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Quantum cryptography could well be the first application of quantum mechanics at the
single-quantum level. The rapid progress in both theory and experiment in recent years is reviewed,
with emphasis on open questions and technological issues.
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I. INTRODUCTION

Electrodynamics was discovered and formalized in the
19th century. The 20th century was then profoundly af-
fected by its applications. A similar adventure may be
underway for quantum mechanics, discovered and for-
malized during the last century. Indeed, although the la-
ser and semiconductor are already common, applica-
tions of the most radical predictions of quantum
mechanics have only recently been conceived, and their
full potential remains to be explored by the physicists
and engineers of the 21st century.

The most peculiar characteristics of quantum mechan-
ics are the existence of indivisible quanta and of en-
tangled systems. Both of these lie at the root of quantum
cryptography (QC), which could very well be the first
commercial application of quantum physics at the single-
quantum level. In addition to quantum mechanics, the
20th century has been marked by two other major scien-
tific revolutions: information theory and relativity. The
status of the latter is well recognized. It is less well
known that the concept of information, nowadays mea-
sured in bits, and the formalization of probabilities are
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quite recent,1 although they have a tremendous impact
on our daily life. It is fascinating to realize that QC lies
at the intersection of quantum mechanics and informa-
tion theory and that, moreover, the tension between
quantum mechanics and relativity—the famous
Einstein-Rosen-Podolsky (EPR) paradox (Einstein
et al., 1935)—is closely connected to the security of QC.
Let us add a further point for young physicists. Unlike
laser and semiconductor physics, which are manifesta-
tions of quantum physics at the ensemble level and can
thus be described by semiclassical models, QC, and to an
even greater extent quantum computers, require a full
quantum-mechanical description (this may offer an in-
teresting challenge for physicists well trained in the
subtleties of their science).

This review article has several objectives. First, we
present the basic intuition behind QC. Indeed, the basic
idea is so beautiful and simple that every physicist and
student should be given the pleasure of learning it. The
general principle is then set in the broader context of
modern cryptology (Sec. II.B) and made more precise
(Sec. II.C). Section III discusses the main technological
challenges. Then, Secs. IV and V present the most com-
mon implementations of QC: the use of weak laser
pulses and photon pairs, respectively. Finally, the impor-
tant and difficult problems of eavesdropping and secu-
rity proofs are discussed in Sec. VI, where the emphasis
is more on the diversity of the issues than on formal
details. We have tried to write the different parts of this
review in such a way that they can be read indepen-
dently.

II. A BEAUTIFUL IDEA

The idea of quantum cryptography was first proposed
in the 1970s by Stephen Wiesner2 (1983) and by Charles
H. Bennett of IBM and Gilles Brassard of The Univer-
sity of Montréal (1984, 1985).3 However, this idea is so
simple that any first-year student since the infancy of
quantum mechanics could actually have discovered it!
Nevertheless, it is only now that the field is mature
enough and information security important enough that
physicists are ready to consider quantum mechanics, not
only as a strange theory good for paradoxes, but also as

a tool for new engineering. Apparently, information
theory, classical cryptography, quantum physics, and
quantum optics first had to develop into mature sci-
ences. It is certainly not a coincidence that QC and,
more generally, quantum information were developed
by a community including many computer scientists and
more mathematically oriented young physicists: broader
interests than traditional physics were needed.

A. The intuition

Quantum physics is well known for being counterin-
tuitive or even bizarre. We teach students that quantum
physics establishes a set of negative rules stating things
that cannot be done. For example,

(1) One cannot take a measurement without perturbing
the system.

(2) One cannot determine simultaneously the position
and the momentum of a particle with arbitrarily
high accuracy.

(3) One cannot simultaneously measure the polariza-
tion of a photon in the vertical-horizontal basis and
simultaneously in the diagonal basis.

(4) One cannot draw pictures of individual quantum
processes.

(5) One cannot duplicate an unknown quantum state.

This negative viewpoint of quantum physics, due to its
contrast with classical physics, has only recently been
turned positive, and QC is one of the best illustrations of
this psychological revolution. Indeed, one could charac-
terize quantum information processing as the science of
turning quantum conundrums into potentially useful ap-
plications.

Let us illustrate this point for QC. One of the basic
negative statements of quantum physics reads

One cannot take a measurement without perturbing
the system (1)

(unless the quantum state is compatible with the mea-
surement). The positive side of this axiom can be seen
when applied to a communication between Alice and
Bob (the conventional names of the sender and receiver,
respectively), provided the communication is quantum,
that is, quantum systems, for example, individual pho-
tons, carry the information. When this is the case, axiom
(1) also applies to eavesdroppers, i.e., to a malicious Eve
(the conventional name given to the adversary in cryp-
tology). Hence Eve cannot get any information about
the communication without introducing perturbations
that would reveal her presence.

To make this intuition more precise, imagine that Al-
ice codes information in individual photons, which she
sends to Bob. If Bob receives the photons unperturbed,
then, according to the basic axiom (1), the photons were
not measured. No measurement implies that Eve did not
get any information about the photons (note that acquir-
ing information is synonymous with carrying out mea-
surements). Consequently, after exchanging the photons,

1The Russian mathematician A. N. Kolmogorov (1956) is
credited with being the first to have formulated a consistent
mathematical theory of probabilities in the 1940s.

2S. Wiesner, then at Columbia University, was the first to pro-
pose ideas closely related to QC in the 1970s. However, his
revolutionary paper did not appear until a decade later. Since
it is difficult to find, we reproduce his abstract here: The un-
certainty principle imposes restrictions on the capacity of certain
types of communication channels. This paper will show that in
compensation for this ‘‘quantum noise,’’ quantum mechanics al-
lows us novel forms of coding without analogue in communica-
tion channels adequately described by classical physics.

3Artur Ekert (1991) of Oxford University discovered QC in-
dependently, though from a different perspective (see Sec.
II.D.3).
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Alice and Bob can check whether someone ‘‘was listen-
ing’’: they simply compare a randomly chosen subset of
their data using a public channel. If Bob received this
subset unperturbed, then the logic goes as follows:

No perturbation⇒No measurement

⇒No eavesdropping. (2)

Actually, there are two more points to add. First, in
order to ensure that axiom (1) applies, Alice encodes
her information in nonorthogonal states (we shall illus-
trate this in Secs. II.C and II.D). Second, as we have
presented it so far, Alice and Bob could discover any
eavesdropper, but only after they have exchanged their
message. It would of course be much better to ensure
their privacy in advance and not afterwards. To achieve
this, Alice and Bob complement the above idea with a
second idea, again a very simple one, and one which is
entirely classical. Alice and Bob do not use the quantum
channel to transmit information, but only to transmit a
random sequence of bits, i.e., a key. Now, if the key is
unperturbed, then quantum physics guarantees that no
one has gotten any information about this key by eaves-
dropping, i.e., measuring, the quantum communication
channel. In this case, Alice and Bob can safely use this
key to encode messages. If, on the other hand, the key
turns out to be perturbed, then Alice and Bob simply
disregard it; since the key does not contain any informa-
tion, they have not lost any.

Let us make this general idea somewhat more precise,
in anticipation of Sec. II.C. In practice, the individual
quanta used by Alice and Bob, often called qubits (for
quantum bits), are encoded in individual photons; for
example, vertical and horizontal polarization code for
bit values 0 and 1, respectively. The second basis can
then be the diagonal one (645° linear polarization),
with 145° coding for bit 1 and 245° for bit 0, respec-
tively (see Fig. 1). Alternatively, the circular polarization
basis could be used as second basis. For photons the
quantum communication channel can be either free
space (see Sec. IV.E) or optical fibers—special fibers or
the ones used in standard telecommunications (Sec.
III.B). The communication channel is thus not really
quantum. What is quantum are the information carriers.

Before continuing, we need to see how QC could fit
into existing cryptosystems. For this purpose the next
section briefly surveys some of the main aspects of mod-
ern cryptology.

B. Classical cryptography

Cryptography is the art of rendering a message unin-
telligible to any unauthorized party. It is part of the
broader field of cryptology, which also includes cryp-
toanalysis, the art of code breaking (for a historical per-
spective, see Singh, 1999). To achieve this goal, an algo-
rithm (also called a cryptosystem or cipher) is used to
combine a message with some additional information—
known as the key—and produce a cryptogram. This
technique is known as encryption. For a cryptosystem to
be secure, it should be impossible to unlock the crypto-
gram without the key. In practice, this requirement is
often weakened so that the system is just extremely dif-
ficult to crack. The idea is that the message should re-
main protected at least as long as the information it con-
tains is valuable. Although confidentiality is the
traditional application of cryptography, it is used nowa-
days to achieve broader objectives, such as authen-
tication, digital signatures, and nonrepudiation (Bras-
sard, 1988).

1. Asymmetrical (public-key) cryptosystems

Cryptosytems come in two main classes—depending
on whether Alice and Bob use the same key. Asym-
metrical systems involve the use of different keys for
encryption and decryption. They are commonly known
as public-key cryptosystems. Their principle was first
proposed in 1976 by Whitfield Diffie and Martin Hell-
man, who were then at Stanford University. The first
actual implementation was then developed by Ronald
Rivest, Adi Shamir, and Leonard Adleman of the Mas-
sachusetts Institute of Technology in 1978.4 It is known
as RSA and is still widely used. If Bob wants to be able
to receive messages encrypted with a public-key crypto-
system, he must first choose a private key, which he
keeps secret. Then he computes from this private key a
public key, which he discloses to any interested party.
Alice uses this public key to encrypt her message. She
transmits the encrypted message to Bob, who decrypts it
with the private key. Public-key cryptosystems are con-
venient and have thus become very popular over the last
20 years. The security of the Internet, for example, is
partially based on such systems. They can be thought of
as a mailbox in which anybody can insert a letter. Only
the legitimate owner can then recover it, by opening it
with his private key.

4According to the British Government, public-key cryptogra-
phy was originally invented at the Government Communica-
tions Headquarters in Cheltenham as early as 1973. For an
historical account, see, for example, the book by Simon Singh
(1999).

FIG. 1. Implementation of the Bennett and Brassard (BB84)
protocol. The four states lie on the equator of the Poincaré
sphere.
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The security of public-key cryptosystems is based on
computational complexity. The idea is to use mathemati-
cal objects called one-way functions. By definition, it is
easy to compute the function f(x) given the variable x ,
but difficult to reverse the calculation and deduce x
from f(x). In the context of computational complexity,
the word ‘‘difficult’’ means that the time required to per-
form a task grows exponentially with the number of bits
in the input, while ‘‘easy’’ means that it grows polynomi-
ally. Intuitively, it is easy to understand that it takes only
a few seconds to work out 67371, but it takes much
longer to find the prime factors of 4757. However, fac-
toring has a ‘‘trapdoor,’’ which means that it is easy to do
the calculation in the difficult direction provided that
you have some additional information. For example, if
you were told that 67 was one of the prime factors of
4757, the calculation would be relatively simple. The se-
curity of RSA is actually based on the factorization of
large integers.

In spite of its elegance, this technique suffers from a
major flaw. It has not been possible yet to prove whether
factoring is ‘‘difficult’’ or not. This implies that the exis-
tence of a fast algorithm for factorization cannot be
ruled out. In addition, the discovery in 1994 by Peter
Shor of a polynomial algorithm allowing fast factoriza-
tion of integers with a quantum computer casts addi-
tional doubt on the nonexistence of a polynomial algo-
rithm for classical computers.

Similarly, all public-key cryptosystems rely for their
security on unproven assumptions, which could them-
selves be weakened or suppressed by theoretical or
practical advances. So far, no one has proved the exis-
tence of any one-way function with a trapdoor. In other
words, the existence of secure asymmetric cryptosystems
is not proven. This poses a serious threat to these cryp-
tosystems.

In a society like ours, where information and secure
communication are of the utmost importance, one can-
not tolerate such a threat. For instance, an overnight
breakthrough in mathematics could make electronic
money instantly worthless. To limit such economic and
social risks, there is no alternative but to turn to sym-
metrical cryptosystems. QC has a role to play in such
alternative systems.

2. Symmetrical (secret-key) cryptosystems

Symmetrical ciphers require the use of a single key for
both encryption and decryption. These systems can be
thought of as a safe in which the message is locked by
Alice with a key. Bob in turns uses a copy of this key to
unlock the safe. The one-time pad, first proposed by Gil-
bert Vernam of AT&T in 1926, belongs to this category.
In this scheme, Alice encrypts her message, a string of
bits denoted by the binary number m1 , using a ran-
domly generated key k . She simply adds each bit of the
message to the corresponding bit of the key to obtain
the scrambled text (s5m1 % k , where % denotes the bi-
nary addition modulo 2 without carry). It is then sent to
Bob, who decrypts the message by subtracting the key

(s*k5m1 % k*k5m1). Because the bits of the
scrambled text are as random as those of the key, they
do not contain any information. This cryptosystem is
thus provably secure according to information theory
(Shannon, 1949). In fact, it is the only provably secure
cryptosystem known today.

Although perfectly secure, this system has a
problem—it is essential for Alice and Bob to possess a
common secret key, which must be at least as long as the
message itself. They can only use the key for a single
encryption—hence the name ‘‘one-time pad.’’ If they
used the key more than once, Eve could record all of the
scrambled messages and start to build up a picture of the
plain texts and thus also of the key. (If Eve recorded two
different messages encrypted with the same key, she
could add the scrambled texts to obtain the sum of the
plain texts: s1 % s25m1 % k % m2 % k5m1 % m2 % k % k
5m1 % m2 , where we use the fact that % is commuta-
tive.) Furthermore, the key has to be transmitted by
some trusted means, such as a courier, or through a per-
sonal meeting between Alice and Bob. This procedure
can be complex and expensive, and may even amount to
a loophole in the system.

Because of the problem of distributing long sequences
of key bits, the one-time pad is currently used only for
the most critical applications. The symmetrical crypto-
systems in use for routine applications such as
e-commerce employ rather short keys. In the case of the
Data Encryption Standard (also known as DES, pro-
moted by the United States’ National Institute of Stan-
dards and Technology), a 56-bit key is combined with
the plain text divided into blocks in a rather complicated
way, involving permutations and nonlinear functions to
produce the cipher text blocks (see Stallings, 1999 for a
didactic presentation). Other cryptosystems (e.g.,
IDEA, The International Data Encryption System, or
AES, the Advanced Encryption Standard) follow similar
principles. Like asymmetrical cryptosystems, they offer
only computational security. However, for a given key
length, symmetrical systems are more secure than their
asymmetrical counterparts.

In practical implementations, asymmetrical algorithms
are used not so much for encryption, because of their
slowness, but rather for distribution of session keys for
symmetrical cryptosystems such as DES. Because the se-
curity of those algorithms is not proven (see Sec. II.B.1),
the security of the whole implementation can be com-
promised. If these algorithms were broken by math-
ematical advances, QC would constitute the only way to
solve the key distribution problem.

3. The one-time pad as ‘‘classical teleportation’’

The one-time pad has an interesting characteristic.
Assume that Alice wants to transfer to Bob a faithful
copy of a classical system, without giving any informa-
tion to Eve about this system. For this purpose Alice
and Bob have access only to an insecure classical chan-
nel. The operation is possible provided they share an
arbitrarily long secret key. Indeed, in principle, Alice
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can measure the state of her classical system with arbi-
trarily high precision and then use the one-time pad to
securely communicate this information to Bob, who can
then, in principle, reconstruct (a copy of) the classical
system. This somewhat artificial use of the one-time pad
has an interesting quantum relative (see Sec. II.E).

C. The BB84 protocol

1. Principle

The first protocol for QC was proposed in 1984 by
Charles H. Bennett, of IBM and Gilles Brassard, of the
University of Montreal, hence the name BB84, as this
protocol is now known. They presented their work at an
IEEE conference in India, quite unnoticed by the phys-
ics community at the term. This underscores the need
for collaboration in QC between different communities,
with different jargons, habits, and conventions.5 The in-
terdisciplinary character of QC is the probable reason
for its relatively slow start, but it certainly has contrib-
uted to the rapid expansion of the field in recent years.

We shall explain the BB84 protocol using the lan-
guage of spin 1

2, but clearly any two-level quantum sys-
tem would do. The protocol uses four quantum states
that constitute two bases, for example, the states up u↑&,
down u↓&, left u←&, and right u→&. The bases are maxi-
mally conjugate in the sense that any pair of vectors, one
from each basis, has the same overlap, e.g., u^↑u←&u2

5 1
2 . Conventionally, one attributes the binary value 0 to

states u↑& and u→& and the value 1 to the other two
states, and calls the states qubits (for quantum bits). In
the first step, Alice sends individual spins to Bob in
states chosen at random among the four states (in Fig. 1
the spin states u↑& , u↓&, u→&, and u←& are identified as
the polarization states ‘‘horizontal,’’ ‘‘vertical,’’ ‘‘145°,’’
and ‘‘245°,’’ respectively). How she ‘‘chooses at ran-
dom’’ is a delicate problem in practice (see Sec. III.D),
but in principle she could use her free will. The indi-
vidual spins could be sent all at once or one after the
other (much more practical), the only restriction being
that Alice and Bob be able to establish a one-to-one
correspondence between the transmitted and the re-
ceived spins. Next, Bob measures the incoming spins in
one of the two bases, chosen at random (using a
random-number generator independent from that of Al-
ice). At this point, whenever they use the same basis,
they get perfectly correlated results. However, whenever
they use different bases, they get uncorrelated results.
Hence, on average, Bob obtains a string of bits with a
25% error rate; called the raw key. This error rate is so
high that standard error correction schemes would fail.
But in this protocol, as we shall see, Alice and Bob know

which bits are perfectly correlated (the ones for which
Alice and Bob used the same basis) and which ones are
completely uncorrelated (all the other ones). Hence a
straightforward error correction scheme is possible: For
each bit Bob announces publicly in which basis he mea-
sured the corresponding qubit (but he does not tell the
result he obtained). Alice then reveals only whether or
not the state in which she encoded that qubit is compat-
ible with the basis announced by Bob. If the state is
compatible, they keep the bit; if not, they disregard it. In
this way about 50% of the bit string is discarded. This
shorter key obtained after basis reconciliation is called
the sifted key.6 The fact that Alice and Bob use a public
channel at some stage of their protocol is very common
in cryptoprotocols. This channel does not have to be
confidential, only authentic. Hence any adversary Eve
can listen to all the communication on the public chan-
nel, but she cannot modify it. In practice Alice and Bob
may use the same transmission channel to implement
both the quantum and the classical channels.

Note that neither Alice nor Bob can decide which key
results from the protocol.7 Indeed, it is the conjunction
of both of their random choices that produces the key.

Let us now consider the security of the above ideal
protocol (ideal because so far we have not taken into
account unavoidable noise in practice, due to technical
imperfections). Assume that some adversary Eve inter-
cepts a qubit propagating from Alice to Bob. This is very
easy, but if Bob does not receive an expected qubit, he
will simply tell Alice to disregard it. Hence Eve only
lowers the bit rate (possibly down to zero), but she does
not gain any useful information. For real eavesdropping
Eve must send a qubit to Bob. Ideally she would like to
send this qubit in its original state, keeping a copy for
herself.

2. No-cloning theorem

Following Wootters and Zurek (1982) one can easily
prove that perfect copying is impossible in the quantum
world (see also the anticipatory intuition of Wigner in
1961, as well as Dieks, 1982 and Milonni and Hardies,
1982). Let c denote the original state of the qubit, ub&
the blank copy,8 and u0&PHQCM the initial state of Eve’s
‘‘quantum copy machine,’’ where the Hilbert space
HQCM of the quantum cloning machine is arbitrary. The
ideal machine would produce

5For instance, it is amusing to note that physicists strive to
publish in reputable journals, while conference proceedings
are of secondary importance. For computer scientists, in con-
trast, appearance in the proceedings of the best conferences is
considered more important, while journal publication is sec-
ondary.

6This terminology was introduced by Ekert and Huttner in
1994.

7Alice and Bob can, however, determine the statistics of the
key.

8ub& corresponds to the stock of white paper in an everyday
photocopy machine. We shall assume that the machine is not
empty, a purely theoretical assumption, as is well known.
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c ^ ub& ^ u0&→c ^ c ^ ufc&, (3)

where ufc& denotes the final state of Eve’s machine,
which might depend on c. Accordingly, using obvious
notations,

u↑ ,b ,0&→u↑ ,↑ ,f↑&, (4)

and

u↓ ,b ,0&→u↓ ,↓ ,f↓&. (5)

By linearity of quantum dynamics it follows that

u→ ,b ,0&5
1

&
~ u↑&1u↓&) ^ ub ,0& (6)

→ 1

&
~ u↑ ,↑ ,f↑&1u↓ ,↓ ,f↓&). (7)

But the latter state differs from the ideal copy u→ ,
→ ,f→&, whatever the states ufc& are.

Consequently, Eve cannot keep a perfect quantum
copy, because perfect quantum copy machines cannot
exist. The possibility of copying classical information is
probably one of the most characteristic features of infor-
mation in the everyday sense. The fact that quantum
states, nowadays often called quantum information, can-
not be copied is certainly one of the most specific at-
tributes that make this new kind of information so dif-
ferent and hence so attractive. Actually, this negative
capability clearly has its positive side, since it prevents
Eve from perfect eavesdropping and hence makes QC
potentially secure.

3. Intercept-resend strategy

We have seen that the eavesdropper needs to send a
qubit to Bob while keeping a necessarily imperfect copy
for herself. How imperfect the copy has to be, according
to quantum theory, is a delicate problem that we shall
address in Sec. VI. Here, let us develop a simple eaves-
dropping strategy, called intercept-resend. This simple
and even practical attack consists of Eve’s measuring
each qubit in one of the two bases, precisely as Bob
does. Then, she resends to Bob another qubit in the
state corresponding to her measurement result. In about
half of the cases, Eve will be lucky and choose the basis
compatible with the state prepared by Alice. In these
cases she resends to Bob a qubit in the correct state, and
Alice and Bob will not notice her intervention. How-
ever, in the other half of the cases, Eve unluckily uses
the basis incompatible with the state prepared by Alice.
This necessarily happens, since Eve has no information
about Alice’s random-number generator (hence the im-
portance of this generator’s being truly random). In
these cases the qubits sent out by Eve are in states with
an overlap of 1

2 with the correct states. Alice and Bob
thus discover her intervention in about half of these

cases, since they get uncorrelated results. Altogether, if
Eve uses this intercept-resend strategy, she gets 50% in-
formation, while Alice and Bob have about a 25% error
rate in their sifted key, i.e., after they eliminate the cases
in which they used incompatible states, there is still
about 25% error. They can thus easily detect the pres-
ence of Eve. If, however, Eve applies this strategy to
only a fraction of the communication, say 10%, then the
error rate will be only '2.5%, while Eve’s information
will be '5%. The next section explains how Alice and
Bob can counter such attacks.

4. Error correction, privacy amplification, and quantum
secret growing

At this point in the BB84 protocol, Alice and Bob
share a so-called sifted key. But this key contains errors.
The errors are caused by technical imperfections, as well
as possibly by Eve’s intervention. Realistic error rates in
the sifted key using today’s technology are of the order
of a few percent. This contrasts strongly with the 1029

error rate typical in optical communication. Of course,
the few-percent error rate will be corrected down to the
standard 1029 during the (classical) error correction step
of the protocol. In order to avoid confusion, especially
among optical communication specialists, Beat Perny
from Swisscom and Paul Townsend, then with British
Telecommunications (BT), proposed naming the error
rate in the sifted key QBER, for quantum bit error rate,
to clearly distinguish it from the bit error rate (BER)
used in standard communications.

Such a situation, in which legitimate partners share
classical information with high but not 100% correlation
and with possibly some correlation to a third party, is
common to all quantum cryptosystems. Actually, it is
also a standard starting point for classical information-
based cryptosystems in which one assumes that some-
how Alice, Bob, and Eve have random variables a, b,
and e, respectively, with a joint probability distribution
P(a ,b ,e). Consequently, the last step in a QC protocol
uses classical algorithms, first to correct the errors, and
then reduce to Eve’s information on the final key, a pro-
cess called privacy amplification.

The first mention of privacy amplification appeared in
Bennett, Brassard, and Robert (1988). It was then ex-
tended in collaboration with C. Crépeau from the Uni-
versity of Montreal and U. Maurer of ETH, Zürich, re-
spectively (Bennett, Brassard, et al. 1995; see also
Bennett, Bessette, et al., 1992). Interestingly, this work
motivated by QC found applications in standard
information-based cryptography (Maurer, 1993; Maurer
and Wolf, 1999).

Assume that a joint probability distribution P(a ,b ,e)
exists. Near the end of this section, we shall comment on
this assumption. Alice and Bob have access only to the
marginal distribution P(a ,b). From this and from the
laws of quantum mechanics, they have to deduce con-
straints on the complete scenario P(a ,b ,e); in particu-
lar they have to bound Eve’s information (see Secs. VI.E
and VI.G). Given P(a ,b ,e), necessary and sufficient
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conditions for a positive secret-key rate between Alice
and Bob, S(a ,bie), are not yet known. However, a use-
ful lower bound is given by the difference between Alice
and Bob’s mutual Shannon information I(a ,b) and
Eve’s mutual information (Csiszár and Körner, 1978, and
Theorem 1 in Sec. VI.G):

S~a ,bie!>max$I~a ,b!2I~a ,e!,I~a ,b!2I~b ,e!%. (8)

Intuitively, this result states that secure-key distillation
(Bennett, Bessette, et al., 1992) is possible whenever
Bob has more information than Eve.

The bound (8) is tight if Alice and Bob are restricted
to one-way communication, but for two-way communi-
cation, secret-key agreement might be possible even
when condition (8) is not satisfied (see Sec. II.C.5).

Without discussing any algorithm in detail, let us offer
some idea of how Alice and Bob can establish a secret
key when condition (8) is satisfied. First, once the sifted
key is obtained (i.e., after the bases have been an-
nounced), Alice and Bob publicly compare a randomly
chosen subset of it. In this way they estimate the error
rate [more generally, they estimate their marginal prob-
ability distribution P(a ,b)]. These publicly disclosed
bits are then discarded. Next, either condition (8) is not
satisfied and they stop the protocol or condition (8) is
satisfied and they use some standard error correction
protocol to get a shorter key without errors.

With the simplest error correction protocol, Alice ran-
domly chooses pairs of bits and announces their XOR
value (i.e., their sum modulo 2). Bob replies either ‘‘ac-
cept’’ if he has the same XOR value for his correspond-
ing bits, or ‘‘reject’’ if not. In the first case, Alice and
Bob keep the first bit of the pair and discard the second
one, while in the second case they discard both bits. In
reality, more complex and efficient algorithms are used.

