators and
superconductors and describe recent experiments in which the signatures of topological insulators
have been observed. We will describe transport experiments on HgTe/CdTe quantum wells that
demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will
then discuss experiments on Bi1−xSbx, Bi2Se3, Bi2Te3 and Sb2Te3 that establish these materials
as 3D topological insulators and directly probe the topology of their surface states. We will
then describe exotic states that can occur at the surface of a 3D topological insulator due to an
induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a
topological magnetoelectric effect. A superconducting energy gap leads to a state that supports
Majorana fermions, and may provide a new venue for realizing proposals for topological quantum
computation. We will close by discussing prospects for observing these exotic states, as well as
other potential device applications of topological insulators.
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I. INTRODUCTION

A recurring theme in condensed matter physics has
been the discovery and classification of distinctive phases
of matter. Often, phases can be understood using Lan-
dau’s approach, which characterizes states in terms of
underlying symmetries that are spontaneously broken.
Over the past 30 years, the study of the quantum Hall
effect has led to a different classification paradigm, based
on the notion of topological order (Thouless, et al., 1982;
Wen, 1995). The state responsible for the quantum Hall
effect does not break any symmetries, but it defines a
topological phase in the sense that certain fundamental
properties (such as the quantized value of the Hall con-
ductance, and the number of gapless boundary modes)
are insensitive to smooth changes in materials parame-
ters and can not change unless the system passes through
a quantum phase transition.

In the past five years a new field has emerged in con-
densed matter physics, based on the realization that the
spin orbit interaction can lead to topological insulating
electronic phases (Kane and Mele, 2005a,b; Fu, Kane and
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Mele, 2007; Moore and Balents, 2007; Roy, 2009b), and
on the prediction and observation of these phases in real
materials (Bernevig, Hughes and Zhang, 2006; Fu and
Kane, 2007; König, et al., 2007; Hsieh, et al., 2008; Xia,
et al., 2009a; Zhang, H., et al., 2009). A topological in-
sulator, like an ordinary insulator, has a bulk energy gap
separating the highest occupied electronic band from the
lowest empty band. The surface (or edge in two dimen-
sions) of a topological insulator, however, necessarily has
gapless states that are protected by time reversal sym-
metry. The topological insulator is closely related to
the two dimensional (2D) integer quantum Hall state,
which also has unique edge states. The surface (or edge)
states of a topological insulator lead to a conducting state
with properties unlike any other known 1D or 2D elec-
tronic systems. In addition to their fundamental interest,
these states are predicted to have special properties that
could be useful for applications ranging from spintronics
to quantum computation.

The concept of topological order (Wen, 1995) is often
used to characterize the intricately correlated fractional
quantum Hall states (Tsui, Stormer and Gossard, 1982),
which require an inherently many body approach to un-
derstand (Laughlin, 1983). However, topological consid-
erations also apply to the simpler integer quantum Hall
states (Thouless, et al., 1982), for which an adequate de-
scription can be formulated in terms of single particle
quantum mechanics. In this regard, topological insula-
tors are similar to the integer quantum Hall effect. Due
to the presence of a single particle energy gap, electron-
electron interactions do not modify the state in an essen-
tial way. Topological insulators can be understood within
the framework of the band theory of solids (Bloch, 1929).
It is remarkable that after more than 80 years, there are
still treasures to be uncovered within band theory.

In this colloquium article we will review the theoret-
ical and experimental foundations of this rapidly devel-
oping field. We begin in Section II with an introduction
to topological band theory, in which we will explain the
topological order in the quantum Hall effect and in topo-
logical insulators. We will also give a short introduction
to topological superconductors, which can be understood
within a similar framework. A unifying feature of these
states is the bulk-boundary correspondence, which relates
the topological structure of bulk crystal to the presence
of gapless boundary modes. Section III will describe the
2D topological insulator, also known as a quantum spin
Hall insulator and discuss the discovery of this phase in
HgCdTe quantum wells. Section IV is devoted to 3D
topological insulators. We will review their experimental
discovery in Bi1−xSbx, as well as more recent work on
“second generation” materials Bi2Se3 and Bi2Te3. Sec-
tion V will focus on exotic states that can occur at the
surface of a topological insulator due to an induced en-
ergy gap. An energy gap induced by a magnetic field or
proximity to a magnetic material leads to a novel quan-
tum Hall state, along with a topological magnetoelectric
effect. An energy gap due to proximity with a supercon-

ductor leads to a state that supports Majorana fermions,
and may provide a new venue for realizing proposals for
topological quantum computation. In Section VI we will
conclude with a discussion of new materials, new exper-
iments and open problems.

Some aspects of this subject have been described in
other reviews, including the review of the quantum spin
Hall effect by König, et al. (2008) and surveys by Qi and
Zhang (2010) and Moore (2010).

II. TOPOLOGICAL BAND THEORY

A. The insulating state

The insulating state is the most basic state of matter.
The simplest insulator is an atomic insulator, with elec-
trons bound to atoms in closed shells. Such a material is
electrically inert because it takes a finite energy to dis-
lodge an electron. Stronger interaction between atoms in
a crystal leads to covalent bonding. One of the triumphs
of quantum mechanics in the 20th century was the de-
velopment of the band theory of solids, which provides
a language for describing the electronic structure of such
states. This theory exploits the translational symme-
try of the crystal to classify electronic states in terms of
their crystal momentum k, defined in a periodic Brillouin
zone. The Bloch states |um(k)〉, defined in a single unit
cell of the crystal, are eigenstates of the Bloch Hamilto-
nian H(k). The eigenvalues Em(k) define energy bands
that collectively form the band structure. In an insula-
tor an energy gap separates the occupied valence band
states from the empty conduction band states. Though
the gap in an atomic insulator, like solid Argon, is much
larger than that of a semiconductor, there is a sense in
which both belong to the same phase. One can imagine
tuning the Hamiltonian so as to interpolate continuously
between the two without closing the energy gap. Such
a process defines a topological equivalence between dif-
ferent insulating states. If one adopts a slightly coarser
“stable” topological classification scheme, which equates
states with different numbers of trivial core bands, then
all conventional insulators are equivalent. Indeed, such
insulators are equivalent to the vacuum, which according
to Dirac’s relativistic quantum theory also has an energy
gap (for pair production), a conduction band (electrons)
and a valence band (positrons).

Are all electronic states with an energy gap topologi-
cally equivalent to the vacuum? The answer is no, and
the counterexamples are fascinating states of matter.

B. The quantum Hall state

The simplest counterexample is the integer quantum
Hall state (von Klitzing, Dorda and Pepper, 1980; Prange
and Girvin, 1987), which occurs when electrons confined
to two dimensions are placed in a strong magnetic field.
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FIG. 1 (a, b, c) The insulating state. (a) depicts an atomic
insulator, while (b) shows a simple model insulating band
structure. (d, e, f) The quantum Hall state. (d) depicts
the cyclotron motion of electrons, and (e) shows the Landau
levels, which may be viewed as a band structure. (c) and (f)
show two surfaces which differ in their genus, g. g = 0 for the
sphere (c) and g = 1 for the donut (f). The Chern number
n that distinguishes the two states is a topological invariant
similar to the genus.

The quantization of the electrons’ circular orbits with
cyclotron frequency ωc leads to quantized Landau levels
with energy εm = ~ωc(m + 1/2). If N Landau levels
are filled and the rest are empty, then an energy gap
separates the occupied and empty states just like in an
insulator. Unlike an insulator, though, an electric field
causes the cyclotron orbits to drift, leading to a Hall cur-
rent characterized by the quantized Hall conductivity

σxy = Ne2/h. (1)

The quantization of σxy has been measured to one part
in 109 (von Klitzing, 2005). This precision is a manifes-
tation of the topological nature of σxy.

Landau levels can be viewed as a “band structure”.
Since the generators of translations do not commute with
one another in a magnetic field, electronic states can not
be labeled with momentum. However, if a unit cell with
area 2π~c/eB enclosing a flux quantum is defined, then
lattice translations do commute, so Bloch’s theorem al-
lows states to be labeled by 2D crystal momentum k. In
the absence of a periodic potential, the energy levels are
simply the k independent Landau levels, Em(k) = εm. In
the presence of a periodic potential with the same lattice
periodicity, the energy levels will disperse with k. This
leads to a band structure that looks identical to that of
an ordinary insulator.

1. The TKNN invariant

What is the difference between a quantum Hall state
characterized by (1) and an ordinary insulator? The an-
swer, explained in a seminal 1982 paper by Thouless,
Kohmoto, Nightingale and den Nijs(TKNN) is a matter
of topology. A 2D band structure consists of a mapping
from the crystal momentum k (defined on a torus) to
the Bloch Hamiltonian H(k). Gapped band structures

can be classified topologically by considering the equiva-
lence classes of H(k) that can be continuously deformed
into one another without closing the energy gap. These
classes are distinguished by a topological invariant n ∈ Z
(Z denotes the integers) called the Chern invariant.

The Chern invariant is rooted in the mathematical the-
ory of fiber bundles(Nakahara, 1990), but it can be un-
derstood physically in terms of the Berry phase(Berry,
1984) associated with Bloch wavefunctions |um(k)〉. Pro-
vided there are no accidental degeneracies, when k is
transported around a closed loop, |um(k)〉 acquires a
well defined Berry phase given by the line integral of
Am = i〈um|∇k|um〉. This may be expressed as a surface
integral of the Berry flux, Fm = ∇ × Am. The Chern
invariant is the total Berry flux in the Brillouin zone,

nm =
1

2π

∫
d2kFm. (2)

nm is integer quantized for reasons analogous to the
quantization of the Dirac magnetic monopole. The to-
tal Chern number, summed over all occupied bands,

n =
∑N
m=1 nm is invariant even if there are degeneracies

between occupied bands, provided the gap separating oc-
cupied and empty bands remains finite. TKNN showed
that σxy, computed using the Kubo formula has the same
form, so that N in (1) is identical to n. The Chern num-
ber n is a topological invariant in the sense that it can
not change when the Hamiltonian varies smoothly. This
helps to explain the robust quantization of σxy.

The meaning of (2) can be clarified by a simple anal-
ogy. Rather than maps from the Brillioun zone to a
Hilbert space, consider simpler maps from 2D to 3D,
which describe surfaces. 2D surfaces can be topologically
classified by their genus, g, which counts the number of
holes. For instance, a sphere (Fig. 1(c)) has g = 0, while
a donut (Fig. 1(f)) has g = 1. A beautiful theorem in
mathematics due to Gauss and Bonnet (Nakahara, 1990)
states that the integral of the Gaussian curvature over
a closed surface is a quantized topological invariant, and
its value is related to g. The Chern number is an integral
of a related curvature.

