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A quantum dot is a sub-micron-scale conducting device containing up to several thousand electrons.
Transport through a quantum dot at low temperatures is a quantum-coherent process. This review
focuses on dots in which the electron’s dynamics are chaotic or diffusive, giving rise to statistical
properties that reflect the interplay between one-body chaos, quantum interference, and electron-
electron interactions. The conductance through such dots displays mesoscopic fluctuations as a
function of gate voltage, magnetic field, and shape deformation. The techniques used to describe
these fluctuations include semiclassical methods, random-matrix theory, and the supersymmetric
nonlinear σ model. In open dots, the approximation of noninteracting quasiparticles is justified,
and electron-electron interactions contribute indirectly through their effect on the dephasing time
at finite temperature. In almost-closed dots, where conductance occurs by tunneling, the charge
on the dot is quantized, and electron-electron interactions play an important role. Transport is
dominated by Coulomb blockade, leading to peaks in the conductance that at low temperatures
provide information on the dot’s ground-state properties. Several statistical signatures of electron-
electron interactions have been identified, most notably in the dot’s addition spectrum. The dot’s
spin, determined partly by exchange interactions, can also influence the fluctuation properties of
the conductance. Other mesoscopic phenomena in quantum dots that are affected by the charging
energy include the fluctuations of the cotunneling conductance and mesoscopic Coulomb blockade.
[Published in Rev. Mod. Phys. 72, 895 (2000)]

CONTENTS

I. Introduction 2

A. Fabrication and physical parameters of quantum

dots 2

B. From “regular” to chaotic dots 4

C. From disordered to chaotic ballistic dots 6

D. From open to closed dots 7

E. From noninteracting to interacting electrons 9

F. Methods 9

G. Outline of the review 9

II. Electron Transport Through Quantum Dots 10

A. Quasiclassical description of conductivity 10

B. Conductance in mesoscopic systems and the

Landauer formula 11

C. R-matrix formalism 12

D. Resonant tunneling 13

E. Coulomb blockade 14

F. Cotunneling 17

G. Nonlinear transport 17

III. Statistical Theory: from Disordered Metals to

Ballistic Dots 18

A. Disordered metals and ballistic dots 18

1. Scales in the diffusive regime 18

2. Scales in the ballistic regime 19

3. Models of disordered structures and ballistic

dots 19

B. The semiclassical approach 20

1. Spectral correlations in chaotic and disordered

systems 20

2. Conductance fluctuations in disordered metals 22

C. The universal regime: random-matrix theory 22

1. Gaussian ensembles 23

2. Crossover ensembles 26

3. Gaussian processes 27

4. Circular ensembles 29

D. The supersymmetry method 29

IV. Mesoscopic Fluctuations in Open Dots 31

A. The random-matrix approach 31

B. The semiclassical approach 33

C. Mesoscopic fluctuations of the conductance 33

1. Conductance distributions 33

2. Weak localization 35

3. Ericson fluctuations 36

4. Parametric correlations 37

D. Conductance fluctuations at finite temperature 38

E. Dephasing 38

1. Models for dephasing 38

2. Temperature dependence of dephasing 39

3. Conductance distributions 40

V. Mesoscopic Fluctuations in Closed Dots 41

A. Statistical theory at low temperatures 42

B. Conductance peak statistics 42

1. Partial-width amplitude distribution 42

2. Width distribution 43

3. Peak-height distributions 43

C. Parametric correlations of the conductance peaks 45

D. Crossover from conserved to broken time-reversal

symmetry 46

1. Conductance peak distributions 46

2. Weak localization 47

E. Peak-spacing statistics 47

F. Finite-temperature statistics 48

1. Conductance peaks 49

2. Peak spacings 51

G. Spectral scrambling 51

H. Correlations between the addition and excitation

spectra 52

VI. Interaction Effects 53

A. Peak-spacing statistics and interactions 53

1. Hartree-Fock approximation and Koopmans’

theorem 55

1

http://arxiv.org/abs/cond-mat/0102268v1


2. Random-phase approximation in disordered

dots 56

3. Parametric variation of the mean field 57

4. Anderson model with interactions 58

B. Spin effects and interactions 58

C. Peak-height statistics and interactions 61

D. Random interaction matrix model 62

VII. Charging Energy Effects in Quantum Dots 64

A. Mesoscopic fluctuations in elastic cotunneling 64

B. Mesoscopic Coulomb blockade 66

C. Mesoscopic fluctuations of the differential

capacitance 68

VIII. Conclusion and Future Directions 69

IX. Acknowledgments 72

References 72

I. INTRODUCTION

Recent advances in materials science have made possi-
ble the fabrication of small conducting devices known as
quantum dots, where up to several thousand electrons are
confined to a region whose linear size is about 0.1−1 µm
(Kastner, 1992). Quantum dots are typically made by
forming a two-dimensional electron gas in the interface
region of a semiconductor heterostructure and applying
an electrostatic potential to metal gates to further con-
fine the electrons to a small region (“dot”) in the interface
plane. Because the electronic motion is restricted in all
three dimensions, a quantum dot is sometimes referred
to as a zero-dimensional system. The transport proper-
ties of a quantum dot can be measured by coupling it
to leads and passing current through the dot. The elec-
tron’s phase is preserved over distances that are large
compared with the size of the system, giving rise to new
phenomena not observed in macroscopic conductors. As
the name suggests, conductance through a quantum dot
is characterized by quantum coherence.
Quantum dots belong to a larger class of systems,

termed mesoscopic by van Kampen (1981), which are
intermediate between microscopic systems, such as nu-
clei and atoms, and macroscopic bulk matter (Akker-
mans et al., 1995). A system is called mesoscopic when
the electron’s phase coherence length Lφ (the typical dis-
tance the electron travels without losing phase coher-
ence) is larger than or comparable to the system’s size L.
Phase coherence is affected by the coupling of the elec-
tron to its environment, and phase-breaking processes
involve a change in the state of the environment. In
most cases phase coherence is lost in inelastic scatter-
ings, e.g., with other electrons or phonons, but spin-flip
scattering from magnetic impurities can also contribute
to phase decoherence. Elastic scatterings of the electron,
e.g., from impurities, usually preserve phase coherence
and are characterized by the elastic mean free path l. Lφ

increases rapidly with decreasing temperature, and for
L ∼ 1 µm, an open system typically becomes mesoscopic

below ∼ 100 mK. In a mesoscopic sample, the descrip-
tion of transport in terms of local conductivity breaks
down, and the whole sample must be treated as a single,
coherent entity.
The field of mesoscopic physics originated in the study

of disordered systems in which the electron’s motion is
diffusive, i.e., l is small relative to L. In the late 1980s it
became possible to produce high-mobility semiconductor
microstructures that were sufficiently small and free of
impurities to ensure that the mean free path l exceeds
the system’s size L. Such devices are termed ballistic.
Transport in a ballistic quantum dot is dominated by
electronic scattering not from impurities, but from the
structure’s boundaries. Most experimental research on
quantum dots is focused on ballistic dots.
The coupling between a quantum dot and its leads

can be experimentally controlled. In an open dot, the
coupling is strong and the movement of electrons across
the dot-lead junctions is classically allowed. But when
the point contacts are pinched off, effective barriers are
formed and conductance occurs only by tunneling. In
these almost-isolated or closed quantum dots, the charge
on the dot is quantized, and the dot’s low-lying en-
ergy levels are discrete, with widths smaller than their
spacing. Closed dots have been called “artificial atoms”
(Kastner, 1993; Ashoori, 1996) because of their discrete
excitation spectra.
In the past, experimental studies of quantum phenom-

ena in small systems were limited to natural systems such
as atoms and nuclei. Quantum dots are man-made struc-
tures small enough to be governed by the laws of quan-
tum mechanics. The advantage of these artificial systems
is that their transport properties are readily measured,
with the strength of the dot-lead couplings, the num-
ber of electrons in the dot, and the dot’s size and shape
all under experimental control. Furthermore, effects of
time-reversal symmetry breaking are easily measured by
applying a magnetic field.
Quantum dots are not the only miniature structures

whose transport properties have been measured. Sim-
ilar experiments have been performed recently on even
smaller structures such as very clean metallic nanoparti-
cles (Ralph, Black, and Tinkham, 1997; Davidović and
Tinkham, 1999), C60 molecules deposited on gold sub-
strate (Porath and Millo, 1996), and carbon nanotubes
(Bockrath et al., 1997; Tans et al., 1997; Cobden et al.,
1998). Some of the phenomena observed in these systems
are striking similar to those seen in quantum dots, sug-
gesting that quantum dots are generic systems for explor-
ing the physics of small, coherent quantum structures.

A. Fabrication and physical parameters of quantum dots

There are two types of quantum dots, correspond-
ing to lateral and vertical geometries. In the more
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common lateral dot, the current flows within the plane
to which the electrons are confined; in a vertical dot
(Reed et al., 1988), the current flows perpendicular to
the plane. Quantum dots are produced by several tech-
niques. A typical example of a lateral dot and its fabri-
cation method are illustrated in Fig. 1(a): on the right
is an electron micrograph of the dot and on the left is
a schematic drawing. A layer of AlGaAs is grown on
top of a layer of GaAs by molecular-beam epitaxy. Elec-
trons accumulate at the GaAs/AlGaAs interface to form
a two-dimensional electron gas (their motion in the verti-
cal direction is confined to the lowest state of a quantum
well). Metal gates (lighter regions in the micrograph)
are created at the top of the structure by electron-beam
lithography. A negative bias applied to the top metal
gate depletes the electrons under the gate and restricts
them to a small region (the dark central region in the
micrograph). The dot is coupled to the bulk 2D electron-
gas regions by two individually adjustable point contacts.
A voltage Vsd applied between the source and the drain
drives a current I through the device. The linear conduc-
tance is determined from G = I/Vsd in the limit of small
Vsd. The shape and size of the dot can be controlled
by voltages Vg1 and Vg2 applied to two shape-distorting
gates. The ability to control the dot-lead couplings as
well as the dot’s shape and area allows us to study a
continuous range of physically interesting situations.
A schematic view of another lateral dot (Oost-

erkamp et al., 1997) is shown in Fig. 1(b). The lighter
areas represent the metal gates. The darker area con-
tains the electrons: the central region is the dot itself,
connected by point contacts to the large 2D electron-gas
regions on the left and right. The left and right pairs of
gates control the dot’s barriers (i.e., its degree of open-
ness), while the central pair of gates is used to vary its
shape and size.
The confined electrons are typically ∼ 50−100 nm be-

low the surface. The effective mass of an electron in GaAs
is rather low: m∗ = 0.067me. A typical sheet density of
ns ∼ 4 × 1011 cm−2 corresponds to a Fermi wavelength
of λF = (2π/ns)

1/2 ∼ 40 nm (about two orders of mag-
nitude larger than in a metal) and Fermi energy of EF ∼
14 meV. The mobility of GaAs/AlGaAs heterostructures
is in the range µe ∼ 104− 106 cm2/V·s, leading to a typ-
ical mean free path of l = vFm

∗µe/e ∼ 0.1− 10 µm (vF
is the Fermi velocity). Electron transport in submicron
dots with the higher mobility values is thus ballistic. To
observe quantum coherence effects it is usually necessary
to have a mean single-particle level spacing ∆ in the dot
that is comparable to or larger than the temperature. For
a dot with an effective area of A ∼ 0.3 µm2, the spacing
∆ = πh̄2/m∗A ∼ 11 µeV can be resolved at temper-
atures of ∼ 100 mK (corresponding to kT = 8.6 µeV).
The lowest effective electron temperatures attained using
dilution refrigerators are ∼ 50 mK.

FIG. 1. Quantum dots: (a) a quantum dot used by Folk et al.
(1996). On the right is a scanning electron micrograph of the
dot (top view), and on the left is a schematic drawing of the
device. Electrons are trapped vertically in the interface of a
GaAs/AlGaAs heterostructure, and form a 2D electron gas
(darker area). Their lateral confinement to the dot region
is achieved by applying a negative voltage to the top metal
gate (lighter shade), depleting the electrons underneath. The
dot is coupled to two leads (source and drain) through point
contacts. Two gate voltages Vg1 and Vg2 can be varied to
change the shape and area of the dot. (b) A diagram of a
micrograph of another dot by Oosterkamp et al. (1997). The
darker area includes the dot region (center) and the two large
2D electron-gas areas on the left and right (source and drain
regions). The lighter shade represents the metal gates. The
dot’s size is controlled by the middle pair of gates, and its
tunnel barriers can be varied by the pairs of gates on the left
and on the right.

To observe charge quantization in the dot, two condi-
tions must be satisfied. First, the barriers must be large
enough that the transmission is small. This gives the con-
ditionG≪ e2/h (i.e., the dot is almost isolated). Second,
the temperature must be low enough that the effects of
charge quantization are not washed out. The dot’s abil-
ity to hold charge is described classically by its average
capacitance C. Since the energy required to add a single
electron is ≈ e2/C per electron in the dot, we have the
condition kT ≪ e2/C. A typical charging energy of a
GaAs disk of radius 0.2 µm is EC = e2/C ∼ 1000 µeV,
and the condition kT ≪ e2/C is always satisfied at the
low temperatures used in experiments. The tunneling of
an electron into the dot is usually blocked by the clas-
sical Coulomb repulsion of the electrons already in the
dot, and the conductance is small. This phenomenon is
known as Coulomb blockade. But by changing the gate
voltage Vg we can compensate for this repulsion, and at
the appropriate value of Vg the charge on the dot will
fluctuate between N and N + 1 electrons, leading to a
maximum in the conductance. This leads to so-called
Coulomb-blockade oscillations of the conductance as a
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function of the gate voltage. At sufficiently low temper-
atures these oscillations turn into sharp peaks [see, for
example, Fig. 7(c)] that are spaced almost uniformly in
Vg by an amount essentially proportional to the charging
energy EC .

FIG. 2. Conductance by resonant tunneling of a single elec-
tron through a quantum dot: (a) Schematic view of an iso-
lated quantum dot that is weakly coupled to left and right
leads. The point contacts effectively create tunnel barriers
between the dot and the leads. (b) Side view. When the
Fermi energy of the electron in the source and drain reservoirs
matches the first unoccupied level in the dot, the electron can
tunnel across the barrier into the dot. A current will flow in
response to a small source-drain voltage Vsd. The potential
in the dot is controlled by the gate voltage Vg. The effect of
Coulomb charging energy is not shown here and is illustrated
in Fig. 8.

Coulomb blockade was first observed in tunnel junc-
tions containing a small metallic particle (see, for exam-
ple, Giaever and Zeller, 1968) in the classical regime1

∆ ≪ kT ≪ e2/C, where tunneling occurs through a
large number (∼ kT/∆) of levels. Kulik and Shekhter
(1975) introduced a transport theory for this classical
regime. Early theoretical work on Coulomb blockade ef-
fects in a single junction was done by Ben Jacob and
Gefen (1985), Likharev and Zorin (1985), and Averin
and Likharev (1986). The first controlled experiment
on a single-electron tunneling device was by Fulton and
Dolan (1987). The first observation of Coulomb block-

1A metallic particle in 3D has a much smaller mean level
spacing than a 2D dot of the same size because of the differ-
ences in dimensionality and effective mass.

ade in a semiconductor device was by Scott-Thomas et al.
(1989). Low-temperature experiments in semiconductor
quantum dots can probe the quantum Coulomb-blockade
regime kT ≪ ∆ ≪ e2/C, where tunneling occurs through
a single resonance in the dot. Resonant tunneling is il-
lustrated in Fig. 2.