After error correction, Alice and Bob have identical
copies of a key, but Eve may still have some information
about it [compatible with condition (8)]. Alice and Bob
thus need to reduce Eve’s information to an arbitrarily
low value using some privacy amplification protocols.
These classical protocols typically work as follows. Alice
again randomly chooses pairs of bits and computes their
XOR value. But, in contrast to error correction, she
does not announce this XOR value. She only announces
which bits she chose (e.g., bits number 103 and 537).
Alice and Bob then replace the two bits by their XOR
value. In this way they shorten their key while keeping it
error free, but if Eve has only partial information on the
two bits, her information on the XOR value is even less.
Assume, for example, that Eve knows only the value of
the first bit and nothing about the second one. Then she
has no information at all about the XOR value. Also, if
Eve knows the value of both bits with 60% probability,
then the probability that she correctly guesses the XOR
value is only 0.6210.42552%. This process would have
to be repeated several times; more efficient algorithms
use larger blocks (Brassard and Salvail, 1994).

The error correction and privacy amplification algo-
rithms sketched above are purely classical algorithms.
This illustrates that QC is a truly interdisciplinary field.

Actually, the above scenario is incomplete. In this pre-
sentation, we have assumed that Eve measures her
probe before Alice and Bob run the error correction and
privacy amplification algorithms, hence that P(a ,b ,e)
exists. In practice this is a reasonable assumption, but in
principle Eve could wait until the end of all the proto-
cols and then optimize her measurements accordingly.
Such ‘‘delayed-choice eavesdropping strategies’’9 are
discussed in Sec. VI.

It should by now be clear that QC does not provide a
complete solution for all cryptographic purposes.10 Ac-
tually, quite the contrary, QC can only be used as a
complement to standard symmetrical cryptosystems. Ac-
cordingly, a more precise name for QC is quantum key
distribution, since this is all QC does. Nevertheless, we
prefer to keep the well-known terminology, which lends
its name to the title of this review.

Finally, let us emphasize that every key distribution
system must incorporate some authentication scheme:
the two parties must identify themselves. If not, Alice
could actually be communicating directly with Eve. A
straightforward approach is for Alice and Bob initially
to share a short secret. Then QC provides them with a
longer one and they each keep a small portion for au-
thentication at the next session (Bennett, Bessette, et al.,
1992). From this perspective, QC is a quantum secret-
growing protocol.

5. Advantage distillation

QC has motivated and still motivates research in clas-
sical information theory. The best-known example is
probably the development of privacy amplification algo-
rithms (Bennett et al., 1988, 1995). This in turn led to the
development of new cryptosystems based on weak but
classical signals, emitted for instance by satellites (Mau-
rer, 1993).11 These new developments required secret-
key agreement protocols that could be used even when
condition (8) did not apply. Such protocols, called ad-
vantage distillation, necessarily use two-way communica-
tion and are much less efficient than privacy amplifica-
tion. Usually, they are not considered in the literature on
QC, but conceptually they are remarkable from at least
two points of view. First, it is somewhat surprising that
secret-key agreement is possible even if Alice and Bob
start with less mutual (Shannon) information than Eve.
They can take advantage of the authenticated public

9Note, however, that Eve has to choose the interaction be-
tween her probe and the qubits before the public discussion
phase of the protocol.

10For a while it was thought that bit commitment (see, for
example, Brassard, 1988), a powerful primitive in cryptology,
could be realized using quantum principles. However, Dominic
Mayers (1996a, 1997) and Lo and Chau (1998) proved it to be
impossible (see also Brassard et al., 1998).

11Note that here confidentiality is not guaranteed by the laws
of physics, but relies on the assumption that Eve’s technology
is limited, e.g., her antenna is finite, and her detectors have
limited efficiencies.
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channel to decide which series of realizations to keep,
whereas Eve cannot influence this process12 (Maurer,
1993; Maurer and Wolf, 1999).

Recently, a second remarkable feature of advantage
distillation, connecting quantum and classical secret-key
agreement, has been discovered (assuming one uses the
Ekert protocol described in Sec. II.D.3): If Eve follows a
strategy that optimizes her Shannon information, under
the assumption that she attacks the qubits one at a time
(the so-called individual attack; see Sec. VI.E), then Al-
ice and Bob can use advantage distillation if and only if
Alice and Bob’s qubits are still entangled (they can thus
use quantum privacy amplification; Deutsch et al., 1996;
Gisin and Wolf, 1999). This connection between the con-
cept of entanglement, central to quantum information
theory, and the concept of intrinsic classical information,
central to classical information-based cryptography
(Maurer and Wolf, 1999), has been shown to be general
(Gisin and Wolf, 2000). The connection seems to extend
even to bound entanglement (Gisin et al., 2000).

D. Other protocols

1. Two-state protocol

In 1992 Bennett noticed that four states are more than
are really necessary for QC: only two nonorthogonal
states are needed. Indeed the security of QC relies on
the inability of an adversary to distinguish unambigu-
ously and without perturbation between the different
states that Alice may send to Bob; hence two states are
necessary, and if they are incompatible (i.e., not mutu-
ally orthogonal), then two states are also sufficient (Ben-
nett, 1992). This is a conceptually important clarifica-
tion. It also made several of the first experimental
demonstrations easier (as is discussed further in Sec.
IV.D). But in practice, it is not a good solution. Indeed,
although two nonorthogonal states cannot be distin-
guished unambiguously without perturbation, one can
unambiguously distinguish between them at the cost of
some losses (Ivanovic, 1987; Peres, 1988). This possibil-
ity has been demonstrated in practice (Huttner, Gautier,
et al., 1996; Clarke et al., 2000). Alice and Bob would
have to monitor the attenuation of the quantum channel
(and even this would not be entirely safe if Eve were
able to replace the channel by a more transparent one;
see Sec. VI.H). The two-state protocol can also be
implemented using interference between a macroscopic

bright pulse and a dim pulse with less than one photon
on average (Bennett, 1992). The presence of the bright
pulse makes this protocol especially resistant to eaves-
dropping, even in settings with high attenuation. Bob
can monitor the bright pulses to make sure that Eve
does not remove any. In this case, Eve cannot eliminate
the dim pulse without revealing her presence, because
the interference of the bright pulse with vacuum would
introduce errors. A practical implementation of this so-
called 892 protocol is discussed in Sec. IV.D. Huttner
et al. extended this reference-beam monitoring to the
four-state protocol in 1995.

2. Six-state protocol

While two states are enough and four states are stan-
dard, a six-state protocol better respects the symmetry
of the qubit state space; see Fig. 2 (Bruss, 1998;
Bechmann-Pasquinucci and Gisin, 1999). The six states
constitute three bases, hence the probability that Alice
and Bob choose the same basis is only 1

3, but the sym-
metry of this protocol greatly simplifies the security
analysis and reduces Eve’s optimal information gain for
a given error rate QBER. If Eve measures every photon,
the QBER is 33%, compared to 25% in the case of the
BB84 protocol.

3. Einstein-Podolsky-Rosen protocol

This variation of the BB84 protocol is of special con-
ceptual, historical, and practical interest. The idea is due
to Artur Ekert (1991) of Oxford University, who, while
elaborating on a suggestion of David Deutsch (1985),
discovered QC independently of the BB84 paper. Intel-
lectually, it is very satisfying to see this direct connection
to the famous EPR paradox (Einstein, Podolski, and
Rosen, 1935): the initially philosophical debate turned to
theoretical physics with Bell’s inequality (1964), then to
experimental physics (Freedmann and Clauser, 1972; Fry
and Thompson, 1976; Aspect et al., 1982), and is now—
thanks to Ekert’s ingenious idea—part of applied phys-
ics.

The idea consists in replacing the quantum channel
carrying two qubits from Alice to Bob by a channel car-
rying two qubits from a common source, one qubit to

12The idea is that Alice picks out several instances in which
she got the same bit and communicates the instances—but not
the bit—to Bob. Bob replies yes only if it happens that for all
these instances he also has the same bit value. For high error
rates this is unlikely, but when it does happen there is a high
probability that both have the same bit. Eve cannot influence
the choice of the instances. All she can do is use a majority
vote for the cases accepted by Bob. The probability that Eve
makes an error can be much higher than the probability that
Bob makes an error (i.e., that all his instances are wrong), even
if Eve has more initial information than Bob.

FIG. 2. Poincaré sphere with a representation of six states that
can be used to implement the generalization of the BB84 pro-
tocol.
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Alice and one to Bob. A first possibility would be that
the source always emits the two qubits in the same state
chosen randomly among the four states of the BB84 pro-
tocol. Alice and Bob would then both measure their qu-
bit in one of the two bases, again chosen independently
and randomly. The source then announces the bases,
and Alice and Bob keep the data only when they hap-
pen to have made their measurements in the compatible
basis. If the source is reliable, this protocol is equivalent
to that of BB84: It is as if the qubit propagates back-
wards in time from Alice to the source, and then for-
ward to Bob. But better than trusting the source, which
could be in Eve’s hand, the Ekert protocol assumes that
the two qubits are emitted in a maximally entangled
state like

f15
1

&
~ u↑ ,↑&1u↓ ,↓&). (9)

Then, when Alice and Bob happen to use the same ba-
sis, either the x basis or the y basis, i.e., in about half of
the cases, their results are identical, providing them with
a common key. Note the similarity between the one-
qubit BB84 protocol illustrated in Fig. 1 and the two-
qubit Ekert protocol of Fig. 3. The analogy can be made
even stronger by noting that for all unitary evolutions
U1 and U2 , the following equality holds:

U1 ^ U2F(1)51^ U2U1
t F(1), (10)

where U1
t denotes the transpose.

In his 1991 paper Ekert suggested basing the security
of this two-qubit protocol on Bell’s inequality, an in-
equality which demonstrates that some correlations pre-
dicted by quantum mechanics cannot be reproduced by
any local theory (Bell, 1964). To do this, Alice and Bob
can use a third basis (see Fig. 4). In this way the prob-
ability that they might happen to choose the same basis
is reduced from 1

2 to 2
9, but at the same time as they

establish a key, they collect enough data to test Bell’s
inequality.13 They can thus check that the source really
emits the entangled state (9) and not merely product
states. The following year Bennett, Brassard, and Mer-
min (1992) criticized Ekert’s letter, arguing that the vio-
lation of Bell’s inequality is not necessary for the secu-

rity of QC and emphasizing the close connection
between the Ekert and the BB84 schemes. This criticism
might be missing an important point. Although the exact
relation between security and Bell’s inequality is not yet
fully known, there are clear results establishing fascinat-
ing connections (see Sec. VI.F). In October 1992, an ar-
ticle by Bennett, Brassard, and Ekert demonstrated that
the founding fathers of QC were able to join forces
to develop the field in a pleasant atmosphere (Bennett,
Brassard, and Ekert, 1992).

4. Other variations

There is a large collection of variations on the BB84
protocol. Let us mention a few, chosen somewhat arbi-
trarily. First, one can assume that the two bases are not
chosen with equal probability (Ardehali et al., 1998).
This has the nice consequence that the probability that
Alice and Bob choose the same basis is greater than 1

2,
thus increasing the transmission rate of the sifted key.
However, this protocol makes Eve’s job easier, as she is
more likely to guess correctly the basis that was used.
Consequently, it is not clear whether the final key rate,
after error correction and privacy amplification, is
higher or not.

Another variation consists in using quantum systems
of dimension greater than 2 (Bechmann-Pasquinucci
and Peres, 2000; Bechmann-Pasquinucci and Tittel,
2000; Bourennane, Karlsson, and Björn, 2001). Again,
the practical value of this idea has not yet been fully
determined.

A third variation worth mentioning is due to Golden-
berg and Vaidman of Tel Aviv University (1995). They
suggested preparing the qubits in a superposition of two
spatially separated states, then sending one component
of this superposition and waiting until Bob receives it
before sending the second component. This does not

13A maximal violation of Bell’s inequality is necessary to rule
out tampering by Eve. In this case, the QBER must necessarily
be equal to zero. With a nonmaximal violation, as typically
obtained in experimental systems, Alice and Bob can distill a
secure key using error correction and privacy amplification.

FIG. 3. Einstein-Podolsky-Rosen (EPR) protocol, with the
source and a Poincaré representation of the four possible
states measured independently by Alice and Bob.

FIG. 4. Illustration of protocols exploiting EPR quantum sys-
tems. To implement the BB84 quantum cryptographic proto-
col, Alice and Bob use the same bases to prepare and measure
their particles. A representation of their states on the Poincaré
sphere is shown. A similar setup, but with Bob’s bases rotated
by 45°, can be used to test the violation of Bell’s inequality.
Finally, in the Ekert protocol, Alice and Bob may use the vio-
lation of Bell’s inequality to test for eavesdropping.
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sound of great practical value, but has the nice concep-
tual feature that the minimal two states do not need to
be mutually orthogonal.

E. Quantum teleportation as a ‘‘quantum one-time pad’’

Since its discovery in 1993 by a surprisingly large
group of physicists, quantum teleportation (Bennett
et al., 1993) has received much attention from both the
scientific community and the general public. The dream
of beaming travelers through the universe is exciting,
but completely out of the realm of any foreseeable tech-
nology. However, quantum teleportation can be seen as
the fully quantum version of the one-time pad (see Sec.
II.B.3), hence as the ultimate form of QC. As in ‘‘classi-
cal teleportation,’’ let us assume that Alice aims to trans-
fer a faithful copy of a quantum system to Bob. If Alice
has full knowledge of the quantum state, the problem is
not really a quantum one (Alice’s information is classi-
cal). If, on the other hand, Alice does not know the
quantum state, she cannot send a copy, since quantum
copying is impossible according to quantum physics (see
Sec. II.C.2). Nor can she send classical instructions, since
this would allow the production of many copies. How-
ever, if Alice and Bob share arbitrarily many entangled
qubits, sometimes called a quantum key, and share a
classical communication channel, then the quantum tele-
portation protocol provides them with a means of trans-
ferring the quantum state of the system from Alice to
Bob. In the course of running this protocol, Alice’s
quantum system is destroyed without Alice’s having
learned anything about the quantum state, while Bob’s
qubit ends in a state isomorphic to the state of the origi-
nal system (but Bob does not learn anything about the
quantum state). If the initial quantum system is a quan-
tum message coded in the form of a sequence of qubits,
then this quantum message is faithfully and securely
transferred to Bob, without any information leaking to
the outside world (i.e., to anyone not sharing the prior
entanglement with Alice and Bob). Finally, the quantum
message could be formed of a four-letter quantum al-
phabet consisting of the four states of the BB84 proto-
col. With futuristic but not impossible technology, Alice
and Bob could keep their entangled qubits in their re-
spective wallets and could enjoy totally secure commu-
nication at any time, without even having to know where
the other is located (provided they can communicate
classically).

F. Optical amplification, quantum nondemolition
measurements, and optimal quantum cloning

After almost every general talk on QC, two questions
arise: What about optical amplifiers? and What about
quantum nondemolition measurements? In this section
we briefly address these questions.

Let us start with the second one, as it is the easiest.
The term ‘‘quantum nondemolition measurement’’ is
simply confusing. There is nothing like a quantum mea-
surement that does not perturb (i.e., modify) the quan-

tum state, except if the state happens to be an eigenstate
of the observable. Hence, if for some reason one conjec-
tures that a quantum system is in some state (or in a
state among a set of mutually orthogonal ones), one can
in principle test this conjecture repeatedly (Braginsky
and Khalili, 1992). However, if the state is only restricted
to be in a finite set containing nonorthogonal states, as
in QC, then there is no way to perform a measurement
without ‘‘demolishing’’ (perturbing) the state. Now, in
QC the term ‘‘nondemolition measurement’’ is also used
with a different meaning: one measures the number of
photons in a pulse without affecting the degree of free-
dom coding the qubit (e.g., the polarization; see Sec.
VI.H), or one detects the presence of a photon without
destroying it (Nogues et al., 1999). Such measurements
are usually called ideal measurements, or projective mea-
surements, because they produce the least possible per-
turbation (Piron, 1990) and because they can be repre-
sented by projectors. It is important to stress that these
‘‘ideal measurements’’ do not invalidate the security of
QC.

Let us now consider optical amplifiers (a laser me-
dium, but without mirrors, so that amplification takes
place in a single pass; see Desurvire, 1994). They are
widely used in today’s optical communication networks.
However, they are of no use for quantum communica-
tion. Indeed, as seen in Sec. II.C, the copying of quan-
tum information is impossible. Here we illustrate this
characteristic of quantum information by the example of
optical amplifiers: the necessary presence of spontane-
ous emission whenever there is stimulated emission pre-
vents perfect copying. Let us clarify this important and
often confusing point, following the work of Simon et al.
(1999, 2000; see also De Martini et al., 2000 and Kempe
et al., 2000). Let the two basic qubit states u0& and u1& be
physically implemented by two optical modes:
u0&[u1,0& and u1&[u0,1&. Thus un ,m&ph ^ uk ,l&a denotes
the state of n photons in mode 1 and m photons in mode
2, while k ,l50(1) denotes the ground (or excited) state
of two-level atoms coupled to mode 1 or 2, respectively.
Hence spontaneous emission corresponds to

u0,0&ph ^ u1,0&a→u1,0&ph ^ u0,0&a , (11)

u0,0&ph ^ u0,1&a→u0,1&ph ^ u0,0&a , (12)

and stimulated emission to

u1,0&ph ^ u1,0&a→&u2,0&ph ^ u0,0&a , (13)

u0,1&ph ^ u0,1&a→&u0,2&ph ^ u0,0&a , (14)

where the factor of & takes into account the ratio of
stimulated to spontaneous emission. Let the initial state
of the atom be a mixture of the following two states,
each with equal (50%) weight:

u0,1&a and u1,0&a . (15)

By symmetry, it suffices to consider one possible initial
state of the qubit, e.g., one photon in the first mode
u1,0&ph . The initial state of the photon1atom system is
thus a mixture:
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u1,0&ph ^ u1,0&a or u1,0&ph ^ u0,1&a . (16)

This corresponds to the first-order term in an evolution
with a Hamiltonian (in the interaction picture): H
5x(a1

†s1
21a1s1

†1a2
†s2

21a2s2
†). After some time the

two-photon component of the evolved states becomes

&u2,0&ph ^ u0,0&a or u1,1&ph ^ u0,0&a . (17)

The correspondence with a pair of spin 1
2 goes as fol-

lows:

u2,0&5u↑↑&, u0,2&5u↓↓&, (18)

u1,1&ph5c(1)5
1

&
~ u↑↓&1u↓↑&). (19)

Tracing over the amplifier (i.e., the two-level atom), an
(ideal) amplifier achieves the following transformation:

P↑→2P↑↑1Pc(1), (20)

where the P’s indicate projectors (i.e., pure-state density
matrices) and the lack of normalization results from the
first-order expansion used in Eqs. (11)–(14). Accord-
ingly, after normalization, each photon is in the state

Tr12ph modeS 2P↑↑1Pc(1)

3 D5
2P↑1 1

2 1

3
. (21)

The corresponding fidelity is

F5
21 1

2

3
5

5
6

, (22)

which is precisely the optimal fidelity compatible with
quantum mechanics (Bužek and Hillery, 1996; Gisin and
Massar, 1997; Bruss et al., 1998). In other words, if we
start with a single photon in an arbitrary state and pass it
through an amplifier, then due to the effect of spontane-
ous emission the fidelity of the state exiting the ampli-
fier, when it consists of exactly two photons, with the
initial state will be equal to at most 5/6. Note that if it
were possible to make better copies, then signaling at
arbitrarily fast speed, using EPR correlations between
spatially separated systems, would also be possible (Gi-
sin, 1998).

III. TECHNOLOGICAL CHALLENGES

The very first demonstration of QC was a table-top
experiment performed at the IBM laboratory in the
early 1990s over a distance of 30 cm (Bennett, Bessette,
et al., 1992), marking the start of a series of impressive
experimental improvements over the past few years.
The 30-cm distance is of little practical interest. Either
the distance should be even shorter [think of a credit
card and an ATM machine (Huttner, Imoto, and Bar-
nett, 1996), in which case all of Alice’s components
should fit on the credit card—a nice idea, but still im-
practical with present technology] or the distance should
be much longer, at least in the kilometer range. Most of
the research so far uses optical fibers to guide the pho-
tons from Alice to Bob, and we shall mainly concentrate

on such systems here. There is also, however, some very
significant research on free-space systems (see Sec.
IV.E).

Once the medium has been chosen, there remain the
questions of the source and detectors. Since they have to
be compatible, the crucial choice is that of the wave-
length. There are two main possibilities. Either one
chooses a wavelength around 800 nm, for which efficient
photon counters are commercially available, or one
chooses a wavelength compatible with today’s telecom-
munications optical fibers, i.e., near 1300 or 1550 nm.
The first choice requires free-space transmission or the
use of special fibers, hence the installed telecommunica-
tions networks cannot be used. The second choice re-
quires the improvement or development of new detec-
tors, not based on silicon semiconductors, which are
transparent above a wavelength of 1000 nm.

In the case of transmission using optical fibers, it is
still unclear which of the two alternatives will turn out to
be the best choice. If QC finds niche markets, it is con-
ceivable that special fibers will be installed for that pur-
pose. But it is equally conceivable that new commercial
detectors will soon make it much easier to detect single
photons at telecommunications wavelengths. Actually,
the latter possibility is very likely, as several research
groups and industries are already working on it. There is
another good reason to bet on this solution: the quality
of telecommunications fibers is much higher than that of
any special fiber; in particular, the attenuation is much
lower (this is why the telecommunications industry
chose these wavelengths): at 800 nm, the attenuation is
about 2 dB/km (i.e., half the photons are lost after 1.5
km), while it is only of the order of 0.35 and 0.20 dB/km
at 1300 and 1550 nm, respectively (50% loss after about
9 and 15 km).14

In the case of free-space transmission, the choice of
wavelength is straightforward, since the region where
good photon detectors exist—around 800 nm—coincides
with that where absorption is low. However, free-space
transmission is restricted to line-of-sight links and is very
weather dependent.

In the next sections we successively consider the ques-
tions of how to produce single photons (Sec. III.A), how
to transmit them (Sec. III.B), how to detect single pho-
tons (Sec. III.C), and finally how to exploit the intrinsic
randomness of quantum processes to build random gen-
erators (Sec. III.D).

A. Photon sources

Optical quantum cryptography is based on the use of
single-photon Fock states. Unfortunately, these states
are difficult to realize experimentally. Nowadays, practi-
cal implementations rely on faint laser pulses or en-
tangled photon pairs, in which both the photon and the
photon-pair number distribution obey Poisson statistics.

14The losses in dB (ldb) can be calculated from the losses in
percent (l%): ldB5210 log10@12 (l% /100)# .
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Hence both possibilities suffer from a small probability
of generating more than one photon or photon pair at
the same time. For large losses in the quantum channel,
even small fractions of these multiphotons can have im-
portant consequences on the security of the key (see
Sec. VI.H), leading to interest in ‘‘photon guns’’; see Sec.
III.A.3). In this section we briefly comment on sources
based on faint pulses as well as on entangled photon
pairs, and we compare their advantages and drawbacks.

1. Faint laser pulses

There is a very simple solution to approximate single-
photon Fock states: coherent states with an ultralow
mean photon number m. They can easily be realized us-
ing only standard semiconductor lasers and calibrated
attenuators. The probability of finding n photons in such
a coherent state follows the Poisson statistics:

P~n ,m!5
mn

n!
e2m . (23)

Accordingly, the probability that a nonempty weak co-
herent pulse contains more than one photon,

P~n.1un.0,m!5
12P~0,m!2P~1,m!

12P~0,m!

5
12e2m~11m!

12e2m >
m

2
, (24)

can be made arbitrarily small. Weak pulses are thus ex-
tremely practical and have indeed been used in the vast
majority of experiments. However, they have one major
drawback. When m is small, most pulses are empty:
P(n50)'12m . In principle, the resulting decrease in
bit rate could be compensated for thanks to the achiev-
able gigahertz modulation rates of telecommunications
lasers. But in practice, the problem comes from the de-
tectors’ dark counts (i.e., a click without a photon’s ar-
riving). Indeed, the detectors must be active for all
pulses, including the empty ones. Hence the total dark
counts increase with the laser’s modulation rate, and the
ratio of detected photons to dark counts (i.e., the signal-
to-noise ratio) decreases with m (see Sec. IV.A). The
problem is especially severe for longer wavelengths, at
which photon detectors based on indium gallium ar-
senide semiconductors (InGaAs) are needed (see Sec.
III.C), since the noise of these detectors explodes if they
are opened too frequently (in practice with a rate larger
than a few megahertz). This prevents the use of really
low photon numbers, smaller than approximately 1%.
Most experiments to date have relied on m50.1, mean-
ing that 5% of the nonempty pulses contain more than
one photon. However, it is important to stress that, as
pointed out by Lütkenhaus (2000), there is an optimal m

depending on the transmission losses.15 After key distil-
lation, the security is just as good with faint laser pulses
as with Fock states. The price to pay for using such
states is a reduction of the bit rate.

2. Photon pairs generated by parametric downconversion

Another way to create pseudo-single-photon states is
the generation of photon pairs and the use of one pho-
ton as a trigger for the other one (Hong and Mandel,
1986). In contrast to the sources discussed earlier, the
second detector must be activated only whenever the
first one has detected a photon, hence when m51, and
not whenever a pump pulse has been emitted, therefore
circumventing the problem of empty pulses.

The photon pairs are generated by spontaneous para-
metric downconversion in a x(2) nonlinear crystal.16 In
this process, the inverse of the well-known frequency
doubling, one photon spontaneously splits into two
daughter photons—traditionally called signal and idler
photons—conserving total energy and momentum. In
this context, momentum conservation is called phase
matching and can be achieved despite chromatic disper-
sion by exploiting the birefringence of the nonlinear
crystal. Phase matching allows one to choose the wave-
length and determines the bandwidth of the downcon-
verted photons. The latter is in general rather large and
varies from a few nanometers up to some tens of na-
nometers. For the nondegenerate case one typically gets
a bandwith of 5–10 nm, whereas in the degenerate case
(where the central frequency of both photons is equal),
the bandwidth can be as large as 70 nm.

This photon-pair creation process is very inefficient;
typically it takes some 1010 pump photons to create one
pair in a given mode.17 The number of photon pairs per
mode is thermally distributed within the coherence time
of the photons and follows a Poissonian distribution for
larger time windows (Walls and Milburn, 1995). With a
pump power of 1 mW, about 106 pairs per second can be
collected in single-mode fibers. Accordingly, in a time
window of roughly 1 ns, the conditional probability of
finding a second pair, having already detected one, is
10631029'0.1%. In the case of continuous pumping,
this time window is given by the detector resolution. Tol-
erating, for example, 1% of these multipair events, one
can generate 107 pairs per second using a realistic

15Contrary to a frequent misconception, there is nothing spe-
cial about a m value of 0.1, even though it has been selected by
most experimentalists. The optimal value—i.e., the value that
yields the highest key exchange rate after distillation—
depends on the optical losses in the channel and on assump-
tions about Eve’s technology (see Secs. VI.H and VI.I).