2. Graphene, Dirac electrons, Haldane model

A simple example of the quantum Hall effect in a band
theory is provided by a model of graphene in a periodic
magnetic field introduced by Haldane (1988). We will
briefly digress here to introduce graphene because it will
provide insight into the conception of the 2D quantum
spin Hall insulator, and because the physics of Dirac elec-
trons present in graphene has important parallels at the
surface of a 3D topological insulator.

Graphene is a 2D form of carbon that is of high current
interest (Novoselov, 2005; Zhang, Y., et al., 2005; Geim
and Novoselov, 2007; Castro Neto, et al., 2009). What
makes graphene interesting electronically is the fact that
the conduction band and valence band touch each other
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at two distinct points in the Brillouin zone. Near those
points the electronic dispersion resembles the linear dis-
persion of massless relativistic particles, described by the
Dirac equation (DiVincenzo and Mele, 1984; Semenoff,
1984). The simplest description of graphene employs a
two band model for the pz orbitals on the two equivalent
atoms in the unit cell of graphene’s honeycomb lattice.
The Bloch Hamiltonian is then a 2× 2 matrix,

H(k) = h(k) · ~σ, (3)

where ~σ = (σx, σy, σz) are Pauli matrices and h(k) =
(hx(k), hy(k), 0). The combination of inversion (P) and
time reversal (T ) symmetry requires hz(k) = 0 be-
cause P takes hz(k) to −hz(−k), while T takes hz(k)
to +hz(−k). The Dirac points occur because the two
component h(k) can have point zeros in two dimensions.
In graphene they occur at two points, K and K′ = −K,
whose locations at the Brillouin zone corners are fixed by
graphene’s rotational symmetry. For small q ≡ k −K,
h(q) = ~vFq, where vF is a velocity, so H(q) = ~vFq · ~σ
has the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
generacy can be lifted. For instance, P symmetry is vi-
olated if the two atoms in the unit cell are inequivalent.
This allows hz(k) to be non zero. If hz(k) is small, then
near K (3) becomes a massive Dirac Hamiltonian,

H(q) = ~vFq · ~σ +mσz (4)

where m = hz(K). The dispersion E(q) =

±
√
|~vFq|2 +m2 has an energy gap 2|m| . Note that

T symmetry requires the Dirac point at K′ has a mass
m′ = hz(K

′) with the same magnitude and sign, m′ = m.
This state describes an ordinary insulator.

Haldane (1988) imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average, but has the full symmetry the lattice.
This perturbation allows nonzero hz(k) and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K′ have opposite sign, m′ = −m.
Haldane showed that this gapped state is not an insula-
tor, but rather a quantum Hall state with σxy = e2/h.

This non-zero Hall conductivity can be understood in
terms of (2). For a two level Hamiltonian of the form of
(3) it is well known that the Berry flux(Berry, 1984) is
related to the solid angle subtended by the unit vector

ĥ(k) = h(k)/|h(k)|, so that (2) takes the form

n =
1

4π

∫
d2k(∂kx ĥ× ∂ky ĥ) · ĥ. (5)

This simply counts the number of times ĥ(k) wraps
around the unit sphere as a function of k. When the

masses m = m′ = 0 ĥ(k) is confined to the equator
hz = 0, with a unit (and opposite) winding around each
of the Dirac points where |h| = 0. For small but finite m,

|h| 6= 0 everywhere, and ĥ(K) visits the north or south

pole, depending on the sign of m. It follows that each
Dirac point contributes ±e2/2h to σxy. In the insulating
state with m = m′ the two cancel, so σxy = 0. In the
quantum Hall state they add.

It is essential that there were an even number of Dirac
points, since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem (Nielssen and Ninomiya,
1983), which states that for a T invariant system Dirac
points must come in pairs. We will return to this issue
in section IV, where the surface of a topological insulator
provides a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classifi-
cation of gapped band structures is the existence of gap-
less conducting states at interfaces where the topologi-
cal invariant changes. Such edge states are well known
at the interface between the integer quantum Hall state
and vacuum (Halperin, 1982). They may be understood
in terms of the skipping motion electrons execute as their
cyclotron orbits bounce off the edge (Fig. 2(a)). Impor-
tantly, the electronic states responsible for this motion
are chiral in the sense that they propagate in one di-
rection only along the edge. These states are insensi-
tive to disorder because there are no states available for
backscattering – a fact that underlies the perfectly quan-
tized electronic transport in the quantum Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
(n = 1) and a trivial insulator (n = 0). Somewhere
along the way the energy gap has to vanish, because oth-
erwise it is impossible for the topological invariant to
change. There will therefore be low energy electronic
states bound to the region where the energy gap passes
through zero. This interplay between topology and gap-
less modes is ubiquitous in physics, and has appeared in
many contexts. It was originally found by Jackiw and
Rebbi (1976) in their analysis of a 1D field theory. Sim-
ilar ideas were used by Su, Schrieffer and Heeger (1979)
to describe soliton states in polyacetalene.

A simple theory of the chiral edge states based on
Jackiw and Rebbi (1976) can be developed using the two
band Dirac model (4). Consider an interface where the
mass m at one of the Dirac points changes sign as a func-
tion of y. We thus let m→ m(y), where m(y) > 0 gives
the insulator for y > 0 and m(y) < 0 gives the quan-
tum Hall state for y < 0. Assume m′ > 0 is fixed. The

Schrödinger equation, obtained by replacing q by −i~∇ in
(4), has a simple and elegant exact solution,

ψqx(x, y) ∝ eiqxxe−
∫ y
0
dy′m(y′)dy′/vF

(
1
1

)
, (6)

with E(qx) = ~vF qx. This band of states intersects the
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FIG. 2 The interface between a quantum Hall state and an
insulator has chiral edge mode. (a) depicts the skipping cy-
clotron orbits. (b) shows the electronic structure of a semi
infinite strip described by the Haldane model. A single edge
state connects the valence band to the conduction band.

Fermi energy EF with a positive group velocity dE/dqx =
~vF and defines a right moving chiral edge mode.

In the 1980’s related ideas were applied to narrow
gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
ties with the surface states of a 3D topological insulator,
but as we shall see in section IV.A, there is a funda-
mental difference. In a separate development, Kaplan
(1992) showed that in lattice quantum chromodynamics
4D chiral fermions could be simulated on a 5D lattice
by introducing a similar domain wall. This provided a
method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
and surface states of a topological insulator evade similar
doubling theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum kx along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K′. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(qx) could develop a kink so that the edge states inter-
sect EF three times – twice with a positive group velocity
and once with a negative group velocity. The difference
NR − NL between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:

NR −NL = ∆n, (7)

where ∆n is the difference in the Chern number across
the interface.

Γa Γb

Valence Band

Conduction Band

FE

k Γa Γb

Valence Band

Conduction Band

FE

kk

(a) (b)E E

FIG. 3 Electronic dispersion between two boundary Kramers
degenerate points Γa = 0 and Γb = π/a. In (a) the num-
ber of surface states crossing the Fermi energy EF is even,
whereas in (b) it is odd. An odd number of crossings leads to
topologically protected metallic boundary states.

C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a different topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

Θ = exp(iπSy/~)K, where Sy is the spin operator and
K is complex conjugation. For spin 1/2 electrons, Θ has
the property Θ2 = −1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|χ〉 existed then Θ|χ〉 = c|χ〉 for some constant c. This
would mean Θ2|χ〉 = |c|2|χ〉, which is not allowed be-
cause |c|2 6= −1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ν = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.

In Fig. 3 we show plots analogous to Fig. 2 showing the
electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < kx < π/a is
shown because T symmetry requires that the other half
−π/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are
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present, however, then Kramers theorem requires they be
twofold degenerate at the T invariant momenta kx = 0
and kx = π/a (which is the same as −π/a). Away from
these special points, labeled Γa,b in Fig. 3, a spin orbit
interaction will split the degeneracy. There are two ways
the states at kx = 0 and kx = π/a can connect. In Fig
3(a) they connect pairwise. In this case the edge states
can be eliminated by pushing all of the bound states out
of the gap. Between kx = 0 and kx = π/a, the bands
intersect EF an even number of times. In contrast, in
Fig. 3b the edge states cannot be eliminated. The bands
intersect EF an odd number of times.

Which of these alternatives occurs depends on the
topological class of the bulk band structure. Since each
band intersecting EF at kx has a Kramers partner at
−kx, the bulk-boundary correspondence relates the num-
ber NK of Kramers pairs of edge modes intersecting EF
to the change in the Z2 invariants across the interface,

NK = ∆ν mod 2. (9)

We conclude that a 2D topological insulator has topo-
logically protected edge states. These form a unique 1D
conductor, whose properties will be discussed in section
III. The above considerations can be generalized to 3D
topological insulators, discussed in section IV, which have
protected surface states.

There are several mathematical formulations of the
Z2 invariant ν (Kane and Mele, 2005b; Fu and Kane,
2006, 2007; Fukui and Hatsugai, 2007; Moore and Ba-
lents, 2007; Fukui, Fujiwara and Hatsugai, 2008; Qi,
Hughes and Zhang, 2008; Roy, 2009a; Wang, Qi and
Zhang, 2010). One approach (Fu and Kane, 2006) is
to define a unitary matrix wmn(k) = 〈um(k)|Θ|un(−k)〉
built from the occupied Bloch functions |um(k)〉. Since
Θ is anti unitary and Θ2 = −1, wT (k) = −w(−k).
There are four special points Λa in the bulk 2D Bril-
louin zone where k and −k coincide, so w(Λa) is anti-
symmetric. The determinant of an antisymmetric ma-
trix is the square of its pfaffian, which allows us to
define δa = Pf[w(Λa)]/

√
Det[w(Λa)] = ±1. Provided

|um(k)〉 is chosen continuously throughout the Brillouin
zone (which is always possible), the branch of the square
root can be specified globally, and the Z2 invariant is

(−1)ν =

4∏
a=1

δa. (10)

This formulation can be generalized to 3D topological
insulators, and involves the 8 special points in the 3D
Brillouin zone.

The calculation of ν is simpler if the crystal has extra
symmetry. For instance, if the 2D system conserves the
perpendicular spin Sz, then the up and down spins have
independent Chern integers n↑, n↓. T symmetry requires
n↑ + n↓ = 0, but the difference nσ = (n↑ − n↓)/2 defines
a quantized spin Hall conductivity (Sheng, et al., 2006).
The Z2 invariant is then simply

ν = nσ mod 2. (11)

While n↑, n↓ lose their meaning when Sz non conserving
terms (which are inevitably present) are added, ν retains
its identity.