B. From “regular” to chaotic dots

FIG. 3. Shell structure observed in the addition energy of a
small vertical quantum dot. The dot has the shape of a 2D
disk with a harmonic-like confining potential. (a) Coulomb-
blockade peaks in the current vs gate voltage Vg; (b) Ad-
dition energy [extracted from the peak spacings shown in
panel (a)] as a function of electron number N in the dot.
The maxima correspond to filled (N = 2, 6, 12) or half-filled
(N = 4, 9, 16) spin-degenerate harmonic-oscillator shells. The
half-filling follows Hund’s rule favoring the filling of the va-
lence shell with parallel spins. From Tarucha et al. (1996).

Vertical dots are suitable for spectroscopic studies of a
dot with few electrons (N <∼ 20). Such dots can be pre-
pared in regular shapes, such as a disk, where the con-
fining potential is harmonic and the single-particle levels
are arranged in shells. This shell structure is observed by
measuring the Coulomb-blockade peaks as a function of
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the number of electrons in the dot (Tarucha et al., 1996;
Kouwenhoven, Oosterkamp et al., 1997); see, for exam-
ple, Fig. 3(a). The spacings between adjacent peaks
are not uniform and can be converted into an addition
spectrum, shown in Fig. 3(b). The addition spectrum ex-
hibits clear maxima atN = 2, 6, and 12, corresponding to
completely filled shells of a 2D spin-degenerate harmonic
oscillator. Additional maxima can be seen at N = 4, 9,
and 16, describing half-filled shells with parallel spins, in
agreement with Hund’s rules from atomic physics. The
single-particle spectrum is sensitive to a magnetic field
(as in atoms), and configuration rearrangements are seen
at avoided crossings of single-particle levels. Overall, a
simple single-particle model plus constant charging en-
ergy, supplemented by a perturbative treatment of the
exchange interaction, can explain qualitatively the ob-
served pattern of addition energies versus magnetic field.
A good quantitative agreement is obtained when com-
pared with Hartree-Fock calculations of a few-electron
system.
Hartree-Fock calculations – feasible in small dots – be-

come impractical for dots with several hundred electrons.
Moreover, many of the lateral dots with N >∼ 50 electrons
often have no particular symmetry. Scattering of an elec-
tron from the irregular boundaries of such dots leads to
single-particle dynamics that are mostly chaotic. Mea-
sured quantities such as the dot’s conductance and addi-
tion spectrum display “random” fluctuations when vari-
ous parameters (e.g., shape and magnetic field) are var-
ied. We are entering the statistical regime, in which new
kinds of questions are of interest. For example, rather
then trying to calculate the precise, observed sequence
of conductance peaks in a specific dot, we can study the
statistical properties of the dot’s conductance sampled
from different shapes and applied magnetic fields.
Classical chaos, i.e., the exponential sensitivity of the

time evolution of a dynamical system to initial condi-
tions, is well understood not only in closed systems but
also in open scattering systems (e.g., quantum dots) as-
suming that the particle spends sufficient time in the fi-
nite scattering regime (e.g., the dot) before exiting into
the asymptotic regime (e.g., the leads). In describing
transport through coherent systems, we are interested
in the quantum manifestations of classical chaos. The
link between classical and quantum chaos was first estab-
lished in 1984 with the Bohigas-Giannoni-Schmit (BGS)
conjecture (Bohigas, Giannoni, and Schmit, 1984) that
the statistical quantal fluctuations of a classically chaotic
system are described by random-matrix theory (RMT).
These authors found that the statistical properties of
∼ 700 eigenvalues of the Sinai billiard – a 2D classically
chaotic system – follow the predictions of RMT. Figure
4(b) compares the nearest-neighbor spacing distribution
of the Sinai billiard’s eigenvalues (histogram) with the
same distribution calculated from RMT (solid line).
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FIG. 4. The universality of RMT. The nearest-neighbor level-
spacing distribution P (s) (where s is the spacing in units of
the mean level spacing) in (a) a compound nucleus, (b) a
2D chaotic system, and (c) a disordered system, compared
with the Wigner-Dyson distribution (solid lines) predicted by
RMT. Dashed lines show the Poisson distribution describing
P (s) for a random sequence of levels. Panel (a) shows P (s)
for the nuclear data ensemble – 1726 neutron and proton reso-
nances measured in several heavy nuclei. From Bohigas, Haq
and Pandey (1983). Panel (b) is P (s) for 700 eigenvalues of
the Sinai billiard, a classically chaotic system. The eigenfunc-
tions vanish at the boundaries indicated by the inset. From
Bohigas, Giannoni, and Schmit (1984). Panel (c) illustrates
P (s) for a 3D Anderson model (open squares) in its diffusive
regime with on-site disordered potential w/t = 2 (see Sec.
III.A.3). From Dupuis and Montambaux (1991).

Random-matrix theory differs in a fundamental way
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from the conventional statistical approach. Rather than
declaring ignorance with respect to the microscopic dy-
namical state of the system, we declare ignorance with
respect to the Hamiltonian itself (Balian, 1968). The
only relevant information is the system’s fundamental
space-time symmetries, and otherwise the Hamiltonian
can be chosen “at random.” This revolutionary idea was
introduced by Wigner in the 1950s to explain the spec-
tral properties of a complex many-body system, the com-
pound nucleus, and was developed by Dyson, Mehta and
others in the early 1960s. Since RMT has no scale (its
only physical parameter is determined by the mean level
spacing ∆ which scales out if all energies are measured in
units of ∆), it leads to universal predictions. For exam-
ple, neutron and proton resonances measured in heavy
nuclei and collected in the so-called nuclear data ensem-
ble (Bohigas, Haq and Pandey, 1983) were found to obey
the predictions of RMT. In particular, the resonances’
spacing distribution, represented by the histogram in Fig.
4(a), is well described by the Wigner-Dyson distribution
of RMT (solid line), just as the eigenvalues of the Sinai
billiard are [Fig. 4(b)].

impurities

(a)

(b)

FIG. 5. Schematic drawing of a diffusive dot and a ballistic
dot attached to two leads: (a) an impurity-rich diffusive dot,
showing an electron’s trajectory with elastic scatterings from
the impurities; (b) a ballistic dot. There are few impurities
and the electron moves ballistically. Typically, an electron
is scattered several times from the dot’s boundaries before
exiting the dot.

The usefulness of RMT for neutron resonances was jus-
tified by the complexity of the compound nucleus above

the neutron threshold. In contrast, the Sinai billiard is
a relatively simple but chaotic 2D system. According to
the BGS conjecture, classical chaos is a sufficient condi-
tion for the applicability of RMT. We shall see that RMT
is indispensable for understanding the universal statisti-
cal properties of chaotic quantum dots. Random-matrix
theory also links chaotic ballistic dots to mesoscopic dis-
ordered metals, as we discuss next.

C. From disordered to chaotic ballistic dots

A disordered, impurity-rich quantum dot – similar to
the diffusive systems that were the original focus of meso-
scopic physics – is shown schematically in Fig. 5(a). An
electron enters the dot through a lead and scatters elasti-
cally from the impurities. Here l ≪ L, and the transport
is diffusive (l is the mean free path and L is the linear size
of the dot). The characteristic time scale is τD, the time
for the electron to diffuse across the dot. The associated
energy scale is known as the Thouless energy Ec = h̄/τD.
Figure 5(b) illustrates the more common ballistic dot.
There is relatively little disorder, and transport is dom-
inated by scattering from the dot’s boundaries. When
the boundaries are irregular, the electron’s dynamics is
mostly chaotic. The relevant time scale in ballistic dots
is the ergodic time τc, which is roughly the time of flight
across the dot. The related energy scale ET = h̄/τc is
termed the ballistic Thouless energy. The chaotic nature
of the classical motion inside the dot can be revealed
in the conductance only if the electron scatters off the
boundaries at least several times before escaping through
a lead. We therefore limit our discussion to dots in which
τescape ≫ τc, where τescape is the mean escape time of the
electron into the leads. Equivalently, the average width
Γ of a level in the dot (to decay into the leads) must be
small compared with ET (Γ ≪ ET ). For a diffusive dot,
a similar condition Γ ≪ Ec is required.
One of the important consequences of quantum co-

herence is the interference of waves describing an elec-
tron propagating along different paths between the in-
coming and outgoing leads. We can observe these inter-
ference effects in the conductance by changing a phase-
sensitive parameter in the system, for example, the elec-
tron’s Fermi momentum or the external magnetic field.
The conductance through diffusive or ballistic open dots
thus exhibits aperiodic but reproducible fluctuations as
a function of a parameter [see, for example, Fig. 6(c)].
Early theoretical studies of disordered conductors were

based mostly on weak-disorder perturbation theory (i.e.,
the diagrammatic approach). Two important phenomena
were discovered: (i) The average conductance is smaller
in the absence of a magnetic field than in its presence, an
effect known as weak localization (see Bergmann, 1984,
and references therein). This quantum interference ef-
fect requires Lφ >> l and occurs already in macroscopic
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conductors (L > Lφ). (ii) The rms fluctuations of the
conductance in a mesoscopic conductor are of the order
e2/h, independent of the size of the average conductance,
a phenomenon known as universal conductance fluctua-

tions (Altshuler, 1985; Lee and Stone, 1985). A natural
question that arises is whether similar mesoscopic phe-
nomena can be observed in ballistic dots. Given the BGS
conjecture, the application of RMT to describe the uni-
versal features of the conductance through chaotic bal-
listic dots was a logical step. As long as the electron
dynamics in the dot are chaotic, the conductance fluc-
tuations are independent of the dot’s geometry, although
they do depend on the properties of the leads (such as the
number of modes and the average transparency of each
mode). Only in the limit of a large number of fully trans-
mitting modes does the size of the fluctuations become
truly universal in the sense of universal conductance fluc-
tuations.
The link between universal conductance fluctuations

in disordered systems and RMT was first postulated by
Altshuler and Shklovskii (1986) and by Imry (1986a).
Earlier work by Thouless had pointed to the close con-
nection between the conductance and spectral properties:
the conductance expresses the sensitivity of the energy
levels to a change in the boundary conditions (Edwards
and Thouless, 1972; Thouless, 1974, 1977). This relation
was used by Altshuler and Shklovskii (1986) to argue that
RMT spectral correlations are at the origin of universal
conductance fluctuations. Their diagrammatic calcula-
tions also showed that spectral correlations in disordered
systems are nonuniversal for energy scales that exceed
the Thouless energy. At such energy scales the electron
diffuses for times that are short compared with τD and
therefore does not have enough time to reach the system’s
boundaries. An analogous breaking of RMT universality
in chaotic systems was demonstrated by Berry (1985) for
time scales that are shorter than the ergodic time. These
observations suggested that the universal regime of RMT
is applicable to energy scales that are smaller than the
Thouless energy in disordered systems, and smaller than
the ballistic Thouless energy in ballistic chaotic systems.
A proof of RMT universality in the disordered case

was achieved using the supersymmetry method, a field-
theoretical approach to disordered systems (Efetov,
1983). The supersymmetry method is a technique
to carry out the ensemble average of a product of
Green’s functions, where the original disordered prob-
lem is mapped onto a supersymmetric nonlinear σ model.
Below the Thouless energy this field-theoretical model
reduces to 0D, where it is equivalent to RMT. The
RMT universality in weakly disordered systems is demon-
strated in Fig. 4(c), where the nearest-neighbor level-
spacing distribution, calculated numerically for a disor-
dered metal, is seen to follow the Wigner-Dyson distri-
bution of RMT (solid line).

D. From open to closed dots

The strength of the dot-lead coupling affects the width
of a typical resonance in the dot to decay into the leads.
A simple expression for the width can be obtained from
an argument due to Weisskopf (1937). Imagine a wave
packet near the entrance to a channel c in one of the
leads. The wave packet evolves in time and returns af-
ter the recurrence time or Heisenberg time τH = h/∆,
where ∆ is the mean level spacing.2 The probability to
decay if close to a channel c is given by the transmission
coefficient Tc. The decay rate Γc/h̄ of a level into chan-
nel c is then given by the frequency of attempted decays
times the transmission coefficient (i.e., τ−1

H Tc), and the
total width Γ =

∑

c Γc of a level to decay into any of the
channels is

Γ =
∆

2π

∑

c

Tc . (1)

In an open dot, the width W of the dot-lead in-
terface is much larger than the Fermi wavelength, so
that the lead supports a large number of open modes
(Λ = Int[kFW/π] ≫ 1) with transmission coefficients
of order ∼ 1 (no tunnel barriers). From Eq. (1)
we immediately see that Γ ≫ ∆. Thus in open dots
the resonances are strongly overlapping. This is anal-
ogous to the compound-nucleus regime of many over-
lapping resonances, which occurs at several MeV above
the neutron threshold. Ericson (1960, 1963) predicted
that in this regime the coherent superposition of a large
number (∼ Γ/∆) of resonance amplitudes would cause
“random” but reproducible fluctuations of the nuclear-
reaction cross section as a function of the reaction en-
ergy. Ericson fluctuations were observed a few years after
his prediction in light-ion reactions (Ericson and Mayer–
Kuckuk, 1966). An example is shown in Fig. 6(a), where
the measured differential cross section for the reaction p
+ 35Cl → α + 32S is plotted as a function of the proton
energy. Ericson argued that the energy autocorrelation
function of the cross section should be a Lorentzian with
a width Γ that is just the width of a typical resonance in
the nucleus. This is shown in Fig. 6(b), where the au-
tocorrelation function of the cross section (solid line) is
fitted to a Lorentzian (dashed line). Similar fluctuations
were observed in the conductance G of a ballistic open
dot as a function of the Fermi momentum h̄kF , as shown
in Fig. 6(c). A convenient way of analyzing the fluctu-

2In the original Weisskopf argument, ∆ is the many-body
mean level spacing. However, we are mostly interested in
the immediate vicinity of the ground state of the dot where
(for not-too-strong interactions) the many-particle mean level
spacing is of the order of the single-particle level spacing.
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ations is to consider the Fourier transform of the auto-
correlation function of the conductance, i.e., the power
spectrum S(fk) of G = G(kF ). If the autocorrelation
of the conductance vs energy is a Lorentzian of width
Γ, then S(fk) ∝ e−2πΓ|fk|/h̄vF (where vF is the Fermi
velocity). This exponential behavior is demonstrated in
Fig. 6(d) for S(fV ) , the power spectrum of the con-
ductance vs gate voltage (changing the gate voltage is
equivalent to changing the Fermi energy). For ballistic
dots we can give a semiclassical interpretation of Γ: in
an open chaotic system the classical escape time is dis-
tributed exponentially, with a characteristic mean escape
time of τescape = h̄/Γ.
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FIG. 6. Ericson fluctuations in the compound nucleus [panels
(a) and (b)] and in an open quantum dot [panels (c) and (d)]:
(a) the measured differential cross section dσ/dΩ at θ = 170◦

for the reaction p+35Cl → α+32S vs the incoming proton en-
ergy Ep. This reaction proceeds through the compound nu-
cleus 36Ar at an excitation energy of ∼ 18.5 MeV; (b) the en-
ergy autocorrelation function C(∆E) (solid line) of the cross
section in panel (a) (von Brentano et al., 1964), where the
dashed line is a Lorentzian fit whose width Γ corresponds to
the lifetime h̄/Γ of the excited compound nucleus 36Ar (from
Ericson and Mayer–Kuckuk, 1966); (c) the conductance G
measured in an open chaotic dot as a function of the elec-
tron’s Fermi momentum kF (Keller et al., 1996); the average
conductance increases as a function of kF , but the magni-
tude of the fluctuations is constant of the order e2/h; (d) the
power spectrum S(fV ) (Chang et al., 1995), i.e., the Fourier
transform of the conductance autocorrelation function vs gate
voltage (changing the gate voltage is equivalent to changing
the Fermi energy). The dashed line is a fit to an exponential
(which corresponds to a Lorentzian form of the conductance
autocorrelation function). A log-linear scale is used.