16For a review see Rarity and Tapster (1988), and for more
recent developments see Kwiat et al. (1999), Tittel et al.
(1999), Jennewein, Simon, et al. (2000), and Tanzilli et al.
(2001).

17Recently we achieved a conversion rate of 1026 using an
optical waveguide in a periodically poled LiNbO3 crystal (Tan-
zilli et al., 2001).
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10-mW pump. To detect, for example, 10% of the trigger
photons, the second detector has to be activated 106

times per second. In comparison, the example of 1% of
multiphoton events corresponds in the case of faint laser
pulses to a mean photon number of m50.02. In order to
get the same number (106) of nonempty pulses per sec-
ond, a pulse rate of 50 MHz is needed. For a given pho-
ton statistics, photon pairs thus allow one to work with
lower pulse rates (e.g., 50 times lower) and hence re-
duced detector-induced errors. However, due to limited
coupling efficiency in optical fibers, the probability of
finding the sister photon after detection of the trigger
photon in the respective fiber is in practice less than 1.
This means that the effective photon number is not 1 but
rather m'2/3 (Ribordy et al., 2001), still well above m
50.02.

Photon pairs generated by parametric downconver-
sion offer a further major advantage if they are not
merely used as a pseudo-single-photon source, but if
their entanglement is exploited. Entanglement leads to
quantum correlations that can be used for key genera-
tion (see Secs. II.D.3 and V). In this case, if two photon
pairs are emitted within the same time window but their
measurement basis is chosen independently, they pro-
duce completely uncorrelated results. Hence, depending
on the realization, the problem of multiple photons can
be avoided; see Sec. VI.J.

Figure 5 shows one of our sources creating entangled
photon pairs at a wavelength of 1310 nm, as used in tests
of Bell’s inequalities over 10 kilometers (Tittel et al.,
1998). Although not as simple as faint laser sources,
diode-pumped photon-pair sources emitting in the near
infrared can be made compact, robust, and rather handy.

3. Photon guns

The ideal single-photon source is a device that, when
one pulls the trigger, and only then, emits one and only
one photon. Hence the name photon gun. Although
photon antibunching was first demonstrated years ago
(Kimble et al., 1977), a practical and handy device is still
awaited. At present, there are essentially three different
experimental approaches that more or less come close to
this ideal.

A first idea is to work with a single two-level quantum
system that obviously cannot emit two photons at a
time. The manipulation of single trapped atoms or ions
requires a much too involved technical effort. Single or-
ganic dye molecules in solvents (Kitson et al., 1998) or
solids (Brunel et al., 1999; Fleury et al., 2000) are easier
to handle but offer only limited stability at room tem-
perature. A promising candidate, however, is the
nitrogen-vacancy center in diamond, a substitutional ni-
trogen atom with a vacancy trapped at an adjacent lat-
tice position (Brouri et al., 2000; Kurtsiefer et al., 2000).
It is possible to excite individual nitrogen atoms with a
532-nm laser beam, which will subsequently emit a fluo-
rescence photon around 700 nm (12-ns decay time). The
fluorescence exhibits strong photon antibunching, and
the samples are stable at room temperature. However,
the big remaining experimental challenge is to increase
the collection efficiency (currently about 0.1%) in order
to obtain mean photon numbers close to 1. To obtain
this efficiency, an optical cavity or a photonic band-gap
structure must suppress emission in all spatial modes but
one. In addition, the spectral bandwidth of this type of
source is broad (on the order of 100 nm), enhancing the
effect of perturbations in a quantum channel.

A second approach is to generate photons by single
electrons in a mesoscopic p-n junction. The idea is to
profit from the fact that thermal electrons show anti-
bunching (the Pauli exclusion principle) in contrast to
photons (Imamoglu and Yamamoto, 1994). The first ex-
perimental results have been presented (Kim et al.,
1999), but with extremely low efficiencies and only at a
temperature of 50 mK!

Finally, another approach is to use the photon emis-
sion of electron-hole pairs in a semiconductor quantum
dot. The frequency of the emitted photon depends on
the number of electron-hole pairs present in the dot.
After one creates several such pairs by optical pumping,
they will sequentially recombine and hence emit pho-
tons at different frequencies. Therefore, a single-photon
pulse can be obtained by spectral filtering (Gérard et al.,
1999; Michler et al., 2000; Santori et al., 2000). These
dots can be integrated in solid-state microcavities with
strong enhancements of spontaneous emission (Gérard
et al., 1998).

In summary, today’s photon guns are still too compli-
cated to be used in a QC prototype. Moreover, due to
their low quantum efficiencies, they do not offer an ad-
vantage over faint laser pulses with extremely low mean
photon numbers m.

FIG. 5. Photo of our entangled photon-pair source as used in
the first long-distance test of Bell’s inequalities (Tittel et al.,
1998). Note that the whole source fits into a box only 40345
315 cm3 in size and that neither a special power supply nor
water cooling is necessary.
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B. Quantum channels

The single-photon source and the detectors must be
connected by a ‘‘quantum channel.’’ Such a channel is
not especially quantum, except that it is intended to
carry information encoded in individual quantum sys-
tems. Here ‘‘individual’’ does not mean ‘‘nondecom-
posible,’’ but only the opposite of ‘‘ensemble.’’ The idea
is that the information is coded in a physical system only
once, in contrast to classical communication, in which
many photons carry the same information. Note that the
present-day limit for fiber-based classical optical com-
munication is already down to a few tens of photons,
although in practice one usually uses many more. With
increasing bit rate and limited mean power—imposed to
avoid nonlinear effects in silica fibers—these figures are
likely to get closer and closer to the quantum domain.

Individual quantum systems are usually two-level sys-
tems, called qubits. During their propagation they must
be protected from environmental noise. Here ‘‘environ-
ment’’ refers to everything outside the degree of free-
dom used for the encoding, which is not necessarily out-
side the physical system. If, for example, the information
is encoded in the polarization state, then the optical fre-
quencies of the photon are part of the environment.
Hence coupling between the polarization and the optical
frequency has to be mastered18 (e.g., by avoiding wave-
length-sensitive polarizers and birefringence). Moreover,
the sender of the qubits should avoid any correlation
between the polarization and the spectrum of the pho-
tons.

Another difficulty is that the bases used by Alice to
code the qubits and the bases used by Bob for his mea-
surements must be related by a known and stable uni-
tary transformation. Once this unitary transformation is
known, Alice and Bob can compensate for it and get the
expected correlation between their preparations and
measurements. If it changes with time, they need active
feedback to track it, and if the changes are too fast, the
communication must be interrupted.

1. Single-mode fibers

Light is guided in optical fibers thanks to the refrac-
tive index profile n(x ,y) across the section of the fibers
(traditionally, the z axis is along the propagation direc-
tion). Over the last 25 years, a lot of effort has gone into
reducing transmission losses—initially several dB per
km—and today the attenuation is as low as 2 dB/km at
800-nm wavelength, 0.35 dB/km at 1310 nm, and 0.2
dB/km at 1550 nm (see Fig. 6). It is amusing to note that
the dynamical equation describing optical pulse propa-
gation (in the usual slowly varying envelope aproxima-
tion) is identical to the Schrödinger equation, with
V(x ,y)52n(x ,y) (Snyder, 1983). Hence a positive
bump in the refractive index corresponds to a potential
well. The region of the well is called the fiber core. If the

core is large, many bound modes exist, corresponding to
many guided modes in the fiber. Such fibers are called
multimode fibers, They usually have cores 50 mm in di-
ameter. The modes couple easily, acting on the qubit like
a nonisolated environment. Hence multimode fibers are
not appropriate as quantum channels (see, however,
Townsend, 1998a, 1998b). If, however, the core is small
enough (diameter of the order of a few wavelengths),
then a single spatial mode is guided. Such fibers are
called single-mode fibers. For telecommunications wave-
lengths (i.e., 1.3 and 1.5 mm), their core is typically 8 mm
in diameter. Single-mode fibers are very well suited to
carry single quanta. For example, the optical phase at
the output of a fiber is in a stable relation with the phase
at the input, provided the fiber does not become elon-
gated. Hence fiber interferometers are very stable, a fact
exploited in many instruments and sensors (see, for ex-
ample, Cancellieri, 1993).

Accordingly, a single-mode fiber with perfect cylindric
symmetry would provide an ideal quantum channel. But
all real fibers have some asymmetries, so that the two
polarization modes are no longer degenerate, but rather
each has its own propagation constant. A similar effect
is caused by chromatic dispersion, in which the group
delay depends on the wavelength. Both dispersion ef-
fects are the subject of the next subsections.

2. Polarization effects in single-mode fibers

Polarization effects in single-mode fibers are a com-
mon source of problems in all optical communication
schemes, classical as well as quantum ones. In recent
years these effects have been the subject of a major re-
search effort in classical optical communication (Gisin
et al., 1995). As a result, today’s fibers are much better
than the fibers of a decade ago. Today, the remaining
birefringence is small enough for the telecommunica-
tions industry, but for quantum communication any

18Note that, as we shall see in Sec. V, using entangled photons
prevents such information leakage.

FIG. 6. Transmission losses vs wavelength in optical fibers.
Electronic transitions in SiO2 lead to absorption at lower
wavelengths, and excitation of vibrational modes leads to
losses at higher wavelengths. Superposed is the absorption due
to Rayleigh backscattering and to transitions in OH groups.
Modern telecommunications are based on wavelengths around
1.3 mm (the second telecommunications window) and 1.5 mm
(the third telecommunications window).
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birefringence, even extremely small, will always remain
a concern. All fiber-based implementations of QC have
to face this problem. This is clearly true for polarization-
based systems, but it is equally a concern for phase-
based systems, since interference visibility depends on
the polarization states. Hence, although polarization ef-
fects are not the only source of difficulties, we shall de-
scribe them in some detail, distinguishing among four
effects: the geometric phase, birefringence, polarization
mode dispersion, and polarization-dependent losses.

The geometric phase as encountered when guiding
light in an optical fiber is a special case of the Berry
phase,19 which results when any parameter describing a
property of the system under concern, here the k vector
characterizing the propagation of the light field, under-
goes an adiabatic change. Think first of a linear polar-
ization state, let us say vertical at the input. Will it still
be vertical at the output? Vertical with respect to what?
Certainly not the gravitational field! One can follow that
linear polarization by hand along the fiber and see how
it may change even along a closed loop. If the loop stays
in a plane, the state after a loop coincides with the input
state, but if the loop explores the three dimensions of
our space, then the final state will differ from the initial
one by an angle. Similar reasoning holds for the axes of
elliptical polarization states. The two circular polariza-
tion states are the eigenstates. During parallel transport
they acquire opposite phases, called the Berry phases.
The presence of a geometrical phase is not fatal for
quantum communication. It simply means that initially
Alice and Bob have to align their systems by defining,
for instance, the vertical and diagonal directions (i.e.,
performing the unitary transformation mentioned be-
fore). If these vary slowly, they can be tracked, though
this requires active feedback. However, if the variations
are too fast, the communication might be interrupted.
Hence aerial cables that swing in the wind are not ap-
propriate (except with self-compensating configurations;
see Sec. IV.C.2).

Birefringence is the presence of two different phase
velocities for two orthogonal polarization states. It is
caused by asymmetries in the fiber geometry and in the
residual stress distribution inside and around the core.
Some fibers are made birefringent on purpose. Such fi-
bers are called polarization-maintaining fibers because
the birefringence is large enough to effectively uncouple
the two polarization eigenmodes. Note that only these
two orthogonal polarization modes are maintained; all
other modes, in contrast, evolve very quickly, making
this kind of fiber completely unsuitable for polarization-

based QC systems.20 The global effect of the birefrin-
gence is equivalent to an arbitrary combination of two
waveplates; that is, it corresponds to a unitary transfor-
mation. If this transformation is stable, Alice and Bob
can compensate for it. The effect of birefringence is thus
similar to the effect of the geometric phase, though, in
addition to causing a rotation, it may also affect the el-
lipticity. Stability of birefringence requires slow thermal
and mechanical variations.

Polarization mode dispersion (PMD) is the presence
of two different group velocities for two orthogonal po-
larization modes. It is due to a delicate combination of
two causes. First, birefringence produces locally two
group velocities. For optical fibers, this local dispersion
is in good approximation equal to the phase dispersion,
of the order of a few picoseconds per kilometer. Hence,
an optical pulse tends to split locally into a fast mode
and a slow mode. But because the birefringence is small,
the two modes couple easily. Hence any small imperfec-
tion along the fiber produces polarization mode cou-
pling: some energy of the fast mode couples into the
slow mode and vice versa. PMD is thus similar to a ran-
dom walk21 and grows only with the square root of the
fiber length. It is expressed in ps km21/2, with values as
low as 0.1 ps km21/2 for modern fibers and possibly as
high as 0.5 or even 1ps km21/2 for older ones.

Typical lengths for polarization mode coupling vary
from a few meters up to hundreds of meters. The stron-
ger the coupling, the weaker the PMD (the two modes
do not have time to move apart between the couplings).
In modern fibers, the couplings are even artificially in-
creased during the drawing process of the fibers (Hart
et al., 1994; Li and Nolan, 1998). Since the couplings are
exceedingly sensitive, the only reasonable description is
a statistical one, hence PMD is described as a statistical
distribution of delays dt. For sufficiently long fibers, the
statistics are Maxwellian, and PMD is related to the fi-
ber length l , the mean coupling length h , the mean
modal birefringence B , and the rms delay as follows
(Gisin et al., 1995): PMD[A^^dt2&&5BhAl /h . Polar-
ization mode dispersion could cause depolarization,
which would be devastating for quantum communica-
tion, similar to any decoherence in quantum information
processing. Fortunately, for quantum communication the
remedy is easy; it suffices to use a source with a coher-
ence time longer than the largest delay dt. Hence, when
laser pulses are used (with typical spectral widths Dl
<1 nm, corresponding to a coherence time >3 ps; see
Sec. III.A.1), PMD is no real problem. For photons cre-

19The Berry phase was introduced by Michael Berry in 1984,
and was then observed in optical fiber by Tomita and Chiao
(1986) and on the single-photon level by Hariharan et al.
(1993). It was studied in connection with photon pairs by Bren-
del et al. (1995).

20Polarization-maintaining fibers may be of use for phase-
based QC systems. However, this requires that the whole
setup—transmission lines as well as interferometers at each
end—be made of polarization-maintaining fibers. While this is
possible in principle, the need to install a completely new fiber
network makes this solution not very practical.

21In contrast to Brownian motion, which describes particle
diffusion in space as time passes, here photons diffuse over
time as they propagate along the fiber.
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ated by parametric downconversion, however, PMD can
impose severe limitations, since Dl>10 nm (coherence
time <300 fs) is not unusual.

Polarization-dependent loss is a differential attenua-
tion between two orthogonal polarization modes. This
effect is negligible in fibers, but can be significant in
components like phase modulators. In particular, some
integrated optics waveguides actually guide only one
mode and thus behave almost like polarizers (e.g., pro-
ton exchange waveguides in LiNbO3). Polarization-
dependent losses are usually stable, but if connected to a
fiber with some birefringence, the relation between the
polarization state and the loss may fluctuate, producing
random outcomes (Elamari et al., 1998). Polarization-
dependent loss cannot be described by a unitary opera-
tor acting in the polarization state space (but it is of
course unitary in a larger space (Huttner, Gautier, et al.,
1996). Thus it does not preserve the scalar product. In
particular, it can turn nonorthogonal states into orthogo-
nal ones, which can then be distinguished unambigu-
ously (at the cost of some loss; Huttner, Gautier, et al.,
1996; Clarke et al., 2000). Note that this attenuation
could be used by Eve, especially to eavesdrop on the
two-state protocol (Sec. II.D.1).

Let us conclude this section on polarization effects in
fibers by mentioning that they can be passively compen-
sated for, provided one uses a go-and-return configura-
tion, with Faraday mirrors, as described in Sec. IV.C.2.

3. Chromatic dispersion effects in single-mode fibers

In addition to polarization effects, chromatic disper-
sion can also cause problems for quantum cryptography.
For instance, as explained in Secs. IV.C and V.B,
schemes implementing phase or phase-and-time coding
rely on photons arriving at well-defined times, that is, on
photons well localized in space. However, in dispersive
media like optical fibers, different group velocities act as
a noisy environment on the localization of the photon as
well as on the phase acquired in an interferometer.
Hence the broadening of photons featuring nonzero
bandwidth, or, in other words, the coupling between fre-
quency and position, must be circumvented or con-
trolled. This implies working with photons of small
bandwidth, or, as long as the bandwidth is not too large,
operating close to the wavelength l0 at which chromatic
dispersion is zero, i.e., for standard fibers around 1310
nm. Fortunately, fiber losses are relatively small at this
wavelength and amount to '0.35 dB/km. This region is
called the second telecommunications window.22 There
are also special fibers, called dispersion-shifted fibers,
with a refractive index profile such that the chromatic

dispersion goes to zero around 1550 nm, where the at-
tenuation is minimal (Neumann, 1988).23

Chromatic dispersion does not constitute a problem in
the case of faint laser pulses, for which the bandwidth is
small. However, it becomes a serious issue when utilizing
photon pairs created by parametric downconversion.
For instance, sending photons of 70-nm bandwidth (as
used in our long-distance tests of Bell’s inequality; Tittel
et al., 1998) down 10 km of optical fibers leads to a tem-
poral spread of around 500 ps (assuming photons cen-
tered at l0 and a typical dispersion slope of
0.086 ps nm22 km21). However, this can be compen-
sated for when using energy-time-entangled photons
(Franson, 1992; Steinberg et al., 1992a, 1992b, Larchuk
et al., 1995). In contrast to polarization coding, in which
frequency and the physical property used to implement
the qubit are not conjugate variables, frequency and
time (thus position) constitute a Fourier pair. The strict
energy anticorrelation of signal and idler photons en-
ables one to achieve a dispersion for one photon that is
equal in magnitude but opposite in sign to that of the
sister photon, thus corresponding to the same delay24

(see Fig. 7). The effect of broadening of the two wave
packets then cancels out, and two simultaneously emit-
ted photons stay coincident. However, note that the ar-
rival time of the pair varies with respect to its emission
time. The frequency anticorrelation also provides the
basis for avoiding a decrease in visibility due to different
wave packet broadening in the two arms of an interfer-
ometer. Since the choromatic dispersion properties of
optical fibers do not change with time—in contrast to
birefringence—no active tracking and compensation are
required. It thus turns out that phase and phase-time
coding are particularly suited to transmission over long
distances in optical fibers: nonlinear effects decohering
the qubit ‘‘energy’’ are completely negligible, and chro-
matic dispersion effects acting on the localization can be
avoided or compensated for in many cases.

4. Free-space links

Although today’s telecommunications based on opti-
cal fibers are very advanced, such channels may not al-
ways be available. Hence there is also some effort in
developing free-space line-of-sight communication sys-

22The first one, around 800 nm, is almost no longer used. It
was motivated by the early existence of sources and detectors
at this wavelength. The third window is around 1550 nm,
where the attenuation reaches an absolute minimum (Thomas
et al., 2000) and where erbium-doped fibers provide conve-
nient amplifiers (Desurvire, 1994).

23Chromatic dispersion in fibers is mainly due to the material,
essentially silicon, but also to the refractive index profile. In-
deed, longer wavelengths feel regions farther away from the
core where the refractive index is lower. Dispersion-shifted fi-
bers have, however, been abandoned by today’s industry, be-
cause it has turned out to be simpler to compensate for the
global chromatic dispersion by adding an extra fiber with high
negative dispersion. The additional loss is then compensated
for by an erbium-doped fiber amplifier.

24Here we assume a predominantly linear dependence of
chromatic dispersion as a function of the optical frequency, a
realistic assumption.
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tems, not only for classical data transmission but also for
quantum cryptography (see Hughes, Buttler, et al., 2000
and Gorman et al., 2000).

Transmission over free space features some advan-
tages compared to the use of optical fibers. The atmo-
sphere has a high transmission window at a wavelength
of around 770 nm (see Fig. 8), where photons can easily
be detected using commercial, high-efficiency photon-
counting modules (see Sec. III.C.1). Furthermore, the
atmosphere is only weakly dispersive and essentially
nonbirefringent25 at these wavelengths. It will thus not
alter the polarization state of a photon.

However, there are some drawbacks concerning free-
space links as well. In contrast to the signal transmitted
in a guiding medium where the energy is ‘‘protected’’
and remains localized in a small region of space, the
energy transmitted via a free-space link spreads out,
leading to higher and varying transmission losses. In ad-
dition to loss of energy, ambient daylight, or even moon-
light at night, can couple into the receiver, leading to a
higher error rate. However, such errors can be kept to a
reasonable level by using a combination of spectral fil-
tering (interference filters <1 nm), spatial filtering at the
receiver, and timing discrimination using a coincidence

window of typically a few nanoseconds. Finally, it is clear
that the performance of free-space systems depends dra-
matically on atmospheric conditions and is possible only
in clear weather.

Finally, let us briefly comment on the different sources
leading to coupling losses. A first concern is the trans-
mission of the signals through a turbulent medium, lead-
ing to arrival-time jitter and beam wander (hence prob-
lems with beam pointing). However, as the time scales
for atmospheric turbulences involved are rather small—
around 0.1–0.01 s—the time jitter due to a variation of
the effective refractive index can be compensated for by
sending a reference pulse at a different wavelength a
short time (around 100 ns) before each signal pulse.
Since this reference pulse experiences the same atmo-
spheric conditions as the subsequent one, the signal will
arrive essentially without jitter in the time window de-
fined by the arrival of the reference pulse. In addition,
the reference pulse can be reflected back to the trans-
mitter and used to correct the direction of the laser
beam by means of adaptive optics, hence compensating
for beam wander and ensuring good beam pointing.

Another issue is beam divergence, hence increase of
spot size at the receiver end caused by diffraction at the
transmitter aperture. Using, for example, 20-cm-
diameter optics, one obtains a diffraction-limited spot
size after 300 km of '1 m. This effect can in principle be
kept small by taking advantage of larger optics. How-
ever, it can also be advantageous to have a spot size that
is large compared to the receiver’s aperture in order to
ensure constant coupling in case of remaining beam
wander. In their 2000 paper, Gilbert and Hamrick pro-
vide a comprehensive discussion of free-space channels
in the context of QC.

C. Single-photon detection

With the availability of pseudo-single-photon and
photon-pair sources, the success of quantum cryptogra-

25In contrast to an optical fiber, air is not subject to stress and
is hence isotropic.

FIG. 7. Illustration of cancellation of chromatic dispersion ef-
fects in the fibers connecting an entangled-particle source and
two detectors. The figure shows differential group delay curves
for two slightly different fibers approximately 10 km long. Us-
ing frequency-correlated photons with central frequency
v0—determined by the properties of the fibers—the difference
in propagation times t22t1 between the signal (at vs1,vs2)
and idler (at v i1,v i2) photon is the same for all vs ,v i . Note
that this cancellation scheme is not restricted to signal and
idler photons at nearly equal wavelengths. It also applies to
asymmetrical setups in which the signal photon (generating the
trigger to indicate the presence of the idler photon) is at a
short wavelength of around 800 nm and travels only a short
distance. Using a fiber with appropriate zero dispersion wave-
length l0 , it is still possible to achieve equal differential group
delay with respect to the energy-correlated idler photon sent
through a long fiber at a telecommunications wavelength.

FIG. 8. Transmission losses in free space as calculated using
the LOWTRAN code for earth-to-space transmission at the el-
evation and location of Los Alamos, USA. Note that there is a
low-loss window at around 770 nm—a wavelength at which
high-efficiency silicon APD’s can be used for single-photon de-
tection (see also Fig. 9 and compare to Fig. 6). Figure courtesy
of Richard Hughes.
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phy essentially depends on the ability to detect single
photons. In principle, this can be achieved using a vari-
ety of techniques, for instance, photomultipliers, ava-
lanche photodiodes, multichannel plates, and supercon-
ducting Josephson junctions. The ideal detector should
fulfill the following requirements:

• the quantum detection efficiency should be high
over a large spectral range,

• the probability of generating noise, that is, a signal
without an arriving photon, should be small,

• the time between detection of a photon and genera-
tion of an electrical signal should be as constant as pos-
sible, i.e., the time jitter should be small, to ensure good
timing resolution,

• the recovery time (i.e., the dead time) should be
short to allow high data rates.

In addition, it is important to keep the detectors prac-
tical. For instance, a detector that needs liquid helium or
even nitrogen cooling would certainly render commer-
cial development difficult.

Unfortunately, it turns out that it is impossible to ful-
fill all the above criteria at the same time. Today, the
best choice is avalanche photodiodes (APD’s). Three
different semiconductor materials are used: either sili-
con, germanium, or indium gallium arsenide, depending
on the wavelengths.

APDs are usually operated in the so-called Geiger
mode. In this mode, the applied voltage exceeds the
breakdown voltage, leading an absorbed photon to trig-
ger an electron avalanche consisting of thousands of car-
riers. To reset the diode, this macroscopic current must
be quenched—the emission of charges must be stopped
and the diode recharged (Cova et al., 1996). Three main
possibilities exist:

• In passive-quenching circuits, a large (50–500 kV)
resistor is connected in series with the APD (see, for
example, Brown et al., 1986). This causes a decrease in
the voltage across the APD as soon as an avalanche
starts. When it drops below breakdown voltage, the ava-
lanche stops and the diode recharges. The recovery time
of the diode is given by its capacitance and by the value
of the quench resistor. The maximum count rate varies
from a few hundred kilohertz to a few megahertz.

• In active-quenching circuits, the bias voltage is ac-
tively lowered below the breakdown voltage as soon as
the leading edge of the avalanche current is detected
(see, for example, Brown et al., 1987). This mode makes
possible higher count rates than those in passive quench-
ing (up to tens of megahertz), since the dead time can be
as short as tens of nanoseconds. However, the fast elec-
tronic feedback system makes active-quenching circuits
much more complicated than passive ones.

• Finally, in gated-mode operation, the bias voltage is
kept below the breakdown voltage and is raised above it
only for a short time, typically a few nanosecods when a
photon is expected to arrive. Maximum count rates simi-
lar to those in active-quenching circuits can be obtained
using less complicated electronics. Gated-mode opera-
tion is commonly used in quantum cryptography based

on faint laser pulses, for which the arrival times of the
photons are well known. However, it only applies if
prior timing information is available. For two-photon
schemes, it is most often combined with a passive-
quenched detector, generating the trigger signal for the
gated detector.