If the crystal has inversion symmetry there is another
shortcut to computing ν (Fu and Kane, 2007). At the
special points Λa the Bloch states um(Λa) are also par-
ity eigenstates with eigenvalue ξm(Λa) = ±1. The Z2

invariant then simply follows from (10) with

δa =
∏
m

ξm(Λa), (12)

where the product is over the Kramers pairs of occupied
bands. This has proven useful for identifying topologi-
cal insulators from band structure calculations (Fu and
Kane, 2007; Teo, Fu and Kane, 2008; Guo and Franz,
2009; Zhang, H., et al., 2009; Pesin and Balents, 2010).

D. Topological superconductor, Majorana fermions

Considerations of topological band theory can also be
used to topologically classify superconductors. This is a
subject that has seen fascinating recent theoretical devel-
opments (Roy, 2008; Schnyder, et al., 2008; Kitaev, 2009;
Qi, et al., 2009). We will give an introduction that fo-
cuses on the simplest model superconductors. The more
general case will be briefly touched on at the end. This
section will provide the conceptual basis for topological
superconductors and explain the emergence of Majorana
fermions in superconducting systems. It will also provide
background for section V.B, where we discuss Majorana
states in superconductor-topological insulator structures
along with possible applications to topological quantum
computing. Readers who wish to skip the discussion of
superconductivity can proceed directly to section III.

1. Bogoliubov de Gennes theory

In the BCS mean field theory of a superconductor the
Hamiltonian for a system of spinless electrons may be
written in the form (De Gennes, 1966),

H − µN =
1

2

∑
k

(
c†k c−k

)
HBdG(k)

(
ck
c†−k

)
(13)

where c†k is an electron creation operator and HBdG is a
2 × 2 block matrix, which in Nambu’s notation may be
written in terms of Pauli matrices ~τ as

HBdG(k) = (H0(k)− µ)τz + ∆1(k)τx + ∆2(k)τy. (14)

HereH0(k) is the Bloch Hamiltonian in the absence of su-
perconductivity and ∆ = ∆1+i∆2 is the BCS mean field
pairing potential, which for spinless particles must have
odd parity, ∆(−k) = −∆(k). For a uniform system the
excitation spectrum of a superconductor is given by the
eigenvalues of HBdG, which exhibit a superconducting
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energy gap. More generally, for spatially dependent H0

and ∆ the Schrödinger equation associated with HBdG is
known as the Bogoliubov de Gennes (BdG) equation.

Since (13) has both c and c† on both sides there is
an inherent redundancy built into the BdG Hamiltonian.
For ∆ = 0, HBdG includes two copies ofH0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

ΞHBdG(k)Ξ−1 = −HBdG(−k), (15)

where the particle-hole operator, Ξ = τxK, satisfies
Ξ2 = +1. (15) follows from H0(−k) = H0(k)∗ and
the odd parity of the real ∆(k). It follows that ev-
ery eigenstate of HBdG with energy E has a partner at
−E. These two states are redundant because the Bogoli-
ubov quasiparticle operators associated with them satisfy

Γ†E = Γ−E . Thus, creating a quasiparticle in state E has
the same effect as removing one from state −E.

The particle-hole symmetry constraint (15) has a sim-
ilar structure to the time reversal constraint in (8), so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another with-
out closing the energy gap. In the simplest case, spinless
fermions, the classification can be shown to be Z2 in one
dimension and Z in two dimensions. As in section II.C,
this can be most easily understood by appealing to the
bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor (Kitaev, 2000) there
may or may not be discrete states within the energy gap
that are bound to the end (Fig. 4(a-c)). If they are
present, then every state at +E has a partner at −E.
Such finite energy pairs are not topologically protected
because they can simply be pushed out of the energy
gap. However, a single unpaired bound state at E = 0 is
protected because it can’t move away from E = 0. The
presence or absence of such a zero mode is determined by
the Z2 topological class of the bulk 1D superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects (Kitaev, 2000;
Read and Green, 2000; Ivanov, 2001; Stern, von Op-
pen and Mariani, 2004; Nayak, et al., 2008). Due to
the particle-hole redundancy the quasiparticle operators

satisfy Γ0 = Γ†0. Thus, a quasiparticle is its own antipar-
ticle – the defining feature of a Majorana fermion. A
Majorana fermion is essentially half of an ordinary Dirac
fermion. Due to the particle-hole redundancy, a single
fermionic state is associated with each pair of ±E energy
levels. The presence or absence of a fermion in this state
defines a two level system with energy splitting E. Majo-
rana zero modes must always come in pairs (for instance,
a 1D superconductor has two ends), and a well separated
pair defines a degenerate two level system, whose quan-
tum state is stored nonlocally. This has profound im-
plications, which we will return to in section V.B, when

k

0 0

0

∆

−∆

∆

−∆

0

Φ

(a)

(b) (c)

(d)

(e)

1D  T - SC 2D T - SC

ΓE

Γ−E = Γ E
†


Γ0 = Γ 0
†


Γ−E
=Γ E

†

ΓE

FIG. 4 Boundary states for a topological superconductor (T-
SC). (a) shows a 1D superconductor with bound states at
its ends. (b,c) show the end state spectrum for an ordinary
1D superconductor (b) and a 1D topological superconductor
(c). (d) shows a topological 2D superconductor with a chiral
Majorana edge mode (e). A vortex with flux Φ = h/2e is
associated with a zero mode (c).

we discuss the proposal by Kitaev (2003) to use these
properties for quantum information processing.

In two dimensions the integer classification, Z, gives
the number of chiral Majorana edge modes (Fig. 4(d,e)),
which resemble chiral modes in the quantum Hall effect,
but for the particle-hole redundancy. A spinless super-
conductor with px + ipy symmetry is the simplest model
2D topological superconductor. Such superconductors
will also exhibit Majorana bound states at the core of
vortices (Caroli, de Gennes and Matricon, 1964; Volovik,
1999; Read and Green, 2000). This may be understood
simply by considering the vortex to be a hole in the su-
perconductor circled by an edge mode (Fig. 4(d)). When
the flux in the hole is h/2e the edge modes are quantized
such that one state is exactly at E = 0.

Majorana fermions have been studied in particle
physics for decades, but have not been definitively ob-
served (Majorana, 1937; Wilczek, 2009). A neutrino
might be a Majorana fermion. Efforts to observe cer-
tain lepton number violating neutrinoless double β de-
cay processes may resolve that issue (Avignone, Elliott
and Engel, 2008). In condensed matter physics, Ma-
jorana fermions can arise due to a paired condensate
that allows a pair of fermionic quasiparticles to “disap-
pear” into the condensate. They have been predicted
in a number of physical systems related to the spinless
px+ ipy superconductor, including the Moore-Read state
of the ν = 5/2 quantum Hall effect (Moore and Read,
1991; Greiter, Wen and Wilczek, 1992; Read and Green,
2000), Sr2RuO4 (Das Sarma, Nayak and Tewari, 2006),
cold fermionic atoms near a Feshbach resonance (Gurarie,
Radzihovsky and Andreev, 2005; Tewari, et al., 2007)
and 2D structures that combine superconductivity, mag-
netism and strong spin orbit coupling (Lee, 2009; Sato
and Fujimoto, 2009; Sau, et al., 2010). In Section Vb we
will discuss the prospect for creating Majorana fermion
states at interfaces between topological insulators and
ordinary superconductors (Fu and Kane, 2008).
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Symmetry d

AZ Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry Θ, particle-hole
symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of Θ2 and Ξ2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d→ d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with Θ2 = ±1 and/or particle-hole symmetry
(15) with Ξ2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, Θ2 = −1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, Ξ2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing different topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, Θ2 = −1, Ξ2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu

E

EF

Conduction Band

Valence Band

Quantum spin

Hall insulator ν=1

Conventional

Insulator

ν=0

(a) (b)

k0/a−π /a−π

FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
σxy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J↑x − J↓x = σsxyEy with
σsxy = e/2π – a quantum spin Hall effect. Related ideas
were mentioned in earlier work on the planar state of
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3He films(Volovik and Yakovenko, 1989). Since it is two
copies a quantum Hall state, the quantum spin Hall state
must have gapless edge states (Fig. 5).

The above discussion was predicated on the conserva-
tion of spin, Sz. This is not a fundamental symmetry,
though, and spin non conserving processes – present in
any real system – invalidate the meaning of σsxy. This
brings into question theories that relied on spin conser-
vation to predict an integer quantized σsxy (Volovik and
Yakovenko, 1989; Bernevig and Zhang, 2006; Qi, Wu and
Zhang, 2006), as well as the influential theory of the (non
quantized) spin Hall insulator (Murakami, Nagaosa and
Zhang, 2004). Kane and Mele (2005a) showed that due
to T symmetry the edge states in the quantum spin Hall
insulator are robust even when spin conservation is vi-
olated because their crossing at k = 0 is protected by
the Kramers degeneracy discussed in section II.C. This
established the quantum spin Hall insulator as a topo-
logical phase.

The quantum spin Hall edge states have the impor-
tant “spin filtered” property that the up spins propagate
in one direction, while the down spins propagate in the
other. Such edge states were later dubbed “helical” (Wu,
Bernevig and Zhang, 2006), in analogy with the correla-
tion between spin and momentum of a particle known
as helicity. They form a unique 1D conductor that is
essentially half of an ordinary 1D conductor. Ordinary
conductors, which have both up and down spins prop-
agating in both directions, are fragile because the elec-
tronic states are susceptible to Anderson localization in
the presence of weak disorder (Anderson, 1958; Lee and
Ramakrishnan, 1985). By contrast, the quantum spin
Hall edge states can not be localized, even for strong dis-
order. To see this, imagine an edge that is disordered
in a finite region, and perfectly clean outside that re-
gion. The exact eigenstates can be determined by solv-
ing the scattering problem relating incoming waves to
those reflected from and transmitted through the disor-
dered region. Kane and Mele (2005a) showed that the
reflection amplitude is odd under T – roughly because
it involves flipping the spin. It follows that unless T
symmetry is broken, an incident electron is transmitted
perfectly across the disordered region. Thus, eigenstates
at any energy are extended, and at temperature T = 0,
the edge state transport is ballistic. For T > 0 inelastic
backscattering processes are allowed, which will in gen-
eral lead to a finite conductivity.