The cross section of a nuclear reaction is proportional
to the squared S-matrix element between the entrance
and exit channels. An analogous situation exists in co-
herent transport through open quantum dots. The for-
mulation of conductance in coherent systems was pio-
neered by Landauer (1957, 1970) and refined by Imry
(1986b) and Büttiker (1986a). They described the con-

ductance as a scattering process and expressed it directly
in terms of the total transmission through the sample.3

The total transmission is the sum over squared S-matrix
elements between all entrance and exit channels. The av-
erage conductance is then expected to increase linearly
with the number of open channels, as can be seen in
Fig. 6(c). However, the magnitude of the fluctuations
is ∼ e2/h, independent of the average conductance. The
nuclear cross-section fluctuations are also universal, al-
though since the measured cross section corresponds to a
specific selection of exit and entrance channels, the size
of the fluctuations is comparable to the average.
In recent years the experimental focus has shifted from

open to closed dots, where the statistical behavior of in-
dividual wave functions can be probed. In closed dots the
transmission coefficients are small, Tc ≪ 1, and according
to Eq. (1), Γ ≪ ∆ (assuming a small number of chan-
nels). This is the regime of isolated resonances, analogous
to the compound-nucleus regime of isolated neutron res-
onances just above the neutron threshold. Such narrow
resonances were observed in the total cross section to
scatter thermal neutrons from heavy nuclei. Figure 7(a)
shows such resonances for the reaction n+232Th. The
distribution of the widths of these resonances is shown
on a log-linear scale in Fig. 7(b) and is well described
by the so-called Porter-Thomas distribution (solid line)

predicted by RMT. It is given by P (Γ̂) ∝ Γ̂−1/2e−Γ̂/2,
where Γ̂ is the width measured in units of the average
width.
In closed dots the conductance is not a smooth function

of the gate voltage as in open dots, but instead exhibits
Coulomb-blockade peaks [see, for example, Fig. 7(c)].
The spacings between these peaks are almost uniform be-
cause they are dominated by the large charging energy, in
contrast to the nuclear case, where the spacings between
the observed resonances fluctuate widely. Moreover, the
observed conductance peak widths in closed dots are all
∼ kT because of thermal broadening. However, the peak
heights exhibit order-of-magnitude fluctuations, as can
be seen in Fig. 7(c). These peak fluctuations are deter-
mined by the spatial fluctuations of the individual res-
onance wave functions in the vicinity of the leads. The
statistical approach to Coulomb-blockade peak heights
was developed by Jalabert, Stone, and Alhassid (1992).
They used R-matrix theory – originally introduced by
Wigner and Eisenbud (1947) for nuclear reactions – to
relate the Hamiltonian of the closed system to the scat-
tering resonances of the weakly open system, and then

3It is interesting to note that Landauer’s formula can be
derived from Weisskopf’s formula (1) by applying the latter
to the leads instead of the dot (where the leads are considered
as decaying quantum systems emitting electrons); see Bertsch
(1991).
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applied an RMT approach to quantify the wave-function
fluctuations. The conductance peak-height distributions
were found to be universal and sensitive only to the
space-time symmetries of the dot. These distributions
were measured a few years later (Chang et al., 1996;
Folk et al., 1996) and were in agreement with the the-
oretical predictions. The distribution of the conductance
peak heights in the absence of magnetic field is shown
in Fig. 7(d). This is the case of conserved time-reversal
symmetry, analogous to the neutron-resonance statistics
in Fig. 7(b).
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FIG. 7. Neutron-resonance-width statistics in the compound
nucleus [panels (a) and (b)] and Coulomb-blockade peak
statistics in closed quantum dots [panels (c) and (d)]: (a)
a series of neutron resonances in the total cross section σT

(in barns) of n+232Th as a function of the incoming neu-
tron energy En (in eV) (from Brookhaven National Labora-
tory, 1964); (b) distribution of the normalized neutron reso-
nance widths Γ̂ = Γ/Γ̄ using a log-linear scale [223 neutron
resonances in 233Th are included from the measurements of
Garg et al. (1964)]; the solid line is the Porter-Thomas dis-

tribution P (Γ̂) ∝ Γ̂−1/2e−Γ̄/2 predicted by RMT; (c) a series
of Coulomb-blockade peaks observed in the conductance G of
closed GaAs/AlGaAs dots (with N ∼ 1000 electrons) as a
function of gate voltage Vg at zero magnetic field (Folk et al.,
1996); (d) distribution of the normalized conductance peak
heights Ĝ = G/Ḡ (histogram) on a log-linear scale; 600 peaks
are included, of which only ∼ 90 are statistically indepen-
dent. The solid line is the theoretical prediction based on
RMT (Jalabert, Stone and Alhassid, 1992) and contains no
free parameters. Notice the agreement with the experiment
over almost three orders of magnitude.

E. From noninteracting to interacting electrons

Studies of statistical fluctuations in open dots
have generally ignored electron-electron interactions.
Electron-electron inelastic scattering reduces the coher-
ence time of the electrons at finite temperature, but
otherwise the excitations around the Fermi energy are
assumed to be noninteracting quasiparticles. Landau’s

Fermi-liquid theory treats the electrons in good met-
als as weakly interacting quasiparticles whose lifetime
near the Fermi surface is large compared to h̄/kT . In
open dots with many open channels the average con-
ductance is large, and a noninteracting picture, simi-
lar to that of metals, is justified. But as the strength
of the dot-lead couplings is reduced, interaction effects
become important in transport. The simplest way to
take interactions into account is to include only the long-
range component of the Coulomb interaction, namely
the average interaction among N electrons in the dot.
This is known as the constant-interaction model. This
model has the advantage of simplicity, and it does explain
some of the observed phenomena. However, discrepan-
cies with other recent experiments – notably the mea-
sured peak-spacing distribution – indicate that electron-
electron interactions can have significant effects beyond
the constant-interaction model. An important parame-
ter is the dimensionless gas parameter rs measuring the
ratio between a typical Coulomb interaction and the av-
erage kinetic energy. When rs is small, it is possible to
use a combination of mean-field approximations and the
known statistics of the noninteracting limit. However, in
semiconductor quantum dots, rs ∼ 1− 2, and deviations
are expected. The interplay between one-body chaos and
many-body interactions in quantum dots is a fascinating
open problem and is currently the main focus of the field.

F. Methods

The statistical theory of quantum dots is based on
four main approaches: diagrammatic methods, semiclas-
sical methods, random-matrix theory, and supersymme-
try. The first approach (i.e., the diagrammatic method)
was developed in early work on disordered conductors.
More recent progress – based primarily on the last three
methods and driven in part by a deeper understanding of
their interrelations – has brought the statistical approach
to a new level of maturity. While several reviews and
books have been written on the semiclassical, RMT, and
supersymmetry approaches, they are usually discussed
separately and often not in relation to quantum dots.
A section of this review describes these methods in the
context of the statistical theory of quantum dots, em-
phasizing the relationships among the methods. Many
of the results of that section will be used in subsequent
sections.

G. Outline of the review

We begin by reviewing transport theory in quantum
dots (Sec. II). An important result is the Landauer
formula expressing the conductance in terms of the S
matrix of the device. We discuss resonant tunneling
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and Coulomb blockade in closed dots, and processes that
dominate the off-resonance conductance, such as cotun-
neling. The results of this section will be used in devel-
oping the statistical theory of quantum dots.
Section III covers the main principles and tools of

the statistical fluctuation theory: the semiclassical ap-
proach (demonstrated for disordered metals), random-
matrix theory, and the supersymmetry method.
Section IV examines mesoscopic conductance fluctua-

tions in open dots using random-matrix and semiclassical
approaches. We discuss the main mesoscopic phenomena
in fully coherent open quantum dots – weak localization
and conductance fluctuations, and how they are affected
by a finite coherence time.
Section V reviews the statistical theory of closed dots.

The statistics and parametric correlations of the peak
heights are derived both for temperatures that are small
and that are comparable to the mean level spacing. The
constant-interaction model can explain some, but not all,
of the observed statistics. Adding electrons to the dot
changes or “scrambles” the single-particle spectrum and
wave functions because of charge rearrangement. This
statistical scrambling is discussed in the framework of
RMT.
Section VI summarizes recent progress in understand-

ing the effects of electron-electron interactions on the sta-
tistical fluctuations. The focus is on peak-spacing statis-
tics, where discrepancies with the results of the CI model
have been seen experimentally. The Hartree-Fock ap-
proximation offers an intermediate framework that de-
scribes interaction effects within a single-particle theory.
Spin effects are also discussed.
Finally, in Sec. VII we consider various charging en-

ergy effects on the mesoscopic fluctuations, such as the
fluctuations of the off-resonance conductance where the
dominating conductance mechanism is cotunneling, and
the phenomenon of mesoscopic Coulomb blockade due to
the backscattering of electrons into an open lead.
Throughout the review we have made an effort to ad-

here to a uniform notation, which sometimes required
changing the notation of the original papers. We have
also tried to keep to standard notation except in cases
where the same symbol is used for different quantities.
The topics covered in this review are too broad to per-
mit discussion of all related work, and we apologize to
those whose work could not be included.

II. ELECTRON TRANSPORT THROUGH QUANTUM

DOTS

Conductance through quantum dots is a phase-
coherent process. In this section we review the formalism
of coherent transport.
In Sec. II.A we remind the reader of the quasiclassi-

cal theory of transport in a metal where phase coherence

is ignored. At low temperatures and in small conduc-
tors, however, the coherence length of the electron can
be larger than the system’s size, and conductivity is no
longer a local quantity. Section II.B describes conduc-
tance as a coherent scattering process; its main result
is the Landauer formula expressing the conductance in
terms of the S matrix. It is often useful to relate the
S matrix of the open system to the eigenfunctions and
eigenvalues of the closed system. This relation is de-
rived in R-matrix theory, discussed in Sec. II.C. Sec-
tion II.D describes an important limit of the theory, the
weak-coupling limit, where conductance occurs by reso-
nant tunneling.
Section II.E reviews Coulomb blockade, a central phe-

nomenon in closed quantum dots with large tunnel bar-
riers. Coulomb blockade is essentially a classical phe-
nomenon, observed at temperatures that are small com-
pared with the charging energy. The discreteness of the
dot’s levels becomes important in the quantum Coulomb-
blockade regime when the temperature drops below the
mean level spacing ∆.
Section II.F considers the off-resonance conductance

in Coulomb-blockade dots, which is dominated by cotun-
neling, i.e., the virtual tunneling of an electron (hole)
through a large number of intermediate levels in the dot.
Finally, Sec. II.G explains how conductance measure-
ments in the nonlinear regime provide information on
excited states in the dot.

A. Quasiclassical description of conductivity

In a perfect periodic potential in a crystal, the motion
of the electrons is described by extended Bloch states.
In real samples, however, there is some disordered po-
tential due to impurities, defects, dislocations, etc. The
electrons scatter from the impurities elastically (i.e., the
electron’s energy is conserved and only its momentum
is reoriented), and repeated scatterings lead to diffusive
motion. In the quasiclassical description of diffusion, the
electron is assumed to lose phase coherence after each
collision with an impurity, i.e., Lφ ∼ l, and the conduc-
tivity can be introduced as a local intensive quantity (see
below).
The diffusion current of electrons is given by Jd =

−D∇ns, where ns = ns(r, t) is the electron density and
D is the diffusion constant. Using the continuity equation
∇ · Jd = −∂ns/∂t, we obtain the diffusion equation

∂ns

∂t
= D∇2ns . (2)

Describing the diffusion (in d dimensions) as a random
walk, we can relate the diffusion constantD to the elastic
mean free path l through D = vF l/d.
Special solutions to the diffusion equation, nq ∝

eiq·re−Dq2t, are known as the classical diffusion modes.
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The classical diffusion propagator, describing the time
evolution of the single-electron density, can be expanded
in these modes: D(r′, r; t) = [

∑

q
eiq·(r

′−r)e−Dq2t]θ(t).

Its Fourier transform is D(q, ω) = 1/(−iω +Dq2).
The electrical conductivity σ is defined by Ohm’s law,

Je = σE, describing the linear relation between the
electric current density Je and the applied electric field
E. To relate the conductivity to the mean free time τ
(τ = l/vF , where vF is the Fermi velocity), we assume
that after each collision the electron’s velocity is “ran-
domized.” Between collisions the electrons are acceler-
ated in response to the electric field, and their average
velocity is v = (e/m)Eτ . Since the current is given by
Je = nsev, we recover Ohm’s relation with

σ =
e2

m
nsτ , (3)

also known as Drude’s formula. When combined with
D = v2F τ/d and dns/2EF = ν (ν is the density of single-
particle states per unit volume at the Fermi energy),
Drude’s formula (3) leads to Einstein’s relation

σ = e2νD . (4)

In a 2D electron gas, ν = m/πh̄2 is constant, and σ =
e2

h kF l. In a good metal, kF l ≫ 1, and the conductivity
is much larger than the quantum unit e2/h.
The quantity that is measured directly is the conduc-

tance, defined as the ratio between the current and the
applied voltage. In a macroscopic conductor the conduc-
tivity is an intensive quantity, and the conductance G
is related to the conductivity by G ∼ σ(S/L), where L
and S are the length and transverse cross section of the
conductor, respectively.

B. Conductance in mesoscopic systems and the Landauer

formula

In a mesoscopic system Lφ
>∼ L, and the local descrip-

tion of conductivity breaks down. It is then meaningful
to discuss only the measurable quantity – the conduc-
tance – or alternatively, to introduce conductivity as a
nonlocal tensor. For recent books discussing transport
in mesoscopic systems, see, for example, Datta (1995),
Imry (1996), and Ferry and Goodnick (1997).
The transport properties of a mesoscopic structure are

characterized by conductance coefficients that are sample
specific. Several probes (leads) attached to electron reser-
voirs are connected to the system. A current is passed
through the structure and the voltage is measured at the
different probes. Denoting by Vn the voltage of probe n
and by In the current through probe n, we expect in the
limit of small voltages a set of linear relations

In′ =
∑

n

Gn′nVn . (5)

The coefficient Gn′n is the conductance between leads
n and n′. It follows from Kirchhoff’s law

∑

n In = 0
that

∑

nGn′n =
∑

n′ Gn′n = 0. For the special case of
a two-lead dot, G12 = G21 = −G11 = −G22 ≡ G, and
G = I1/(V2 − V1).
A formulation that takes into account phase coherence

as well as the geometry of the structure was developed
by Landauer (1957, 1970) and Imry (1986b). The basic
idea was to relate the conductance to an underlying scat-
tering matrix (i.e., transmission coefficients). The first
derivations of such transmission formulae from linear-
response theory were by Economou and Soukoulis (1981)
and Fisher and Lee (1981). The work of Landauer and
Imry was generalized by Büttiker (1986a, 1988a) to a gen-
eral configuration of probes. We first discuss the macro-
scopic approach of Büttiker and then describe a simpli-
fied derivation of the Landauer formula from statistical
reaction theory by Bertsch (1991). For illuminating dis-
cussions of the Landauer approach and its applications,
see Stone and Szafer (1988), Baranger and Stone (1989),
Datta (1995), Stone (1995), and Imry (1996). For a re-
cent review, see Imry and Landauer (1999).
We assume a mesoscopic structure connected to sev-

eral leads n, each supporting Λn propagation modes of
the electrons. We denote by Sn′n

c′c the scattering ampli-
tude of the structure to scatter an electron from channel c
in lead n to channel c′ in lead n′. A scattering amplitude
between different leads (n′ 6= n) is called a transmission
amplitude t, while a scattering amplitude between chan-
nels that belong to the same lead (n′ = n) is called a
reflection amplitude r. The total transmission from lead
n to lead n′ is T n′n =

∑

c′c |tn
′n

c′c |2 (where the sum is over
all channels c in lead n and c′ in lead n′), and the total
reflection in lead n is Rnn =

∑

c′c |rnnc′c |2 (c and c′ are
channels in lead n). A voltage Vn in probe n causes a
current I injectcn = evc(dn