In addition to Geiger mode, Brown and Daniels
(1989) have investigated the performance of silicon
APD’s operated in sub-Geiger mode. In this mode, the
bias voltage is kept slightly smaller than the breakdown
voltage such that the multiplication factor—around
100—is sufficient to detect an avalanche, yet, is still
small enough to prevent real breakdowns. Unfortu-
nately, the single-photon counting performance in this
mode is rather poor, and thus efforts have not been con-
tinued, the major problem being the need for extremely
low-noise amplifiers.

An avalanche engendered by carriers created in the
conduction band of the diode can be set off not only by
an impinging photon, but also by unwanted causes.
These might be thermal or band-to-band tunneling pro-
cesses, or emissions from trapping levels populated
while a current transits through the diode. The first two
produce avalanches not due to photons and are referred
to as dark counts. The third process depends on previous
avalanches and its effects are called afterpulses. Since
the number of trapped charges decreases exponentially
with time, these afterpulses can be limited by applying
large dead times. Thus there is a tradeoff between high
count rates and low afterpulses. The time constant of the
exponential decrease of afterpulses shortens for higher
temperatures of the diode. Unfortunately, operating
APD’s at higher temperatures leads to a higher fraction
of thermal noise, that is, higher dark counts. Thus there
is again a tradeoff to be optimized. Finally, increasing
the bias voltage leads to a higher quantum efficiency and
a smaller time jitter, at the cost of an increase in noise.

We thus see that the optimal operating parameters—
voltage, temperature, and dead time (i.e., maximum
count rate)—depend on the specific application. More-
over, since the relative magnitudes of efficiency, thermal
noise, and afterpulses vary with the type of semiconduc-
tor material used, no general solution exists. In the next
two sections we briefly discuss the different types of
APD’s. The first section focuses on silicon APD’s for the
detection of photons at wavelengths below 1 mm; the
second comments on germanium and on indium gallium
arsenide APD’s for photon counting at telecommunica-
tions wavelengths. The different behavior of the three
types is shown in Fig. 9. Although the best figure of
merit for quantum cryptography is the ratio of dark-
count rate R to detection efficiency h, we show here the
better-known noise equivalent power (NEP), which
shows similar behavior. The noise equivalent power is
defined as the optical power required to measure a unity
signal-to-noise ratio and is given by

NEP5
hn

h
A2R . (25)
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Here, h is Planck’s constant and n is the frequency of the
impinging photons.

1. Photon counting at wavelengths below 1.1 mm

Since the beginning of the 1980s much work has been
done to characterize silicon APD’s for single-photon
counting (Ingerson 1983; Brown et al., 1986, 1987;
Brown and Daniels, 1989; Spinelli, 1996), and the perfor-
mance of Si APD’s has continuously been improved.
Since the first test of Bell’s inequality using Si APD’s by
Shih and Alley in 1988, they have completely replaced
the photomultipliers used until then in the domain of
fundamental quantum optics, now known as quantum
communication. Today, quantum efficiencies of up to
76% (Kwiat et al., 1993) and time jitter as low as 28 ps
(Cova et al., 1989) have been reported. Commercial
single-photon counting modules are available (for ex-
ample, EG&G SPCM-AQ-151), featuring quantum effi-
ciencies of 70% at a wavelength of 700 nm, a time jitter
of around 300 ps, and maximum count rates higher than
5 MHz. Temperatures of 220 °C—sufficient to keep
thermally generated dark counts as low as 50 Hz—can
easily be achieved using Peltier cooling. Single-photon
counters based on silicon APD’s thus offer an almost
perfect solution for all applications in which photons of
wavelengths below 1 mm can be used. Apart from fun-
damental quantum optics, these applications include
quantum cryptography in free space and in optical fi-
bers; however, due to high losses, the latter works only
over short distances.

2. Photon counting at telecommunications wavelengths

When working in the second telecommunications win-
dow (1.3 mm), one can take advantage of APD’s made
from germanium or InGaAs/InP semiconductor materi-
als. In the third window (1.55 mm), the only option is
InGaAs/InP.

Photon counting with germanium APD’s, although
known for 30 years (Haecker et al., 1971), began to be
used in quantum communication as the need arose to
transmit single photons over long distances using optical
fibers, which necessitated working at telecommunica-
tions wavelengths. In 1993, Townsend, Rarity, and Tap-

ster (1993a) implemented a single-photon interference
scheme for quantum cryptography over a distance of 10
km, and in 1994, Tapster, Rarity, and Owens demon-
strated a violation of Bell’s inequalities over 4 km. These
experiments were the first to take advantage of Ge
APD’s operated in passively quenched Geiger mode. At
a temperature of 77 K, which can be achieved using ei-
ther liquid nitrogen or Stirling engine cooling, typical
quantum efficiencies of about 15% at dark-count rates
of 25 kHz can be achieved (Owens et al., 1994), and time
jitter down to 100 ps has been observed (Lacaita et al.,
1994) a normal value being 200–300 ps.

Traditionally, germanium APD’s have been imple-
mented in the domain of long-distance quantum com-
munication. However, this type of diode is currently be-
ing replaced by InGaAs APD’s, and it has become more
and more difficult to find germanium APD’s on the mar-
ket. Motivated by pioneering research reported in 1985
(Levine et al., 1985), the latest research focuses on
InGaAs APD’s, which allow single-photon detection in
both telecommunications windows. Starting with work
by Zappa et al. (1994), InGaAs APD’s as single-photon
counters have meanwhile been thoroughly characterized
(Lacaita et al., 1996; Ribordy et al., 1998; Karlsson et al.,
1999; Hiskett et al., 2000; Rarity et al., 2000; Stucki et al.,
2001), and the first implementations for quantum cryp-
tography have been reported (Ribordy, 1998; Bouren-
nane et al., 1999; Bethune and Risk, 2000; Hughes, Mor-
gan, and Peterson, 2000; Ribordy et al., 2000). However,
if operating Ge APD’s is already more inconvenient
than using silicon APD’s, the practicality of InGaAs
APD’s is even worse, the problem being an extremely
high afterpulse fraction. Therefore operation in passive-
quenching mode is impossible for applications in which
low noise is crucial. In gated mode, InGaAs APD’s are
better for single-photon counting at 1.3 mm than Ge
APD’s. For instance, at a temperature of 77 K and a
dark-count probability of 1025 per 2.6-ns gate, quantum
efficiencies of around 30% and 17% have been reported
for InGaAs and Ge APD’s, respectively (Ribordy et al.,
1998), while the time jitter of both devices is compa-
rable. If working at a wavelength of 1.55 mm, the tem-
perature has to be increased for single-photon detection.
At 173 K and a dark-count rate of 1024, a quantum
efficiency of 6% can still be observed using InGaAs/InP
devices, while the same figure for germanium APD’s is
close to zero.

To date, no industrial effort has been made to opti-
mize APD’s operating at telecommunications wave-
lengths for photon counting, and their performance still
lags far behind that one of silicon APD’s.26 However,
there is no fundamental reason why photon counting at
wavelengths above 1 mm should be more difficult than at
wavelengths below 1 mm except that the high-

26The first commercial photon counter at telecommunications
wavelengths came out only this year (the Hamamatsu photo-
multiplier R5509-72). However, its efficiency is not yet suffi-
cient for use in quantum cryptography.

FIG. 9. Noise equivalent power as a function of wavelength for
silicon, germanium, and InGaAs/InP APD’s.
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wavelength photons are less energetic. The real reasons
for the lack of commercial products are, first, that sili-
con, the most common semiconductor material, is not
sensitive enough (the band gap is too large), and second
that the market for photon counting is not yet mature.
But, without great risk, one can predict that good com-
mercial photon counters will become available in the
near future and that they will have a major impact on
quantum cryptography.

D. Quantum random-number generators

The key used in the one-time pad must be secret and
used only once. Consequently it must be as long as the
message, and it must be perfectly random. The latter
point proves to be a delicate and interesting one. Com-
puters are deterministic systems that cannot create truly
random numbers. However, all secure cryptosystems,
both classical and quantum ones, require truly random
numbers.27 Hence the random numbers must be created
by a random physical process. Moreover, to make sure
that the process does not merely appear random while
having some hidden deterministic pattern, the process
needs to be completely understood. It is thus of interest
to implement a simple process in order to gain confi-
dence in the randomness of its proper operation.

A natural solution is to rely on the random choice of a
single photon at a beamsplitter28 (Rarity et al., 1994). In
this case the randomness is in principle guaranteed by
the laws of quantum mechanics, though one still has to
be very careful not to introduce any experimental arti-
fact that could correlate adjacent bits. Different experi-
mental realizations have been demonstrated (Jenne-
wein, Achleitner, et al., 2000; Stefanov et al., 2000;
Hildebrand, 2001), and prototypes are commercially
available (www.gap-optique.unige.ch). One particular
problem is the dead time of the detectors, which may
introduce a strong anticorrelation between neighboring
bits. Similarly, afterpulses may provoke a correlation.
These detector-related effects increase with higher pulse
rates, limiting the bit rate of a quantum number genera-
tor to a few megahertz.

In the BB84 protocol Alice has to choose randomly
among four different states and Bob between two bases.
The limited random-number generation rate may force
Alice to produce her numbers in advance and store
them, creating a security risk. On Bob’s side the random-
bit creation rate can be lower, since, in principle, the
basis need be changed only after a photon has been de-
tected, which normally happens at rates below 1 MHz.
However, one must make sure that this does not give a
spy an opportunity for a Trojan horse attack (see Sec.
VI.K).

An elegant configuration integrating the random-
number generator into the QC system consists in using a
passive choice of bases, as discussed in Sec. V (Muller
et al., 1993). However, the problem of detector-induced
correlation remains.

E. Quantum repeaters

Today’s fiber-based QC systems are limited to opera-
tion over tens of kilometers due to the combination of
fiber losses and detector noise. The losses by themselves
only reduce the bit rate (exponentially with distance).
With perfect detectors the distance would not be limited.
However, because of the dark counts, each time a pho-
ton is lost there is a chance that a dark count produces
an error. Hence, when the probability of a dark count
becomes comparable to the probability that a photon is
correctly detected, the signal-to-noise ratio tends to 0
[more precisely, the mutual information I(a ,b) tends to
a lower bound29]. In this section we briefly explain how
the use of entangled photons and of entanglement swap-
ping (Żukowski et al., 1993) could offer ways to extend
the achievable distances in the foreseeable future (some
prior knowledge of entanglement swapping is assumed).
Let t link denote the transmission coefficient (i.e., the
probability that a photon sent by Alice gets to one of
Bob’s detectors), h the detector efficiency, and pdark the
dark-count probability per time bin. With a perfect
single-photon source, the probability Praw of a correct
qubit detection is Praw5t linkh , while the probability
Pdet of an error is Pdet5(12t linkh)pdark . Accordingly,
the QBER5Pdet /(Praw1Pdet), and the normalized net
rate is rnet5(Praw1Pdet)•fct(QBER), where the func-
tion fct denotes the fraction of bits remaining after error
correction and privacy amplification. For the sake of il-
lustration, we simply assume a linear dependence drop-
ping to zero for QBER>15% (this simplification does
not affect the qualitative results of this section; for a
more precise calculation, see Lütkenhaus 2000):
fct(QBER)512 QBER/15%. The corresponding net
rate rnet is displayed in Fig. 10. Note that it drops to zero
near 90 km.

Let us now assume that instead of a perfect single-
photon source, Alice and Bob use a perfect two-photon
source set in the middle of their quantum channel. Each
photon then has a probability At link of reaching a detec-
tor. The probability of a correct joined detection is thus
Praw5t linkh2, while an error occurs with probability
Pdet 5 (12At linkh)2pdark

2 1 2At linkh(1 2 At linkh)pdark
(both photons lost and two dark counts, or one photon
lost and one dark count). This can be conveniently re-
written as Praw5t linkhn and Pdet5@ t link

1/n h1(1
2t link

1/n h)pdark#n2t linkhn, valid for any division of the

27The PIN number that the bank assigns to your ATM card
must be random. If not, someone else knows it.

28Strictly speaking, the choice is made only once the photons
are detected at one of the outports.

29The absolute lower bound is 0, but depending on the as-
sumed eavesdropping strategy, Eve could take advantage of
the losses. In the latter case, the lower bound is given by her
mutual information I(a ,e).
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link into n equal-length sections and n detectors. Note
that the measurements performed at the nodes between
Alice and Bob transmit (swap) the entanglement to the
twin photons without revealing any information about
the qubit (these measurements are called Bell measure-
ments and are at the core of entanglement swapping and
of quantum teleportation). The corresponding net rates
are displayed in Fig. 10. Clearly, the rates for short dis-
tances are smaller when several detectors are used, be-
cause of their limited efficiencies (here we assume h
510%), but the distance before the net rate drops to
zero is extended to longer distances! Intuitively, this can
be understood as follows. Let us assume that a logical
qubit propagates from Alice to Bob (although some
photons propagate in the opposite direction). Then,
each two-photon source and each Bell measurement acts
on this logical qubit as a kind of quantum nondemolition
measurement, testing whether the logical qubit is still
there. In this way, Bob activates his detectors only when
there is a large chance t link

1/n that the photon gets to his
detectors.

Note that if in addition to detector noise there is noise
due to decoherence, then the above idea can be ex-
tended, using entanglement purification. This is essen-
tially the idea behind quantum repeaters (Briegel et al.,
1998; Dur et al., 1999).

IV. EXPERIMENTAL QUANTUM CRYPTOGRAPHY WITH
FAINT LASER PULSES

Experimental quantum key distribution was demon-
strated for the first time in 1989 (the results were pub-
lished only in 1992 by Bennett, Bessette, et al.). Since
then, tremendous progress has been made. Today, sev-
eral groups have shown that quantum key distribution is
possible, even outside the laboratory. In principle, any
two-level quantum system could be used to implement
QC. In practice, all implementations have relied on pho-
tons. The reason is that their interaction with the envi-

ronment, also called decoherence, can be controlled and
moderated. In addition, researchers can benefit from all
the tools developed in the past two decades for optical
telecommunications. It is unlikely that other carriers will
be employed in the foreseeable future.

Comparing different QC setups is a difficult task,
since several criteria must be taken into account. What
matters in the end, of course, is the rate of corrected
secret bits (the distilled bit rate Rdist) that can be trans-
mitted and the transmission distance. One can already
note that with present and near-future technology it will
probably not be possible to achieve rates of the order of
gigahertz, which are now common with conventional op-
tical communication systems (in their comprehensive
paper published in 2000, Gilbert and Hamrick discuss
practical methods for achieving high-bit-rate QC). This
implies that encryption with a key exchanged through
QC will be limited to highly confidential information.
While the determination of the transmission distance
and rate of detection (the raw bit rate Rraw) is straight-
forward, estimating the net rate is rather difficult. Al-
though, in principle, errors in the bit sequence follow
only from tampering by a malevolent eavesdropper, the
situation is rather different in reality. Discrepancies be-
tween the keys of Alice and Bob also happen because of
experimental imperfections. The error rate QBER can
be easily determined. Similarly, the error correction pro-
cedure is rather simple. Error correction leads to a re-
duction of the key rate that depends strongly on the
QBER. The real problem is to estimate the information
obtained by Eve, a quantity necessary for privacy ampli-
fication. This depends not only on the QBER, but also
on other factors, such as the photon number statistics of
the source or the way the choice of the measurement
basis is made. Moreover in a pragmatic approach, one
might also accept restrictions on Eve’s technology, limit-
ing her strategies and therefore also the information she
can obtain per error she introduces. Since the efficiency
of privacy amplification rapidly decreases when the
QBER increases, the distilled bit rate depends dramati-
cally on Eve’s information and hence on the assumptions
made. One can define as the maximum transmission dis-
tance the distance at which the distilled rate reaches
zero. This distance can give one an idea of the difficulty
of evaluating a QC system from a physical point of view.

Technological aspects must also be taken into account.
In this article we do not focus on all the published per-
formances (in particular not on the key rates), which
strongly depend on current technology and the financial
resources of the research teams who carried out the ex-
periments. Rather, we try to weigh the intrinsic techno-
logical difficulties associated with each setup and to an-
ticipate certain technological advances. Last but not
least, the cost of realizing a prototype should also be
considered.

In this section, we first deduce a general formula for
the QBER and consider its impact on the distilled rate.
We then review faint-pulse implementations. We class
them according to the property used to encode the qu-
bits value and follow a rough chronological order. Fi-

FIG. 10. Normalized net key creation rate rnet as a function of
distance in optical fibers. For n51, Alice uses a perfect single-
photon source. For n.1, the link is divided into n equal-length
sections, and n/2 two-photon sources are distributed between
Alice and Bob. Parameters: detection efficiency h510%,
dark-count probability pdark51024, and fiber attenuation a
50.25 dB/km.
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nally, we assess the possibility of adopting the various
setups for the realization of an industrial prototype. Sys-
tems based on entangled photon pairs are presented in
the next section.

A. Quantum bit error rate

The QBER is defined as the ratio of wrong bits to the
total number of bits received30 and is normally on the
order of a few percent. We can express it as a function of
rates,

QBER5
Nwrong

Nright1Nwrong
5

Rerror

Rsift1Rerror
'

Rerror

Rsift
. (26)

Here the sifted key corresponds to the cases in which
Alice and Bob made compatible choices of bases, hence
its rate is half that of the raw key.

The raw rate is essentially the product of the pulse
rate frep , the mean number of photons per pulse m, the
probability t link of a photons arriving at the analyzer,
and the probability h of the photon’s being detected:

Rsift5
1
2

Rraw5
1
2

qfrepmt linkh . (27)

The factor q (q<1, typically 1 or 1
2) must be introduced

for some phase-coding setups in order to correct for
noninterfering path combinations (see, for example,
Secs. IV.C and V.B).

One can identify three different contributions to
Rerror . The first arises from photons that end up in the
wrong detector due to imperfect interference or polar-
ization contrast. The rate Ropt is given by the product of
the sifted-key rate and the probability popt of a photon’s
going to the wrong detector:

Ropt5Rsiftpopt5
1
2

qfrepmt linkpopth . (28)

For a given setup, this contribution can be considered as
an intrinsic error rate indicating its suitability for use in
QC. We shall discuss it below in the case of each par-
ticular system.

The second contribution, Rdet , arises from the detec-
tor dark counts (or from remaining environmental stray
light in free-space setups). This rate is independent of
the bit rate.31 Of course, only dark counts falling within
the short time window when a photon is expected give
rise to errors,

Rdet5
1
2

1
2

freppdarkn , (29)

where pdark is the probability of registering a dark count
per time window and per detector, and n is the number

of detectors. The two factors of 1
2 are related to the fact

that a dark count has a 50% chance of happening when
Alice and Bob have chosen incompatible bases (and is
thus eliminated during sifting) and a 50% chance of oc-
curring in the correct detector.

Finally, error counts can arise from uncorrelated pho-
tons due to imperfect photon sources:

Racc5
1
2

1
2

paccfrept linknh . (30)

This factor appears only in systems based on entangled
photons, where the photons belonging to different pairs
but arriving in the same time window are not necessarily
in the same state. The quantity pacc is the probability of
finding a second pair within the time window, knowing
that a first one was created.32

The QBER can now be expressed as follows:

QBER5
Ropt1Rdet1Racc

Rsift
(31)

5popt1
pdarkn

tlinkh2qm
1

pacc

2qm
(32)

5QBERopt1QBERdet1QBERacc . (33)

We now analyze these three contributions. The first one,
QBERopt , is independent of the transmission distance
(it is independent of t link). It can be considered as a
measure of the optical quality of the setup, depending
only on the polarization or interference fringe contrast.
The technical effort needed to obtain and, more impor-
tantly, to maintain a given QBERopt is an important cri-
terion for evaluating different QC setups. In
polarization-based systems, it is rather simple to achieve
a polarization contrast of 100:1, corresponding to a
QBERopt of 1%. In fiber-based QC, the problem is to
maintain this value in spite of polarization fluctuations
and depolarization in the fiber link. For phase-coding
setups, QBERopt and the interference visibility are re-
lated by

QBERopt5
12V

2
. (34)

A visibility of 98% thus translates into an optical error
rate of 1%. Such a value implies the use of well-aligned
and stable interferometers. In bulk optics, perfect mode
overlap is difficult to achieve, but the polarization is
stable. In single-mode fiber interferometers, on in con-
trast, perfect mode overlap is automatically achieved,
but the polarization must be controlled, and chromatic
dispersion can constitute a problem.

The second contribution, QBERdet , increases with
distance, since the dark-count rate remains constant
while the bit rate goes down like t link . It depends en-

30In the following section we consider systems implementing
the BB84 protocol. For other protocols, some of the formulas
have to be slightly adapted.

31This is true provided that afterpulses (see Sec. III.C) do not
contribute to the dark counts.

32Note that a passive choice of measurement basis implies
that four detectors (or two detectors during two time windows)
are activated for every pulse, thus leading to a doubling of Rdet
and Racc .
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tirely on the ratio of the dark-count rate to the quantum
efficiency. At present, good single-photon detectors are
not commercially available for telecommunications
wavelengths. The span of QC is not limited by decoher-
ence. As QBERopt is essentially independent of the fiber
length, it is detector noise that limits the transmission
distance.

Finally, the QBERacc contribution is present only in
some two-photon schemes in which multiphoton pulses
are processed in such a way that they do not necessarily
encode the same bit value (see, for example, Secs. V.B.1
and V.B.2). Although all systems have some probability
of multiphoton pulses, in most these contribute only to
the information available to Eve (see Sec. VI.H) and not
to the QBER. However, for implementations featuring
passive choice by each photon, the multiphoton pulses
do not contribute to Eve’s information but only to the
error rate (see Sec. VI.J).

Now, let us calculate the useful bit rate as a function
of the distance. Rsift and QBER are given as a function
of t link in Eqs. (27) and (32), respectively. The fiber link
transmission decreases exponentially with length. The
fraction of bits lost due to error correction and privacy
amplification is a function of QBER and depends on
Eve’s strategy. The number of remaining bits Rnet is
given by the sifted-key rate multiplied by the difference
between the Alice-Bob mutual Shannon information
I(a ,b) and Eve’s maximal Shannon information
Imax(a,e):

Rnet5Rsift@I~a ,b!2Imax~a ,e!# . (35)

The difference between I(a ,b) and Imax(a,e) is calcu-
lated here according to Eqs. (63) and (65) (Sec. VI.E),
considering only individual attacks and no multiphoton
pulses. We obtain Rnet (the useful bit rate after error
correction and privacy amplification) for different wave-
lengths as shown in Fig. 11. There is first an exponential
decrease, then, due to error correction and privacy am-
plification, the bit rates fall rapidly down to zero. This is

most evident when comparing the curves 1550 and 1550
nm ‘‘single,’’ since the latter features a QBER that is 10
times lower. One can see that the maximum range is
about 100 km. In practice it is closer to 50 km, due to
nonideal error correction and privacy amplification,
multiphoton pulses, and other optical losses not consid-
ered here. Finally, let us mention that typical key cre-
ation rates on the order of a thousand bits per second
over distances of a few tens of kilometers have been
demonstrated experimentally (see, for example,
Townsend, 1998b or Ribordy et al., 2000).

B. Polarization coding

Encoding the qubits in the polarization of photons is a
natural solution. The first demonstration of QC by Ben-
nett and co-workers (Bennett, Bessette, et al., 1992)
made use of this choice. They realized a system in which
Alice and Bob exchanged faint light pulses produced by
a light-emitting diode and containing less than one pho-
ton on average over a distance of 30 cm in air. In spite of
the small scale of this experiment, it had an important
impact on the community, as it showed that it was not
unreasonable to use single photons instead of classical
pulses for encoding bits.

A typical QC system with the BB84 four-state proto-
col using the polarization of photons is shown in Fig. 12.
Alice’s system consists of four laser diodes. They emit
short classical photon pulses ('1 ns) polarized at 245°,
0°, 145°, and 90°. For a given qubit, a single diode is
triggered. The pulses are then attenuated by a set of
filters to reduce the average number of photons to well
below 1, and sent along the quantum channel to Alice.

It is essential that the pulses remain polarized for Bob
to be able to extract the information encoded by Alice.
As discussed in Sec. III.B.2, polarization mode disper-
sion may depolarize the photons, provided the delay it
introduces between polarization modes is longer than
the coherence time. This sets a constraint on the type of
lasers used by Alice.

Upon reaching Bob, the pulses are extracted from the
fiber. They travel through a set of waveplates used to
recover the initial polarization states by compensating
for the transformation induced by the optical fiber (Sec.
III.B.2). The pulses then reach a symmetric beamsplit-

FIG. 11. Bit rate, after error correction and privacy amplifica-
tion, vs fiber length. The chosen parameters are as follows:
pulse rates of 10 MHz for faint laser pulses (m50.1) and 1
MHz for the case of ideal single photons (1550-nm ‘‘single’’);
losses of 2, 0.35, and 0.25 dB/km; detector efficiencies of 50, 20,
and 10; dark-count probabilities of 1027, and 1025, and 1025

for 800, 1300, and 1550 nm, respectively. Losses at Bob’s end
and QBERopt are neglected.

FIG. 12. Typical system for quantum cryptography using po-
larization coding: LD, laser diode; BS, beamsplitter; F, neutral
density filter; PBS, polarizing beamsplitter; l/2, half wave-
plate; APD, avalanche photodiode.
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ter, implementing the basis choice. Transmitted photons
are analyzed in the vertical-horizontal basis with a po-
larizing beamsplitter and two photon-counting detec-
tors. The polarization state of the reflected photons is
first rotated with a waveplate by 45° (245°→0°). The
photons are then analyzed with a second set of polariz-
ing beamsplitters and photon-counting detectors. This
implements the diagonal basis. For illustration, let us
follow a photon polarized at 145°. We see that its state
of polarization is arbitrarily transformed in the optical
fiber. At Bob’s end, the polarization controller must be
set to bring it back to 145°. If it chooses the output of
the beamsplitter corresponding to the vertical-horizontal
basis, it will experience an equal probability of reflection
or transmission at the polarizing beamsplittter, yielding a
random outcome. On the other hand, if it chooses the
diagonal basis, its state will be rotated to 90°. The po-
larizing beamsplitter will then reflect it with unit prob-
ability, yielding a deterministic outcome.

Instead of having Alice use four lasers and Bob two
polarizing beamsplitters, one can also implement this
system with active polarization modulators such as
Pockels cells. For emission, the modulator is randomly
activated for each pulse to rotate the state of polariza-
tion to one of the four states, while, at the receiver, it
randomly rotates half of the incoming pulses by 45°. It is
also possible to realize the whole system with fiber op-
tics components.