The edge states are similarly protected from the effects
of weak electron interactions, though for strong interac-
tions Luttinger liquid effects lead to a magnetic insta-
bility (Wu, Bernevig and Zhang, 2006; Xu and Moore,
2006). This strongly interacting phase is interesting be-
cause it will exhibit charge e/2 quasiparticles similar to
solitons in the Su, Schrieffer and Heeger (1979) model.
For sufficiently strong interactions similar fractionaliza-
tion could be observed by measuring shot noise in the
presence of magnetic impurities (Maciejko, et al., 2009)
or at a quantum point contact (Teo and Kane, 2009).

B. HgTe/CdTe quantum well structures

Graphene is made out of carbon – a light element with
a weak spin orbit interaction. Though there is disagree-
ment on its absolute magnitude (Huertas-Hernando,
Guinea and Brataas, 2006; Min, et al., 2006; Boettger
and Trickey, 2007; Yao, et al., 2007; Gmitra, et al., 2009),
the energy gap in graphene is likely to be small. Clearly,
a better place to look for this physics would be in ma-
terials with strong spin orbit interactions, made from
heavy elements near the bottom of the periodic table.
To this end, Bernevig, Hughes and Zhang (2006) (BHZ)
had the brilliant idea to consider quantum well structures
of HgCdTe. This paved the way to the experimental dis-
covery of the quantum spin Hall insulator phase.

Hg1−xCdxTe is a family of semiconductors with strong
spin orbit interactions (Dornhaus and Numtz, 1983).
CdTe has a band structure similar to other semiconduc-
tors. The conduction band edge states have an s like
symmetry, while the valence band edge states have a p
like symmetry. In HgTe, the p levels rise above the s lev-
els, leading to an inverted band structure. BHZ consid-
ered a quantum well structure where HgTe is sandwiched
between layers of CdTe. When the thickness of the HgTe
layer is d < dc = 6.3 nm the 2D electronic states bound
to the quantum well have the normal band order. For
d > dc, however, the 2D bands invert. BHZ showed that
the inversion of the bands as a function of increasing d
signals a quantum phase transition between the trivial in-
sulator and the quantum spin Hall insulator. This can be
understood simply in the approximation that the system
has inversion symmetry. In this case, since the s states
and p states have opposite parity the bands will cross
each other at dc without an avoided crossing. Thus the
energy gap at d = dc vanishes. From (12), the change in
the parity of the valence band-edge state signals a phase
transition in which the Z2 invariant ν changes.

Within a year of the theoretical proposal the Würzburg
group, led by Laurens Molenkamp, made the devices and
performed transport experiments that showed the first
signature of the quantum spin Hall insulator. König,
et al. (2007) measured the electrical conductance due to
the edge states. The low temperature ballistic edge state
transport can be understood within a simple Landauer-
Büttiker (Büttiker, 1988) framework in which the edge
states are populated according to the chemical poten-
tial of the lead that they emanate from. This leads to a
quantized conductance e2/h associated with each set of
edge states. Fig. 6(d) shows the resistance measurements
for a series of samples as a function of a gate voltage
which tunes the Fermi energy through the bulk energy
gap. Sample I is a narrow quantum well that has a large
resistance in the gap. Samples II, III and IV are wider
wells in the inverted regime. Samples III and IV exhibit
a conductance 2e2/h associated with the top and bottom
edges. Samples III and IV have the same length L = 1µ
but different widths w = 0.5µ, 1µ, indicating transport is
at the edge. Sample II (L = 20µ) showed finite temper-
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FIG. 6 (a) A HgCdTe quantum well structure. (b) As a
function of layer thickness d the 2D quantum well states cross
at a band inversion transition. The inverted state is the QSHI,
which has helical edge states (c) that have a non equilibrium
population determined by the leads. (d) shows experimental
two terminal conductance as a function of a gate voltage that
tunes EF through the bulk gap. Sample I, with d < dc shows
insulating behavior, while samples III and IV show quantized
transport associated with edge states. Adapted from König,
et al., 2007. Reprinted with permission from AAAS.

ature scattering effects. These experiments convincingly
demonstrate the existence of the edge states of the quan-
tum spin Hall insulator. Subsequent experiments have
established the inherently nonlocal electronic transport
in the edge states (Roth, et al., 2009).

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three groups of theorists in-
dependently discovered that the topological characteri-
zation of the quantum spin Hall insulator state has a
natural generalization in three dimensions (Fu, Kane
and Mele, 2007; Moore and Balents, 2007; Roy, 2009b).
Moore and Balents (2007) coined the term “topological
insulator” to describe this electronic phase. Fu, Kane and
Mele (2007) established the connection between the bulk
topological order and the presence of unique conduct-
ing surface states. Soon after, this phase was predicted
in several real materials (Fu and Kane, 2007), includ-
ing Bi1−xSbx as well as strained HgTe and α−Sn. In
2008, Hsieh, et al. (2008) reported the experimental dis-
covery of the first 3D topological insulator in Bi1−xSbx.
In 2009 “second generation” topological insulators, in-
cluding Bi2Se3, which has numerous desirable properties,
were identified experimentally (Xia, et al., 2009a) and
theoretically (Xia, et al., 2009a; Zhang, H., et al., 2009).
In this section we will review these developments.

(a) (b) (c)

EF

E
kxkx

kyky

Γ4Γ3

Γ1 Γ2

Γ4Γ3

Γ1 Γ2

FIG. 7 Fermi circles in the surface Brillouin zone for (a) a
weak topological insulator and (b) a strong topological insu-
lator. In the simplest strong topological insulator the Fermi
circle encloses a single Dirac point (c).

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2

topological invariants (ν0; ν1ν2ν3) (Fu, Kane and Mele,
2007; Moore and Balents, 2007; Roy, 2009b). They can
be most easily understood by appealing to the bulk-
boundary correspondence, discussed in section II.C. The
surface states of a 3D crystal can be labeled with a 2D
crystal momentum. There are four T invariant points
Γ1,2,3,4 in the surface Brillouin zone, where surface states,
if present, must be Kramers degenerate (Fig. 7(a,b)).
Away from these special points, the spin orbit interac-
tion will lift the degeneracy. These Kramers degenerate
points therefore form 2D Dirac points in the surface band
structure (Fig. 7(c)). The interesting question is how the
Dirac points at the different T invariant points connect
to each other. Between any pair Γa and Γb, the surface
state structure will resemble either Fig. 3a or 3b. This
determines whether the surface Fermi surface intersects
a line joining Γa to Γb an even or an odd number of
times. If it is odd, then the surface states are topologi-
cally protected. Which of these two alternatives occurs
is determined by the four bulk Z2 invariants.

The simplest non trivial 3D topological insulators may
be constructed by stacking layers of the 2D quantum spin
Hall insulator. This is analogous to a similar construction
for 3D integer quantum Hall states (Kohmoto, Halperin
and Wu, 1992). The helical edge states of the layers
then become anisotropic surface states. A possible sur-
face Fermi surface for weakly coupled layers stacked along
the y direction is sketched in Fig. 7(a). In this figure a
single surface band intersects the Fermi energy between
Γ1 and Γ2 and between Γ3 and Γ4, leading to the non
trivial connectivity in Fig. 3(b). This layered state is re-
ferred to as a weak topological insulator, and has ν0 = 0.
The indices (ν1ν2ν3) can be interpreted as Miller indices
describing the orientation of the layers. Unlike the 2D he-
lical edge states of a single layer, T symmetry does not
protect these surface states. Though the surface states
must be present for a clean surface, they can be localized
in the presence of disorder. Interestingly, however, a line
dislocation in a weak topological insulator is associated
with protected 1D helical edge states (Ran, Zhang and
Vishwanath, 2009).

ν0 = 1 identifies a distinct phase, called a strong topo-
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logical insulator, which can not be interpreted as a de-
scendent of the 2D quantum spin Hall insulator. ν0 de-
termines whether an even or an odd number of Kramers
points is enclosed by the surface Fermi circle. In a strong
topological insulator the surface Fermi circle encloses an
odd number of Kramers degenerate Dirac points. The
simplest case, with a single Dirac point(Fig. 7(b,c)), can
be described by the Hamiltonian,

Hsurface = −i~vF~σ · ~∇, (16)

where ~σ characterizes the spin. (For a surface with a

mirror plane, symmetry requires ~S ∝ ẑ × ~σ.)
The surface electronic structure of a topological insu-

lator is similar to graphene, except rather than having
four Dirac points (2 valley × 2 spin) there is just a single
Dirac point. This appears to violate the fermion dou-
bling theorem (Nielssen and Ninomiya, 1983) discussed
in section II.B.2. The resolution is that the partner Dirac
points reside on opposite surfaces.

The surface states of a strong topological insulator
form a unique 2D topological metal (Fu and Kane, 2007;
Fu, Kane and Mele, 2007) that is essentially half an ordi-
nary metal. Unlike an ordinary metal, which has up and
down spins at every point on the Fermi surface, the sur-
face states are not spin degenerate. Since T symmetry
requires that states at momenta k and −k have oppo-
site spin, the spin must rotate with k around the Fermi
surface, as indicated in Fig. 7(b). This leads to a non
trivial Berry phase acquired by an electron going around
the Fermi circle. T symmetry requires that this phase be
0 or π. When an electron circles a Dirac point, its spin
rotates by 2π, which leads to a π Berry phase.

The Berry phase has important consequences for the
behavior in a magnetic field (to be discussed in section
V.A) and for the effects of disorder. In particular, in an
ordinary 2D electron gas the electrical conductivity de-
creases with decreasing temperature, reflecting the ten-
dency towards Anderson localization in the presence of
disorder (Lee and Ramakrishnan, 1985). The π Berry
phase changes the sign of the weak localization correc-
tion to the conductivity leading to weak antilocalization
(Suzuura and Ando, 2002). In fact, the electrons at the
surface of a strong topological insulator can not be local-
ized even for strong disorder, as long as the bulk energy
gap remains intact (Nomura, Koshino and Ryu, 2007).
In this regard, the situation is similar to the edge states
of the quantum spin Hall insulator discussed in section
III.A, however, the electron motion on the surface is dif-
fusive rather than ballistic.

The Dirac surface states (16) can be understood in
a 3D Dirac theory(Qi, Hughes and Zhang, 2008) where
the Dirac mass changes sign at the surface, analogous
to (6). Such domain wall states were first discussed
for Pb1−xSnxTe(Volkov and Pankratov, 1985; Fradkin,
Dagotto and Boyanovsky, 1986), which exhibits a band
inversion as a function of x. An appropriate interface
where x changes was predicted to have 2D gapless states.
There is an important difference between these interface
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(b) Bi1-xSbx, 0.07<x<0.22 
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FIG. 8 Schematic representation of the band structure of
Bi1−xSbx, which evolves from semimetallic behavior for x <
.07 to semiconducting behavior for .07 < x < .22 and back
to semimetallic behavior for x > .18. The conduction and
valence bands Ls,a invert at x ∼ .04.