+
c /dǫ)eVn to be injected in each

mode c, where vc and dn+
c /dǫ are the longitudinal veloc-

ity and density of ingoing states (per unit length of the
lead) in mode c. Assuming noninteracting electrons in
the lead, vc(dn

+
c /dǫ) = 1/h and the injected current is

I injectcn = (e2/h)Vn. The electrons injected in lead n are
scattered into lead n′ 6= n and produce there a current
In′n =

∑

c′c |tn
′n

c′c |2Iinjectcn = (e2/h)T n′nVn. Electrons are
also backscattered into the same lead n giving a net cur-
rent of Inn = (e2/h)(Rnn − Λn)Vn, where the injected
current has been subtracted. The total current in lead
n′ is In′ =

∑

n In′n. We obtain Eq. (5) with

Gn′n =

{

2 e2

h T
n′n (for n′ 6= n)

2 e2

h (Rnn − Λn) (for n′ = n)
, (6)

where a factor of 2 was included to take into account the
spin degeneracy of the electrons.
A simple derivation of Landauer’s formula at finite

temperature is provided by Bertsch (1991). The start-
ing point is Weisskopf’s formula (1), first applied in nu-
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clear physics to neutron evaporation (Weisskopf, 1937),
and often used in the transition state theory of chemical
reactions. We assume for simplicity that the mesoscopic
structure is connected to two leads only. Rather than
applying Eq. (1) to the structure itself, we apply it to
the leads, considering each lead as an equilibrated, de-
caying system emitting electrons. At zero temperature,
the decay rate Γ/h̄ from each lead is given by

Γ

h̄
=

1

2πh̄ρ(E)

∑

T , (7)

where ρ(E) is the density of states in that lead and
∑

T represents a sum over transmission coefficients in
all open channel states. At finite temperature the
current due to electrons emitted by the lead is I =
e
∑

λ(Γ(Eλ)/h̄)f(Eλ − µ), where f(Eλ − µ) are Fermi-
Dirac occupation probabilities (µ is the chemical poten-
tial in the lead). Converting the sum into an integral
∑

λ →
∫

dEρ(E) and using Eq. (7), we find that the
level density cancels out and we obtain

I =
e

2πh̄

∫

dE
(

∑

T
)

f(E − µ) . (8)

To find the conductance we apply a small source-drain
voltage Vsd and calculate the current. Each lead emits a
current given by Eq. (8). However, the two leads have
different chemical potentials µ1 and µ2, with µ1 − µ2 =
eVsd. The net current I = I1 − I2 is thus nonzero:

I =
e

2πh̄

∫

dE
(

∑

T
)

[f(E − µ1)− f(E − µ2)] , (9)

where we have assumed that the total transmission
∑

T
is independent of the direction of flow of the current.
Indeed, for Vsd = 0 the whole system is equilibrated
(µ1 = µ2) and the net current must be zero, leading to
the equality of

∑

T for both leads. In the linear regime,
f(E − µ1) − f(E − µ2) ≈ −eVsdf ′(E − EF ), where EF

is the finite-temperature Fermi energy (i.e., chemical po-
tential) of the equilibrated system, and we find

G = 2
e2

h

∫

dE[−f ′(E − EF )]
(

∑

T
)

. (10)

The factor of 2 accounts for spin degeneracy. Equation
(10) is the finite-temperature Landauer formula. Accord-
ing to transition state theory,

∑

T represents a sum over
all available channels. Since the electron can decay from
any mode c in the first lead to any mode c′ in the second
lead,

∑

T = T 2,1, where T 2,1 is the total transmission
between the two leads. In the limit of zero temperature,
−f ′(E −EF ) → δ(E −EF ), and Eq. (10) reduces to the
first case of Eq. (6).
A more microscopic derivation of Landauer’s formula

using linear-response theory is based on a Kubo for-
mula (Kubo, 1957; Greenwood, 1958); see, for example,

Baranger and Stone (1989). The generalization of Lan-
dauer’s formula (10) to the multileads case is

Gn′n = 2
e2

h

∫ ∞

0

dE[−f ′(E − EF )]
∑

c′c

|Sn′n
c′c (E)|2 , (11)

where the sum is over all entrance channels in lead n and
all exit channels in lead n′.
The Landauer formula works well in open structures

where the picture of noninteracting quasiparticles is valid
and interactions contribute only through finite dephasing
times. In closed dots, where charging energy is impor-
tant, it usually does not hold except in special cases (see
Sec. II.E). There were attempts to generalize Landauer’s
formula to the interacting case. Meir and Wingreen
(1992) used the nonequilibrium Keldish formalism to de-
rive a formula for the current in an interacting-electron
region. At the limit of zero temperature, where only
elastic processes are allowed, their formula reduces for
the linear-response conductance reduces to a Landauer-
type formula. However, at finite temperature or in the
nonlinear regime, such Landauer-type formula does not
hold because of inelastic processes.
The symmetry properties of the conductance coeffi-

cients were discussed by Büttiker (1988a). The time-
reversal properties of the S matrix in an external mag-
netic field B, ST (−B) = S(B), lead to Gn′n(B) =
Gnn′(−B). These relations do not imply that G is a
symmetric matrix except when B = 0. Note, however,
that for a two-lead dot G is always symmetric [see the
discussion following Eq. (5)].

C. R-matrix formalism

R-matrix theory relates the S matrix of the dot to the
discrete eigenvalues and eigenstates of the closed system,
and was introduced by Wigner and Eisenbud (1947) in
nuclear-reaction theory. The methods were generalized
and reviewed by Lane and Thomas (1958), and a ped-
agogical treatment is available in Blatt and Weisskopf
(1952). An equivalent formulation that expresses the S
matrix in terms of an effective non-Hermitian Hamilto-
nian of the open system was presented by Mahaux and
Weidenmüller (1969) and is also derived in a recent re-
view on scattering in chaotic systems by Fyodorov and
Sommers (1997). The R-matrix formalism was adapted
to quantum dots by Jalabert, Stone, and Alhassid (1992).
We consider a 2D cavity in the region A of the x-y

plane and assume left and right leads (along the x axis)
that are attached to the dot at the lines of contact x =
xl, xr (denoted by Cl and Cr). We denote by H the dot’s
Hamiltonian and consider the eigenvalue problem

HΨλ = EλΨλ , (12)
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where Ψλ(r) vanishes at the walls and satisfies a gen-
eral homogeneous boundary condition at the dot-lead
interfaces: ∂Ψλ/∂n − hl,rΨλ = 0 (n̂ = ±x̂ is the
normal to each interface and hl,r are constants). A
scattering solution Φ(r) at energy E can be expanded
Φ(r) =

∑

λ aλΨλ(r). Since Φ and Ψλ are solutions of
the Schrödinger equation inside the dot at energies E
and Eλ, respectively, we find

aλ =

∫

A

dA Ψ∗
λΦ

=
h̄2

2m

1

Eλ − E

∫

C

dl

(

Ψ∗
λ

∂Φ

∂n
− Φ

∂Ψ∗
λ

∂n

)

. (13)

We denote by φic a complete set of transverse wave func-
tions, where c is a channel index and i = l, r. For an
open channel, φic(y) =

√

2/Wi sin(κ
i
cy), where Wi is the

width of the lead i and κic = cπ/Wi (c = 1, 2, . . . ,Λi)
are the quantized transverse momenta. Inside each lead
we can expand Φ(r) =

∑Λi

c=1 u
i
c(x)φ

i
c(y). Using Eq. (13)

and the boundary conditions satisfied by the dot’s eigen-
functions, the longitudinal components uic(x) of the scat-
tering solution at the contact points x = xl,r are given

by uic(xi) =
∑

i′c′ Ric;i′c′

[

∂ui
′

c′/∂n− hi′u
i′
c′

]

x=xi′

, where

Ri′c′;ic(E) =
∑

λ

yi
′

c′λy
i ∗
cλ

Eλ − E
(14)

is the R matrix defined in terms of yicλ =
√

h̄2/2m
∫

C dl φ
i ∗
c Ψλ, the reduced partial-level width am-

plitude for the decay from level λ into channel c in lead
i. In the following, we shall omit the lead label i and
assume it is included in the channel label c.
The S matrix can be expressed in terms of the R

matrix. To this end, it is convenient to define the K
matrix by K = (kP )1/2R(kP )1/2. Here kP is a diago-
nal matrix where kc is the longitudinal channel momen-
tum (h̄2k2c/2m + h̄2κ2c/2m = E), and Pc is the pene-
tration factor to tunnel through the barrier in channel c
[Pc = k−1

c Im(∂ lnu+c /∂n)|x=xi , where u
+
c is the outgoing

wave component of uc; Pc = 1 in the absence of a barrier
and Pc ≪ 1 in the presence of a barrier]. In terms of the
K matrix (see, e.g., Blatt and Weisskopf, 1952)

S =
1 + iK

1− iK
. (15)

Equation (14) can be rewritten for the K matrix

Kc′;c(E) =
1

2

∑

λ

γc′λγ
∗
cλ

Eλ − E
, (16)

where

γcλ =

√

h̄2kcPc

m

∫

C

dl φ∗cΨλ (17)

are known as the partial-width amplitudes.
The relation (16) for the K matrix can also be written

in an arbitrary fixed basis of wave functions (not eigen-
functions) ρj in the dot:

K = πW † 1

H − E
W . (18)

Here W is a N ×Λ matrix of coupling constants between
the leads and the dot:

Wjc ≡
(

h̄2kcPc

2πm

)1/2 ∫

C

dl ρ∗jφc . (19)

Equations (15) and (16) for the S matrix can be rewrit-
ten in terms of the Green’s function of an effective Hamil-
tonian:

S = 1− 2πiW † 1

E −Heff
W , (20)

where Heff = H − iπWW †. Heff is non-Hermitean; its
real part is the dot’s Hamiltonian H and its imaginary
part is the “width” matrix Γ ≡ πWW †. It generally
describes the Hamiltonian of an open system that is cou-
pled to an external region. The eigenvalues of Heff are
complex (Eλ− iΓλ/2) and describe resonances of energies
Eλ and widths Γλ.

D. Resonant tunneling

In the weak-coupling limit a typical resonance width
in the dot is much smaller than the average spacing ∆
between resonances. In this limit only the resonance λ
that is closest to the scattering energy E contributes to
the K matrix (16). This leads (for c 6= c′) to a Breit-
Wigner resonance formula

|Sc′c|2 =
Γc′λΓcλ

(E − Eλ)2 +
(

Γλ

2

)2 , (21)

where Γcλ ≡ |γcλ|2 is the partial width of the resonance
level λ to decay into channel c, and Γλ ≡ ∑c Γcλ is the
total width of the level. Equation (21) can also be ob-
tained directly from Eq. (20). In the weak-coupling limit
the width matrixWW † is small (compared with ∆), and
we can diagonalize Heff in perturbation theory. To lead-
ing order, the eigenfunctions are the same as those of
H , and their widths (defined in terms of the eigenvalues
of Heff) are Γλ = 2π〈λ|WW †|λ〉 = ∑

c |γcλ|2 (where we

have used γcλ =
√
2π
∑

j W
∗
jc〈j|λ〉).
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The zero-temperature conductance in the tunneling
regime is obtained by substituting the Breit-Wigner form
[Eq. (21)] in Landauer’s formula:

G(E) =
e2

h

Γl
λΓ

r
λ

(E − Eλ)2 +
(

Γλ

2

)2 , (22)

where Γ
l(r)
λ =

∑

c∈ l(r) Γcλ is the width of the level λ to

decay into the left (right) lead and we have ignored spin
degeneracy.
At finite temperature the conductance is calculated by

convoluting Eq. (22) with the derivative f ′ of the Fermi-
Dirac distribution according to Eq. (11). In typical ex-
periments with closed dots, Γ̄ ≪ T ≪ ∆, and the thermal
smearing factor f ′ does not change much over the reso-
nance width. G is then proportional to the integral of
the Breit-Wigner form [Eq. (22)],

G(EF , T ) ≈ Gpeak
λ

1

cosh2
(

Eλ−EF

2kT

) . (23)

Here, EF is the Fermi energy in the leads and

Gpeak
λ =

e2

h

πΓ̄

4kT
gλ (24a)

where gλ =
2

Γ̄

Γl
λΓ

r
λ

Γl
λ + Γr

λ

. (24b)

Equation (23) describes a conductance peak of width ∼
kT that is centered at EF = Eλ and has a peak-height
amplitude of Gpeak

λ .

E. Coulomb blockade

Coulomb blockade occurs when an “island” of elec-
trons is weakly coupled to two leads via tunnel junctions.
When the coupling is weak, the conductance drops be-
low e2/h and the charge on the dot becomes quantized.
The linear conductance of the dot oscillates as a function
of the gate voltage with a period that corresponds to
the addition of a single electron to the dot. For reviews
on Coulomb blockade, see Averin and Likharev (1991)
and van Houten, Beenakker, and Staring (1992). For
recent experimentally oriented reviews on transport in
Coulomb-blockade quantum dots, see Meirav and Fox-
man (1995), Kouwenhoven, Marcus et al. (1997), and
Kouwenhoven and McEuen (1998).
Coulomb-blockade oscillations were first observed in a

metallic grain (Giaever and Zeller, 1968), where ∆ ≪ kT
and the spectrum could be treated as a quasicontinuum.
A transport theory for this classical regime was developed
by Shekhter (1972) and Kulik and Shekhter (1975). The
total classical electrostatic energy of a Coulomb island
with N electrons is

U(N ) = −QVext +Q2/2C = −N eVext +N 2e2/2C ,

(25)

where Vext is the potential difference between the elec-
tron gas and the reservoir (due to a gate voltage), and
C is the total capacitance between the island and its
surroundings. By defining an externally induced charge
variable Qext ≡ CVext, we can write Eq. (25) as U(N ) =
(Q − Qext)

2/2C up to an additive constant. Qext can
be varied continuously by changing Vext. The number
of electrons in the dot for a given Vext is determined by
minimizing U(N ). When Qext = N e, the minimum is
obtained for the state with charge Q = N e, and the en-
ergy of the states with Q = (N ± 1)e is higher by e2/2C.
As a result, the tunneling density of states has a gap of
EC = e2/C around the Fermi energy, blocking the flow
of electrons into the island. This situation is demon-
strated in panels (a) and (c) of Fig. 8. However, when
Qext = (N+1/2)e, both statesQ = N e andQ = (N+1)e
are degenerate (Glazman and Shekhter, 1989), allowing
the tunneling of one more charge into the metallic parti-
cle [see panels (b) and (d) of Fig. 8]. The conductance
is maximal at this degeneracy point.
In semiconductor quantum dots the mean level spac-

ing is much larger than in metal grains of a similar size,
and experiments can easily probe the quantum Coulomb-
blockade regime T < ∆ ≪ e2/C. A simple Hamiltonian
for the dot can be written by assuming electrons in a
one-body confining potential plus an electrostatic energy
[Eq. (25)]:

Hdot =
∑

λ

(Eλ − eαVg)a
†
λaλ + e2N̂ 2/2C , (26)

where a†λ|0〉 is a complete set of single-particle eigenstates

in the dot with energies Eλ, and N̂ =
∑

λ a
†
λaλ is the

electron number operator in the dot. The external po-
tential of Eq. (25) Vext = αVg is written in terms of a
gate voltage Vg and α = Cg/(Cg + Cdot), where Cg is
the gate-dot capacitance and Cdot is the dot-leads capac-
itance. The Hamiltonian (26) is known as the constant-
interaction model, since only the average constant part
of the electron-electron interaction (N̂ 2e2/2C) is taken
into account.
When T ≪ ∆, conductance is possible only by reso-

nant tunneling through a corresponding quantized level
in the dot. Resonant tunneling of the N th electron oc-
curs when the total energy before and after the tunnel-
ing event is conserved: EF + U(N − 1) = EN + U(N ).
Using Eq. (25) we find that the effective Fermi energy
ẼF ≡ EF + eαVg satisfies ẼF = EN +

(

N − 1
2

)

(e2/C).
The spacing between Coulomb-blockade peaks is now
given by

∆2 ≡ ∆ẼF = (EN+1 − EN ) + e2/C . (27)
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The charging energy is usually much larger than the
mean level spacing in the dot so that the Coulomb-
blockade peaks are almost equidistant. Figure 8 illus-
trates the phenomenon of Coulomb blockade in the quan-
tum regime.