Antoine Muller and co-workers at the University of
Geneva have used such a system to perform QC experi-
ments over optical fibers (1993; see also Bréguet et al.,
1994). They created a key over a distance of 1100 meters
with photons at 800 nm. In order to increase the trans-
mission distance, they repeated the experiment with
photons at 1300 nm (Muller et al., 1995, 1996) and cre-
ated a key over a distance of 23 km. An interesting fea-
ture of this experiment is that the quantum channel con-
necting Alice and Bob consisted of an optical fiber part
of an installed cable used by the telecommunications
company Swisscom for carrying phone conversations. It
runs between the Swiss cities of Geneva and Nyon, un-
der Lake Geneva (Fig. 13). This was the first time QC
was performed outside of a physics laboratory. These
experiments had a strong impact on the interest of the
wider public in the new field of quantum communica-
tion.

These two experiments highlighted the fact that the
polarization transformation induced by a long optical fi-
ber was unstable over time. Indeed, when monitoring
the QBER of their system, Muller noticed that, although
it remained stable and low for some time (on the order
of several minutes), it would suddenly increase after a
while, indicating a modification of the polarization trans-
formation in the fiber. This implies that a real fiber-
based QC system would require active alignment to
compensate for this evolution. Although not impossible,
such a procedure is certainly difficult. James Franson did
indeed implement an active-feedback alignment system
(Franson and Jacobs, 1995), but did not pursue this line
of research. It is interesting to note that replacing stan-

dard fibers with polarization-maintaining fibers does not
solve the problem. The reason is that, in spite of their
name, these fibers do not maintain polarization, as ex-
plained in Sec. III.B.2.

Recently, Townsend has also investigated such
polarization-encoding systems for QC on short-span
links up to 10 kilometers (1998a, 1998b) with photons at
800 nm. It is interesting to note that, although he used
standard telecommunications fibers which could support
more than one spatial mode at this wavelength, he was
able to ensure single-mode propagation by carefully
controlling the launching conditions. Because of the
problem discussed above, polarization coding does not
seem to be the best choice for QC in optical fibers. Nev-
ertheless, this problem is drastically reduced when con-
sidering free-space key exchange, as air has essentially
no birefringence at all (see Sec. IV.E).

C. Phase coding

The idea of encoding the value of qubits in the phase
of photons was first mentioned by Bennett in the paper
in which he introduced the two-state protocol (1992). It
is indeed a very natural choice for optics specialists.
State preparation and analysis are then performed with
interferometers, which can be realized with single-mode
optical fiber components.

Figure 14 presents an optical fiber version of a Mach-
Zehnder interferometer. It is made out of two symmetric
couplers—the equivalent of beamsplitters—connected
to each other, with one phase modulator in each arm.
One can inject light into the setup, using a continuous
and classical source, and monitor the intensity at the
output ports. Provided that the coherence length of the
light used is larger than the path mismatch in the inter-
ferometers, interference fringes can be recorded. Taking
into account the p/2 phase shift experienced upon re-
flection at a beamsplitter, the effect of the phase modu-

FIG. 13. Geneva and Lake Geneva. The Swisscom optical fi-
ber cable used for quantum cryptography experiments runs
under the lake between the town of Nyon, about 23 km north
of Geneva, and the center of the city.
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lators (fA and fB), and the path-length difference
(DL), the intensity in the output port labeled ‘‘0’’ is
given by

I05 Ī• cos2 S fA2fB1kDL

2 D , (36)

where k is the wave number and Ī the intensity of the
source. If the phase term is equal to p/21np , where n is
an integer, destructive interference is obtained. There-
fore the intensity registered in port 0 reaches a mini-
mum, and all the light exits from port 1. When the phase
term is equal to np , the situation is reversed: construc-
tive interference is obtained in port 0, while the intensity
in port 1 goes to a minimum. With intermediate phase
settings, light can be recorded in both ports. This device
acts like an optical switch. It is essential to keep the path
difference stable in order to record stationary interfer-
ences.

Although we have discussed the behavior of this inter-
ferometer for classical light, it works exactly the same
when a single photon is injected. The probability of de-
tecting the photon in one output port can be varied by
changing the phase. It is the fiber optic version of
Young’s double-slit experiment, in which the arms of the
interferometer replace the apertures.

This interferometer combined with a single-photon
source and photon-counting detectors can be used for
QC. Alice’s setup consists of the source, the first coupler,
and the first phase modulator, while Bob takes the sec-
ond modulator and coupler, as well as the detectors. Let
us consider the implementation of the four-state BB84
protocol. On the one hand, Alice can apply one of four
phase shifts (0,p/2,p ,3p/2) to encode a bit value. She
associates 0 and p/2 with bit 0, and p and 3p/2 with bit
1. On the other hand, Bob performs a basis choice by
randomly applying a phase shift of either 0 or p/2. He
associates the detector connected to the output port 0
with a bit value of 0, and the detector connected to port
1 with bit 1. When the difference of their phase is equal
to 0 or p, Alice and Bob are using compatible bases and
they obtain deterministic results. In such cases, Alice
can infer from the phase shift she applied the output
port chosen by the photon at Bob’s end and hence the
bit value he registered. Bob, on his side, deduces from
the output port chosen by the photon the phase that

Alice selected. When the phase difference equals p/2 or
3p/2, the bases are incompatible and the photon ran-
domly chooses which port it takes at Bob’s coupler. This
scheme is summarized in Table I. We must stress that it
is essential with this scheme to keep the path difference
stable during a key exchange session. It should not
change by more than a fraction of a wavelength of the
photons. A drift of the length of one arm would indeed
change the phase relation between Alice and Bob and
induce errors in their bit sequence.

It is interesting to note that encoding qubits with two-
path interferometers is formally isomorphic to polariza-
tion encoding. The two arms correspond to a natural
basis, and the weights cj of each qubit state c
5(c1e2if/2,c2eif/2) are determined by the coupling ratio
of the first beamsplitter, while the relative phase f is
introduced in the interferometer. The Poincaré sphere
representation, which applies to all two-level quantum
systems, can also be used to represent phase-coding
states. In this case, the azimuth angle represents the
relative phase between the light that has propagated
along the two arms. The elevation corresponds to the
coupling ratio of the first beamsplitter. States produced
by a switch are on the poles, while those resulting from
the use of a 50/50 beamsplitter lie on the equator. Figure
15 illustrates this analogy. Consequently, all polarization
schemes can also be implemented using phase coding.

FIG. 14. Conceptual interferometric setup for quantum cryp-
tography using an optical fiber Mach-Zehnder interferometer:
LD, laser diode; PM, phase modulator; APD, avalanche pho-
todiode.

TABLE I. Implementation of the BB84 four-state protocol
with phase encoding.

Alice Bob
Bit value fA fB fA2fB Bit value

0 0 0 0 0
0 0 p/2 3p/2 ?
1 p 0 p 1
1 p p/2 p/2 ?
0 p/2 0 p/2 ?
0 p/2 p/2 0 0
1 3p/2 0 3p/2 ?
1 3p/2 p/2 p 1

FIG. 15. Poincaré sphere representation of two-level quantum
states generated by two-path interferometers. The poles corre-
spond to the states generated by an interferometer in which
the first coupler is replaced by a switch. The states generated
with a symmetrical beamsplitter are on the equator. The azi-
muth indicates the phase between the two paths.
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Similarly, every coding using two-path interferometers
can be realized using polarization. However, in practice
one choice is often more convenient than the other, de-
pending on circumstances like the nature of the quan-
tum channel.33

1. The double Mach-Zehnder implementation

Although the scheme presented in the previous sec-
tion works perfectly well on an optical table, it is impos-
sible to keep the path difference stable when Alice and
Bob are separated by more than a few meters. As men-
tioned above, the relative length of the arms should not
change by more than a fraction of a wavelength. If Alice
and Bob are separated by 1 kilometer, for example, it is
clearly impossible to prevent path difference changes
smaller than 1 mm caused by environmental variations.
In his 1992 letter, Bennett also showed how to circum-
vent this problem. He suggested using two unbalanced
Mach-Zehnder interferometers, one for Alice and one
for Bob, connected in series by a single optical fiber (see
Fig. 16). When monitoring counts as a function of the
time since the emission of the photons, Bob obtains
three peaks (see the inset in Fig. 16). The first one cor-
responds to the photons that chose the short path in
both Alice’s and Bob’s interferometers, while the last
one corresponds to photons that chose both the long
paths. Finally, the central peak corresponds to photons
that chose the short path in Alice’s interferometer and
the long one in Bob’s, and vice versa. If these two pro-
cesses are indistinguishable, they produce interference.
A timing window can be used to discriminate between
interfering and noninterfering events. If the latter are
disregarded, it is then possible for Alice and Bob to ex-
change a key.

The advantage of this setup is that both ‘‘halves’’ of
the photon travel in the same optical fiber. They thus
experience the same optical length in the environmen-

tally sensitive part of the system, provided that the
variations in the fiber are slower than their temporal
separations, determined by the interferometer’s imbal-
ance ('5 ns). This condition is much less difficult to
fulfill. In order to obtain good fringe visibility, and hence
a low error rate, the imbalances of the interferometers
must be equal to within a fraction of the coherence time
of the photons. This implies that the path differences
must be matched to within a few millimeters, which does
not constitute a problem. The imbalance must be chosen
so that it is possible to distinguish the three temporal
peaks clearly and thus discriminate interfering from
noninterfering events. It must typically be larger than
the pulse length and the timing jitter of the photon-
counting detectors. In practice, the second condition is
the more stringent one. Assuming a time jitter of the
order of 500 ps, an imbalance of at least 1.5 ns keeps
the overlap between the peaks low.

The main difficulty associated with this QC scheme is
that the imbalances of Alice’s and Bob’s interferometers
must be kept stable to within a fraction of the wave-
length of the photons during a key exchange to maintain
correct phase relations. This implies that the interferom-
eters must lie in containers whose temperature is stabi-
lized. In addition, for long key exchanges an active sys-
tem is necessary to compensate for drift.34 Finally, in
order to ensure the indistinguishability of both interfer-
ing processes, one must make sure that in each interfer-
ometer the polarization transformation induced by the
short path is the same as that induced by the long path.
Both Alice and Bob must then use a polarization con-
troller to fulfill this condition. However, the polarization
transformation is rather stable in short optical fibers
whose temperature is kept stable and which do not ex-
perience strains. Thus this adjustment does not need to
be repeated frequently.

Paul Tapster and John Rarity of DERA, the Defence
Evalution and Research Agency (Malvern, England),
working with Paul Townsend, were the first to test this
system over a fiber optic spool of 10 km (Townsend
et al., 1993a, 1993b). Townsend later improved the inter-
ferometer by replacing Bob’s input coupler with a polar-
ization splitter to suppress the lateral noninterfering
peaks (1994). In this case, it is again unfortunately nec-
essary to align the polarization state of the photons at
Bob’s end, in addition to stabilizing the imbalance in the
interferometers. He later thoroughly investigated key
exchange with phase coding and improved the transmis-
sion distance (Marand and Townsend, 1995; Townsend,
1998b). He also tested the possibility of multiplexing a

33Note, in addition, that using many-path interferometers
opens up the possibility of coding quantum systems of dimen-
sions larger than 2, like qutrits, ququarts, etc. (Bechmann-
Pasquinucci and Peres, 2000; Bechmann-Pasquinucci and Tit-
tel, 2000; Bourennane, Karlsson, and Bjorn, 2001).

34Polarization coding requires the optimization of three pa-
rameters (three parameters are necessary for unitary polariza-
tion control). In comparison, phase coding requires optimiza-
tion of only one parameter. This is possible because the
coupling ratios of the beamsplitters are fixed. Both solutions
would be equivalent if one could limit the polarization evolu-
tion to rotations of the elliptic states without changes in the
ellipticity.

FIG. 16. Double Mach-Zehnder implementation of an inter-
ferometric system for quantum cryptography: LD, laser diode;
PM, phase modulator; APD, avalanche photodiode. The inset
represents the temporal count distribution recorded as a func-
tion of the time passed since the emission of the pulse by Al-
ice. Interference is observed in the central peak.
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quantum channel using two different wavelengths with
conventional data transmission over a single optical fiber
(Townsend, 1997a). Richard Hughes and co-workers
from Los Alamos National Laboratory have also exten-
sively tested such an interferometer (1996; Hughes, Mor-
gan, and Peterson, 2000) up to distances of 48 km of
installed optical fiber.35

2. ‘‘Plug-and-play’’ systems

As discussed in the two previous sections, both polar-
ization and phase coding require active compensation of
optical path fluctuations. A simple approach would be to
alternate between adjustment periods—when pulses
containing large numbers of photons are exchanged be-
tween Alice and Bob to adjust the compensating system
correcting for slow drifts in phase or polarization—and
qubits transmission periods, when the number of pho-
tons is reduced to a quantum level.

An approach invented in 1989 by Martinelli, then at
CISE Tecnologie Innovative in Milano, allows one to
automatically and passively compensate for all polariza-
tion fluctuations in an optical fiber (see also Martinelli,
1992). Let us first consider what happens to the polar-
ization state of a light pulse traveling through an optical
fiber, before being reflected by a Faraday mirror—a mir-
ror with a l/4 Faraday rotator36 in front. We must first
define a convenient description of the change in polar-
ization of light reflected by a mirror at normal incidence.
Let the mirror be in the x-y plane and z be the optical
axis. Clearly, all linear polarization states are unchanged
by a reflection. However, right-handed circular polariza-
tion is changed into left-handed and vice versa. Actually,
after a reflection the rotation continues in the same
sense, but since the propagation direction is reversed,
right-handed and left-handed polarizations are swapped.
The same holds for elliptic polarization states: the axes
of the ellipse are unchanged, but right and left are ex-
changed. Accordingly, on a Poincaré sphere the polar-
ization transformation upon reflection is described by a

symmetry through the equatorial plane: the north and
south hemispheres are exchanged @mW →(m1 ,m2 ,
2m3)# , or in terms of the qubit state vector,

T : S c1

c2
D→S c2*

c1*
D . (37)

This is a simple representation, but some attention has
to be paid. This transformation is not unitary. Indeed,
the above description switches from a right-handed ref-
erence frame XYZ to a left-handed one XYZ̃ , where
Z̃52Z . There is nothing wrong in doing this, and this
explains the nonunitary polarization transformation.37

Note that other descriptions are possible, but they re-
quire artificially breaking the XY symmetry. The main
reason for choosing this particular transformation is that
the description of the polarization evolution in the opti-
cal fiber before and after the reflection is then straight-
forward. Indeed, let U5e2ivBW sW l /2 describe this evolu-
tion under the effect of some modal birefringence BW in a
fiber section of length l (where sW is the vector whose
components are the Pauli matrices). Then the evolution
after reflection is simply described by the inverse opera-
tor U215eivBW sW l /2. Now that we have a description of
the mirror, let us add the Faraday rotator. It produces a
p/2 rotation of the Poincaré sphere around the north-
south axis: F5e2ipsz/4 (see Fig. 17). Because the Fara-
day effect is nonreciprocal (remember that it is due to a
magnetic field, which can be thought of as produced by a
spiraling electric current), the direction of rotation
around the north-south axis is independent of the light
propagation direction. Accordingly, after reflection on
the mirror, the second passage through the Faraday ro-
tator rotates the polarization in the same direction (see
again Fig. 17) and is described by the same operator F .
Consequently, the total effect of a Faraday mirror is to

35Note that in this experiment, Hughes and co-workers used
an unusually high mean number of photons per pulse. They
used a mean photon number of approximately 0.6 in the cen-
tral interference peak, corresponding to a m'1.2 in the pulses
leaving Alice. The latter value is the relevant one for eaves-
dropping analysis, since Eve could use an interferometer—
conceivable with present technology—in which the first cou-
pler was replaced by an optical switch and that allowed her to
exploit all the photons sent by Alice. In light of this high m and
optical losses (22.8 dB), one may argue that this implementa-
tion was not secure, even when taking into account only so-
called realistic eavesdropping strategies (see Sec. VI.I). Finally,
it is possible to estimate the results that other groups would
have obtained if they had used a similar value of m. One then
finds that key distribution distances of the same order could
have been achieved. This illustrates that the distance is a some-
what arbitrary figure of merit for a QC system.

36These commercially available components are extremely
compact and convenient when using telecommunications
wavelengths, which is not true for other wavelengths.

37Note that this transformation is positive, but not completely
positive. It is thus closely connected to the partial transposition
map (Peres, 1996). If several photons are entangled, then it is
crucial to describe all of them in frames with the same chirality.
Actually that this is necessary is the content of the Peres-
Horodecki entanglement witness (Horodecki et al., 1996).

FIG. 17. Evolution of the polarization state of a light pulse
represented on the Poincaré sphere over a round-trip propa-
gation along an optical fiber terminated by a Faraday mirror.
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change any incoming polarization state into its orthogo-
nal state: mW →2mW . This is best seen in Fig. 17 but can
also be expressed mathematically:

FTF : S c1

c2
D→S c2*

2c1*
D . (38)

Finally, the whole optical fiber can be modeled as con-
sisting of a discrete number of birefringent elements. If
there are N such elements in front of the Faraday mir-
ror, the change in polarization during a round trip can be
expressed (recall that the operator FTF only changes
the sign of the corresponding Bloch vector mW 5^cusW uc&)
as

U1
21

¯ UN
21FTFUN ¯ U15FTF . (39)

The output polarization state is thus orthogonal to the
input one, regardless of any birefringence in the fibers.
This approach can thus correct for time-varying birefrin-
gence changes, provided that they are slow compared to
the time required for the light to make a round trip (a
few hundred microseconds).

By combining this approach with time multiplexing in
a long-path interferometer, it is possible to implement a
quantum cryptography system based on phase coding in
which all optical and mechanical fluctuations are auto-
matically and passively compensated for (Muller et al.,
1997). We performed the first experiment on such a sys-
tem in early 1997 (Zbinden et al., 1997), and a key was
exchanged over a 23-km installed optical fiber cable (the
same one as was used in the polarization coding experi-
ments mentioned above). This setup featured a high in-
terference contrast (fringe visibility of 99.8%) and excel-
lent long-term stability and clearly established the value
of the approach for QC. The fact that no optical adjust-
ments were necessary earned it the nickname of ‘‘plug-
and-play’’ setup. It is interesting to note that the idea of
combining time multiplexing with Faraday mirrors was
first used to implement an ‘‘optical microphone’’
(Bréguet and Gisin, 1995).38

However, our first realization still suffered from cer-
tain optical inefficiencies, and it has been improved since
then. Like the setup tested in 1997, the new system is
based on time multiplexing, in which the interfering
pulses travel along the same optical path, but now, in
different time ordering. A schematic is shown in Fig. 18.
Briefly, the general idea is that pulses emitted at Bob’s
end can travel along one of two paths: they can go via
the short arm, be reflected at the Faraday mirror (FM)
at Alice’s end, and finally, back at Bob’s, setup travel via
the long arm. Or, they travel first via the long arm at
Bob’s end, get reflected at Alice’s end, and return via the
short arm of Bob’s setup. These two possibilities then
superpose on beamsplitter C1 . We shall now explain the

realization of this scheme in greater detail: A short and
bright laser pulse is injected into the system through a
circulator. It splits at a coupler. One of the half pulses,
labeled P1 , propagates through the short arm of Bob’s
setup directly to a polarizing beamsplitter. The polariza-
tion transformation in this arm is set so that it is fully
transmitted. P1 is then sent through the fiber optic link.
The second half pulse, labeled P2 , takes the long arm to
the polarizing beamsplitter. The polarization evolution is
such that P2 is reflected. A phase modulator present in
this long arm is left inactive so that it imparts no phase
shift to the outgoing pulse. P2 is also sent through the
link, with a delay on the order of 200 ns. Both half
pulses travel to Alice. P1 goes through a coupler. The
diverted light is detected with a classical detector to pro-
vide a timing signal. This detector is also important in
preventing so-called Trojan horse attacks, which are dis-
cussed in Sec. VI.K. The nondiverted light then propa-
gates through an attenuator and an optical delay line—
consisting simply of an optical fiber spool—whose role
will be explained later. Finally, it passes a phase modu-
lator before being reflected by the Faraday mirror. P2
follows the same path. Alice briefly activates her modu-
lator to apply a phase shift on P1 only, in order to en-
code a bit value exactly as in the traditional phase-
coding scheme. The attenuator is set so that when the
pulses leave Alice, they contain no more than a fraction
of a photon. When they reach the polarizing beamsplit-
ter after their return trip through the link, the polariza-
tion state of the pulses is exactly orthogonal to what it
was when they left, thanks to the effect of the Faraday
mirror. P1 is then reflected instead of being transmitted.
It takes the long arm to the coupler. When it passes, Bob
activates his modulator to apply a phase shift used to
implement his basis choice. Similarly, P2 is transmitted
and takes the short arm. Both pulses reach the coupler
at the same time and they interfere. Single-photon de-
tectors are then used to record the output port chosen
by the photon.

We implemented the four full-state BB84 protocol
with this setup. The system was tested once again on the
same installed optical fiber cable linking Geneva and
Nyon (23 km; see Fig. 13) at 1300 nm, and we observed
a very low QBERopt'1.4% (Ribordy et al., 1998, 2000).
Proprietary electronics and software were developed to
allow for fully automated and user-friendly operation of
the system. Because of the intrinsically bidirectional na-
ture of this system, great attention had to be paid to
Rayleigh backscattering. Light traveling in an optical fi-

38Note that since then, we have used this interferometer for
various other applications: a nonlinear index-of-refraction
measurement in fibers (Vinegoni, Wegmuller, and Gisin, 2000)
and an optical switch (Vinegoni, Wegmuller, Huttner, and Gi-
sin, 2000).

FIG. 18. Self-aligned plug-and-play system: LD, laser diode;
APD, avalanche photodiode; Ci , fiber coupler; PMj , phase
modulator; PBS, polarizing beamsplitter; DL, optical delay
line; FM, Faraday mirror; DA , classical detector.
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ber undergoes scattering by inhomogeneities. A small
fraction ('1%) of this light is recaptured by the fiber in
the backward direction. When the repetition rate is high
enough, pulses traveling to and from Alice must inter-
sect at some point along the line. Their intensity, how-
ever, is strongly different. The pulses are more than a
thousand times brighter before than after reflection
from Alice. Backscattered photons can accompany a
quantum pulse propagating back to Bob and induce
false counts. We avoided this problem by making sure
that pulses traveling to and from Bob are not present in
the line simultaneously. They are emitted by Bob in the
form of trains. Alice stores these trains in her optical
delay line, which consists of an optical fiber spool. Bob
waits until all the pulses of a train have reached him
before sending the next one. Although it completely
solves the problem of Rayleigh backscattering-induced
errors, this configuration has the disadvantage of reduc-
ing the effective repetition frequency. A storage line half
as long as the transmission line amounts to a reduction
of the bit rate by a factor of approximately 3.

Researchers at IBM simultaneously and indepen-
dently developed a similar system at 1300 nm (Bethune
and Risk, 2000). However, they avoided the problems
associated with Rayleigh backscattering by reducing the
intensity of the pulses emitted by Bob. Since these could
not be used for synchronization purposes any longer,
they added a wavelength-multiplexed classical channel
(1550 nm) in the line to allow Bob and Alice to synchro-
nize their systems. They tested their setup on a 10-km
optical fiber spool. Both of these systems are equivalent
and exhibit similar performances. In addition, the group
of Anders Karlsson at the Royal Institute of Technology
in Stockholm verified in 1999 that this technique also
works at a wavelength of 1550 nm (Bourennane et al.,
1999, 2000). These experiments demonstrate the poten-
tial of plug-and-play-like systems for real-world quan-
tum key distribution. They certainly constitute a good
candidate for the realization of prototypes.

Their main disadvantage with respect to the other sys-
tems discussed in this section is that they are more sen-
sitive to Trojan horse strategies (see Sec. VI.K). Indeed,
Eve could send a probe beam and recover it through the
strong reflection by the mirror at the end of Alice’s sys-
tem. To prevent such an attack, Alice adds an attenuator
to reduce the amount of light propagating through her
system. In addition, she must monitor the incoming in-
tensity using a classical linear detector. Systems based on
this approach cannot be operated with a true single-
photon source and thus will not benefit from the
progress in this field.39

D. Frequency coding

Phase-based systems for QC require phase synchroni-
zation and stabilization. Because of the high frequency

of optical waves (approximately 200 THz at 1550 nm),
this condition is difficult to fulfill. One solution is to use
self-aligned systems like the plug-and-play setups dis-
cussed in the previous section. Goedgebuer and his team
from the University of Besançon, in France, introduced
an alternative solution (Sun et al., 1995; Mazurenko
et al., 1997; Mérolla et al., 1999; see also Molotkov,
1998). Note that the title of this section is not completely
accurate, since the value of the qubits is coded not in the
frequency of the light, but in the relative phase between
sidebands of a central optical frequency.

Their system is depicted in Fig. 19. A source emits
short pulses of classical monochromatic light with angu-
lar frequency vS . A first phase modulator PMA modu-
lates the phase of this beam with a frequency V!vS and
a small modulation depth. Two sidebands are thus gen-
erated at frequencies vS6V . The phase modulator is
driven by a radio-frequency oscillator RFOA whose
phase FA can be varied. Finally, the beam is attenuated
so that the sidebands contain much less than one photon
per pulse, while the central peak remains classical. After
the transmission link, the beam experiences a second
phase modulation applied by PMB . This phase modula-
tor is driven by a second radio-frequency oscillator
RFOB with the same frequency V and phase FB . These
oscillators must be synchronized. After passing through
this device, the beam contains the original central fre-
quency vS , the sidebands created by Alice, and the
sidebands created by Bob. The sidebands at frequencies
vS6V are mutually coherent and thus yield interfer-
ence. Bob can then record the interference pattern in
these sidebands after removal of the central frequency
and the higher-order sidebands with a spectral filter.

To implement the B92 protocol (see Sec. II.D.1), Al-
ice randomly chooses the value of the phase FA for
each pulse. She associates a bit value of 0 with phase 0
and a bit value of 1 with phase p. Bob also randomly
chooses whether to apply a phase FB of 0 or p. One can
see that if uFA2FBu50, the interference is constructive
and Bob’s single-photon detector has a nonzero prob-
ability of recording a count. This probability depends on
the number of photons initially present in the sideband,
as well as on the losses induced by the channel. On the
other hand, if uFA2FBu5p , interference is destructive,
and no count will ever be recorded. Consequently, Bob
can infer, every time he records a count, that he applied
the same phase as Alice. When a given pulse does not
yield a detection, the reason can be that the phases ap-

39The fact that the pulses make a round trip implies that
losses are doubled, yielding a reduced counting rate.