Bi: Class (0; 000) Sb: Class (1; 111)

Λa Symmetry label δa Λa Symmetry label δa

1Γ Γ+
6 Γ−6 Γ+

6 Γ+
6 Γ+

45 −1 1Γ Γ+
6 Γ−6 Γ+

6 Γ+
6 Γ+

45 −1

3L Ls La Ls La La −1 3L Ls La Ls La Ls +1

3X Xa Xs Xs Xa Xa −1 3X Xa Xs Xs Xa Xa −1

1T T−6 T+
6 T−6 T+

6 T−45 −1 1T T−6 T+
6 T−6 T+

6 T−45 −1

TABLE II Symmetry labels for the Bloch states at the 8
T invariant momenta Λa for the 5 valence bands of Bi and
Sb. δa are given by (12) and determine the topological class
(ν0; ν1ν2ν3) by relations similar to (10). The difference be-
tween Bi and Sb is due to the inversion of the Ls and La

bands that occurs at x ∼ .04.

states and the surface states of a topological insulator,
though, because the band inversion in Pb1−xSnxTe oc-
curs at 4 equivalent valleys. Since 4 is even, PbTe and
SnTe are both trivial insulators. The interface states are
not topologically protected from disorder in the sense
discussed above. However, if the valleys can be split by
applying uniaxial stress, then the topological insulator
can occur in the vicinity of the band inversion transi-
tion(Fu and Kane, 2007). Related ideas were also ap-
plied to interfaces between HgTe and CdTe (Cade, 1985;
Chang, et al., 1985; Lin-Liu and Sham, 1985; Pankratov,
Pakhomov and Volkov, 1987). In this case, the band in-
version occurs in a single valley, but since HgTe is a zero
gap semiconductor, the surface states are not protected.
Nonetheless, if the cubic symmetry of the bulk HgTe can
be lifted by applying uniaxial stress, a gap can be in-
troduced in HgTe, so the HgTe-CdTe interface will have
topologically protected states(Fu and Kane, 2007).

B. The first 3D topological insulator: Bi1−xSbx

The first 3D topological insulator to be identified ex-
perimentally was the semiconducting alloy Bi1−xSbx,
whose unusual surface bands were mapped in an angle re-
solved photoemission spectroscopy (ARPES) experiment
by a Princeton University group led by Hasan(Hsieh, et
al., 2008).

Bismuth antimony alloys have long been studied for
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their thermoelectric properties (Lenoir, et al., 1996).
Pure bismuth is a semimetal with strong spin-orbit in-
teractions. Its band structure, depicted schematically in
Fig. 8(a) features conduction and valence bands that
overlap, leading to pockets of holes near the T point
in the Brillouin zone and pockets of electrons near the
three equivalent L points. The valence and conduction
bands at the L point, derived from antisymmetric (La)
and symmetric (Ls) orbitals have a small energy gap ∆.
The states near L have a nearly linear dispersion that
is well described by a 3 + 1 dimensional Dirac equation
(Wolff, 1964) with a small mass. These facts have been
used to explain many peculiar properties of bismuth.

Substituting bismuth with antimony changes the crit-
ical energies of the band structure (Fig. 8(b)). At an Sb
concentration of x ≈ .04, the gap ∆ between La and Ls
closes and a truly massless 3D Dirac point is realized. As
x is further increased this gap reopens with an inverted
ordering. For x > .07 the top of the valence band at T
moves below the bottom of the conduction band at L,
and the material becomes an insulator. Once the band
at T drops below the valence band at L, at x ∼ .09, the
system is a direct gap insulator with a massive Dirac like
bulk bands. As x is increased further, the conduction and
valence bands remain separated, and for x & .22 the va-
lence band at a different point rises above the conduction
band, restoring the semimetallic state.

Since pure bismuth and pure antimony both have a
finite direct band gap, their valence bands can be topo-
logically classified. Moreover, since they have inversion
symmetry, Eq. 12 can be used to determine the topo-
logical indices. Table II shows the symmetry labels that
specify the parity of the Bloch states, for the occupied
bands at the 8 T invariant points in the bulk Brillouin
zone (Liu and Allen, 1995). Fu and Kane (2007) used
this information to deduce that bismuth is in the triv-
ial (0; 000) class, while antimony is in the (1; 111) class.
Since the semiconducting alloy is on the antimony side
of the band inversion transition, it is predicted to inherit
the (1; 111) class from antimony.

Charge transport experiments, which were successful
for identifying the 2D topological insulator (König, et al.,
2007), are problematic in 3D materials because the sig-
nature in the conductivity of the topological character of
the surface states is more subtle in 3D. Moreover, it is dif-
ficult to separate the surface contribution to the conduc-
tivity from that of the bulk. Angle resolved photoemis-
sion spectroscopy (ARPES) is an ideal tool for probing
the topological character of the surface states. ARPES
uses a photon to eject an electron from a crystal, then
determines the surface or bulk electronic structure from
an analysis of the momentum of the emitted electron.
High-resolution ARPES performed with modulated pho-
ton energy allows for a clear isolation of surface states
from that of the bulk 3D band-structure because surface
states do not disperse along a direction perpendicular to
the surface where as the bulk states do. Moreover, unlike
in a transport experiment, ARPES carried out in a spin

0 100 200 300
0

2

4

6

8

´ 80

r
(m

W
cm

)

T (K)

x=0
x=0.1

 

 

1 2

0.0 0.2 0.4 0.6 0.8 1.0

G Mk (Å )X

-1

0.0

-0.1

E
  

(e
V

)
B

0.1

3 4 5,

-(KP) (KP)

bulk
gap

(a)

3D Topo. Insulator (Bi Sb1-x x)

(c)

T

K
G

k

z

1

L

2L

X

x

M

X

ky

E

x

T

L

L

S

a

4% 7% 8%Bi

(b)

FIG. 9 Topological surface states in Bi1−xSbx: (a) ARPES
data on the 111 surface of Bi0.9Sb0.1 which probes the oc-
cupied surface states as a function of momentum on the line
connecting the T invariant points Γ̄ and M̄ in the surface
Brillouin zone. Only the surface bands cross the Fermi en-
ergy 5 times. This, along with further detailed ARPES results
(Hsieh, et al., 2008) establish that the semiconducting alloy
Bi1−xSbx is a strong topological insulator in the (1; 111) class.
(b) shows a schematic of the 3D Brillouin zone and its (111)
surface projection. (c) contrasts the resistivity of semimetallic
pure Bi with the semiconducting alloy. Adapted from Hsieh,
et al., 2008.

resolution mode can, in addition, measure the distribu-
tion of spin orientations on the Fermi surface which can
be used to estimate the Berry phase on the surface. Spin
sensitivity is critically important for probing the exis-
tence of spin-momentum locking on the surface expected
as a consequence of bulk topological order.

Experiments by Hsieh, et al. (2008) probed both the
bulk and surface electronic structure of Bi.09Sb.91 with
ARPES. Fig. 9(a) shows the ARPES spectrum, which
can be interpreted as a map of the energy of the occupied
electronic states as a function of momentum along the
line connecting Γ̄ to M̄ in the projected surface Brillouin
zone (Fig. 9(b)). Bulk energy bands associated with the
L point are observed that reflect the nearly linear 3D
Dirac like dispersion. The same experiments observed
several surface states that span the bulk gap.

The observed surface state structure of Bi1−xSbx has
similarities with the surface states in pure Bi, which have
been studied previously (Patthey, Schneider and Mick-
litz, 1994; Agergaard, et al., 2001; Ast and Höchst, 2001;
Hirahara, et al., 2006; Hofmann, 2006). In pure Bi, two
bands emerge from the bulk band continuum near Γ̄ to
form a central electron pocket and an adjacent hole lobe.
These two bands result from the spin splitting of a sur-
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FIG. 10 Topological spin-textures: Spin resolved photoemis-
sion directly probes the non trivial spin textures of the topo-
logical insulator surface. (a) A schematic of spin-ARPES
measurement set up that was used to measure the spin distri-
bution on the (111) surface Fermi surface of Bi0.91Sb0.09. (b)
Spin orientations on the surface create a vortex like pattern
around Γ-point. A net Berry phase π is extracted from the
full Fermi surface data. (c) Net polarization along x-, y- and
z- directions are shown. Pz∼0 suggests that spins lie mostly
within the surface plane. Adapted from Hsieh, et al., 2009a,d,
2010.

face state, and are thus expected to be singly degenerate.
In Bi1−xSbx, there are additional states near M̄ , which
play a crucial role.

As explained in Section IV.A, Kramers’ theorem re-
quires surface states to be doubly degenerate at the T
invariant points Γ̄ and each of the three equivalent M̄
points. Such a Kramers point is indeed observed at M̄
approximately 15 ± 5meV below EF . As expected for a
system with strong spin orbit interactions, the degener-
acy is lifted away from M̄ . The observed surface bands
cross the Fermi energy 5 times between Γ̄ and M̄ . This
odd number of crossings is analogous to Fig. 3(b), and
indicates that these surface states are topologically pro-
tected. Accounting for the threefold rotational symmetry
and mirror symmetry of the 111 surface, this data shows
that the surface Fermi surface encloses Γ̄ an odd number
of times, while it encloses the three equivalent M̄ points
an even number of times. This establishes Bi1−xSbx as
a strong topological insulator, with ν0 = 1. The data is
consistent with the predicted (1; 111) topological class.

A distinguishing feature of topological insulator sur-
face states is the intimate correlation between spin and
momentum they exhibit, which underlies the π Berry
phase associated with the Fermi surface. Spin resolved
ARPES, described schematically in Fig. 10(a), is ide-
ally suited to probe this physics. Experiments by Hsieh,
et al. (2009a) measured the spin polarization of the sur-
face states. These experiments proved that the surface
states are indeed non degenerate and strongly spin po-
larized (Fig. 10(b)), providing even more decisive evi-

dence for their topological classification. In addition, the
spin polarization data also established the connectivity
of the surfaces state bands above EF (which is inacces-
sible to ARPES), showing that bands labeled 2 and 3 in
Fig. 9(a) connect to form a hole pocket. Finally, they
directly mapped the spin texture of the Fermi surface,
providing the first direct evidence for the π Berry phase
by showing that the spin polarization rotates by 360◦

around the central Fermi surface, shown in Fig. 10(c).
The measurement of the handedness of this rotation pro-
vided even more information about the topological struc-
ture, by probing a mirror Chern number, which agreed
favorably with theory (Teo, Fu and Kane, 2008).