FIG. 8. Schematic illustration of Coulomb blockade in an
almost-closed dot. When the gate voltage is tuned to a
value eαVg = N e2/C [panel (a)] there is a charging en-
ergy gap in the single-particle spectrum on both sides of the
Fermi energy, blocking the tunneling of electrons into the
dot. On the other hand, when the gate voltage increases
to eαVg = (N + 1/2)e2/C [panel (b)], it compensates for the
Coulomb repulsion, and the charging energy gap for adding
an electron to the dot vanishes. When the Fermi energy in
the leads matches the first unoccupied single-particle state in
the dot, resonant tunneling of an electron into the dot oc-
curs. Panels (c) and (d) show the total electrostatic energy
U(N ) of the dot vs the number of electrons [see Eq. (25)]: (c)
for eαVg = N e2/C, the energy of the dot is minimal for N
electrons in the dot, leading to charge quantization; (d) when
eαVg = (N + 1/2)e2/C, the energies of a dot with N and
N + 1 electrons are equal and the dot’s charge can fluctuate
between N e and (N + 1)e. This is known as the degeneracy
point.

At T ∼ ∆, several resonances contribute to the con-
ductance peak. A finite-temperature theory for the on-
resonance conductance was derived by Beenakker (1991)
and Meir, Wingreen, and Lee (1991) using linear response
theory, and by Averin, Korotkov, and Likharev (1991) in
the nonlinear I-V regime.
For kT ≫ Γ (where Γ is a typical level width),

the coherence between the electrons in the leads and
in the dot can be ignored, and a master-equations ap-
proach is valid. Beenakker (1991) used the constant-
interaction model (26), where an eigenstate of the dot
is described by a set of occupation numbers n ≡ {nλ}

of the single-particle levels, and its energy is E(n) =
∑

λ Eλnλ+U(N ). The dot is connected to left and right
reservoirs that are in thermal equilibrium at tempera-
ture T and Fermi energy EF . At equilibrium Peq(n) =
Z−1 exp {−[E(n)−NEF ]/kT }, where Z is the grand-
canonical partition function. A small source-drain volt-
age Vsd is applied between the left and right reservoirs,
causing a current I through the dot (see Fig. 2), and the
linear conductance is calculated from G = I/Vsd. The
voltage drop is ηVsd across the left barrier, and (1−η)Vsd
across the right barrier. The current through the left lead
is described by the net flux of electrons that tunnel in or
out of the dot across the left barrier

I = −e
∑

λ

∑

n

P (n)
Γl
λ

h̄

{

δnλ,0f(Ẽλ(N + 1) + ηeVsd)

−δnλ,1[1− f(Ẽλ(N ) + ηeVsd)]
}

, (28)

where f(x) = [1 + exp(x/kT )]−1 is the Fermi-Dirac dis-
tribution in the reservoirs, Ẽλ(N ) ≡ Eλ − (ẼF − (N −
1/2)e2/C), and Γl

λ/h̄ is the tunnel rate from level λ to
the left lead. The first term on the right-hand side of Eq.
(28) describes the tunneling of electrons from a level in
the left lead with filling f into an empty level λ in the
dot, while the second term represents the tunneling of an
electron from an occupied state λ in the dot to a level
in the left lead with emptiness of 1 − f . Only energy-
conserving transitions are taken into account, and the
summation over λ accounts for the possibility of tunnel-
ing through different levels λ.
The nonequilibrium distribution P (n) of electrons in

the dot satisfies a set of master equations

∂P (n)

∂t
=
∑

m

[P (m)Wm→n − P (n)Wn→m] , (29)

where Wm→n is the transition rate from statem to state
n. Only states m that differ by one electron from the
state n appear in the sum in Eq. (29), and the respective
transition rates are

W1λ→0λ =
Γl
λ

h̄

[

1− f(Ẽλ(N + 1) + ηeVsd)
]

+
Γr
λ

h̄

[

1− f(Ẽλ(N + 1)− (1− η)eVsd)
]

,

W0λ→1λ =
Γl
λ

h̄ f(Ẽλ(N ) + ηeVsd)

+
Γr
λ

h̄
f(Ẽλ(N )− (1− η)eVsd) , (30)

where N =
∑

µ nµ is the number of electrons in the final
state n. In the notation used in Eq. (30), 1λ → 0λ,
for example, denotes the transition m → n with mλ =
1, nλ = 0, and mµ = nµ for all µ 6= λ. The term W1λ→0λ

describes the tunneling of an electron from a filled λ level
in a dot with N + 1 electrons into a level in the left
and right leads with emptiness of 1 − f , while W0λ→1λ
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corresponds to the tunneling of an electron from a level
in the left or right lead with filling f into a dot with N−1
electrons.
We are interested only in the stationary state

∂P (n)/∂t = 0, leading to detailed balance equa-
tions P (1λ)W1λ→0λ = P (0λ)W0λ→1λ . A solution
to the detailed balance equations in the linear re-
sponse regime (Beenakker, 1991) is of the form
P (n) ≈ Peq(n)[1 + (eVsd/kT )L(n)], where L(n) =
∑

λ

[

Γr
λ/(Γ

l
λ + Γr

λ)− η
]

nλ + const. Calculating the cur-
rent (28) to first order in Vsd using the solution for P (n),
one obtains the conductance G(T, ẼF ) as a function of
the temperature and the effective Fermi energy

G(T, ẼF ) =
e2

h
πΓ̄
4kT g , where g =

∑

λwλ(T, ẼF )gλ (31)

is the dimensionless conductance expressed as a ther-
mal average over the level conductances gλ =
2Γ̄−1Γl

λΓ
r
λ/(Γ

l
λ + Γr

λ). The thermal weights are given
by

wλ =
∑

N 4PN 〈nλ〉N

×
[

1− f

(

Eλ + (N − 1/2)
e2

C
− ẼF

)]

, (32)

where PN is the probability that the dot has N elec-
trons, and 〈nλ〉N is the canonical occupation of a level
λ. The contribution to wλ in Eq. (32) from a fixed
number of electrons N corresponds to the product of
the probability that level λ is occupied in a dot with
N electrons and the probability that a state in the lead
is empty at the same total energy. The probability PN is
given by PN = exp[−Ω(N )/kT ]/

∑

N ′ exp[−Ω(N ′)/kT ],
where Ω(N ) ≡ F (N ) + U(N ) − NEF and F (N ) is the
canonical noninteracting free energy.
In typical experiments, T,∆ ≪ e2/C, and only one

term in the sum of Eq. (32) contributes to a given con-
ductance peak. For gate voltages that are tuned to a
conductance peak between N − 1 and N electrons in the
dot, we have

wλ = 4f(∆FN − ẼF )〈nλ〉N
[

1− f
(

Eλ − ẼF

)]

, (33)

where ∆FN ≡ F (N ) − F (N − 1), and we have used
PN ≈ f(Ω(N ) − Ω(N − 1)). In Eq. (33) and in the
following, ẼF (or equivalently eαVg) is measured relative
to (N − 1/2)e2/C.
In the limit kT ≪ ∆ and spin-nondegenerate lev-

els, only one level λ = N contributes to Eq. (31).
Furthermore ∆FN ≈ EN , and using f(x)[1 − f(x)] =
−kTf ′(x), Eq. (33) becomes wN (kT ≪ ∆) =

cosh−2
[

(EN − ẼF )/2kT
]

, so that Eq. (31) reduces to

Eqs. (23) and (24). However, if the electron tunnels
into an empty level λ that is spin degenerate (with
spin 1/2), we find a conductance peak G(ẼF , T ) =

(e2/h)(2πΓ̄/kT )(2/Γ̄)
[

Γl
λΓ

r
λ/(Γ

l
λ + Γr

λ)
]

[

1− f(Eλ − ẼF )
]

× [2 + e(Eλ−ẼF )/kT ]−1 (Glazman and Matveev, 1988).
The conductance maximum is shifted to ẼF = Eλ −
(kT ln 2)/2, and the peak height in Eq. (24) is rescaled
by a factor of 8(

√
2 − 1)2 ≈ 1.37. In this case, the scat-

tering approach of Sec. II.D leads to a conductance peak
as in (23), with a peak height (24) scaled by a factor of
2. This result is wrong since it ignores charging energy.
Similarly, if the method of Sec. II.D (valid in the

absence of charging energy) is applied at temperatures
T ∼ ∆, we obtain Eq. (31), but with weights

w
(0)
λ = −4kTf ′(Eλ − ẼF ) . (34)

Indeed in the limit e2/C → 0, all terms in Eq. (32) con-
tribute. The factor 1 − f becomes independent of N ,
∑

N PN 〈nλ〉N ≡ f(Eλ− ẼF ), and the weights wλ reduce
to Eq. (34). However, for e2/C ≫ ∆, only PN and PN−1

are non-negligible, as states with number of electrons dif-
ferent fromN and N−1 are pushed away by the charging
energy. We conclude that, in the presence of charging en-
ergy, the approach based on the Breit-Wigner and Lan-
dauer formulas breaks down at finite temperature and
Eq. (34) must be replaced by Eq. (33).
The discreteness of the spectrum is unimportant at

high temperatures kT ≫ ∆ where the canonical occupa-
tions can be approximated by the Fermi-Dirac distribu-
tion. Assuming that the tunneling rates Γl(r)/h̄ depend
only weakly on energy, one finds (for ∆ ≪ kT ≪ e2/C)

G(ẼF , T ) ≈ Gpeak
λ

1

cosh2
(

µ−ẼF

2.5kT

) ;

Gpeak
λ =

e2

h

π

∆

ΓlΓr

Γl + Γr
, (35)

where Γl(r) are the energy-averaged partial widths. Com-
paring with the corresponding formulas in the quantum
limit kT ≪ ∆ [Eqs. (23) and (24)], we see that for the
same temperature, the line shape is similar but with a
somewhat larger width in the classical limit. The peak
height in the classical regime is temperature independent
since ∼ kT/∆ levels contribute, canceling the 1/T depen-
dence of the peak height in the quantum regime. Further-
more, the widths Γl(r) in the classical formula (35) are
energy averaged, and thus lead to smooth variation of
the peak heights as a function of Vg. In contrast, the
peak heights exhibit strong fluctuations in the quantum
regime [see, for example, the peak series in Fig. 7(c)].
If kT ≫ e2/C, the charging energy is not important

and Landauer’s formula reproduces the correct conduc-
tance G(0) = 2(e2/h)(π/∆)ΓlΓr/(Γl + Γr). Coulomb-
blockade oscillations disappear and the conductance is
large as its peak height in the classical Coulomb-blockade
regime.
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F. Cotunneling

The off-resonance conductance can be calculated using
perturbation theory (in the dot-leads coupling). First-
order processes are forbidden by energy conservation be-
cause of the charging energy gap, so the leading-order
contribution is second order. The main second-order tun-
neling mechanism is known as cotunneling (Averin and
Nazarov, 1990; Glazman and Matveev, 1990a). In in-

elastic cotunneling, an electron that tunnels from the left
lead into a state in the dot is followed by an electron
that tunnels from a different state of the dot into the
right lead. In elastic cotunneling, an electron tunnels
into the dot (from the left lead) and out of the dot (into
the right lead) through the same intermediate state of the
dot. Also contributing to cotunneling are holes that move
from the right to the left lead, describing first an electron
that tunnels out of the dot into the right lead, followed
by an electron that tunnels from the left lead into the
dot. The transitions involved in cotunneling are non-
energy-conserving and therefore virtual. The intermedi-
ate single-particle states in the dot are separated from the
Fermi energy in the leads by a gap Ee for the virtual tun-
neling of an electron to a state above the Fermi energy,
and by a gap Eh for the virtual tunneling of a hole to a
state below the Fermi energy (Ee + Eh = EC = e2/C).
We restrict the discussion to low temperatures kT <√
EC∆, where elastic cotunneling dominates (Averin and

Nazarov, 1990). The dot-leads Hamiltonian is described
by

H = +
∑

k,c∈l,r

Ekcc
†
kcckc

+
∑

k,c∈l,r
λ

(Vkc,λc
†
kcaλ +H.c.) , (36)

where Hdot is the dot’s Hamiltonian (26), c†kc creates an
electron with wave number k in channel c in either the
left (l) or right (r) lead with energy Ekc, and V is a
tunneling matrix element between the left or right lead
and the dot. The elastic cotunneling conductance is

G =
e2

h

∑

c∈l,c′∈r

|Tc′c|2 , (37)

where

Tc′c = −
∑

Eλ>EF

γr∗c′λγ
l
cλ

|Eλ − EF |+ Ee

+
∑

Eλ≤EF

γr∗c′λγ
l
cλ

|EF − Eλ|+ Eh
(38)

is the elastic cotunneling amplitude from channel c in the
left lead to channel c′ in the right lead. We have defined

γ
l(r)
cλ =

√
2πρcV

l(r)
cλ [ρc(E) =

∑

k δ(E − ǫkc) is the lead

density of states in channel c] to be the partial-width am-
plitude of an electron in a state λ to decay into channel c
in the left (right) lead. The cotunneling amplitude con-
tains contributions from both particle (Eλ > EF ) and
hole (Eλ ≤ EF ) states. Each term in the sum over par-
ticle (hole) states is the amplitude for an electron (hole)
to tunnel from the left (right) lead to the right (left) lead
through an intermediate state λ. Expression (38) as-
sumes that both Ee and Eh are of the order of EC , and
thus ≫ ∆. In contrast to the conductance at the peak,
a large number of excited states in the dot contribute to
the off-resonance conductance.

G. Nonlinear transport

Thus far we have considered only the linear conduc-
tance. This corresponds to a source-drain voltage eVsd
that is smaller than a typical level spacing ∆ in the dot.
The electron can then tunnel only through the lowest un-
occupied level, and the observed Coulomb-blockade oscil-
lations provide information on the ground states of the
dot with increasing number of electrons. More generally,
the current depends on the number of available states in
the dot between the chemical potentials in the left and
right leads. Since the difference between the chemical
potentials is eVsd, we expect that as Vsd increases addi-
tional states in the dot become available for tunneling.
A nonlinear transport theory in quantum dots was de-
veloped by Averin and Korotkov (1990) and Averin, Ko-
rotkov, and Likharev (1991). In the classical regime, the
current increases in steps as a function of Vsd (Coulomb
staircase), corresponding to the increase in the number of
available charge states in the dot. In the quantum regime,
the current depends on the number of available excited
levels in the dot through which a fixed number of elec-
trons can tunnel (Johnson et al., 1992). Thus nonlinear-
transport measurements in the quantum regime provide
information on the excitation spectrum of a dot with a
fixed number of electrons.
In practice, the current through the dot can be mea-

sured as a function of both Vsd and a gate voltage Vg. For
a fixed eVsd below the first excited state in the dot, the
current versus Vg displays the usual Coulomb-blockade
peaks of the linear regime. However, when eVsd is above
the first excited state in the dot, the electron can tunnel
through two states in the dot, and each single peak devel-
ops into a double peak. Similarly, as eVsd increases above
the second excited state, each Coulomb-blockade oscilla-
tion is composed of three peaks. The differential conduc-
tance dI/dVsd displays a peak when a level in the dot
matches the chemical potential in one of the leads. From
the spacings among the peaks in each oscillation, it is pos-
sible to infer the excitation spectrum of the dot. The dif-
ferential conductance forms a diamond-shaped diagram
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in the Vsd-Vg plane (McEuen et al., 1993). Each dia-
mond corresponds to a Coulomb-blockaded region with
a certain number of electrons on the dot.