FIG. 19. Implementation of sideband modulation: LD, laser
diode; A, attenuator; PMi , optical phase modulator; F j , elec-
tronic phase controller; RFOk , radio frequency oscillator; FP,
Fabry-Perot filter; APD, avalanche photodiode.
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plied were different and destructive interference took
place. It can also mean that the phases were actually
equal, but the pulse was empty or the photon got lost.
Bob cannot decide between these two possibilities.
From a conceptual point of view, Alice sends one of two
nonorthogonal states. There is then no way for Bob to
distinguish between them deterministically. However, he
can perform a generalized measurement, also known as
a positive operator value measurement, which will some-
times fail to give an answer, but at all other times gives
the correct one.

Eve could perform the same measurement as Bob.
When she obtains an inconclusive result, she could just
block both the sideband and the central frequency so
that she does not have to guess a value and does not risk
introducing an error. To prevent her from doing that,
Bob verifies the presence of this central frequency. Now
if Eve tries to conceal her presence by blocking only the
sideband, the reference central frequency will still have
a certain probability of introducing an error. It is thus
possible to catch Eve in both cases. The monitoring of
the reference beam is essential in all two-state protocols
to reveal eavesdropping. In addition, it was shown that
this reference-beam monitoring can be extended to the
four-state protocol (Huttner et al., 1995).

The advantage of this setup is that the interference is
controlled by the phase of the radio-frequency oscilla-
tors. Their frequency is six orders of magnitude smaller
than the optical frequency and thus considerably easier
to stabilize and synchronize. It is indeed a relatively
simple task, which can be achieved by electronic means.
The Besançon group performed key distribution with
such a system. The source they used was a distributed
Bragg reflector (DBR) laser diode at a wavelength of
1540 nm and a bandwidth of 1 MHz. It was externally
modulated to obtain 50-ns pulses, thus increasing the
bandwidth to about 20 MHz. They used two identical
LiNbO3 phase modulators operating at a frequency
V/2p5300 MHz. Their spectral filter was a Fabry-Perot
cavity with a finesse of 55. Its resolution was 36 MHz.
They performed key distribution over a 20-km single-
mode optical fiber spool, recording a QBERopt contri-
bution of approximately 4%. They estimated that 2%
could be attributed to the transmission of the central
frequency by the Fabry-Perot cavity. Note also that the
detector noise was relatively high due to the long pulse
durations. Both these errors could be lowered by in-
creasing the separation between the central peak and
the sidebands, allowing reduced pulse widths and hence
shorter detection times and lower dark counts. Never-
theless, a compromise must be found since, in addition
to the technical drawbacks of high-speed modulation,
the polarization transformation in an optical fiber de-
pends on the wavelength. The remaining 2% of the
QBERopt is due to polarization effects in the setup.

This system is another possible candidate. Its main
advantage is that it could be used with a true single-
photon source if it existed. On the other hand, the con-
tribution of imperfect interference visibility to the error
rate is significantly higher than that measured with plug-

and-play systems. In addition, if this system is to be truly
independent of polarization, it is essential to ensure that
the phase modulators have very low polarization depen-
dency. In addition, the stability of the frequency filter
may constitute a practical difficulty.

E. Free-space line-of-sight applications

Since optical fiber channels may not always be avail-
able, several groups are trying to develop free-space
line-of-sight QC systems capable, for example, of dis-
tributing a key between building rooftops in an urban
setting.

Of course it may sound difficult to detect single pho-
tons amidst background light, but the first experiments
have already demonstrated the feasibility of free-space
QC. Sending photons through the atmosphere also has
advantages, since this medium is essentially nonbirefrin-
gent (see Sec. III.B.4). It is then possible to use plain
polarization coding. In addition, one can ensure very
high channel transmission over long distances by care-
fully choosing the wavelength of the photons (see again
Sec. III.B.4). The atmosphere has, for example, a high
transmission ‘‘window’’ in the vicinity of 770 nm (trans-
mission as high as 80% can occur between a ground
station and a satellite), which happens to be compatible
with commercial silicon APD photon-counting modules
(detection efficiency can be as high as 65% with low
noise).

The systems developed for free-space applications are
actually very similar to that shown in Fig. 12. The main
difference is that the emitter and receiver are connected
by telescopes pointing at each other, instead of by an
optical fiber. The contribution of background light to
errors can be maintained at a reasonable level by using a
combination of timing discrimination (coincidence win-
dows of typically a few nanoseconds), spectral filtering
(interference filters <1 nm), and spatial filtering (cou-
pling into an optical fiber). This can be illustrated by the
following simple calculation. Let us suppose that
the isotropic spectral background radiance is
1022 W m22 nm21 sr21 at 800 nm. This corresponds to
the spectral radiance of a clear zenith sky with a sun
elevation of 77° (Zissis and Larocca, 1978). The diver-
gence u of a Gaussian beam with radius w0 is given by
u5l/w0p . The product of beam (telescope) cross sec-
tion and solid angle, which is a constant, is therefore
pw0

2pu25l2. By multiplying the radiance by l2, one
obtains the spectral power density. With an interference
filter of 1-nm width, the power incident on the detector
is 6310215 W, corresponding to 23104 photons per sec-
ond or 231025 photons per nanosecond. This quantity
is approximately two orders of magnitude larger than
the dark-count probability of Si APD’s, but still compat-
ible with the requirements of QC. The performance of
free-space QC systems depends dramatically on atmo-
spheric conditions and air quality. This is problematic for
urban applications where pollution and aerosols degrade
the transparency of air.

174 Gisin et al.: Quantum cryptography

Rev. Mod. Phys., Vol. 74, No. 1, January 2002



The first free-space QC experiment over a distance
of more than a few centimeters40 was performed by Ja-
cobs and Franson in 1996. They exchanged a key over a
distance of 150 m in a hallway illuminated with standard
fluorescent lighting and over 75 m outdoors in bright
daylight without excessive QBER. Hughes and his team
were the first to exchange a key over more than one
kilometer under outdoor nighttime conditions (Buttler
et al., 1998; Hughes, Buttler, et al., 2000). More recently,
they even improved their system to reach a distance of
1.6 km under daylight conditions (Buttler et al., 2000).
Finally, Rarity and co-workers performed a similar ex-
periment, in which they exchanged a key over a distance
of 1.9 km under nighttime conditions (Gorman et al.,
2001).

Until quantum repeaters become available and allow
us to overcome the distance limitation of fiber-based
QC, free-space systems seem to offer the only possibility
for QC over distances of more than a few dozen kilome-
ters. A QC link could be established between ground-
based stations and a low-orbit (300–1200 km) satellite.
The idea is for Alice and Bob to each exchange a key
(kA and kB , respectively) with the same satellite, using
QC. Then the satellite publicly announces the value K
5kA % kB , where % represents the XOR operator or,
equivalently, the binary addition modulo 2 without carry.
Bob subtracts his key from this value to recover Alice’s
key (kA5K*kB).41 The fact that the key is known to
the satellite operator may at first be seen as a disadvan-
tage. But this point might actually be conducive to the
development of QC, since governments always like to
control communications. Although it has not yet been
demonstrated, Hughes as well as Rarity have
estimated—in view of their free-space experiments—
that the difficulty can be overcome. The main difficulty
would come from beam pointing—do not forget that the
satellites will move with respect to the ground—and
wandering induced by turbulence. In order to minimize
the latter problem, the photons would in practice prob-
ably be sent down from the satellite. Atmospheric tur-
bulence is concentrated almost entirely in the first kilo-
meter above the earth’s surface. Another possibile way
to compensate for beam wander is to use adaptative op-
tics. Free-space QC experiments over distances of about
2 km constitute a major step towards key exchange
with a satellite. According to Buttler et al. (2000), the
optical depth is indeed similar to the effective atmo-
spheric thickness that would be encountered in a
surface-to-satellite application.

F. Multi-user implementations

Paul Townsend and colleagues have investigated the
application of QC over multi-user optical fiber networks

(Townsend et al., 1994; Phoenix et al., 1995; Townsend,
1997b). They used a passive optical fiber network archi-
tecture in which one Alice, the network manager, is con-
nected to multiple network users (i.e., many Bobs; see
Fig. 20). The goal is for Alice to establish a verifiably
secure and unique key with each Bob. In the classical
limit, the information transmitted by Alice is gathered
by all Bobs. However, because of their quantum behav-
ior, the photons are effectively routed at the beamsplit-
ter to one, and only one, of the users. Using the double
Mach-Zehnder configuration discussed above, they
tested such an arrangement with three Bobs. Neverthe-
less, because of the fact that QC requires a direct and
low-attenuation optical channel between Alice and Bob,
the ability to implement it over large and complex net-
works appears limited.

V. EXPERIMENTAL QUANTUM CRYPTOGRAPHY WITH
PHOTON PAIRS

The possibility of using entangled photon pairs for
quantum cryptography was first proposed by Ekert in
1991. In a subsequent paper, he investigated, with other
researchers, the feasibility of a practical system (Ekert
et al., 1992). Although all tests of Bell’s inequalities (for
a review see, for example, Zeilinger, 1999) can be seen
as experiments in quantum cryptography, systems spe-
cifically designed to meet the special requirements of
QC, like quick changes of basis, have been implemented
only recently.42 In 1999, three groups demonstrated
quantum cryptography based on the properties of en-
tangled photons. Their results were reported in the same
issue of Phys. Rev. Lett. (Jennewein, Simon, et al., 2000;
Naik et al., 2000; Tittel et al., 2000), illustrating the rapid
progress in the still new field of quantum communica-
tion.

One advantage of using photon pairs for QC is the
fact that one can remove empty pulses, since the detec-

40Remember that Bennett and co-workers performed the
first demonstration of QC over 30 cm in air (Bennett, Bessette,
et al., 1992).

41This scheme could also be used with optical fiber implemen-
tation provided that secure nodes existed. In the case of a
satellite, one tacitly assumes that it constitutes such a secure
node.

42This definition of quantum cryptography applies to the fa-
mous experiment by Aspect and co-workers testing Bell’s in-
equalities with time-varying analyzers (Aspect et al., 1982). QC
had, however, not yet been invented. It also applies to the
more recent experiments closing locality loopholes, like the
one performed in Innsbruck using fast polarization modulators
(Weihs et al., 1998) or the one performed in Geneva using two
analyzers on each side (Tittel et al., 1999; Gisin and Zbinden,
1999).

FIG. 20. Multi-user implementation of quantum cryptography
with one Alice connected to three Bobs by optical fibers. The
photons sent by Alice randomly choose to go to one or the
other Bob at a coupler.
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tion of one photon of a pair reveals the presence of a
companion. In principle, it is thus possible to have a
probability of emitting a nonempty pulse equal to one.43

It is beneficial only because currently available single-
photon detectors feature a high dark-count probability.
The difficulty of always collecting both photons of a pair
somewhat reduces this advantage. One frequently hears
that photon pairs have the advantage of avoiding multi-
photon pulses, but this is not correct. For a given mean
photon number, the probability that a nonempty pulse
contains more than one photon is essentially the same
for weak pulses as for photon pairs (see Sec. III.A.2).

A second advantage is that using entangled photons
pair prevents unintended information leakage in unused
degrees of freedom (Mayers and Yao, 1998). Observing
a QBER lower than approximately 15%, or equivalently
observing that Bell’s inequality is violated, indeed guar-
antees that the photons are entangled, so that the differ-
ent states are not fully distinguishable through other de-
grees of freedom. A third advantage was indicated
recently by new and elaborate eavesdropping analyses.
The fact that passive state preparation can be imple-
mented prevents multiphoton splitting attacks (see Sec.
VI.J).

The coupling between the optical frequency and the
property used to encode the qubit, i.e., decoherence, is
rather easy to master when using faint laser pulses.
However, this issue is more serious when using photon
pairs, because of the larger spectral width. For example,
for a spectral width of 5 nm full width at half maximum
(FWHM)—a typical value, equivalent to a coherence
time of 1 ps—and a fiber with a typical polarization
mode dispersion of 0.2 ps/Akm, transmission over a few
kilometers induces significant depolarization, as dis-
cussed in Sec. III.B.2. In the case of polarization-
entangled photons, this effect gradually destroys their
correlation. Although it is in principle possible to com-
pensate for this effect, the statistical nature of the polar-
ization mode dispersion makes this impractical.44

Although perfectly fine for free-space QC (see Sec.
IV.E), polarization entanglement is thus not adequate
for QC over long optical fibers. A similar effect arises
when dealing with energy-time-entangled photons.
Here, the chromatic dispersion destroys the strong time
correlations between the photons forming a pair. How-
ever, as discussed in Sec. III.B.3, it is possible to com-
pensate passively for this effect either using additional
fibers with opposite dispersion, or exploiting the inher-
ent energy correlation of photon pairs.

Generally speaking, entanglement-based systems are
far more complex than setups based on faint laser
pulses. They will most certainly not be used in the near
future for the realization of industrial prototypes. In ad-
dition, the current experimental key creation rates ob-
tained with these systems are at least two orders of mag-
nitude smaller than those obtained with faint laser pulse
setups (net rate on the order of a few tens of bits per
second, in contrast to a few thousand bits per second for
a 10-km distance). Nevertheless, they offer interesting
possibilities in the context of cryptographic optical net-
works. The photon-pair source can indeed be operated
by a key provider and situated somewhere in between
potential QC customers. In this case, the operator of the
source has no way of getting any information about the
key obtained by Alice and Bob.

It is interesting to emphasize the close analogy be-
tween one- and two-photon schemes, which was first
noted by Bennett, Brassard, and Mermin (1992). In a
two-photon scheme, when Alice detects her photon, she
effectively prepares Bob’s photon in a given state. In the
one-photon analog, Alice’s detectors are replaced by
sources, while the photon-pair source between Alice and
Bob is bypassed. The difference between these schemes
lies only in practical issues, like the spectral widths of
the light. Alternatively, one can look at this analogy
from a different point of view: in two-photon schemes, it
is as if Alice’s photon propagates backwards in time
from Alice to the source and then forward in time from
the source to Bob.

A. Polarization entanglement

A first class of experiments takes advantage of
polarization-entangled photon pairs. The setup, depicted
in Fig. 21, is similar to the scheme used for polarization
coding based on faint pulses. A two-photon source emits
pairs of entangled photons flying back to back towards
Alice and Bob. Each photon is analyzed with a polariz-
ing beamsplitter whose orientation with respect to a
common reference system can be changed rapidly. The
results of two experiments were reported in the spring of
2000 (Jennewein, Simon, et al., 2000; Naik et al., 2000).
Both used photon pairs at a wavelength of 700 nm,
which were detected with commercial single-photon de-
tectors based on silicon APD’s. To create the photon
pairs, both groups took advantage of parametric down-
conversion in one or two b-BaB2O4 (BBO) crystals

43Photon-pair sources are often, though not always, pumped
continuously. In these cases, the time window determined by a
trigger detector and electronics defines an effective pulse.

44In the case of weak pulses, we saw that a full round trip
together with the use of Faraday mirrors circumvents the prob-
lem (see Sec. IV.C.2). However, since the channel loss on the
way from the source to the Faraday mirror inevitably increases
the fraction of empty pulses, the main advantage of photon
pairs vanishes in such a configuration.

FIG. 21. Typical system for quantum cryptography exploiting
photon pairs entangled in polarization: PR, active polarization
rotator; PBS, polarizing beamsplitter; APD, avalanche photo-
diode.
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pumped by an argon-ion laser. The analyzers consisted
of fast modulators that were used to rotate the polariza-
tion state of the photons, in front of polarizing beam-
splitters.

The group of Anton Zeilinger, then at the University
of Innsbruck, demonstrated such a cryptosystem, includ-
ing error correction, over a distance of 360 m (Jenne-
wein, Simon, et al., 2000). Inspired by a test of Bell’s
inequalities performed with the same setup a year ear-
lier (Weihs et al., 1998), they positioned the two-photon
source near the center between the two analyzers. Spe-
cial optical fibers, designed for guiding only a single
mode at 700 nm, were used to transmit the photons to
the two analyzers. The results of the remote measure-
ments were recorded locally, and the processes of key
sifting and error correction were implemented at a later
stage, long after the distribution of the qubits. Two dif-
ferent protocols were implemented: one based on Wig-
ner’s inequality (a special form of Bell’s inequalities) and
the other based on BB84.

The group of Paul Kwiat, then at Los Alamos Na-
tional Laboratory, demonstrated the Ekert protocol
(Naik et al., 2000). This experiment was a table-top re-
alization in which the source and the analyzers were
separated by only a few meters. The quantum channel
consisted of a short free-space distance. In addition to
performing QC, the researchers simulated different
eavesdropping strategies. As predicted by theory, they
observed a rise in the QBER with an increase of the
information obtained by the eavesdropper. Moreover,
they have also recently implemented the six-state proto-
col described in Sec. II.D.2 and observed the predicted
QBER increase to 33% (Enzer et al., 2001).

The main advantage of polarization entanglement is
that analyzers are simple and efficient. It is therefore
relatively easy to obtain high contrast. Naik and co-
workers, for example, measured a polarization extinc-
tion of 97%, mainly limited by electronic imperfections
of the fast modulators. This amounts to a QBERopt con-
tribution of only 1.5%. In addition, the constraint on the
coherence length of the pump laser is not very stringent
(note that, if it is shorter than the length of the crystal,
some difficulties can arise, but we will not go into these
here).

In spite of their qualities, it would be difficult to re-
produce these experiments over distances of more than
a few kilometers of optical fiber. As mentioned in the
introduction to this section, polarization is indeed not
robust enough to avoid decoherence in optical fibers. In
addition, the polarization state transformation induced
by an installed fiber frequently fluctuates, making an ac-
tive alignment system absolutely necessary. Neverthe-
less, these experiments are very interesting in the con-
text of free-space QC.

B. Energy-time entanglement

1. Phase coding

Another class of experiments takes advantage of
energy-time-entangled photon pairs. The idea originates
from an arrangement proposed by Franson in 1989 to
test Bell’s inequalities. As we shall see below, it is com-
parable to the double Mach-Zehnder configuration dis-
cussed in Sec. IV.C.1. A source emits pairs of energy-
correlated photons, that were created at exactly the
same (unknown) time (see Fig. 22). This can be achieved
by pumping a nonlinear crystal with a pump of long co-
herence time. The pairs of downconverted photons are
then split, and one photon is sent to each party down
quantum channels. Both Alice and Bob possess a widely
but identically unbalanced Mach-Zehnder interferom-
eter, with photon-counting detectors connected to the
outputs. Locally, if Alice or Bob change the phase of
their interferometer, no effect on the count rates is ob-
served, since the imbalance prevents any single-photon
interference. Looking at the detection time at Bob’s end
with respect to the arrival time at Alice’s end, three dif-
ferent values are possible for each combination of detec-
tors. The different possibilities in a time spectrum are
shown in Fig. 22. First, both photons can propagate
through the short arms of the interferometers. Second,
one can take the long arm at Alice’s end, while the other
one takes the short one at Bob’s, or vice versa. Finally,
both photons can propagate through the long arms.
When the path differences of the interferometers are
matched to within a fraction of the coherence length of
the downconverted photons, the short-short and the

FIG. 22. Principle of phase-
coding quantum cryptography
using energy-time-entangled
photon pairs.
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long-long processes are indistinguishable, provided that
the coherence length of the pump photon is larger than
the path-length difference. Conditioning detection
only on the central time peak, one observes two-
photon interferences—nonlocal quantum correlations
(Franson, 1989)45—that depend on the sum of the rela-
tive phases in Alice’s and Bob’s interferometers (see Fig.
22). The phases of Alice’s and Bob’s interferometers can,
for example, be adjusted so that both photons always
emerge from the same output port. It is then possible to
exchange bits by associating values with the two ports.
This, however, is insufficient. A second measurement ba-
sis must be implemented to ensure security against
eavesdropping attempts. This measurement can be
made, for example, by adding a second interferometer
to the systems (see Fig. 23). In this case, when reaching
an analyzer, a photon chooses randomly to go to one or
the other interferometer. The second set of interferom-
eters can also be adjusted to yield perfect correlations
between output ports. The relative phases between their
arms should, however, be chosen so that when the pho-
tons go to interferometers that are not associated with
each other, the outcomes are completely uncorrelated.

Such a system features passive state preparation by
Alice, yielding security against multiphoton splitting at-
tacks (see Sec. VI.J). In addition, it also features a pas-
sive basis choice by Bob, which constitutes an elegant
solution: neither a random-number generator nor an ac-
tive modulator are necessary. It is nevertheless clear that
QBERdet and QBERacc [defined in Eq. (33)] are
doubled, since the number of activated detectors is twice
as high. This disadvantage is not as important as it first
appears, since the alternative, a fast modulator, intro-
duces losses close to 3 dB, also resulting in an increase
of these error contributions. The striking similarity be-
tween this scheme and the double Mach-Zehnder ar-
rangement discussed in the context of faint laser pulses
in Sec. IV.C.1 is obvious when one compares Figs. 24
and 16.

This scheme was realized in the first half of 2000 by
our group at the University of Geneva (Ribordy et al.,

2001). It was the first experiment in which an asymmet-
ric setup optimized for QC was used instead of a system
designed for tests of Bell’s inequality, with a source lo-
cated midway between Alice and Bob (see Fig. 25). The
two-photon source (a KNbO3 crystal pumped by a
doubled Nd-YAG laser) provided energy-time-
entangled photons at nondegenerate wavelengths—one
at around 810 nm, the other centered at 1550 nm. This
choice allowed the use of high-efficiency silicon-based
single-photon counters featuring low noise to detect the
photons of the lower wavelength. To avoid the high
transmission losses at this wavelength in optical fibers,
the distance between the source and the corresponding
analyzer was very short, of the order of a few meters.
The other photon, at the wavelength where fiber losses
are minimal, was sent via an optical fiber to Bob’s inter-
ferometer and then detected by InGaAs APD’s. The de-
coherence induced by chromatic dispersion was limited
by the use of dispersion-shifted optical fibers (see Sec.
III.B.3).

Implementing the BB84 protocol in the manner dis-
cussed above, with a total of four interferometers, is dif-
ficult. Indeed, they must be aligned and their relative
phase kept accurately stable during the whole key distri-
bution session. To simplify this problem, we devised
birefringent interferometers with polarization multiplex-
ing of the two bases. Consequently the constraint on the
stability of the interferometers was equivalent to that
encountered in the faint-pulse double Mach-Zehnder
system. We obtained interference visibilities typically of
92%, yielding in turn a QBERopt contribution of about
4%. We demonstrated QC over a transmission distance
of 8.5 km in a laboratory setting using a fiber on a spool
and generated several megabits of key in hour-long ses-

45The imbalance of the interferometers must be large enough
so that the middle peak can easily be distinguished from the
satellite ones. This minimal imbalance is determined by the
convolution of the detector’s jitter (tens of picoseconds), the
electronic jitter (from tens to hundreds of picoseconds), and
the single-photon coherence time (,1 ps).

FIG. 23. System for quantum cryptography based on phase-
coding entanglement: APD, avalanche photodiode. The pho-
tons choose their bases randomly at Alice and Bob’s couplers.

FIG. 24. Quantum cryptography system exploiting photons en-
tangled in energy-time and active basis choice. Note the simi-
larity to the faint-laser double Mach-Zehnder implementation
depicted in Fig. 16.

FIG. 25. Schematic diagram of the first system designed and
optimized for long-distance quantum cryptography and ex-
ploiting phase coding of entangled photons.
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sions. This is the longest span realized to date for QC
with photon pairs.

As already mentioned, it is essential for this scheme to
have a pump laser whose coherence length is longer
than the path imbalance of the interferometers. In addi-
tion, its wavelength must remain stable during a key ex-
change session. These requirements imply that the pump
laser must be somewhat more elaborate than in the case
of polarization entanglement.

2. Phase-time coding

We have mentioned in Sec. IV.C that states generated
by two-path interferometers are two-level quantum sys-
tems. They can also be represented on a Poincaré
sphere. The four states used for phase coding in the pre-
vious section would lie equally distributed on the equa-
tor of the sphere. The coupling ratio of the beamsplitter
is 50%, and a phase difference is introduced between
the components propagating through either arm. In
principle, the four-state protocol can be equally well
implemented with only two states on the equator and
two others on the poles. In this section, we present a
system exploiting such a set of states. Proposed by our
group in 1999 (Brendel et al., 1999), the scheme follows
in principle the Franson configuration described in the
context of phase coding. However, it is based on a
pulsed source emitting entangled photons in so-called
energy-time Bell states (Tittel et al., 2000). The emission
time of the photon pair is therefore given by a superpo-
sition of only two discrete terms, instead of by a wide
and continuous range bounded only by the long coher-
ence length of the pump laser (see Sec. V.B.1).

Consider Fig. 26. If Alice registers the arrival times of
the photons with respect to the emission time of the
pump pulse t0 , she finds the photons in one of three
time slots (note that she has two detectors to take into
account). For instance, detection of a photon in the first
slot corresponds to the pump photon’s having traveled
via the short arm and the downconverted photon’s hav-
ing traveled via the short arm. To keep it simple, we
refer to this process as us&P ,us&A , where P stands for the

pump and A for Alice’s photon.46 However, the charac-
terization of the complete photon pair is still ambiguous,
since, at this point, the path of the photon that has trav-
eled to Bob (short or long in his interferometer) is un-
known to Alice. Figure 26 illustrates all processes lead-
ing to a detection in the different time slots both at
Alice’s and at Bob’s detector. Obviously, this reasoning
holds for any combination of two detectors. In order to
build up the secret key, Alice and Bob now publicly
agree about the events when both detected a photon in
one of the satellite peaks—without revealing in which
one—or both in the central peak—without revealing in
which detector. This procedure corresponds to key sift-
ing. For instance, in the example discussed above, if Bob
tells Alice that he has detected his photon in a satellite
peak, she knows that it must have been the left peak.
This is because the pump photon has traveled via the
short arm, hence Bob can detect his photon either in the
left satellite or in the central peak. The same holds for
Bob, who now knows that Alice’s photon traveled via
the short arm in her interferometer. Therefore, in the
case of joint detection in a satellite peak, Alice and Bob
must have correlated detection times. Assigning a bit
value to each side peak, Alice and Bob can exchange a
sequence of correlated bits.

The cases where both find the photon in the central
time slot are used to implement the second basis. They
correspond to the us&P ,ul&Aul&B and ul&P ,us&Aus&B possi-
bilities. If these are indistinguishable, one obtains two-
photon interferences, exactly as in the case discussed in
the previous section on phase coding. Adjusting the
phases and keeping them stable, one can use the perfect
correlations between output ports chosen by the pho-
tons at Alice’s and Bob’s interferometers to establish the
key bits in this second basis.