Spin polarized ARPES also enables a similar charac-
terization of surface states in the metallic regime of the
Bi1−xSbx series. Pure Sb is predicted to have a topolog-
ically non trivial valence band, despite the semi metal-
lic band overlap. Hsieh, et al. (2009a) found that the
surface states of Sb carry a Berry phase and chirality
property predicted by theory (Teo, Fu and Kane, 2008)
that is unlike the conventional spin-orbit metals such as
gold, which has zero net Berry phase and no net chi-
rality. Additional compositions of the Bi1−xSbx series
provided further evidence for the topological character
of the surface states (Nishide, et al., 2010). These results
demonstrate that ARPES and spin-ARPES are powerful
probes of topological order.

As discussed in section IV.A the topological surface
states are expected to be robust in the presence of non
magnetic disorder, and immune from Anderson localiza-
tion. The origin of this is the fact that T symmetry
forbids the backscattering between Kramers pairs at k
and −k. Random alloying in Bi1−xSbx, which is not
present in other material families of topological insula-
tors found to date, makes this material system an ideal
candidate in which to examine the impact of disorder
or random potential on topological surface states. The
fact that the 2D states are indeed protected from spin-
independent scattering was established by Roushan, et
al. (2009) by combining results from scanning tunnel-
ing spectroscopy and spin-ARPES. Fig. 11 shows the
analysis of the interference pattern due to scattering at
the surface. Fig. 11(c) shows the Fourier transform of
the observed pattern (Fig. 11(a)), while Figs. 11(d,e)
show the joint density of states computed from the Fermi
surface (Fig. 11(b)) with and without a suppression of
k to −k backscattering. The similarity between Figs.
11(c,e) shows that despite strong atomic scale disorder,
k to −k backscattering is absent. Similar conclusions
have emerged from studies of the electronic interference
patterns near defects or steps on the surface in other
topological insulators (Urazhdin, et al., 2004; Zhang, T.
et al., 2009; Alpichshev, et al., 2010). In graphene there is
an approximate version of this protection if the disorder
has a smooth potential which does not mix the valleys at
K and K′, but real graphene will become localized with
strong disorder (Castro Neto, et al., 2009).
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Spin-ARPES

FIG. 11 Absence of backscattering: Quasiparticle interfer-
ence observed at the surface of Bi0.92Sb0.08 exhibits and ab-
sence of elastic backscattering: (a) Spatially resolved con-
ductance maps of the (111) surface obtained at 0 mV over
a 1000Å×1000Å. (b) Spin-ARPES map of the surface state
measured at the Fermi level. The spin textures from spin-
ARPES measurements are shown with arrows. (c) Fourier
transform scanning tunneling spectroscopy (FT-STS) at EF .
(d) The joint density of states (JDOS) at EF . (e) The spin-
dependent scattering probability(SSP) at EF . (f) Close-up of
the JDOS, FT-STS and SSP at EF , along the Γ-M direction.
Adapted from Hsieh, et al., 2009a; Roushan, et al., 2009.

C. Second generation materials: Bi2Se3, Bi2Te3, Sb2Te3

The surface structure of Bi1−xSbx was rather compli-
cated and the band gap was rather small. This motivated
a search for topological insulators with a larger band gap
and simpler surface spectrum. A second generation of 3D
topological insulator materials (Moore, 2009), especially
Bi2Se3, offer the potential for topologically protected be-
havior in ordinary crystals at room temperature and zero
magnetic field. In 2008, work led by the Princeton group
used ARPES and first principles calculations to study
the surface band structure of Bi2Se3 and observed the
characteristic signature of a topological insulator in the
form of a single Dirac cone (Xia, et al., 2009a). Con-
current theoretical work by Zhang, H., et al. (2009) used
electronic structure methods to show that Bi2Se3 is just
one of several new large band gap topological insulators.
Zhang, H., et al. (2009) also provided a simple tight-
binding model to capture the single Dirac cone observed
in these materials. Detailed and systematic surface inves-
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FIG. 12 Helical fermions: Spin-momentum locked helical
surface Dirac fermions are hallmark signatures of topological
insulators. (a) ARPES data for Bi2Se3 reveals surface elec-
tronic states with a single spin-polarized Dirac cone. The
Surface Fermi surface (b) exhibits a chiral left-handed spin
texture. (c) Surface electronic structure of Bi2Se3 computed
in the local density approximation. The shaded regions de-
scribe bulk states, and the red lines are surface states. (d)
Schematic of the spin polarized surface state dispersion in
Bi2X3 (1; 000) topological insulators. Adapted from Xia, et
al., 2008; Hsieh, et al., 2009b; Xia, et al., 2009b.

tigations of Bi2Se3 (Hor, et al., 2009; Hsieh, et al., 2009b;
Park, et al., 2010), Bi2Te3 (Chen, et al., 2009; Hsieh, et
al., 2009b,c; Xia, et al., 2009b) and Sb2Te3 (Hsieh, et
al., 2009c) confirmed the topological band structure of
all 3 of these materials. This also explained earlier puz-
zling observations on Bi2Te3 (Noh, et al., 2008). These
works showed that the topological insulator behavior in
these materials is associated with a band inversion at
k = 0, leading to the (1; 000) topological class. The
(1; 000) phase observed in the Bi2Se3 series differs from
the (1; 111) phase in Bi1−xSbx due to its weak topologi-
cal invariant, which has implications for the behavior of
dislocations(Ran, Zhang and Vishwanath, 2009).

Though the phase observed in the Bi2Se3 class has the
same strong topological invariant ν0 = 1 as Bi1−xSbx,
there are three crucial differences that suggest that
this series may become the reference material for fu-
ture experiments. The Bi2Se3 surface state is found
from ARPES and theory to be a nearly idealized sin-
gle Dirac cone as seen from the experimental data in
Figs. 12,13,16. Second, Bi2Se3 is stoichiometric (i.e.,
a pure compound rather than an alloy like Bi1−xSbx)
and hence can be prepared in principle at higher purity.
While the topological insulator phase is predicted to be
quite robust to disorder, many experimental probes of
the phase, including ARPES of the surface band struc-
ture, are clearer in high-purity samples. Finally, and
perhaps most important for applications, Bi2Se3 has a
large band gap of approximately 0.3 eV (3600◦K). This
indicates that in its high purity form Bi2Se3 can exhibit
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FIG. 13 Room temperature topological order in Bi2Se3: (a)
Crystal momentum integrated ARPES data near Fermi level
exhibit linear fall-off of density of states, which combined
with the spin-resolved nature of the states suggest that a half
Fermi gas is realized on the topological surfaces. (b) Spin-
texture map based on spin-ARPES data suggest that the
spin-chirality changes sign across the Dirac point. (c) The
Dirac node remains well defined up a temperature of 300K
suggesting the stability of topological effects up to the room
temperature. Adapted from Hsieh, et al., 2009b.

topological insulator behavior at room temperature(Fig.
13) and greatly increases the potential for applications.
To understand the likely impact of these new topological
insulators, an analogy can be drawn with the early days
of high-temperature cuprate superconductivity: the orig-
inal cuprate superconductor LBCO was quickly super-
seded by “second-generation” materials such as YBCO
and BSCCO for most applied and scientific purposes.

All the key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from
a simple Dirac cone (Fig. 14) due to a combination of
smaller band gap (0.15 eV) and a strong trigonal poten-
tial (Chen, et al., 2009), which can be utilized to explore
some aspects of its surface properties (Fu, 2009; Hasan,
Lin and Bansil, 2009). The hexagonal deformation of
the surface states is confirmed by STM measurements
(Alpichshev, et al., 2010) (Fig. 14). Speaking of applica-
tions within this class of materials, Bi2Te3, is already well
known to materials scientists working on thermoelectric-
ity. It is a commonly used thermoelectric material in the
crucial engineering regime near room temperature.

Two defining properties of topological insulators –
spin-momentum locking of surface states and π Berry
phase – can be clearly demonstrated in the Bi2Se3 se-
ries. The surface states are expected to be protected by
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FIG. 14 Hexagonal warping of surface states in Bi2Te3:
ARPES and STM studies of Bi2Te3 reveal a hexagonal de-
formation of surface states. Fermi surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev, et al., 2010.

T symmetry which implies that the surface Dirac node
should be robust in the presence of non-magnetic disor-
der but open a gap in the presence of T breaking per-
turbations. Magnetic impurities such as Fe or Mn on
the surface of Bi2Se3 open a gap at the Dirac point (Fig.
15(a,b)) (Xia, et al., 2008; Hsieh, et al., 2009b; Hor, et
al., 2010b; Wray, et al., 2010). The magnitude of the
gap is likely set by the interaction of Fe ions with the
Se surface and the T breaking disorder potential intro-
duced on the surface. Non-magnetic disorder created via
molecular absorbent NO2 or alkali atom adsorption (K
or Na) on the surface leaves the Dirac node intact (Fig.
15(c,d)) in both Bi2Se3 and Bi2Te3 (Hsieh, et al., 2009b;
Xia, et al., 2009b). These results are consistent with the
fact that the topological surface states are protected by
T symmetry.

Many of the interesting theoretical proposals that uti-
lize topological insulator surfaces require the chemical
potential to lie at or near the surface Dirac point. This
is similar to the case in graphene, where the chemistry
of carbon atoms naturally locates the Fermi level at the
Dirac point. This makes its density of carriers highly
tunable by an applied electrical field and enables appli-
cations of graphene to both basic science and microelec-
tronics. The surface Fermi level of a topological insulator
depends on the detailed electrostatics of the surface, and
is not necessarily at the Dirac point. Moreover, for nat-
urally grown Bi2Se3 the bulk Fermi energy is not even
in the gap. The observed n type behavior is believed to
be caused Se vacancies. By appropriate chemical mod-
ifications, however, the Fermi energy of both the bulk
and the surface can be controlled. This allowed Hsieh, et
al. (2009b) to reach the sweet spot in which the surface
Fermi energy is tuned to the Dirac point (Fig. 16). This
was achieved by doping bulk with a small concentration
of Ca, which compensates the Se vacancies, to place the
Fermi level within the bulk band gap. The surface was
hole doped by exposing the surface to NO2 gas to place
the Fermi level at the Dirac point.
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FIG. 16 Chemical gating a topological surface to the spin-
degenerate point: Topological insulator surfaces are most
interesting if the chemical potential can be placed at the
Dirac node without intercepting any bulk band. This can
be achieved in Bi2Se3 via the chemical tailoring of the surface
or using electrical gating methods. (a) Evolution of surface
Fermi surface with increasing NO2 adsorption on the surface.
NO2 extracts electrons from the Bi2Se3 surface leading to an
effective hole doping of the material. (b) Chemical gating of
the surface can be used to place the chemical potential at
the spin degenerate Dirac point. Adapted from Hsieh, et al.,
2009b.
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FIG. 17 Electrical transport in Bi2Se3. (a) Resistivity for
samples of pure Bi2Se3 doped with a small concentration of
Ca. Increasing the Ca concentration moves the Fermi level
from the conduction band into the gap and then to the va-
lence band. Samples with .002 < x < .0025, labeled G, show
insulating behavior below 100◦K (Checkelsky, et al., 2009).
(b) Bi2Se3 doped with Cu shows superconducting behavior
below 3.8◦K for x = .12. The inset shows the magnetic sus-
ceptibility which exhibits the Meissner effect. Adapted from
Hor, et al., 2010a; Wray, et al., 2010.