III. STATISTICAL THEORY: FROM DISORDERED

METALS TO BALLISTIC DOTS

The phase coherence of transport in mesoscopic struc-
tures leads to quantum interference effects. Conse-
quently, the conductance in these structures exhibits fluc-
tuations as a function of experimentally controllable pa-
rameters, such as magnetic field, gate voltage, or sample.
Such fluctuations were first observed in disordered met-
als. To describe the statistical properties of these fluc-
tuations, we assume that the impurity configurations in
the sample constitute an ensemble. Similar samples fab-
ricated by similar methods differ from each other in the
details of their impurity configurations, and each can be
thought of as a different member of the ensemble. For
early reviews on quantum interference effects in meso-
scopic structures, see Altshuler, Lee, and Webb (1991),
Beenakker and van Houten (1991), and Washburn and
Webb (1993). See also the books by Datta (1995) and
Imry (1996).
In the last decade it has become possible to pro-

duce relatively clean high-mobility GaAs quantum dots.
These ballistic devices also exhibit conductance fluctu-
ations. In irregularly shaped dots, where the classical
dynamics of the electron is chaotic, the fluctuations are
universal and depend only on the symmetry class and the
transmission properties of the leads. The physical ori-
gin of the fluctuations in ballistic dots is similar to that
in diffusive structures, namely quantum interference ef-
fects. The statistical properties of these fluctuations are
also assumed to be described by an appropriate ensem-
ble. In practice, the concept of an ensemble (for both
diffusive and ballistic systems) is justified by the ergodic
hypothesis. These systems’ statistical properties result
from averaging over energy, shape, magnetic field, etc.
The diagrammatic and semiclassical methods played a

key role in our theoretical understanding of disordered
structures and ballistic dots, respectively. Two addi-
tional powerful approaches contributed to recent progress
in the field: random-matrix theory (RMT) and the su-
persymmetry method. Random-matrix theory originated
in nuclear physics (Wigner, 1958; see also Wigner, 1951,
1955, 1957), and was later conjectured to describe the
universal quantal fluctuations in systems whose associ-
ated classical dynamics is chaotic (Bohigas, Giannoni,
and Schmit, 1984). The supersymmetry method was
originally conceived as a method for carrying out exact
ensemble averages in disordered systems (Efetov, 1983).
In a certain regime it is equivalent to RMT, but more
generally it can be used to derive nonuniversal correc-
tions.

Section III.A introduces the relevant scales and com-
monly used models for disordered and ballistic quantum
dots. The following sections review the principal meth-
ods of the statistical approach. Section III.B outlines
the semiclassical approach. The semiclassical treatment
of disordered systems has mostly reproduced results orig-
inally derived in impurity perturbation theory, but it of-
fers a more intuitive approach. The diagrammatic ap-
proach is not discussed here; its main lines can be found
in Abrikosov, Gor’kov, and Dzhyaloshinskii (1963) and
Altshuler and Simons (1995). Section III.C reviews the
RMT approach, and Sec. III.D gives a brief introduction
to the supersymmetry method.

A. Disordered metals and ballistic dots

1. Scales in the diffusive regime

In a mesoscopic structure, the coherence length ex-
ceeds the system’s size: Lφ > L (see Sec. I). Other rel-
evant length scales in disordered systems are the mean
free path l and the Fermi wavelength λF . The diffusive

regime corresponds to l ≪ L. In the metallic or weakly

disordered regime, the Fermi wavelength is much smaller
than the elastic mean free path: λF ≪ l (i.e., kF l ≫ 1).
Another important length scale in disordered systems

is the localization length ξ over which the electron’s wave
function is localized (for a review of localization theory
see Lee and Ramakrishnan, 1985). In the metallic regime,
the localization length is large, and we shall restrict our
discussions to the nonlocalized regime where ξ ≫ L.
The time the electron takes to diffuse across the length

L of a disordered sample is τD = L2/D, where D is the
diffusion coefficient. The associated energy scale

Ec ≡
h̄

τD
=
h̄D

L2
(39)

is known as the Thouless energy (see Sec. I.C). The
Thouless energy can be directly related to the conduc-
tance. The conductance G of a homogeneous conductor
in d dimensions is G ∼ σLd−2, where σ is the conductiv-
ity. Using Einstein’s relation (4) for σ, we can write

G ∼ e2

h̄
(νLd)

(

h̄D

L2

)

=
e2

h̄

Ec

∆
. (40)

The dimensionless Thouless conductance4 gT is defined
by G ≡ (e2/h̄)gT , and according to Eq. (40)

4The dimensionless Thouless conductance is usually denoted
by g. In this review we denote it by gT since g is used to
denote the dimensionless conductance peak height in a closed
dot [see, e.g., Eq. (31)] and the dimensionless conductance in
an open dot (see, e.g., Sec. IV.C.1).
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gT =
Ec

∆
≡ N(Ec) , (41)

i.e., gT measures the number of levels in an energy inter-
val Ec. In 2D systems, gT = l/λF , and the dimensionless
conductance is therefore large in the metallic regime.
The relations among relevant length scales can be

translated into relations among the corresponding energy
and time scales. The following relations are useful:

h̄/τ

Ec
= d

(

L

l

)2

;
EF

h̄/τ
=

1

2
kF l , (42)

where τ is the mean free time. It follows that the diffusive
regime is characterized by Ec ≪ h̄/τ , i.e., the time to
diffuse across the sample is large compared with the mean
free time: τD ≫ τ . In a good metal h̄/τ ≪ EF and
Ec ≫ ∆.
In summary, the following inequalities hold in a disor-

dered metal in its diffusive regime:

∆ ≪ Ec ≪ h̄/τ ≪ EF , (43a)

τH ≫ τD ≫ τ ≫ h̄/EF , (43b)

where τH = h/∆ is the Heisenberg time. The energy
region above h̄/τ corresponds to ballistic motion of the
electron since the corresponding time scale is shorter than
the average time between scatterings from the impurities.
In the energy range between Ec and h̄/τ , the dynam-
ics are diffusive, but there is not sufficient time for the
electron to reach the boundaries. Energy scales below
Ec correspond to time scales in which the electron has
reached the system’s boundaries and the diffusive motion
has explored the full length of the structure. We shall see
(e.g., in Sec. III.B.1) that this is the regime where the
fluctuations are universal (known as the ergodic regime).

2. Scales in the ballistic regime

For weaker disorder and/or a smaller sample, the mean
free time τ increases and/or the time τD to diffuse across
the dot decreases, and eventually the Thouless energy Ec

exceeds h̄/τ . In this limit the system can be considered
clean, and the dynamics across its length are ballistic. In
terms of length scales, the ballistic regime is defined by
L≪ l.
In ballistic structures τD is meaningless and another

time scale becomes relevant: the ergodic time τc, which
is of the order of the time of flight across the sam-
ple. The ergodic time plays the same role in ballistic
systems that the diffusion time τD plays in disordered
systems. The quantity analogous to the Thouless en-
ergy is ET ≡ h̄/τc, sometimes called the ballistic Thou-
less energy. The ballistic dimensionless conductance is
gT = ET /∆ = τH/2πτc. In 2D we can estimate gT from

τc ∼ L/vF and τH = hνA to be gT ∼ N 1/2/2π (where
N is the number of electrons in the dot).
Within the ballistic regime (where h̄/τ ≪ h̄/τc), it is

possible to distinguish two cases depending on the re-
lation between h̄/τ and ∆ (Altland and Gefen, 1993).
When ∆ ≪ h̄/τ ≪ h̄/τc, a typical impurity matrix ele-
ment can mix many levels, while for h̄/τ ≪ ∆, h̄/τc the
disorder is very weak and can be treated in low-order
perturbation theory.

3. Models of disordered structures and ballistic dots

The dynamics of a single electron in d dimensions is
described by Schrödinger’s equation

1

2m∗

(

p+
e

c
A
)2

Ψ+ VΨ = EΨ , (44)

where V (r) is a one-body potential and A(r) is a vector
potential describing a magnetic field. The disorder is
modeled by an ensemble of random potentials {V (r)}.
Often this ensemble is taken to be Gaussian with

V (r) = 0 ; V (r)V (r′) =
h̄

2πντ
δ(r − r′) . (45)

The parametrization of the strength of the disorder in
terms of the impurity scattering rate 1/τ is obtained in
the Born limit. A discretized version of this model is
known as the tight-binding Anderson model (Anderson,
1958). In second-quantized form

H = −
∑

〈m,n〉

(

tmne
iθmna†man + h.c.

)

+
∑

m

Vma
†
mam , (46)

where a†m creates an electron at site m, tmn = h̄2/2m∗a2

(a is the lattice spacing) is a hopping matrix element be-
tween nearest neighbors 〈m,n〉, and θmn = e

h̄c

∫ n

m
A · dℓ

is an Aharonov-Bohm phase. Vm is the disorder poten-
tial at site m, often assumed to be uniformly distributed
over the interval [−w/2, w/2]. The disorder parameter w
determines the elastic mean free path, and in the Born
approximation kF l ∝ (w/t)−2. The Anderson model has
become the standard model for describing single-particle
dynamics of disordered mesoscopic systems. In 3D, w/t
has a critical value above which all states become lo-
calized and the conductivity falls to zero, correspond-
ing to a metal-insulator transition (Lee and Ramakrish-
nan, 1985). One-parameter renormalization-group anal-
ysis has shown that in 1D and 2D all states are localized.
However, in 2D the localization length ξ is exponentially
large for weak disorder, and most states are extended
over the dimension of the system.
Ballistic dots are often modeled as cavities. Billiard

models are popular because their mathematical proper-
ties are best known and there are efficient methods to
solve them numerically. By changing shape parameters
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in billiard models, it is possible to describe systems with
classical motion ranging from integrable to fully chaotic.
A good example is the conformal billiard (Robnik, 1983),
whose shape is determined by the image of the unit cir-
cle in the complex z plane under the conformal mapping
w(z) = (z + bz2 + ceiδz3)/

√
1 + 2b2 + 3c2.

B. The semiclassical approach

As a coherent phenomenon, transport in mesoscopic
systems should be described by quantum mechanics. A
classical treatment, on the other hand, has the advan-
tage of physical intuition. The semiclassical approach is
a bridge that seeks to describe quantum-mechanical phe-
nomena in the language of classical physics. The semi-
classical approach played an important role in the devel-
opment of the mesoscopic theory of open ballistic dots
where the approximation of non-interacting quasiparti-
cles holds (Sec. IV). Applications to disordered systems
have, for the most part, confirmed results derived earlier
in the diagrammatic approach.
Most of the applications are based on an expan-

sion of the Green function in terms of classical tra-
jectories. The retarded Green function GR(r, r′; t) ≡
〈r′|e−iHt/h̄|r〉 propagates the particle from r at t = 0
to r′ at a later time t. In Feynmann’s path-integral

representation, GR(r, r′; t) =
∫

x(t)=r
′

x(0)=r
D[x]eiS[x]/h̄ is de-

scribed as a functional integral over all trajectories x(t)
that connect x(0) = r to x(t) = r′, where S[x] =
∫ t

0 dτ [m(dx/dτ)2/2 − V (x)] is the action. In the limit
h̄ → 0 one can use the stationary phase approximation,
leading to δS = 0, Hamilton’s variational principle for
the classical trajectories xα between (r, 0) and (r′, t).
Small quantal fluctuations around each of the classical
solutions xα are included by expanding the action to
second order S[x] ≈ S[xα] + δ2S[xα]/2 and doing the
Gaussian integral. The result is Van Vleck’s formula,

GR(r, r′; t) ≈
∑

α∈ {r,r′;t}

Aαe
iSα/h̄ , (47)

where the sum is over all classical paths α between (r, 0)
and (r′, t) with action Sα = S[xα] and amplitude Aα

given by

Aα =

(

1

2πih̄

)
d
2
∣

∣

∣

∣

det

(

− ∂2Sα

∂r′∂r

)∣

∣

∣

∣

1/2

e−iπ2 να ;

Sα =

∫

x(t)=r
′

x(0)=r

(p · dx−Hdt) . (48)

The classical action Sα(r, 0; r
′, t) is a function of the

initial (r, 0) and final (r′, t). In d degrees of freedom,
−∂2Sα/∂r

′∂r is a d × d matrix, and the integer phase
index να is the number of its negative eigenvalues (equal

to the number of conjugate points along the path). Since
−∂Sα/∂r = pα is the initial momentum, this matrix can
also be written as ∂pα/∂r

′.
The energy representation of the retarded Green’s

function is the Fourier transform of Eq. (47). Doing
the time integral by stationary phase, we find

GR(r, r′;E) =

∫ ∞

0

dteiEt/h̄GR(r, r′, t)

≈
∑

α∈ {r,r′;E}

Ãαe
iS̃α/h̄ , (49)

where now the sum is over all classical paths α with en-
ergy E that begin at r and end at r′. The modified
action S̃α = S̃α(r, r

′;E) = Sα + Et and amplitude Ãα

are

Ãα =
1

ih̄

(

1

2πih̄

)
d−1
2
∣

∣

∣

∣

det

(

∂pα
∂r′

)∣

∣

∣

∣

1/2 ∣
∣

∣

∣

dTα
dE

∣

∣

∣

∣

1/2

e−iπ2 ν̃α ;

S̃α =

∫ r′

r

p · dr , (50)

where Tα = ∂S̃α/∂E is the duration of orbit α, the
derivative matrix −∂pα/∂r′ is evaluated at t = Tα, and
ν̃α is a modified phase index (see, e.g., Reichel, 1992).
Equation (49) is the starting point of the semiclassi-

cal approximation for quantities that can be expressed
in terms of Green’s functions. For example, the den-
sity of states ρ(E) =

∑

i δ(E − Ei) can be written as
ρ(E) = −π−1

∫

drIm GR(r, r;E). Using Eq. (49)
and integrating over r in the saddle-point approxima-
tion leads to a sum over periodic orbits (Gutzwiller 1967,
1969, 1970, 1971; Balian and Bloch, 1972). The level den-
sity is decomposed into a smooth average part (Weyl’s
term) and a fluctuating part: ρ = ρ̄ + ρfluct. In a fully
chaotic system, the periodic orbits are isolated, and ρfluct
can be written in terms of Gutzwiller’s trace formula
(Gutzwiller, 1971)

ρfluct(E) =
1

πh̄

∑

p.o. α

Tα

| det(M̃α − I)|1/2
cos

(

S̃α

h̄
− σα

π

2

)

,

(51)

where the sum is over periodic orbits α. The phase σα is
the Maslov index (containing the phase index ν̃α) and M̃α

is a (2d−2)-dimensional stability matrix of the orbit. M̃α

is a submatrix of the 2d-dimensional monodromy matrix
Mα that describes the linear relation between a small
change in the initial and final (i.e., after one period) δr
and δp.