Phase-time coding has recently been implemented in a
laboratory experiment by our group (Tittel et al., 2000)
and was reported at the same time as the two polariza-
tion entanglement-based schemes mentioned above. A
contrast of approximately 93% was obtained, yielding a
QBERopt contribution of 3.5%, similar to that obtained
with the phase-coding scheme. This experiment will be
repeated over long distances, since losses in optical fi-
bers are low at the downconverted photon wavelength
(1300 nm).

An advantage of this setup is that coding in the time
basis is particularly stable. In addition, the coherence
length of the pump laser is no longer critical. However, it
is necessary to use relatively short pulses ('500 ps)
powerful enough to induce a significant downconversion
probability.

Phase-time coding, as discussed in this section,
can also be realized with faint laser pulses (Bechmann-
Pasquinucci and Tittel, 2000). The one-photon configu-
ration has so far never been realized. It would be similar
to the double Mach-Zehnder setup discussed in Sec.
IV.C.1, but with the first coupler replaced by an active

46Note that it does not constitute a product state.

FIG. 26. Schematics of quantum cryptography using
entangled-photon phase-time coding.
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switch. For the time basis, Alice would set the switch
either to full transmission or to full reflection, while for
the energy basis she would set it at 50%. This illustrates
how research on photon pairs can yield advances on
faint-pulse systems.

3. Quantum secret sharing

In addition to QC using phase-time coding, we used
the setup depicted in Fig. 26 for the first proof-of-
principle demonstration of quantum secret sharing—the
generalization of quantum key distribution to more than
two parties (Tittel et al., 2001). In this new application of
quantum communication, Alice distributes a secret key
to two other users, Bob and Charlie, in such a way that
neither Bob nor Charlie alone has any information
about the key, but together they have full information.
As in traditional QC, an eavesdropper trying to get
some information about the key creates errors in the
transmission data and thus reveals her presence. The
motivation behind quantum secret sharing is to guaran-
tee that Bob and Charlie cooperate—one of them might
be dishonest—in order to obtain a given piece of infor-
mation. In contrast with previous proposals using three-
particle Greenberger-Horne-Zeilinger states (Żukowski
et al., 1998; Hillery et al., 1999), pairs of entangled pho-
tons in so-called energy-time Bell states were used to
mimic the necessary quantum correlation of three en-
tangled qubits, although only two photons exist at the
same time. This is possible because of the symmetry be-
tween the preparation device acting on the pump pulse
and the devices analyzing the downconverted photons.
Therefore the emission of a pump pulse can be consid-
ered as the detection of a photon with 100% efficiency,
and the scheme features a much higher coincidence rate
than that expected with the initially proposed ‘‘triple-
photon’’ schemes.

VI. EAVESDROPPING

A. Problems and objectives

After the qubit exchange and basis reconciliation, Al-
ice and Bob each have a sifted key. Ideally, these keys
are identical. But in real life, there are always some er-
rors, and Alice and Bob must apply some classical infor-
mation processing protocols, like error correction and
privacy amplification to their data (see Sec. II.C.4). The
first protocol is necessary to obtain identical keys and
the second to obtain a secret key. Essentially, the prob-
lem of eavesdropping is to find protocols which, given
that Alice and Bob can only measure the QBER, either
provide Alice and Bob with a verifiably secure key or
stop the protocol and inform the users that the key dis-
tribution has failed. This is a delicate problem at the
intersection of quantum physics and information theory.
Actually, it comprises several eavesdropping problems,
depending on the precise protocol, the degree of ideali-
zation one admits, the technological power one assumes
Eve has, and the assumed fidelity of Alice and Bob’s
equipment. Let us immediately stress that a complete

analysis of eavesdropping on a quantum channel has yet
to be achieved. In this section we review some of the
problems and solutions, without any claim for math-
ematical rigor or complete coverage of the huge and
rapidly evolving literature.

The general objective of eavesdropping analysis is to
find ultimate and practical proofs of security for some
quantum cryptosystems. ‘‘Ultimate proofs’’ guarantee
security against entire classes of eavesdropping attacks,
even if Eve uses not only the best of today’s technology,
but any conceivable future technology. These proofs
take the form of theorems, with clearly stated assump-
tions expressed in mathematical terms. In contrast, prac-
tical proofs deal with some actual pieces of hardware
and software. There is thus a tension between ‘‘ulti-
mate’’ and ‘‘practical’’ proofs. Indeed, the former favor
general abstract assumptions, whereas the latter concen-
trate on physical implementations. Nevertheless, it is
worth finding such proofs. In addition to the security
issue, they provide illuminating lessons for our general
understanding of quantum information.

In the ideal game Eve has perfect technology: she is
limited only by the laws of quantum mechanics, but not
at all by current technology.47 In particular, Eve cannot
clone qubits, as this is incompatible with quantum dy-
namics (see Sec. II.C.2), but she is free to use any uni-
tary interaction between one or several qubits and an
auxiliary system of her choice. Moreover, after the inter-
action, Eve may keep her auxiliary system unperturbed,
in complete isolation from the environment, for an arbi-
trarily long time. Finally, after listening to all the public
discussion between Alice and Bob, she can perform the
measurement of her choice on her system, being again
limited only by the laws of quantum mechanics. One
assumes further that all errors are due to Eve. It is
tempting to assume that some errors are due to Alice’s
and Bob’s instruments, and this probably makes sense in
practice. However, there is the danger of Eve’s replacing
them with higher-quality instruments (see the next sec-
tion).

In the next section we elaborate on the most relevant
differences between the above ideal game (ideal espe-
cially from Eve’s point of view) and real systems. Next,
we return to the idealized situation and present several
eavesdropping strategies, starting from the simplest, in
which explicit formulas can be written down, and ending
with a general abstract security proof. Finally, we discuss
practical eavesdropping attacks and comment on the
complexity of a real system’s security.

B. Idealized versus real implementation

Alice and Bob use the technology available today.
This trivial remark has several implications. First, all

47The question of whether QC would survive the discovery of
the currently unknown validity limits of quantum mechanics is
interesting. Let us argue that it is likely that quantum mechan-
ics will always adequately describe photons at telecommunica-
tions and visible wavelengths, just as classical mechanics will
always adequately describe the fall of apples, whatever the
future of physics may be.
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real components are imperfect, so that the qubits are not
prepared and detected in the exact basis described by
the theory. Moreover, a real source always has a finite
probability of producing more than one photon. De-
pending on the details of the encoding device, all pho-
tons carry the same qubit (see Sec. VI.J). Hence, in prin-
ciple, Eve could measure the photon number without
perturbing the qubit. This scenario is discussed in Sec.
VI.H. Recall that, ideally, Alice should emit single-qubit
photons, i.e., each logical qubit should be encoded in a
single degree of freedom of a single photon.

On Bob’s side the efficiency of his detectors is quite
limited and the dark counts (spontaneous counts not
produced by photons) are non-negligible. The limited
efficiency is analogous to the losses in the quantum
channel. The analysis of the dark counts is more deli-
cate, and no complete solution is known. Conservatively,
Lütkenhaus (2000) assumes in his analysis that all dark
counts provide information to Eve. He also advises that,
whenever two detectors fire simultaneously (generally
due to a real photon and a dark count), Bob should not
disregard such events but should choose a value at ran-
dom. Note also that the different contributions of dark
counts to the total QBER depend on whether Bob’s
choice of basis is implemented using an active or a pas-
sive switch (see Sec. IV.A).

Next, one usually assumes that Alice and Bob have
thoroughly checked their equipment and that it is func-
tioning according to specifications. This assumption is
not unique to quantum cryptography but is critical, as
Eve could be the actual manufacturer of the equipment.
Classical cryptosystems must also be carefully tested,
like any commercial apparatus. Testing a cryptosystem is
tricky, however, because in cryptography the client buys
confidence and security, two qualities difficult to quan-
tify. Mayers and Yao (1998) proposed using Bell’s in-
equality to test whether the equipment really obeys
quantum mechanics, but even this is not entirely satis-
factory. Interestingly, one of the most subtle loopholes in
all present-day tests of Bell’s inequality, the detection
loophole, can be exploited to produce purely classical
software mimicking all quantum correlations (Gisin and
Gisin, 1999). This illustrates once again the close con-
nection between practical issues in QC and philosophi-
cal debates about the foundations of quantum physics.

Finally, one must assume that Alice and Bob are per-
fectly isolated from Eve. Without such an assumption
the entire game would be meaningless: clearly, Eve is
not allowed to look over Alice’s shoulder. However, this
elementary assumption is again nontrivial. What if Eve
uses the quantum channel connecting Alice to the out-
side world? Ideally, the channel should incorporate an
isolator48 to keep Eve from shining light into Alice’s out-
put port to examine the interior of her laboratory. Since
all isolators operate only on a finite bandwidth, there
should also be a filter, but filters have only a finite effi-

ciency, and so on. Except for Sec. VI.K, in which this
assumption is discussed, we shall henceforth assume that
Alice and Bob are isolated from Eve.

C. Individual, joint, and collective attacks

In order to simplify the problem, several eavesdrop-
ping strategies of limited generality have been defined
(Lütkenhaus, 1996; Biham and Mor, 1997a, 1997b) and
analyzed. Of particular interest is the assumption that
Eve attaches independent probes to each qubit and
measures her probes one after the other. This class of
attack is called the individual attack, or incoherent at-
tack. This important class is analyzed in Secs. VI.D and
VI.E. Two other classes of eavesdropping strategies let
Eve process several qubits coherently, hence the name
coherent attacks. The most general coherent attacks are
called joint attacks, while an intermediate class assumes
that Eve attaches one probe per qubit, as in individual
attacks, but can measure several probes coherently, as in
coherent attacks. This intermediate class is called the
collective attack. It is not known whether this class is less
efficient than the most general class, that of joint attacks.
It is also not known whether it is more efficient than the
simpler individual attacks. Actually, it is not even known
whether joint attacks are more efficient than individual
ones.

For joint and collective attacks, the usual assumption
is that Eve measures her probe only after Alice and Bob
have completed all public discussion about basis recon-
ciliation, error correction, and privacy amplification. For
the more realistic individual attacks, one assumes that
Eve waits only until the basis reconciliation phase of the
public discussion.49 The motivation for this assumption
is that one hardly sees what Eve could gain by waiting
until after the public discussion on error correction and
privacy amplification before measuring her probes, since
she is going to measure them independently anyway.

Individual attacks have the nice feature that the prob-
lem can be entirely translated into a classical one: Alice,
Bob, and Eve all have classical information in the form
of random variables a, b, and e, respectively, and the
laws of quantum mechanics impose constraints on the
joint probability distribution P(a ,b ,e). Such classical
scenarios have been widely studied by the classical cryp-
tology community, and many of their results can thus be
directly applied.

D. Simple individual attacks: Intercept-resend and
measurement in the intermediate basis

The simplest attack for Eve consists in intercepting all
photons individually, measuring them in a basis chosen
randomly between the two bases used by Alice, and
sending new photons to Bob prepared according to her

48Optical isolators, based on the Faraday effect, let light pass
through in only one direction.

49With today’s technology, it might even be fair to assume
that in individual attacks Eve must measure her probe before
the basis reconciliation.
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result. As presented in Sec. II.C.3 and assuming that the
BB84 protocol is used, Eve thus gets 0.5 bits of informa-
tion per bit in the sifted key, for an induced QBER of
25%. Let us illustrate the general formalism with this
simple example. Eve’s mean information gain on Alice’s
bit, I(a ,e), equals their relative entropy decrease:

I~a ,e!5Ha priori2Ha posteriori , (40)

i.e., I(a ,b) is the number of bits one can save by writing
a when knowing b. Since the a priori probability for
Alice’s bit is uniform, Ha priori51. The a posteriori en-
tropy has to be averaged over all possible results r that
Eve might get:

Ha posteriori5(
r

P~r !H~ iur !, (41)

H~ iur !52(
i

P~ iur !log2@P~ iur !# , (42)

where the a posteriori probability of bit i , given Eve’s
result r , is given by Bayes’s theorem:

P~ iur !5
P~rui !P~ i !

P~r !
, (43)

with P(r)5( iP(rui)P(i). In the case of intercept re-
send, Eve gets one out of four possible results: r
P$↑ ,↓ ,← ,→%. After the basis has been revealed, Alice’s
input assumes one of two values: iP$↑ ,↓% (assuming the
↑↓ basis was used, the other case is completely analo-
gous). One gets P(i5↑ur5↑)51, P(i5↑ur5→)5 1

2 ,
and P(r)5 1

2 . Hence, I(a ,e)512 1
2 h(1)2 1

2 h( 1
2 )512 1

2

5 1
2 [with h(p)5p log2(p)1(12p)log2(12p)].
Another strategy for Eve, no more difficult to imple-

ment, consists in measuring the photons in the interme-
diate basis (see Fig. 27), also known as the Breidbart
basis (Bennett, Bessette, et al., 1992). In this case the
probability that Eve guesses the correct bit value is p
5cos(p/8)25 1

2 1&/4 '0.854, corresponding to a
QBER52p(12p)525% and a Shannon information
gain per bit of

I512H~p !'0.399. (44)

Consequently, this strategy is less advantageous for Eve
than the intercept-resend strategy. Note however, that
with this strategy Eve’s probability of guessing the cor-
rect bit value is 85%, compared to only 75% in the
intercept-resend case. This is possible because in the lat-
ter case, Eve’s information is deterministic in half the
cases, while in the former Eve’s information is always
probabilistic (formally, this results from the convexity of
the entropy function).

E. Symmetric individual attacks

In this section we present in some detail how Eve
could get the maximum Shannon information for a fixed
QBER, assuming a perfect single-qubit source and re-
stricting Eve to attacks on one qubit after the other (i.e.,
individual attacks). The motivation is that this idealized
situation is rather simple to treat and nicely illustrates
several of the subtleties of the subject. Here we concen-
trate on the BB84 four-state protocol; for related results
on the two-state and six-state protocols, see Fuchs and
Peres (1996) and Bechmann-Pasquinucci and Gisin
(1999), respectively.

The general idea of eavesdropping on a quantum
channel is as follows. When a qubit propagates from Al-
ice to Bob, Eve can let a system of her choice, called a
probe, interact with the qubit (see Fig. 28). She can
freely choose the probe and its initial state, but the sys-
tem must obey the rules of quantum mechanics (i.e., be
described in some Hilbert space). Eve can also choose
the interaction, but it should be independent of the qu-
bit state, and she should obey the laws of quantum me-
chanics; i.e., her interaction must be described by a uni-
tary operator. After the interaction a qubit has to go to
Bob (in Sec. VI.H we consider lossy channels, so that
Bob does not always expect a qubit, a fact that Eve can
take advantage of). It makes no difference whether this
qubit is the original one (possibly in a modified state).
Indeed, the question does not even make sense, since a
qubit is nothing but a qubit. However, in the formalism
it is convenient to use the same Hilbert space for the
qubit sent by Alice as for the qubit received by Bob (this
is no loss of generality, since the swap operator—defined
by c ^ f→f ^ c for all c,f—is unitary and could be ap-
pended to Eve’s interaction).

FIG. 27. Poincaré representation of the BB84 states and the
intermediate basis, also known as the Breidbart basis, that can
be used by Eve.

FIG. 28. Eavesdropping on a quantum channel. Eve extracts
information from the quantum channel between Alice and
Bob at the cost of introducing noise into that channel.
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Let HEve and C2
^ HEve be the Hilbert spaces of Eve’s

probe and of the total qubit1probe system, respectively.
If umW & , u0&, and U denote the qubit’s and the probe’s
initial states and the unitary interaction, respectively,
then the state of the qubit received by Bob is given by
the density matrix obtained by tracing out Eve’s probe:

rBob~mW !5TrHEve
~UumW ,0&^mW ,0uU†!. (45)

The symmetry of the BB84 protocol makes it very natu-
ral to assume that Bob’s state is related to Alice’s umW & by
a simple shrinking factor50 hP@0,1# (see Fig. 29):

rBob~mW !5
11hmW sW

2
. (46)

Eavesdropping attacks that satisfy the above condition
are called symmetric-attacks.

Since the qubit state space is two dimensional, the
unitary operator is entirely determined by its action on
two states, for example, the u↑& and u↓& states (in this
section we use spin-1

2 notation for the qubits). After the
unitary interaction, it is convenient to write the states in
the Schmidt form (Peres, 1997):

Uu↑ ,0&5u↑& ^ f↑1u↓& ^ u↑ , (47)

Uu↓ ,0&5u↓& ^ f↓1u↑& ^ u↓ , (48)

where the four states f↑ , f↓ , u↑ , and u↓ belong to the
Hilbert space of Eve’s probe HEve and satisfy f↑'u↑ and
f↓'u↓ . By symmetry uf↑u25uf↓u2[F and uu↑u25uu↓u2

[D. Unitarity imposes F1D51 and

^f↑uu↓&1^u↑uf↓&50. (49)

The f’s correspond to Eve’s state when Bob receives the
qubit undisturbed, while the u’s are Eve’s state when the
qubit is disturbed.

Let us emphasize that this is the most general unitary
interaction satisfying Eq. (46). One finds that the shrink-
ing factor is given by h5F2D. Accordingly, if Alice
sends u↑& and Bob measures it in the compatible basis,
then ^↑urBob(mW )u↑&5F is the probability that Bob gets
the correct result. Hence F is the fidelity and D the
QBER.

Note that only four states span Eve’s relevant state
space. Hence Eve’s effective Hilbert space is at most
four dimensional, no matter how subtle she might be.51

This greatly simplifies the analysis.
Symmetry requires that the attack on the other basis

satisfy

Uu→ ,0&5U
u↑ ,0&1u↓ ,0&

&
(50)

5
1

&
~ u↑& ^ f↑1u↓& ^ u↑ (51)

1u↓& ^ f↓1u↑& ^ u↓) (52)

5u→& ^ f→1u←& ^ u→ , (53)

where

f→5
1
2

~f↑1u↑1f↓1u↓!, (54)

u→5
1
2

~f↑2u↑2f↓1u↓!. (55)

Similarly,

f←5
1
2

~f↑2u↑1f↓2u↓!, (56)

u←5
1
2

~f↑1u↑2f↓2u↓!. (57)

Condition (46) for the $u→&,u←&% basis implies that
u→'f→ and u←'f← . By proper choice of the phases,
^f↑uu↓& can be made real. By condition (49), ^u↑uf↓& is
then also real. Symmetry implies that ^u→uf←&PRe. A
straightforward computation concludes that all scalar
products among Eve’s states are real and that the f’s
generate a subspace orthogonal to the u’s:

^f↑uu↓&5^f↓uu↑&50. (58)

Finally, using uf→u25F, i.e., that the shrinking is the
same for all states, one obtains a relation between the
probe states’ overlap and the fidelity:50Fuchs and Peres were the first to derive the result presented

in this section, using numerical optimization. Almost simulta-
neously, it was derived by Robert Griffiths and his student
Chi-Sheng Niu under very general conditions, and by Nicolas
Gisin using the symmetry argument presented here. These five
authors joined forces to produce a single paper (Fuchs et al.,
1997). The result of this section is thus also valid without this
symmetry assumption.

51Actually, Niu and Griffiths (1999) showed that two-
dimensional probes suffice for Eve to get as much information
as with the strategy presented here, though in their case the
attack is not symmetric (one basis is more disturbed than the
other).

FIG. 29. Poincaré representation of BB84 states in the event
of a symmetrical attack. The state received by Bob after the
interaction of Eve’s probe is related to the one sent by Alice by
a simple shrinking factor. When the unitary operator U en-
tangles the qubit and Eve’s probe, Bob’s state [Eq. (46)] is
mixed and is represented by a point inside the Poincaré
sphere.
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F5
11^û↑uû↓&

22^f̂↑uf̂↓&1^û↑uû↓&
, (59)

where the hats denote normalized states, e.g., f̂↑
5f↑D21/2.

Consequently the entire class of symmetric individual
attacks depends only on two real parameters:52 cos(x)
[^f̂↑uf̂↓& and cos(y)[^û↑uû↓&.

Thanks to symmetry, it suffices to analyze this sce-
nario for the case when Alice sends the u↑& state and
Bob measures in the $↑ ,↓% basis (if not, Alice, Bob, and
Eve disregard the data). Since Eve knows the basis, she
knows that her probe is in one of the following two
mixed states:

rEve~↑ !5FP~f↑!1DP~u↑!, (60)

rEve~↓ !5FP~f↓!1DP~u↓!. (61)

An optimum measurement strategy for Eve to distin-
guish between rEve(↑) and rEve(↓) consists in first de-
termining whether her state is in the subspace generated
by f↑ and f↓ or the one generated by u↑ and u↓ . This is
possible, since the two subspaces are mutually orthogo-
nal. Eve must then distinguish between two pure states
with an overlap of either cos x or cos y. The first alterna-
tive occurs with probability F, the second with probabil-
ity D. The optimal measurement distinguishing two
states with overlap cos x is known to provide Eve with
the correct guess with probability @11sin(x)#/2 (Peres,
1997). Eve’s maximal Shannon information, attained
when she performs the optimal measurements, is thus
given by

I~a ,e!5F•F12hS 11sin x

2 D G
1D•F12hS 11sin y

2 D G , (62)

where h(p)52p log2(p)2(12p)log2(12p). For a given
error rate D, this information is maximal when x5y .
Consequently, for D5 @12cos(x)#/2, one obtains:

Imax~a ,e!512hS 11sin x

2 D . (63)

This provides the explicit and analytic optimum eaves-
dropping strategy. For x50 the QBER (i.e., D) and the
information gain are both zero. For x5p/2 the QBER is
1
2 and the information gain 1. For small QBER’s, the
information gain grows linearly:

Imax~a ,e!5
2

ln 2
D1O~D!2'2.9D. (64)

Once Alice, Bob, and Eve have measured their quan-
tum systems, they are left with classical random vari-
ables a, b, and e, respectively. Secret-key agreement be-
tween Alice and Bob is then possible using only error
correction and privacy amplification if and only if the
Alice-Bob mutual Shannon information I(a ,b) is
greater than the Alice-Eve or the Bob-Eve mutual
information,53 I(a ,b).I(a ,e) or I(a ,b).I(b ,e). It is
thus interesting to compare Eve’s maximal information
[Eq. (64)] with Bob’s Shannon information. The latter
depends only on the error rate D:

I~a ,b!512h~D! (65)

511D log2~D!1~12D!log2~12D!. (66)

Bob’s and Eve’s information are plotted in Fig. 30. As
expected, for low error rates D, Bob’s information is
greater. But, more errors provide Eve with more infor-

52Interestingly, when the symmetry is extended to a third
maximally conjugated basis, as is natural in the six-state pro-
tocol of Sec. II.D.2, the number of parameters reduces to one.
This parameter measures the relative quality of Bob’s and
Eve’s ‘‘copy’’ of the qubit sent by Alice. When both copies are
of equal quality, one recovers the optimal cloning presented in
Sec. II.F (Bechmann-Pasquinucci and Gisin, 1999).

53Note, however, that if this condition is not satisfied, other
protocols might sometimes be used; see Sec. II.C.5. These pro-
tocols are significantly less efficient and are usually not consid-
ered as part of ‘‘standard’’ QC. Note also that, in the scenario
analyzed in this section, I(b ,e)5I(a ,e).

FIG. 30. Eve’s and Bob’s information vs the QBER, here plot-
ted for incoherent eavesdropping on the four-state protocol.
For QBER’s below QBER0 , Bob has more information than
Eve, and secret-key agreement can be achieved using classical
error correction and privacy amplification, which can, in prin-
ciple, be implemented using only one-way communication.
The secret-key rate can be as large as the information differ-
ences. For QBER’s above QBER0 ([D0), Bob has a disad-
vantage with respect to Eve. Nevertheless, Alice and Bob can
apply quantum privacy amplification up to the QBER corre-
sponding to the intercept-resend eavesdropping strategies (IR4
and IR6 for the four-state and six-state protocols, respectively).
Alternatively, they can apply a classical protocol called advan-
tage distillation, which is effective up to precisely the same
maximal QBER IR4 and IR6 . Both the quantum and the clas-
sical protocols require two-way communication. Note that for
the eavesdropping strategy that will be optimal, from Eve
Shannon point of view, on the four-state protocol, QBER0
should correspond precisely to the noise threshold above
which a Bell’s inequality can no longer be violated.
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mation, while decreasing Bob’s information. Hence both
information curves cross at a specific error rate D0 :

I~a ,b!5Imax~a ,e!⇔D5D0[
121/&

2
'15%. (67)

Consequently the security criterion against individual at-
tacks for the BB84 protocol is

BB84 secure⇔D,D0[
121/&

2
. (68)

For QBER’s greater than D0 , no (one-way communi-
cation) error correction and privacy amplification proto-
col can provide Alice and Bob with a secret key that is
immune to any individual attacks.

Let us mention that there exists a class of more gen-
eral classical protocols, called advantage distillation (Sec.
II.C.5), which uses two-way communication. These pro-
tocols can guarantee secrecy if and only if Eve’s inter-
vention does not disentangle Alice and Bob’s qubits (as-
suming they use the Ekert version of the BB84 protocol;
Gisin and Wolf, 2000). If Eve optimizes her Shannon
information as discussed in this section, this disentangle-
ment limit corresponds to a QBER5121/&'30% (Gi-
sin and Wolf, 1999). However, using more brutal strate-
gies, Eve can disentangle Alice and Bob’s qubits for a
QBER of 25%; see Fig. 30. The latter is thus the abso-
lute upper limit, taking into account the most general
secret-key protocols. In practice, the limit (67) is more
realistic, since advantage distillation algorithms are
much less efficient than classical privacy amplification
algorithms.

F. Connection to Bell’s inequality

There is an intriguing connection between the tight-
bound [Eq. (68)] and the Clauser-Horne-Shimony-Holt
(CHSH) form of Bell’s inequality (Bell, 1964; Clauser
et al., 1969; Clauser and Shimony, 1978; Zeilinger, 1999):

S[E~a !1E~a ,b8!1E~a8,b !2E~a8,b8!<2. (69)

Here E(a ,b) is the correlation between Alice and Bob’s
data when measuring sa ^ 1 and 1^ sb , where sa de-
notes an observable with eigenvalues 61 parametrized
by the label a . Recall that Bell’s inequalities are neces-
sarily satisfied by all local models but are violated by
quantum mechanics.54 To establish this connection, as-
sume that the same quantum channel is used to test
Bell’s inequality. It is well known that, for error-free
channels, a maximal violation by a factor & is achiev-
able: Smax52&.2. However, if the channel is imperfect,

or equivalently if some perturbing Eve acts on the chan-
nel, then the quantum correlation E(a ,buD) is reduced:

E~a ,buD!5F•E~a ,b !2D•E~a ,b ! (70)

5~122D!•E~a ,b !, (71)

where E(a ,b) denotes the correlation for the unper-
turbed channel. The achievable amount of violation is
then reduced to Smax(D)5(122D)2& , and for large
perturbations no violation at all can be achieved. Inter-
estingly, the critical perturbation D up to which a viola-
tion can be observed is precisely the same D0 as the limit
derived in the previous section for the security of the
BB84 protocol:

Smax~D!.2⇔D,D0[
121/&

2
. (72)

This is a surprising and appealing connection between
the security of QC and tests of quantum nonlocality.
One could argue that this connection is quite natural,
since, if Bell’s inequality were not violated, then quan-
tum mechanics would be incomplete, and no secure
communication could be based on such an incomplete
theory. In some sense, Eve’s information is like probabi-
listic local hidden variables. However, the connection
between Eqs. (68) and (72) has not been generalized to
other protocols. A complete picture of these connec-
tions is thus not yet available.