The main remaining complication with these materi-
als, especially for experimental techniques that (unlike
ARPES) do not distinguish directly between bulk and
surface states, is that they have some residual conduction
in the bulk from impurity or self doping states. Electri-
cal transport measurements on Bi2Se3 show that doping
with a small concentration of Ca leads to insulating be-
havior. Fig. 17(a) shows the resistivity of several samples
with varying Ca concentrations. For .002 < x < .025,
the resistivity shows a sharp upturn below 100◦K before
saturating. The low temperature resistivity is still too
small to be explained by the surface states alone. How-
ever, the low temperature transport exhibits interesting
2D mesoscopic effects that are not completely understood
(Checkelsky, et al., 2009). Doping Bi2Se3 with copper
leads to a metallic state that shows superconducting be-
havior (Fig. 17(b)) below 3.8◦K (Wray, et al., 2009; Hor,
et al., 2010a). This has important ramifications for some
of the devices proposed in the following section.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done with
them. In this section we will argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking T symmetry with an ex-
ternal magnetic field (Fu and Kane, 2007) or proximity
to a magnetic material (Qi, Hughes and Zhang, 2008),
by breaking gauge symmetry due to proximity to a su-
perconductor (Fu and Kane, 2008), or by an excitonic
instability of two coupled surfaces (Seradjeh, Moore and
Franz, 2009). In this section we review the magnetic and
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superconducting surface phases.

A. Quantum Hall effect and topological magnetoelectric
effect

1. Surface quantum Hall effect

A perpendicular magnetic field will lead to Landau lev-
els in the surface electronic spectrum, and the quantum
Hall effect. The Landau levels for Dirac electrons are
special, however, because a Landau level is guaranteed
to exist at exactly zero energy (Jackiw, 1984). This zero
Landau level is particle-hole symmetric in the sense that
the Hall conductivity is equal and opposite when the Lan-
dau level is full or empty. Since the Hall conductivity
increases by e2/h when the Fermi energy crosses a Lan-
dau level the Hall conductivity is half integer quantized
(Zheng and Ando, 2002),

σxy = (n+ 1/2)e2/h. (17)

This physics has been famously demonstrated in ex-
periments on graphene (Novoselov, 2005; Zhang, Y., et
al., 2005). However, there is an important difference. In
graphene (17) is multiplied by four, due to the spin and
valley degeneracy of graphene’s Dirac points, so the ob-
served Hall conductivity is still integer quantized. At the
surface of the topological insulator there is only a single
Dirac point. Such a “fractional” integer quantized Hall
effect should be a cause for concern because the integer
quantized Hall effect is always associated with chiral edge
states, that can only be integer quantized. The resolu-
tion is the mathematical fact that a surface can not have
a boundary. In a slab geometry shown in Fig. 18(a), the
top surface and bottom surface are necessarily connected
to each other, and will always be measured in parallel
(Fu and Kane, 2007), doubling the 1/2. The top and
bottom can share a single chiral edge state, which carries
the integer quantized Hall current.

A related surface quantum Hall effect, called the
anomalous quantum Hall effect, can be induced with the
proximity to a magnetic insulator. A thin magnetic film
on the surface of a topological insulator will give rise to
a local exchange field that lifts the Kramers degeneracy
at the surface Dirac points. This introduces a mass term
m into the Dirac equation (16), as in (4). If the EF is in
this energy gap, there is a half integer quantized Hall con-
ductivity σxy = e2/2h(Pankratov, 1987), as discussed in
section II.B.2. This can be probed in a transport experi-
ment by introducing a domain wall into the magnet. The
sign of m depends on the direction of the magnetization.
At an interface where m changes sign (Fig. 18(d)) there
will be a 1D chiral edge state, analogous to unfolding the
surface in Fig. 18(b).

0

1
2

-1
-2

B

TI

M M 

TI

(a)

(b)

(c)

(d)

=e2/2hσxy

=e2/2hσxy

E

E

FIG. 18 Surface quantum Hall effect. (a) The Dirac spectrum
is replaced by Landau levels in an orbital magnetic field. (b)
The top and bottom surfaces share a single chiral fermion edge
mode. (c) A thin magnetic film can induce an energy gap at
the surface. (d) A domain wall in the surface magnetization
then exhibits a chiral fermion mode.

2. Topological magnetoelectric effect and axion
electrodynamics

The surface Hall conductivity can also be probed with-
out the edge states either by optical methods or by mea-
suring the magnetic field produced by surface currents.
This leads to an intriguing topological magnetoelectric ef-
fect (Qi, Hughes and Zhang, 2008; Essin, Moore and Van-
derbilt, 2009). Imagine a cylindrical topological insulator
with magnetically gapped surface states and an electric
field E along its axis. The azimuthal surface Hall current
(e2/2h)|E| leads to a magnetic dipole moment associated
with a magnetization M = αE, where the magnetoelec-
tric polarizability is given by α = e2/2h.

A field theory for this magnetoelectric effect can be
developed by including a “θ term” in the electromagnetic
Lagrangian, which has a form analogous to the theory of
axion electrodynamics that has been studied in particle
physics contexts (Wilczek, 1987),

∆L = θ(e2/2πh)E ·B. (18)

The field θ, which is a dynamical variable in the axion
theory, is a constant, π, in the topological insulator. Im-
portantly, when expressed in terms of the vector potential
E ·B is a total derivative, so a constant θ has no effect on
the electrodynamics. However, a gapped interface, across
which θ changes by ∆θ, is associated with a surface Hall
conductivity σxy = ∆θe2/(2πh).

As in the axion theory, the action corresponding to
(18) is invariant under θ → θ + 2π. Physically, this re-
flects the fact that an integer quantum Hall state with
σxy = ne2/h can exist at the surface without changing
the bulk properties (Essin, Moore and Vanderbilt, 2009).
This resembles a similar ambiguity in the electric polar-
ization. Qi, Hughes and Zhang (2008) showed that since
E ·B is odd under T , only θ = 0 or π are consistent with
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T symmetry, so θ is quantized. By computing the mag-
netoelectric response perturbatively, θ can be computed
in a manner similar to the Kubo formula calculation of
σxy. θ/π is identical to ν0, the invariant characterizing a
strong topological insulator.

Observation of the surface currents associated with this
magnetoelectric effect will be an important complement
to the ARPES experiments. It should be emphasized,
however, that despite the topologically quantized sta-
tus of θ, the surface currents are not quantized the way
edge state transport currents are quantized in the quan-
tum Hall effect. The surface currents are bound currents,
which must be distinguished from other bound currents
that may be present. Nonetheless, it may be possible to
account for such effects, and signatures of θ will be in-
teresting to observe. Qi, et al. (2009) pointed out that a
consequence of a nonzero surface σxy is that an electric
charge outside the surface gives rise to a pattern of sur-
face currents that produces a magnetic field the same as
that of an image magnetic monopole.

B. Superconducting proximity effect

Combining topological insulators with ordinary super-
conductors leads to an exquisitely correlated interface
state that, like a topological superconductor, is predicted
to host Majorana fermion excitations. In this section
we will begin by reviewing the properties of Majorana
fermion excitations and the ingenious proposal by Kitaev
(2003) to use those properties for fault tolerant quantum
information processing. We will then describe methods
for engineering Majorana fermions in superconductor-
topological insulator devices and prospects for their ex-
perimental observation.

1. Majorana fermions and topological quantum computing

As discussed in section II.D.2, a well separated pair
of Majorana bound states defines a degenerate two level
system – a qubit. Importantly, the quantum information
in the qubit is stored non locally. The state can not be
measured with a local measurement on one of the bound
states. This is crucial, because the main difficulty with
making a quantum computer is preventing the system
from accidentally measuring itself. 2N Majorana bound
states defines N qubits – a quantum memory.

Adiabatically interchanging the vortices, or more gen-
erally braiding them, leads to the phenomenon of non-
Abelian statistics (Moore and Read, 1991). Such pro-
cesses implement unitary operations on the state vector
|ψa〉 → Uab|ψb〉 that generalize the usual notion of Fermi
and Bose quantum statistics (Nayak and Wilczek, 1996;
Ivanov, 2001). These operations are precisely what a
quantum computer is supposed to do. A quantum com-
putation will consist of three steps, depicted in Fig. 19:

(i) Create: If a pair i, j of vortices is created, they will

Create |012034>

Braid

Measure (|012034>+|112134>)/  2

t

1 2 3 4

1 2 3 4

FIG. 19 A simple operation in which two vortices are ex-
changed. The vortex pairs 12 and 34 are created in the vac-
uum (0 quasiparticle) state. When they are brought back
together they are in an entangled superposition of 0 and 1
quasiparticle states.

be in the ground state |0ij〉 with no extra quasiparticle
excitations. Creating N pairs initializes the system.

(ii) Braid: Adiabatically rearranging the vortices mod-
ifies the state, and performs a quantum computation.

(iii) Measure: Bringing vortices i and j back together
allows the quantum state associated with each pair to
be measured. |1ij〉 and |0ij〉 will be distinguished by the
presence or absence of an extra fermionic quasiparticle
associated with the pair.