1. Spectral correlations in chaotic and disordered systems

Spectral properties of metallic grains have long been of
interest. Gor’kov and Eliashberg (1965) studied the elec-
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trical polarizability of small metallic grains by assum-
ing RMT spectral fluctuations (see Sec. III.C). More
recently, it became possible to do spectroscopy of low-
lying states in quantum dots (Sivan et al., 1994). Here
we discuss briefly the semiclassical calculation of spectral
correlation in both chaotic and disordered systems. For
reviews on chaos see, for example, Gutzwiller (1990) and
Giannoni, Voros, and Zinn-Justin (1991). For a recent
review of spectral correlations in disordered systems, see
Dittrich (1996). In general, semiclassical methods are
valid at energy scales that are large compared with the
mean level spacing ∆, namely, at time scales below the
Heisenberg time τH .
An important statistical measure of spectral correla-

tions is the two-point correlation function of the density
of states, measuring the correlations of ρ at two different
energies, E and E + Ω. Measuring energies in units of
the mean level spacing (i.e., ǫ ≡ E/∆ and ω ≡ Ω/∆),
the correlator becomes dimensionless:

K(ω) ≡ ρ(ǫ)ρ(ǫ + ω)− ρ2 . (52)

The Fourier transform K(t) =
∫

dωK(ω)eiωt is known as
the spectral form factor.
We first derive a semiclassical expression for K(t)

(Berry, 1985) in a chaotic system using the peri-
odic orbit expansion (51). Measuring time in units
of h̄/∆ (so that the Heisenberg time is τH = 2π)
and using S̃α(E + Ω) ≃ S̃α(E) + h̄Tαω, one finds

K(t) ∼ (2π)−1
∑

α,β AαAβe
i
h̄ (S̃α−S̃β)δ [t− (Tα + Tβ)/2],

where Aα ≡ Tα/| det(M̃α − I)|1/2, and the average is
over the energy E. In the diagonal approximation, only
pairs of orbits with α = β are taken into account, and

Ksc(t) ∼ (2π)−1
∑

α

A2
αδ(t− Tα) ≈ |t|/2π . (53)

In the last step in deriving Eq. (53), we have used the
classical sum rule of Hannay and Ozorio de Almeida
(1984) for ergodic systems. This sum rule is valid for
times that are long compared with a typical period of
the short periodic orbits (∼ τc), but much shorter than
the Heisenberg time. We shall see that this result is also
the universal RMT result below the Heisenberg time. In
deriving Eq. (53) we have assumed a system in which
time-reversal symmetry is broken. For conserved time-
reversal symmetry we must also consider pairs of orbits
that are time reversals of each other, and this will in-
crease K(t) by a factor of 2.
The semiclassical approach to disordered metals can

be found in Argaman, Imry and Smilansky (1993) and
Montambaux (1997). For t ≪ τH , the form factor K(t)
can be related semiclassically to the return probability
P (t) = |〈r|e−iHt/h̄|r〉|2 (which measures the probability
that the electron will return to its original starting point

r after time t): K(t) = (2π)−1tP (t). For diffusive motion
the classical return probability is calculated from

Pcl(t) = D(r, r; t) =
∑

q

e−Dq2t . (54)

In the case of conserved time-reversal symmetry there
is an additional contribution from the constructive in-
terference of orbits that are time-reversed pairs. We
thus have P (t) = (2/β)Pcl(t), where β = 1 for con-
served time-reversal symmetry and β = 2 for broken
time-reversal symmetry. The Fourier transform of Eq.
(54) is P (ω) =

∑

q
(−iω +Dq2)−1, and the semiclassical

two-point correlation function is given by

Ksc(ω) =
1

βπ2
Im

∂P

∂ω
= − 1

βπ2
Re
∑

q

1

(−iω +Dq2 + γ)2
,

(55)

where an additional broadening γ ∼ Γφ = h̄/τφ is intro-
duced to take into account the electron’s finite coherence
time (if τφ ≫ τH one chooses γ ∼ ∆, since the semi-
classical approximation breaks down at the Heisenberg
time). Equation (55) was first derived by Altshuler and
Shklovskii (1986) using diagrammatic techniques. The
diagonal “classical” contribution is known as the diffu-

son, while the interference contribution (for conserved
time-reversal symmetry) is described by the cooperon,
obtained by summation of maximally crossed diagrams
(Altshuler and Simons, 1995).
Inspecting Eq. (55), we can distinguish two regimes.

For Ω = ω∆ < Ec, the q = 0 diffusion mode dominates,
and we obtain the ergodic limit where the electron sam-
ples the whole dot. On the other hand, for Ω ≫ Ec, the
electron samples only a small fraction of the dot, and we
can consider the limit of diffusion in an infinite system,
where the summation in Eq. (54) over all modes q can
be performed exactly to give Pcl(t) = Ld/(4πDt)d/2. In
these two limits it is found that (Braun and Montam-
baux, 1995; Montambaux, 1997)

K(ω) ≈







−Re 1
βπ2(ω+iγ)2 (for 1 ≪ ω < gT )

− 1
βω2

(

ω
gT

)d/2

cos
(

πd
4

)

(for ω ≫ gT )
. (56)

For 1 ≪ ω < gT , K(ω) in Eq. (56) is universal. It co-
incides (for γ = 0) with the semiclassical result of Berry
(1985) in chaotic systems for ω below the ballistic gT . In
Sec. III.C we shall see that this universal semiclassical
result describes the smooth part of the RMT prediction
for 1 ≪ ω < gT . Random-matrix theory is nonperturba-
tive and provides the exact universal results in a broader
regime ω < gT (i.e., not requiring ω ≫ 1). On the other
hand, according to Eq. (56), the regime ω ≫ gT is
nonuniversal and the correlator depends on dimension-
ality and size (through gT ). Although this Altshuler-
Shklovskii nonuniversal power law was first predicted in
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1986, it was observed numerically in disordered metals
only in 1995 (Braun and Montambaux, 1995).

2. Conductance fluctuations in disordered metals

A semiclassical approach to conductance fluctuations
in disordered systems was discussed by Argaman (1996).
The conductivity tensor of noninteracting electrons can
be expressed in terms of Green’s functions, and a semi-
classical expression can be obtained using Eq. (49).
In the diagonal approximation one recovers the energy-
averaged classical conductivity σ̄, i.e., Drude’s formula.
Quantum corrections result from interference of classical
trajectories. Only pairs of trajectories that are related by
symmetry can survive the averaging process. In particu-
lar, in systems with time-reversal symmetry we can con-
sider the interference between a path that forms a closed
loop and a path that follows a similar trace except in the
loop segment, which it crosses in the opposite direction.
These paths are time-reversed partners within the loop
segment and their constructive interference leads to a de-
crease ∆σ̄ in the average conductivity, an effect known as
weak localization or coherent backscattering. Quantum
corrections to the conductance due to self-intersecting
time-reversed paths were first noticed by Langer and
Neal (1966) using diagrammatic methods. A semiclas-
sical expression for the weak-localization correction can
be found semiquantitatively by estimating the total num-
ber of closed loops. The probability for one closed orbit
of period t is the return probability P (t). Since the initial
point r can be anywhere along the path and the position
of the electron is uncertain within λF from its determin-
istic classical orbit, we multiply this probability by the
volume of a tube of length vF t and thickness λF . We
obtain the following estimate (for a large conductor of
volume V ):

∆σ̄/σ̄ ≃ −vFλd−1
F V −1

∫ τφ

τ

dtPcl(t) , (57)

where V −1Pcl(t) = (4πDt)−d/2 (see Sec. III.B.1). The
above picture is valid only for times when the motion
is diffusive (t > τ) and coherent (t < τφ), hence the
range of integration in Eq. (57). (Here we define the
effective dimension d of a conductor to be the number
of dimensions for which the sample’s extension is larger
than Lφ.) Integrating Eq. (57), we find that the weak-
localization correction to the average conductance per
unit length is finite in 3D, ∆Ḡ ≃ −(e2/h)[(3/π)1/2l−1 −
(Dτφ)

−1/2], but increases logarithmically with τφ in 2D,
∆Ḡ ≃ −(e2/h) ln(τφ/τ), and linearly with Lφ in 1D,
∆Ḡ = −(e2/h)2π(Dτφ)

1/2. The weak-localization cor-
rection to the conductivity was originally derived in
the framework of disorder perturbation theory (Gorkov,
Larkin and Khmelnitskii, 1979; see also Bergmann, 1984,

and references therein; Khmelnitskii, 1984). For a quasi-
classical approach to weak localization in disordered sys-
tems see Chakravarty and Schmid (1986). A magnetic
field breaks time-reversal symmetry and can destroy the
weak-localization correction (Altshuler et al., 1980).
The conductance in a mesoscopic conductor fluctuates

as a function of Fermi energy and applied magnetic field.
The magnitude of these fluctuations was found to be uni-
versal and of order e2/h (Altshuler, 1985; Lee and Stone
1985; Stone, 1985; Lee, Stone and Fukuyuma, 1987).
This is the phenomenon of universal conductance fluctu-
ations. Semiclassically, these fluctuations are related to
the return probability through σ2(G)/Ḡ2 ∝

∫∞

0
dt t P (t)

(Argaman, 1996; Montambaux, 1997).

C. The universal regime: random-matrix theory

Random-matrix theory describes the statistical fluctu-
ations in the universal regime (i.e., at energy scales be-
low the Thouless energy). It was introduced by Wigner
(1951, 1955, 1957, 1958) to explain the statistical fluctu-
ations of neutron resonances in the compound nucleus.
Rather than trying to explain individual eigenfunctions,
RMT addresses questions about their statistical behav-
ior. Its original justification was our lack of knowledge of
the exact Hamiltonian; RMT assumes maximal ignorance
regarding the system’s Hamiltonian except that it must
be consistent with the underlying symmetries. The the-
ory proceeds to construct ensembles of Hamiltonians clas-
sified by their symmetry. Wigner’s ideas were followed
by those of Porter and Rosenzweig (1960) and Mehta
and Gaudin (1960, 1961). Using group-theoretical meth-
ods developed by Wigner (1959), Dyson (1962a) showed
that there are three classes of random-matrix ensembles.
In a seminal paper entitled “The Threefold Way,” Dyson
(1962d) proved that the most general kind of matrix en-
semble is a direct product of irreducible ensembles that
belong to one of the three classes. Most of the early
developments in the late 1950s and early 1960s are col-
lected in Porter (1965). An early extensive review of
RMT and its applications in nuclear physics was written
by Brody et al. (1981). A detailed account of RMT can
be found in the book by Mehta (1991).
Two major, independent developments in the early

1980s considerably broadened the range of validity of
RMT. One was the BGS conjecture (Bohigas, Giannoni,
and Schmit, 1984) linking the quantal fluctuations in
chaotic systems to RMT. Berry (1985) understood that
the universality of RMT in chaotic systems holds for time
scales that are longer than the shortest periodic orbits
(i.e., the ergodic time). For time scales that are also
much shorter than the Heisenberg time, the RMT results
coincide with the semiclassical approach. However, RMT
also provides the universal results at longer times where
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the diagonal semiclassical approximation fails. The BGS
conjecture was confirmed in a large number of numerical
studies. Applications of RMT to chaotic systems were
reviewed by Bohigas (1991).
The second major development was Efetov’s super-

symmetry method (Efetov, 1983), which made possible a
nonperturbative treatment of the single-particle disorder
problem by mapping it onto the supersymmetric nonlin-
ear σ model. For weakly disordered systems and below
the Thouless energy, this supersymmetric theory is in 0D
and can be shown to be equivalent to RMT.
Random-matrix theory also seems to describe the sta-

tistical properties of interacting systems at high enough
excitation (e.g., the compound nucleus), but its applica-
bility to the ground-state properties of closed dots (where
interactions are important) is not yet fully understood
(see Sec. VI). Random-matrix theory has many ap-
plications in quantum physics; a comprehensive review
emphasizing common concepts was written recently by
Guhr, Müller-Groeling, and Weidenmüller (1998).
Section III.C.1 covers the most common ensembles

of random matrices, the Gaussian ensembles. Section
III.C.2 discusses the crossover ensembles, which are use-
ful for describing the transition between different symme-
try classes, e.g., the effects of a time-reversal symmetry-
breaking magnetic field. In Sec. III.C.3, we generalize
the Wigner-Dyson ensembles to Gaussian processes, an
appropriate framework for describing the universal sta-
tistical properties of a system that depends on an exter-
nal parameter. We end with another type of ensemble
– Dyson’s circular ensemble, suitable for describing sta-
tistical S matrices and useful in the statistical theory of
open quantum dots (Sec. IV.A).

1. Gaussian ensembles

The basic premise of RMT is that the statistical fluc-
tuations of certain quantum systems can be described
by an ensemble of N × N “random” matrices H . Since
the matrix elements of the Hamiltonian of a physical sys-
tem vanish between states with different good quantum
numbers, it is only the Hamiltonian matrix in a subspace
with fixed values of good quantum numbers that is as-
sumed to be “random.” Dyson (1962a, 1962d) found that
there are only three types of ensembles, depending on the
underlying space-time symmetries of the system. If the
system is invariant under time reversal and under rota-
tions, there is a basis where the Hamiltonian operator
is represented by a real symmetric matrix (systems with
time-reversal symmetry and broken rotational invariance
but with integer total angular momentum also belong
to this ensemble). If time-reversal symmetry is broken,
irrespective of rotational invariance, then the Hamilto-
nian matrix is complex Hermitean . A third ensemble

corresponds to systems that conserve time-reversal sym-
metry but are not rotationally invariant and have half-
integer total angular momentum. The matrix elements
of such systems are real quaternion. A quaternion q is a
2 × 2 matrix expressed in terms of a linear combination
of the unit matrix I and the three Pauli matrices σj , i.e.,
q = a0I + i

∑

j ajσj . The quaternion is real when the
coefficients a0 and aj are real. Each of the three classes
has a different number of independent real components
β that characterizes a matrix element. We have β = 1, 2
and 4 for the ensembles of real symmetric, complex Her-
mitean, and real quaternion matrices, respectively.
The matrices that represent the same physical Hamil-

tonian in two different bases are related by a similarity
transformation H ′ = W−1HW , where W is the matrix
connecting the two bases. We consider only transforma-
tions W that preserve the “type” of the matrix H that
belongs to the given ensemble. For example, for β = 1,
the different bases can be chosen as “real” and the ma-
trixW must be orthogonal. Similarly,W must be unitary
for β = 2 and symplectic (i.e., unitary matrices with real
quaternion elements) for β = 4. The three ensembles
are thus called orthogonal (β = 1), unitary (β = 2) and
symplectic (β = 4).
As a physical example, consider a single electron mov-

ing in a disorder or confining potential that is not ro-
tationally invariant. If time-reversal symmetry and the
electron spin are conserved, β = 1 (since the motion is
restricted to orbital space where the angular momentum
assumes integer values). If time-reversal symmetry is
broken, e.g., by a magnetic field, β = 2. Finally, if time-
reversal symmetry is conserved but spin-rotation symme-
try is broken, e.g., by strong spin-orbit scattering, β = 4
(in this case the orbital and spin spaces are coupled and
the total angular momentum has half-integer values).
We denote by P (H)dH the probability of finding a

matrix H whose elements are in an interval dHij around
Hij (for β = 1, dH ≡ ∏

i≤j dHij). There are various
methods of deriving the distribution P (H). Porter and
Rosenzweig (1960) require that the probability measure
satisfy the following two properties (for the orthogonal
case): (i) Invariance; P (H ′) = P (H) under any simi-
larity transformation with an orthogonal matrix W . In-
deed, in complex or chaotic systems all bases chosen to
represent the Hamiltonian should be statistically equiv-
alent to each other. (ii) Statistical independence; all in-
dependent matrix elements are statistically independent,
P (H) =

∏

i≤j Pij(Hij). The most general ensemble to
satisfy both conditions is

P (H) ∝ e−
β

2a2 TrH2

. (58)

The distribution (58) is manifestly invariant under any
orthogonal transformation of H .
The measures for the other ensembles are similarly de-

rived. We find the same expression (58) for all three
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ensembles. The quantity β is introduced in the measure
(58) for convenience only (the average level density be-
comes independent of β). The corresponding three Gaus-
sian ensembles are called the Gaussian orthogonal ensem-
ble (GOE), Gaussian unitary ensemble (GUE), and the
Gaussian symplectic ensemble (GSE) for β = 1, 2, and 4,
respectively.
The Gaussian ensembles can also be defined by their

first two moments. For the orthogonal (β = 1) and uni-
tary (β = 2) cases we have

Hij = 0 ; HijHkl =
a2

2β
g
(β)
ij,kl ; (59a)

g
(β=1)
ij,kl = δikδjl + δilδjk ; g

(β=2)
ij,kl = 2δilδjk . (59b)