Let us emphasize that nonlocality plays no direct role
in QC. Indeed, Alice is generally in Bob’s absolute past.
Nevertheless, Bell’s inequality can be violated by space-
like separated events as well as by timelike separated
events. However, the independence assumption neces-
sary to derive Bell’s inequality is justified by locality con-
siderations only for spacelike separated events.

G. Ultimate security proofs

The security proof of QC with a perfect apparatus and
a noise-free channel is straightforward. However, the
fact that security can still be proven for an imperfect
apparatus and noisy channels is far from obvious.
Clearly, something has to be assumed about the appara-
tus. In this section we simply make the hypothesis that
they are perfect. For the channel that is not under Alice
and Bob’s control, however, nothing is assumed. The
question is then Up to what QBER can Alice and Bob
apply error correction and privacy amplification to their
classical bits? In the previous sections we found that the
threshold is close to a QBER of 15%, assuming indi-
vidual attacks. In principle Eve could manipulate several
qubits coherently. How much help to Eve this possibility
provides is still unknown, though some bounds are
known. In 1996, Dominic Mayers (1996b) presented the

54Let us stress that the CHSH-Bell’s inequality is the stron-
gest possible for two qubits. Indeed, this inequality is violated
if and only if the correlation cannot be reproduced by a local
hidden-variable model (Pitowski, 1989).
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main ideas on how to prove security.55 In 1998, two ma-
jor papers were made public on the Los Alamos archives
(Mayers, 1998, and Lo and Chau, 1999). Today, these
proofs are generally considered valid, thanks to the
work of—among others—Shor and Preskill (2000), In-
amori et al. (2001), and Biham et al. (1999). However, it
is worth noting that during the first few years after the
initial disclosure of these proofs, hardly anyone in the
community understood them.

Here we shall present the argument in a form quite
different from the original proofs. Our presentation
aims at being transparent in the sense that it rests on two
theorems. The proofs of the theorems are difficult and
will be omitted. However, their claims are easy to under-
stand and rather intuitive. Once one accepts the theo-
rems, the security proof is straightforward.

The general idea is that at some point Alice, Bob, and
Eve perform measurements on their quantum systems.
The outcomes provide them with classical random vari-
ables a, b, and e, respectively, with P(a ,b ,e) the joint
probability distribution. The first theorem, a standard of
classical information-based cryptography, states the nec-
essary and sufficient condition on P(a ,b ,e) for Alice
and Bob to extract a secret key from P(a ,b ,e) (Csiszár
and Körner, 1978). The second theorem is a clever ver-
sion of Heisenberg’s uncertainty relation expressed in
terms of available information (Hall, 1995): it sets a
bound on the sum of the information about Alice’s key
available to Bob and to Eve.

Theorem 1. For a given P(a ,b ,e), Alice and Bob can
establish a secret key (using only error correction and
classical privacy amplification) if and only if I(a ,b)
>I(a ,e) or I(a ,b)>I(b ,e), where I(a ,b)5H(a)
2H(aub) denotes the mutual information and H is the
Shannon entropy.

Theorem 2. Let E and B be two observables in an
N-dimensional Hilbert space. Let e, b, ue&, and ub& be
the corresponding eigenvalues and eigenvectors, respec-
tively, and let c5maxe,b$u^eub&u%. Then

I~a ,e!1I~a ,b!<2 log2~Nc !, (73)

where I(a ,e)5H(a)2H(aue) and I(a ,b)5H(a)
2H(aub) are the entropy differences corresponding to
the probability distribution of the eigenvalues a prior to
and deduced from any measurement by Eve and Bob,
respectively.

The first theorem states that Bob must have more in-
formation about Alice’s bits than does Eve (see Fig. 31).

Since error correction and privacy amplification can be
implemented using only one-way communication, Theo-
rem 1 can be understood intuitively as follows. The ini-
tial situation is depicted in Fig. 31(a). During the public
phase of the protocol, because of the one-way commu-
nication, Eve receives as much information as Bob. The
initial information difference d thus remains. After error
correction, Bob’s information equals 1, as illustrated in
Fig. 31(b). After privacy amplification Eve’s information
is zero. In Fig. 31(c) Bob has replaced all bits to be
disregarded by random bits. Hence the key still has its
original length, but his information has decreased. Fi-
nally, upon removal of the random bits, the key is short-
ened to the initial information difference d ; see Fig.
31(d). Bob has full information about this final key,
while Eve has none.

The second theorem states that if Eve performs a
measurement providing her with some information
I(a ,e), then, because of the perturbation, Bob’s infor-
mation is necessarily limited. Using these two theorems,
the argument now runs as follows. Suppose Alice sends
out a large number of qubits and that n are received by
Bob in the correct basis. The relevant Hilbert space’s
dimension is thus N52n. Let us relabel the bases used
for each of the n qubits such that Alice uses n times the
x basis. Hence Bob’s observable is the n-time tensor
product sx ^¯^ sx . By symmetry, Eve’s optimal infor-
mation about the correct bases is precisely the same as
her optimal information about the incorrect ones (May-
ers, 1998). Hence one can bound her information, as-
suming she measures sz ^¯^ sz . Accordingly, c
522n/2, and Theorem 2 implies

I~a ,e!1I~a ,b!<2 log2~2n22n/2!5n . (74)

That is, the sum of Eve’s and Bob’s information per qu-
bit is less than or equal to 1. This result is quite intuitive:

55One of the authors (N.G.) vividly remembers the 1996 In-
stitute for Scientific Interchange workshop in Torino, Italy,
sponsored by Elsag Bailey, where he ended his talk by stress-
ing the importance of security proofs. Dominic Mayers stood
up, gave some explanation, and wrote a formula on a transpar-
ency, claiming that this was the result of his proof. We think it
is fair to say that no one in the audience understood Mayers’
explanation. However, N.G. kept the transparency, and it con-
tains the basic Eq. (75) (up to a factor of 2, which corresponds
to an improvement of Mayer’s result obtained in 2000 by Shor
and Preskill, using ideas from Lo and Chau).

FIG. 31. Intuitive illustration of Theorem 1. The initial situa-
tion is depicted in (a). During the one-way public discussion
phase of the protocol, Eve receives as much information as
Bob; the initial information difference d thus remains. After
error correction, Bob’s information equals 1, as illustrated in
(b). After privacy amplification Eve’s information is zero. In
(c) Bob has replaced with random bits all bits to be disre-
garded. Hence the key still has its original length, but his in-
formation has decreased. Finally, in (d) removal of the random
bits shortens the key to the initial information difference. Bob
has full information on this final key, while Eve has none.

186 Gisin et al.: Quantum cryptography

Rev. Mod. Phys., Vol. 74, No. 1, January 2002



together, Eve and Bob cannot receive more information
than is sent out by Alice! Next, combining the bound
(74) with Theorem 1, one deduces that a secret key is
achievable whenever I(a ,b)>n/2. Using I(a ,b)5n@1
2D log2(D)2(12D)log2(12D)# , one obtains the suffi-
cient condition on the error rate D (i.e., the QBER):

D log2~D!1~12D!log2~12D!<
1
2

, (75)

i.e., D<11%.
This bound, QBER<11%, is precisely that obtained

in Mayers’s proof (after improvement by Shor and
Preskill, 2000). The above proof is, strictly speaking,
only valid if the key is much longer than the number of
qubits that Eve attacks coherently, so that the Shannon
information we used represents averages over many in-
dependent realizations of classical random variables. In
other words, assuming that Eve can coherently attack a
large but finite number n0 of qubits, Alice and Bob can
use the above proof to secure keys much longer than n0
bits. If one assumes that Eve has unlimited power and is
able to attack coherently any number of qubits, then the
above proof does not apply, but Mayers’s proof can still
be used and provides precisely the same bound.

This 11% bound for coherent attacks is clearly com-
patible with the 15% bound found for individual attacks.
The 15% bound is also necessary, since an explicit eaves-
dropping strategy reaching this bound is presented in
Sec. VI.E. It is not known what happens in the interme-
diate range 11%,QBER,15%, but the following sce-
nario is plausible. If Eve is limited to coherent attacks
on a finite number of qubits, then in the limit of arbi-
trarily long keys, she has a negligibly small probability
that the bits combined by Alice and Bob during the er-
ror correction and privacy amplification protocols origi-
nate from qubits attacked coherently. Consequently, the
15% bound would still be valid (partial results in favor
of this conjecture can be found in Cirac and Gisin, 1997
and Bechmann-Pasquinucci and Gisin, 1999). However,
if Eve has unlimited power, in particular, if she can co-
herently attack an unlimited number of qubits, then the
11% bound might be required.

To conclude this section, let us stress that the above
security proof applies equally to the six-state protocol
(Sec. II.D.2). It also extends in a straightforward
fashion to protocols using larger alphabets (Bechmann-
Pasquinucci and Peres, 2000; Bechmann-Pasquinucci
and Tittel, 2000; Bourennane, Karlsson, and Björn, 2001;
Bourennane, Karlsson, Björn, Gisin, and Cerf, 2001).

H. Photon number measurements and lossless channels

In Sec. III.A we saw that all real photon sources have
a finite probability of emittting more than one photon. If
all emitted photons encode the same qubit, Eve can take
advantage of this. In principle, she can first measure the
number of photons in each pulse without disturbing the

degree of freedom encoding the qubits.56 Such measure-
ments are sometimes called quantum nondemolition
measurements, because they do not perturb the qubit; in
particular they do not destroy the photons. This is pos-
sible because Eve knows in advance that Alice sends a
mixture of states with well-defined photon numbers57

(see Sec. II.F). Next, if Eve finds more than one photon,
she keeps one and sends the other(s) to Bob. In order to
prevent Bob from detecting a lower qubit rate, Eve must
use a channel with lower losses. Using an ideally lossless
quantum channel, Eve can even, under certain condi-
tions, keep one photon and increase the probability that
pulses with more than one photon get to Bob! Finally,
when Eve finds one photon, she may destroy it with
some probability that she does not affect the total num-
ber of qubits received by Bob. Consequently, if the prob-
ability that a nonempty pulse has more than one photon
(on Alice’s side) is greater than the probability that a
nonempty pulse is detected by Bob, then Eve can get
full information without introducing any perturbation.
This is possible only when the QC protocol is not per-
fectly implemented, but it is a realistic situation (Hutt-
ner et al., 1995; Yuen, 1997).

Quantum nondemolition atacks have recently re-
ceived a lot of attention (Brassard et al., 2000; Lütken-
haus, 2000). The debate is not yet settled. We would like
to argue that it might be unrealistic, or even unphysical,
to assume that Eve can perform ideal quantum non-
demolition attacks. Indeed, she first needs the capacity
to perform quantum nondemolition photon-number
measurements. Although impossible with today’s tech-
nology, this is a reasonable assumption (Nogues et al.,
1999). Next, she should be able to keep her photon until
Alice and Bob reveal the basis. In principle, this could
be achieved using a lossless channel in a loop. We dis-
cuss this eventuality below. Another possibility would be
for Eve to map her photon to a quantum memory. This
does not exist today but might well exist in the future.
Note that the quantum memory should have essentially
unlimited decoherence time, since Alice and Bob could
easily wait for minutes before revealing the bases.58 Fi-
nally, Eve must access a lossless channel, or at least a
channel with lower losses than that used by Alice and

56For polarization coding, this is quite clear, but for phase
coding one may think (incorrectly) that phase and photon
number are incompatible. However, the phase used for encod-
ing is a relative phase between two modes. Whether these
modes are polarization modes or correspond to different times
(determined, for example, by the relative length of interferom-
eters), does not matter.

57Recall that a mixture of coherent states ueifa& with a
random phase f, as produced by lasers when no phase refer-
ence is available, is equal to a mixture of photon number states
un& with Poisson statistics: *0

2pueifa&^eifau (df/2p)
5(n>0 (mn/n!) e2mun&^nu, where m5uau2.

58The quantum part of the protocol could run continuously,
storing large amounts of raw classical data, but the classical
part of the protocol, which processes these raw data, could
take place just seconds before the key is used.
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Bob. This might be the trickiest point. Indeed, besides
using a shorter channel, what can Eve do? Telecommu-
nications fibers are already at the physical limits of what
can be achieved (Thomas et al., 2000). The loss is almost
entirely due to Rayleigh scattering, which is unavoid-
able: solve the Schrödinger equation in a medium with
inhomogeneities and you get scattering. When the inho-
mogeneities are due to the molecular stucture of the
medium, it is difficult to imagine lossless fibers. The
0.18-dB/km attenuation in silica fibers at 1550 nm is a
lower bound imposed by physics rather then
technology.59 Note that using air is not a viable solution,
since attenuation at telecommunications wavelengths is
rather high. Vacuum, the only way to avoid Rayleigh
scattering, also has limitations, due to diffraction, again
an unavoidable physical phenomenon. In the end, it
seems that Eve has only two possibilities left. Either she
uses teleportation (with extremely high success prob-
ability and fidelity) or she converts the photons to an-
other wavelength (without perturbing the qubit). Both
of these ‘‘solutions’’ seem unrealistic in the foreseeable
future.

Consequently, when considering the type of attacks
discussed in this section, it is essential to distinguish the
ultimate proofs from the practical ones. Indeed, the as-
sumptions about the defects of Alice and Bob’s appara-
tuses must be very specific and might thus be of limited
interest, while for practical considerations these assump-
tions must be very general and might thus be excessive.

I. A realistic beamsplitter attack

The attack presented in the previous section takes ad-
vantage of pulses containing more than one photon.
However, as discussed, it uses unrealistic assumptions. In
this section, following Dusek et al. (2000) and Lütken-
haus (2000), we briefly comment on a realistic attack
that, also exploits multiphoton pulses (for details, see
Felix et al., 2001, where this and other examples are pre-
sented). Assume that Eve splits all pulses in two, analyz-
ing each half in one of the two bases, using photon
counting devices able to distinguish between pulses with
0, 1, and 2 photons (see Fig. 32). In practice this could be
realized using many single-photon counters in parallel.
This requires nearly perfect detectors, but at least one
does not need to assume technology completely out of
today’s realm. Whenever Eve detects two photons in the
same output, she sends a photon in the corresponding

state into Bob’s apparatus. Since Eve’s information is
classical, she can overcome all the losses of the quantum
channel. In all other cases, Eve sends nothing to Bob. In
this way, Eve sends a fraction (3

8) of the pulses contain-
ing at least two photons to Bob. She introduces a QBER
of 1

6 and gets information I(A ,E)5 2
354•QBER. Bob

does not see any reduction in the number of detected
photons, provided that the transmission coefficient of
the quantum channel t satisfies

t<
3
8

Prob~n>2un>1 !'
3m

16
, (76)

where the last expression assumes Poissonian photon
distribution. Accordingly, for a fixed QBER, this attack
provides Eve with twice the information she would get
from using the intercept-resend strategy. To counter
such an attack, Alice should use a mean photon number
m such that Eve can use this attack on only a fraction of
the pulses. For example, Alice could use pulses weak
enough that Eve’s mean information gain is identical to
what she would obtain with the simple intercept-resend
strategy (see Sec. II.C.3). For 10-, 14-, and 20-dB attenu-
ation, this corresponds to m50.25, 0.1, and 0.025, respec-
tively.

J. Multiphoton pulses and passive choice of states

Multiphoton pulses do not necessarily constitute a
threat to key security, but they limit the key creation
rate because they imply that more bits must be dis-
carded during key distillation. This fact is based on the
assumption that all photons in a pulse carry the same
qubit, so that Eve does not need to copy the qubit going
to Bob, but merely keeps the copy that Alice inadvert-
ently provides. When using weak pulses, it seems un-
avoidable that all the photons in a pulse carry the same
qubit. However, in two-photon implementations, each

59Photonics crystal fibers have the potential to overcome the
Rayleigh scattering limit. There are two kinds of such fibers.
The first kind guides light by total internal reflection, as in
ordinary fibers. In these fibers most of the light also propagates
in silica, and thus the loss limit is similar. In the second kind,
most of the light propagates in air. Thus the theoretical loss
limit is lower. However, today the losses are extremely high, in
the range of hundreds of dB/km. The best reported result that
we are aware of is 11 dB/km, and it was obtained with the first
kind of fiber (Canning et al., 2000).

FIG. 32. Realistic beamsplitter attack. Eve stops all pulses.
The two photon pulses have a 50% probability of being ana-
lyzed by the same analyzer. If this analyzer is compatible with
the state prepared by Alice, then both photons are detected
with the same outcome; if not, there is a 50% chance that they
are detected with the same outcome. Hence there is a prob-
ability of 3

8 that Eve detects both photons with the same out-
come. In such a case, and only in such a case, she resends a
photon to Bob. In 2

3 of these cases she introduces no errors,
since she has identified the correct state and gets full informa-
tion; in the remaining cases she has a 50% probability of in-
troducing an error and gains no information. The total QBER
is thus 1

6, and Eve’s information gain is 2
3.
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photon on Alice’s side independently chooses a state [in
the experiments of Ribordy et al. (2001) and Tittel et al.
(2000), each photon randomly chooses both its basis and
its bit value; in the experiments of Naik et al. (2000) and
Jennewein, Simon, et al. (2000), only the bit value choice
is random]. Hence, when two photon pairs are simulta-
neously produced, the two twins carry independent qu-
bits by accident. Consequently, Eve cannot take advan-
tage of such multiphoton twin pulses. This might be one
of the main advantages of two-photon schemes over the
much simpler weak-pulse schemes. But the multiphoton
problem is then on Bob’s side, which gets a noisy signal,
consisting partly of photons not in Alice’s state.

K. Trojan horse attacks

All eavesdropping strategies discussed up to this point
have consisted of Eve’s attempt to get a maximum infor-
mation from the qubits exchanged by Alice and Bob.
However, Eve can also pursue a completely different
strategy: she can herself send signals that enter Alice
and Bob’s offices through the quantum channel. This
kind of strategy is called a Trojan horse attack. For ex-
ample, Eve can send light pulses into the fiber entering
Alice’s or Bob’s apparatus and analyze the backreflected
light. In this way, it is in principle possible to detect
which laser just flashed, which detector just fired, or the
settings of phase and polarization modulators. This can-
not be prevented by simply using a shutter, since Alice
and Bob must leave the ‘‘door open’’ for the photons to
exit and enter, respectively.

In most QC setups the amount of backreflected light
can be made very small, and sensing the apparatus with
light pulses through the quantum channel is difficult.
Nevertheless, this attack is especially threatening in the
plug-and-play scheme on Alice’s side (Sec. IV.C.2), since
a mirror is used to send the light pulses back to Bob.
Thus, in principle, Eve can send strong light pulses to
Alice and sense the applied phase shift. However, by
applying the phase shift only during a short time Dtphase
(a few nanoseconds), Alice can oblige Eve to send the
spying pulse at the same time as Bob. Remember that in
the plug-and-play scheme, pulses coming from Bob are
macroscopic and an attenuator at Alice’s end reduces
them to below the one-photon level, say, 0.1 photons per
pulse. Hence, if Eve wants to get, say, one photon per
pulse, she has to send ten times Bob’s pulse energy.
Since Alice is detecting Bob’s pulses for triggering her
apparatus, she must be able to detect an increase in en-
ergy of these pulses in order to reveal the presence of a
spying pulse. This is a relatively easy task, provided that
Eve’s pulses look the same as Bob’s. However, Eve could
of course use another wavelength or ultrashort pulses
(or very long pulses with low intensity, hence the impor-
tance of Dtphase); therefore Alice must introduce an op-
tical bandpass filter with a transmission spectrum corre-
sponding to the sensitivity spectrum of her detector and
choose a Dtphase that fits the bandwidth of her detector.

There is no doubt that Trojan horse attacks can be
prevented by technical measures. However, the fact that

this class of attacks exists illustrates that the security of
QC can never be guaranteed by the principles of
quantum mechanics only, but must necessarily rely on
technical measures that are subject to discussion.60

L. Real security: Technology, cost, and complexity

Despite the elegance and generality of security proofs,
the ideal of a QC system whose security relies entirely
on quantum principles is unrealistic. The technological
implementation of abstract principles will always be
questionable. It is likely that they will remain the weak-
est point in all systems. Moreover, one should remember
the obvious relation:

Infinite security⇒Infinite cost

⇒Zero practical interest . (77)

On the other hand, however, one should not underes-
timate the following two advantages of QC. First, it is
much easier to forecast progress in technology than in
mathematics: the danger that QC will break down over-
night is negligible, in contrast to public-key cryptosys-
tems. Next, the security of QC depends on the techno-
logical level of the adversary at the time of the key
exchange, in contrast to complexity-based systems whose
coded message can be registered and broken thanks to
future progress. The latter point is relevant for secrets
whose value lasts many years.

One often points to low bit rate as one of the current
limitations of QC. However, it is important to stress that
QC need not be used in conjunction with one-time-pad
encryption. It can also be used to provide a key for a
symmetrical cipher such as AES, whose security is
greatly enhanced by frequent key changes.

To conclude this section, let us briefly elaborate on the
differences and similarities between technological and
mathematical complexity and on their possible connec-
tions and implications. Mathematical complexity means
that the number of steps needed to run complex algo-
rithms increases exponentially as the size of the input
grows linearly. Similarly, one can define the technologi-
cal complexity of a quantum computer as an exponen-
tially increasing difficulty to process coherently all the
qubits necessary to run a (noncomplex) algorithm on a
linearly growing number of input data. It might be inter-
esting to consider the possibility that the relationship
between these two concepts of complexity is deeper. It
could be that the solution of a problem requires either a
complex classical algorithm or a quantum algorithm that
itself requires a complex quantum computer.61

60Another technological loophole, recently pointed out by
Kurtsiefer et al. (2001), is the possible information leakage
caused by light emitted by APD’s during their breakdown.

61Penrose (1994) pushes these speculations even further, sug-
gesting that spontaneous collapses stop quantum computers
whenever they try to compute beyond a certain complexity.
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VII. CONCLUSIONS

Quantum cryptography is a fascinating illustration of
the dialog between basic and applied physics. It is based
on a beautiful combination of concepts from quantum
physics and information theory and made possible by
the tremendous progress in quantum optics and the
technology of optical fibers and free-space optical com-
munication. Its security principle relies on deep theo-
rems in classical information theory and on a profound
understanding of Heisenberg’s uncertainty principle, as
illustrated by Theorems 1 and 2 in Sec. VI.G (the only
mathematically involved theorems in this review). Let us
also emphasize the important contributions of QC to
classical cryptography: privacy amplification and classi-
cal bound information (Secs. II.C.4 and II.C.5) are ex-
amples of concepts in classical information whose dis-
covery were much inspired by QC. Moreover, the
fascinating tension between quantum physics and rela-
tivity, as illustrated by Bell’s inequality, is not far away,
as discussed in Sec. VI.F. Now, despite significant
progress in recent years, many open questions and tech-
nological challenges remain.

One technological challenge at present concerns im-
proved detectors compatible with telecommunications
fibers. Two other issues concern free-space QC and
quantum repeaters. The former is currently the only way
to realize QC over thousands of kilometers using the
technology of the near future (see Sec. IV.E). The idea
of quantum repeaters (Sec. III.E) is to encode the qubits
in such a way that if the error rate is low, then errors can
be detected and corrected entirely in the quantum do-
main. The hope is that such techniques could extend the
range of quantum communication to essentially unlim-
ited distances. Indeed, Hans Briegel, then at the Univer-
sity of Innsbruck, and co-workers (1998) showed that
the number of additional qubits needed for quantum re-
peaters can be made smaller than the numbers of qubits
needed to improve the fidelity of the quantum channel
(Dur et al., 1999). One could thus overcome the deco-
herence problem. However, the main practical limitation
is not decoherence but loss (most photons never get to
Bob, but those that do get there exhibit high fidelity).

As for open questions, let us emphasize three main
concerns. First, complete and realistic analyses of the
security issues are still missing. Next, figures of merit for
comparing QC schemes based on different quantum sys-
tems (with different dimensions, for example) are still
awaited. Finally, the delicate question of how to test the
apparatuses has not yet received enough attention. In-
deed, a potential customer of quantum cryptography
buys confidence and secrecy, two qualities hard to quan-
tify. Interestingly, both of these issues are connected to
Bell’s inequality (see Secs. VI.F and VI.B). Clearly, this
connection cannot be phrased in the old context of local
hidden variables, but rather in the context of the secu-
rity of tomorrow’s communications. Here, as in the en-
tire field of quantum information, old concepts are re-
newed by looking at them from a fresh perspective: let
us exploit quantum weirdness.

QC could well be the first application of quantum me-
chanics at the single-quantum level. Experiments have
demonstrated that keys can be exchanged over distances
of a few tens of kilometers at rates on the order of at
least a thousand bits per second. There is no doubt that
the technology can be mastered and the question is not
whether QC will find commercial applications, but
when. At present QC is still very limited in distance and
in secret bit rate. Moreover, public-key systems domi-
nate the market and, being pure software, are tremen-
dously easier to manage. Every so often, we hear in the
news that some classical cryptosystem has been broken.
This would be impossible with properly implemented
QC. But this apparent strength of QC might turn out to
be its weak point: security agencies would be equally
unable to break quantum cryptograms!
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Brassard, G., C. Crépeau, D. Mayers, and L. Salvail, 1998, in
Proceedings of Randomized Algorithms, Satellite Workshop
of the 23rd International Symposium on Mathematical Foun-
dations of Computer Science, Brno, Czech Republic, edited
by R. Freivalds (Aachen University, Aachen, Germany), pp.
13–15.

Brassard, G., N. Lütkenhaus, T. Mor, and B. C. Sanders, 2000,
‘‘Limitations on practical quantum cryptography,’’ Phys. Rev.
Lett. 85, 1330–1333.

Brassard, G., and L. Salvail, 1994, in Advances in Cryptology—
EUROCRYPT ’93 Proceedings, Lecture Notes in Computer
Science, Vol. 765, edited by T. Helleseth (Springer, New
York), p. 410.
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