Though the quantum operations allowed by manipulat-
ing the Majorana states do not have sufficient structure
to construct a universal quantum computer (Freedman,
Larsen and Wang, 2002), the topological protection of
the quantum information makes the experimental obser-
vation of Majorana fermions and non-Abelian statistics
a high priority in condensed matter physics (Nayak, et
al., 2008). Current experimental efforts have focused on
the ν = 5/2 quantum Hall state, where interferometry
experiments (Das Sarma, Freedman and Nayak, 2005;
Stern and Halperin, 2006) can in principle detect the
non-Abelian statistics predicted for the quasiparticles.
Though recent experiments on the quantum Hall effect
have shown encouraging indirect evidence for these states
(Dolev, et al., 2008; Radu, et al., 2008; Willett, Pfeif-
fer and West, 2009), definitive observation of the Majo-
rana states has remained elusive. In the following sec-
tion we will describe the possibility of realizing these
states in topological insulator-superconductor structures.
The large energy scale associated with the energy gap in
Bi2Se3 may provide an advantage, so the required tem-
perature scale will be limited only by the superconductor.

2. Majorana fermions on topological insulators

Consider an interface between a topological insulator
and an s wave superconductor. Due to the supercon-
ducting proximity effect, Cooper pairs may tunnel from
the superconductor to the surface, leading to an induced
superconducting energy gap in the surface states. The
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FIG. 20 Majorana fermions on topological insulators. (a) A
superconducting vortex, or antidot with flux h/2e on a topo-
logical insulator is associated with a Majorana zero mode.
(b) a superconducting tri-junction on a topological insulator.
Majorana modes at the junction can be controlled by adjust-
ing the phases φ1,2,3. 1D chiral Majorana modes exist at a
superconductor-magnet interface on a topological insulator.
(c) shows a 1D chiral Dirac mode on a magnetic domain wall
that splits into two chiral Majorana modes around a supercon-
ducting island. When Φ = h/2e interference of the Majorana
modes converts an electron into a hole. (d) Majorana modes
at a superconductor-magnet junction on a 2D QSHI.

resulting 2D superconducting state is different from an
ordinary superconductor because the surface states are
not spin degenerate and contain only half the degrees of
freedom of a normal metal. The superconducting state
resembles the spinless px + ipy topological superconduc-
tor discussed in section II.D, which is also based on a spin
non degenerate Fermi surface. Unlike the px+ ipy super-
conductor, the surface superconductor does not violate
T symmetry, and its Cooper pairs have even parity. The
minus sign required by Fermi statistics is supplied by the
π Berry phase of the surface states. Like the px + ipy su-
perconductor, the surface superconductor will have a zero
energy Majorana state bound to a vortex (Fu and Kane,
2008). Similar zero modes were later found for supercon-
ducting graphene(Ghaemi and Wilczek, 2007; Bergman
and Le Hur, 2009), though those modes were intrinsi-
cally doubled. Undoubled Majorana bound states were
found earlier by Jackiw and Rossi (1981) in a related field
theory model that had an extra chiral symmetry. Inter-
estingly, the Majorana states on a topological insulator
emerge as solutions to a 3D BdG theory, so there is a
sense in which their non-Abelian statistics is inherently
three dimensional (Teo and Kane, 2010).

Majorana states can in principle be engineered and
manipulated by using junctions of superconductors on
the surface of a topological insulator (Fu and Kane,
2008). If the phases on three superconductors that meet
at a tri-junction (Fig. 20(b)) are arranged such that
(φ1, φ2, φ3) = (0, 2π/3, 4π/3), then a vortex is simulated,
and a zero mode will be bound to the junction. If the
phases are changed, the zero mode can not disappear un-

til the energy gap along one of the three linear junctions
goes to zero. This occurs when the phase difference across
the junction is π. At this point the Majorana bound state
moves to the other end of the linear junction. Combin-
ing these tri-junctions into circuits connected by linear
junctions could then allow for the Create-Braid-Measure
protocol discussed in section V.B.1 to be implemented.
The state of two Majorana modes brought together on
a linear junction can be probed by measuring the super-
current across that junction.

There are many hurtles to overcome before this ambi-
tious proposal can be realized. The first step is finding
a suitable superconductor that makes good contact with
a topological insulator. Probing the signatures of Ma-
jorana fermions and non-Abelian statistics will require
ingenuity – what makes them good for quantum com-
puting makes them hard to measure. A first step would
be to detect the Majorana state at a vortex, antidot or
tri-junction by tunneling into it from a normal metal. A
signature of the zero mode would be a zero bias anomaly,
which would have a characteristic current-voltage rela-
tion (Bolech and Demler, 2007; Law, Lee and Ng, 2009).

Another venue for Majorana fermions on a topolog-
ical insulator surface is a linear interface between su-
perconducting and magnetically gapped regions (Fu and
Kane, 2008; Tanaka, Yokoyama and Nagaosa, 2009; Lin-
der, et al., 2010). This leads to a 1D chiral Majorana
mode, analogous to the edge state of a 2D topologi-
cal superconductor (Fig. 4(e)). This can be used to
construct a novel interferometer for Majorana fermions
(Akhmerov, Nilsson and Beenakker, 2009; Fu and Kane,
2009b). Fig. 20(c) shows a superconducting island sur-
rounded by magnetic regions with a magnetic domain
wall. The chiral Dirac fermions on the magnetic domain
wall incident from the left split into two chiral Majo-
rana fermions on opposite sides of the superconductor
and then recombine. If the superconductor encloses a
flux Φ = h/2e, then the Majorana fermions pick up a
relative minus sign - analogous to the Aharonov Bohm
effect. This has the effect of converting an incident elec-
tron into an outgoing hole, with a Cooper pair of elec-
trons absorbed by the superconductor. This could be
observed in a three terminal transport setup.

Majorana bound states can also be engineered at the
edge of a 2D quantum spin Hall insulator utilizing mag-
netic and superconducting energy gaps (Fig 20(d)) (Nils-
son, Akhmerov and Beenakker, 2008; Fu and Kane,
2009a). This and other geometries can in principle
be used to test the inherent non-locality of Majorana
fermion states (Fu, 2010)

VI. CONCLUSION AND OUTLOOK

Though the basic properties of topological insulators
have been established, the field is at an early stage in its
development. There is much work to be done to realize
the potential of these new and fascinating materials. In
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this concluding section we will discuss some very recent
developments and look toward the future.

In the history of condensed matter physics, the single
most important ingredient in the emergence of a new
field is the perfection of the techniques for producing
high quality materials. For example, the intricate physics
of the fractional quantum Hall effect would never have
emerged without ultra high mobility GaAs. Topologi-
cal insulator materials need to be perfected, so that they
actually insulate. There has been substantial progress in
this direction. For instance, transport experiments on Ca
doped crystals of Bi2Se3 show clear insulating behavior
below around 100◦K (Checkelsky, et al., 2009). How-
ever, the electrical resistance saturates at low tempera-
ture, and the surface currents appear to be overwhelmed
by either bulk currents or currents in a layer near the sur-
face. This is a challenging problem because narrow gap
semiconductors are very sensitive to doping. Nonethe-
less, it seems clear that there is ample room for improve-
ment. Thin films produced, for instance, by mechanical
exfoliation (as in graphene), or catalytically generated
Bi2Se3 ribbons and wires (Peng, et al., 2010) may be
helpful in this regard. A particularly promising new di-
rection is the growth of epitaxial films of Bi2Se3 (Zhang,
G., et al., 2009; Zhang, Y., et al., 2010) and Bi2Te3 (Li,
et al., 2009). This has led to the recent observation of
Landau quantization in the Dirac surface states (Cheng,
et al., 2010; Hanaguri, et al., 2010). It will be inter-
esting to observe such quantization in a transport study.
Present materials pose a challenge due to competition be-
tween surface and bulk states (Checkelsky, et al., 2009;
Taskin and Ando, 2009). The detailed study of the elec-
tronic and spin transport properties of the surface states
is called for, complemented by a host of other probes,
ranging from optics to tunneling spectroscopy.

Another direction for future innovation will be the
study of heterostructures involving topological insulators
and other materials. In addition to providing a means
for protecting and controlling the population of the sur-
face states, such structures could provide a step towards
the longer term goal of engineering exotic states, such
as Majorana fermions, with the surface states. There are
many materials problems to be solved in order to find ap-
propriate magnetic and superconducting materials which
exhibit the appropriate proximity effects with the sur-
face states, and detailed experiments will be necessary
to characterize those states. An exciting recent develop-
ment along these lines is the discovery of superconduc-
tivity in Cu doped Bi2Se3 (Hor, et al., 2010a). One can
imagine devices fabricated with techniques of modulation
doping that have proved extremely powerful in semicon-
ductor physics. One can also imagine other devices that
integrate magnetic materials with topological insulators,
to take advantage of the special spin properties of the
surface states.

Topological insulating behavior is likely to arise in
other classes of materials, in addition to the binary com-
pounds Bi1−xSbx, Bi2Te3, Bi2Se3 and Sb2Te3. If one

expands ones horizon to ternary compounds (or beyond)
the possibilities for exotic materials multiply. Candidate
materials will be narrow gap semiconductors which in-
clude heavy elements. One intriguing class of materials
are transition metal oxides involving iridium. Shitade, et
al. (2009) have predicted that Na2IrO3 is a weak topolog-
ical insulator. Pesin and Balents (2010) have suggested
that certain iridium based pyrochlore compounds may be
strong topological insulators. Since these materials in-
volve d electrons, a crucial issue will be to understand
the interplay between strong electron-electron interac-
tions and the spin-orbit interaction. Very recent the-
oretical work predicts topological insulator behavior in
ternary Heusler compounds(Chadov, et al., 2010; Lin, et
al., 2010a) and other materials (Lin, et al., 2010b,c; Yan,
et al., 2010). These are exciting new directions where
further theoretical and experimental work is called for.

Topological superconductors present another exciting
frontier direction. In addition to observing the surface
Majorana modes predicted for 3He B (Chung and Zhang,
2009), it will be very interesting to predict and observe
electronic topological superconductors, to characterize
their surface modes and to explore their potential utility.
To this end there has been recent progress in develop-
ing methods to theoretically identify topological super-
conductors based on their band structure (Fu and Berg,
2009; Qi, Hughes and Zhang, 2010).

More generally there may be other interesting corre-
lated states related to topological insulators and super-
conductors. For example, Levin and Stern (2009) showed
that a T invariant fractional quantum spin Hall state can
be topologically stable. This points to a general theoret-
ical problem associated with the topological classifica-
tion of interacting systems: How do we unify the seem-
ingly different notions of topological order epitomized by
Thouless, et al. (1982) and by Wen (1995)? The topo-
logical field theories studied by Qi, Hughes and Zhang
(2008), as well as tantalizing connections with string the-
ory (Ryu and Takayanagi, 2010) provide steps in this di-
rection, but a complete theory remains to be developed.

To conclude, the recent advances in the physics of topo-
logical insulators have been driven by a rich interplay
between theoretical insight and experimental discoveries.
There is reason for optimism that this field will continue
to develop in exciting new directions.
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