In the orthogonal case, where all matrix elements are real,
the variance of each diagonal element is a2, while that of
each off-diagonal element is a2/2. In the unitary case,
the diagonal elements are real with variance a2/2, while
the off-diagonal elements are complex and their real and
imaginary parts each have a variance of a2/4.
Another derivation of the random-matrix ensembles

was proposed by Balian (1968). His approach is based on
information theory (Shannon, 1948), where the missing
information (or entropy) associated with a distribution
P (H) is defined by S [P (H)] = −

∫

dHP (H) lnP (H) and
measures the amount of missing information required to
determine uniquely the system’s Hamiltonian. Two con-
straints must be imposed on P (H):

∫

dHP (H) = 1
(normalization) and

∫

dHTrH2P (H) = const (to en-
sure that the Hamiltonian’s eigenvalues are bounded).
We then choose the distribution P (H) that is consistent
with the constraints but is otherwise least biased, i.e.,
that maximizes the missing information. The solution
is given by Eq. (58). This construction exemplifies the
essence of RMT: it is the most “random” ensemble that
is consistent with the underlying symmetries. The Gaus-
sian ensembles lead to local correlations that are univer-
sally valid. In particular, their correlators coincide, after
proper scaling, with the correlators of non-Gaussian en-
sembles (Brézin and Zee, 1993; Hackenbroich and Wei-
denmüller, 1995).
The distribution of eigenvalues and eigenvectors can

be calculated from Eq. (58). We diagonalize the matrix
H ,

W−1HW = E , (60)

and transform the variables Hij to new variables that
consist of the N eigenvalues Eλ and a set of βN(N −
1)/2 variables parametrizing the diagonalizing matrixW .
This requires calculation of the Jacobian J of the trans-
formation. We present here a simple derivation of J in
the GOE case (Bohr and Mottelson, 1969). When J 6= 0,
the transformation (60) is one to one and the eigenvectors
must be uniquely determined from H . However, when

two eigenvalues are degenerate, Eλ = Eµ, this is not
the case since the degenerate eigenvectors are determined
only up to a linear combination, and therefore J = 0.
Furthermore, since the transformation (60) is linear in
Eλ, J is a polynomial of degree N(N − 1)/2 in the Eλ’s.
These properties of J determine its dependence on the
eigenvalues: J ∝∏λ<µ |Eλ −Eµ|. The general result for

any of the three ensembles is J ∝∏λ<µ |Eλ−Eµ|β , where
the proportionality constant depends on the eigenvector
parameters alone. We conclude that the eigenvalues are
uncorrelated from the eigenvectors and are distributed
according to

PN (E1, E2, . . . , EN ) ∝





∏

λ<µ

|Eλ − Eµ|β


 e
− β

2a2

∑

ν

E2
ν

.

(61)

a. Spectral statistics

The average level density in RMT is given by Wigner’s
semicircle ρ̄ =

√
2a2N − E2/πa2. Random-matrix the-

ory is not expected to reproduce global level densities of
realistic systems but only to describe the local fluctua-
tions of the spectrum. To compare the statistical prop-
erties of a given spectrum with RMT, one first unfolds
it, i.e., transforms it into one with constant average level
density (Bohigas and Giannoni, 1984). An assumption
implicit in most applications of RMT is that of ergod-
icity: the ensemble average is equivalent to the running
average over a given spectrum. Given a physical system,
one can collect statistics from different parts of the spec-
trum and then compare them with the RMT ensemble
average.
There are several useful statistical measures of spectral

fluctuations:

(i) Nearest-neighbor level-spacing distributions P (s).
Their asymptotic forms for large N cannot be written
in a simple form, but they are surprisingly well approx-
imated by the simple expressions obtained for N = 2
(Wigner’s surmise)

PWD(s) =











π
2 se

−π
4 s2 (GOE)

32
π2 s

2e−
4
π s2 (GUE)

218

36π3 s
4e−

64
9π s2 (GSE)

, (62)

where the spacing s is measured in units of ∆. Equa-
tions (62) are often called the Wigner-Dyson distribu-
tions. The GOE and GUE distributions are shown in
Fig. 9(a). Level repulsion is stronger in the GUE than
in the GOE, as is seen from the small spacing behavior
PWD(s) ∝ sβ .
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FIG. 9. Spectral measures of a metal in the diffusive regime,
compared with the predictions of RMT. The circles are from
numerical simulations of the Anderson model in its weakly
disordered regime: open circles, without magnetic flux; solid
circles, with magnetic flux. The solid lines are the predic-
tions of RMT using GOE for conserved time reversal sym-
metry (no flux) and GUE for broken time-reversal symme-
try (with flux).(a) Nearest-neighbor level-spacing distribution
P(s); (b) number-variance statistics Σ2(ǫ) defined by (64); (c)
two-point level-density correlation function K(ω) defined by
Eq. (52) (excluding a self-correlation δ-function term); (d)
the form factor K(t), i.e., the Fourier transform of K(ω).
The agreement with the RMT predictions is nearly perfect.
The dotted lines correspond to the Poisson statistics where
the energy levels are assumed to be random. Adapted from
Braun and Montambaux (1995) and Montambaux (1997).

(ii) The n-point cluster functions Yn(ǫ1, . . . , ǫn) of
n levels ǫλ = Eλ/∆. Dyson (1962b) defines
the n-point correlation function Rn(E1, . . . , En) =
[N !/(N − n)!]

∫ (
∏

i>n dEi

)

PN (E1, . . . , EN ) as the
probability density of finding the n levels E1, . . . , En irre-
spective of the location of all other levels. Yn is the nth-
order cumulant constructed from the Rm (m = 1, . . . , n).
For example, the two-level cluster function is defined by
Y2(ǫ1, ǫ2) = ∆2 [R1(E1)R1(E2)−R2(E1, E2)], and de-
pends only on the energy difference ω ≡ ǫ2 − ǫ1. For
the Gaussian ensembles (Dyson, 1970; Mehta, 1971)

Y2(ω) =



































(

sinπω
πω

)2 −
[

Si(πω)− 1
2πsgn(ω)

]

×
[

cos πω
πω − sinπω

(πω)2

]

(GOE)
(

sinπω
πω

)2
(GUE)

(

sin 2πω
2πω

)2 − Si(2πω)

×
[

cos 2πω
2πω − sin 2πω

(2πω)2

]

(GSE)

(63)

where Si(x) =
∫ x

0 dt sin t/t. It is also useful to transform

to the time domain, where b2(t) ≡
∫∞

−∞ dωe2πiωtY2(ω) is
known as the two-level form factor (Brody et al., 1981).
The two-point level-density correlation function K(ω)

defined by Eq. (52) is directly related to Y2 by K(ω) =
δ(ω) − Y2(ω), while the associated spectral form factor
is K(t) = 1 − b2(t/2π). The RMT result for times t ≪
τH = 2π is K(t) ≈ −(2/β)(|t|/2π), in agreement with the
diagonal semiclassical approximation (53). Similarly, for
ω ≫ 1, Eqs. (63) give K(ω) ≈ −1/βπ2ω2, in agreement
with the semiclassical results [see, for example, Eq. (56)
in a diffusive system below the Thouless energy]. The
GOE and GUE results for K(ω) and K(t) are shown in
Figs. 9(c) and 9(d), respectively.

(iii) The number variance Σ2(ǫ) = n2(ǫ) − n(ǫ)
2
. This

measures the variance of the number of levels n(ǫ) in an
energy interval of length ǫ. Since n(ǫ) =

∫ ǫ

0 dǫ
′ρ(ǫ′) we

have the relation

Σ2(ǫ) = 2

∫ ǫ

0

dω(ǫ− ω)K(ω) = ǫ− 2

∫ ǫ

0

dω(ǫ− ω)Y2(ω) .

(64)

The GOE and GUE number variances are shown in
Fig. 9(b). For small ǫ, Σ2(ǫ) ≈ ǫ, but of particu-
lar interest is the large-ǫ logarithmic behavior Σ2(ǫ) ≈
(2/βπ2) ln ǫ + const + O(ǫ−1), where the constant is β
dependent. For 1 ≪ ǫ < gT the diagrammatic (or semi-
classical) result for the number variance in disordered
metals coincides with the RMT results. However, for

ǫ≫ gT , the diagrammatic result Σ2(ǫ) ≈ −β−1 (ǫ/gT )
d/2

is nonuniversal. The electron diffuses for a time t that
is much shorter than τD and covers only an area of lin-
ear dimension

√
Dt that is much smaller than L. The

number variance is then proportional to the number of
such “areas” (L/

√
Dt)d ∼ (ǫ/gT )

d/2 contained within the
total area of the system.
(iv) The Dyson-Mehta ∆3 statistics (Dyson and Mehta,
1963). A straight line is fitted by least squares to the
staircase function (defined as the number of levels below
a given energy) in an interval of length ǫ. Here ∆3(ǫ) is
the least-squared deviation from this best linear fit. The
ensemble average of ∆3 is related to the number variance
by (Pandey, 1979; Mehta, 1991)

∆3(ǫ) =
2

ǫ4

∫ ǫ

0

dω(ǫ3 − 2ǫ2ω + ω3)Σ2(ω) . (65)

In RMT, ∆3 starts as ǫ/15 and behaves asymptotically
as ∆3(ǫ) ≈ (1/βπ2) ln ǫ + const.
Gaussian orthogonal ensemble spectral correlations

were found in the statistical analysis of the nuclear data
ensemble, which consists of 1726 measured resonances
in various compound nuclei (Haq, Pandey, and Bohigas,
1982; Bohigas, Haq, and Pandey, 1985). Random-matrix
theory also describes the universal regime of disordered
metals. This is confirmed in Fig. 9, which compares
Anderson model calculations with and without magnetic
flux (Dupuis and Montambaux, 1991; Braun and Mon-
tambaux, 1995) to RMT predictions.

25



b. Eigenfunction statistics

In RMT, the probability distribution of an eigen-
vector’s components ψi (i = 1, . . . , N) is determined
from the orthogonal (unitary) invariance of the ensem-
ble (Brody et al., 1981),

P (ψ1, ψ2, . . . , ψN ) ∝ δ(
∑

i

|ψi|2 − 1) , (66)

where the metric is given by D[ψ] =
∏N

i=1 dψi for β = 1

and
∏N

i=1(dψ
∗
i dψi/2πi) for β = 2.

To find the distribution of a finite number of com-
ponents ψ1, . . . , ψΛ, we integrate Eq. (66) over all
other N − Λ components to find P (ψ1, . . . , ψΛ) ∝
(

1−∑Λ
i=1 |ψi|2

)β(N−Λ)/2−1

. In the asymptotic limit

N → ∞, this distribution is a Gaussian P (ψ) ∝
exp

[

−(βN/2)
∑Λ

i=1 |ψi|2
]

. Of particular interest is the

distribution of the intensity of a single component y ≡
|ψi|2,

P (y) =

(

β

2y

)β/2
1

(β/2− 1)!
yβ/2−1e

−βy
2ȳ , (67)

which is just the χ2 distribution in β degrees of freedom.
For the GOE (β = 1) this is the Porter-Thomas distribu-
tion (Thomas and Porter, 1956) describing the neutron
resonance widths in the compound nucleus – see, for ex-
ample, Fig. 7(b).
More generally, for n eigenvectors (n ≪ N), P (ψλ) ∝

∏n
λ=1 exp

[

−(βN/2)
∑Λi

i=1 |ψiλ|2
]

, and components that

belong to different eigenvectors are to leading order un-
correlated.

2. Crossover ensembles

In some applications we are interested in the fluctu-
ation properties of systems in the crossover regime be-
tween two different symmetries. The statistics in the
crossover regime between GOE and GUE can be de-
scribed by the Mehta-Pandey ensemble (Pandey and
Mehta, 1983; Mehta and Pandey, 1983; Mehta, 1991; Bo-
higas, 1991)

H = S + iαA , (68)

where S and A are, respectively, symmetric and anti-
symmetric real matrices and α is a real parameter. The
matrices S and A are uncorrelated and chosen from Gaus-
sian ensembles of the same variance. Similar ensembles
can be constructed to describe the crossover between the
GUE and GSE or between the GOE and GSE (Mehta,
1991).
We are interested in the asymptotic limit N → ∞,

where the proper transition parameter is given by a typi-
cal symmetry-breaking matrix element measured in units

of ∆ (French and Kota, 1982; French et al., 1985, 1988):
ζ = (H2

break)
1/2/∆ = α

√
N/π. For a fixed ζ, the

statistics of the ensemble (68) become independent of
N in the limit N → ∞. The crossover parameter can
also be expressed as 2πζ =

√

τH/τmix, where τmix is
the mixing time defined in terms of the spreading width
h̄/τmix = 2πH2

break/∆ of the time-reversal symmetry-
breaking interaction (Pluhar̆ et al., 1994). The spectral
statistics of the transition ensemble (around the middle
of the spectrum) make the complete crossover for ζ ∼ 1.
In the transition ensembles, the eigenvalues and eigen-

vectors are no longer uncorrelated. The spectral statis-
tics were derived by Pandey and Mehta (1983; see also
Mehta and Pandey, 1983 and Mehta, 1991), but until
recently less was known about the statistics of the eigen-
vectors in the transition ensembles. Fal’ko and Efetov
(1994) used supersymmetry to derive the distribution of
the wave function intensity, as well as the joint distribu-
tion of the wave function intensity at two distant spatial
points (Fal’ko and Efetov, 1996). The recent work of van
Langen, Brouwer, and Beenakker (1997) and Alhassid,
Hormuzdiar, and Whelan (1998), based on earlier work
of French et al. (1988), leads to a closed expression for
the joint distribution of any finite number of the eigen-
vector’s components.
The components of an eigenvector ψ are complex: ψi =

ψiR + iψiI . The eigenvector is determined only up to a
phase eiθ, which can be fixed by rotating to a principal
frame where (French et al., 1985, 1988)

N
∑

i=1

ψiRψiI = 0 ;
∑

i

ψ2
iI/
∑

i

ψ2
iR ≡ t2 . (69)

The eigenvector’s components are distributed in the com-
plex plane to form an ellipsoid whose semiaxes define
the principal frame. The parameter t in Eq. (69)
(0 ≤ t ≤ 1) determines the shape of this ellipsoid and
is found to fluctuate in the crossover regime. Earlier
theories (Zyczkowski and Lenz, 1991; Kogan and Kaveh,
1995; Kanzieper and Freilikher, 1996) ignored these fluc-
tuations.
We now consider eigenvectors with a fixed shape pa-

rameter t. Under an orthogonal transformation O, the
real and imaginary parts of ψ transform like ψR → OψR

and ψI → OψI and do not mix with each other. Con-
sequently, Eq. (69) and the probability distribution of
the transition ensemble (68) are invariant under an or-
thogonal transformation O. Thus the conditional prob-
ability distribution of the components of an eigenvector
with a fixed “shape” t is given by P (ψ1, . . . , ψN |t) ∝
δ
(

∑N
i=1 ψ

2
iR − 1/(1 + t2)

)

δ
(

∑N
i=1 ψ

2
iI − t2/(1 + t2)

)

× δ
(

∑N
i=1 ψiRψiI

)

. In the limit N → ∞, the joint con-

ditional distribution of a finite number of components
Λ ≪ N becomes a Gaussian:
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P (ψ1, . . . , ψΛ|t)

=

(

N

2π

1 + t2

t

)Λ

× exp

(

−N 1 + t2

2

Λ
∑

i=1

ψ2
iR −N

1 + t2

2t2

Λ
∑

i=1

ψ2
iI

)

. (70)

The full distribution is computed by averaging the
conditional distribution (70) over the distribution
Pζ(t) of the shape parameter: Pζ(ψ1, . . . , ψΛ) =
∫ 1

0 dtPζ(t)P (ψ1, . . . , ψΛ|t).
It is still necessary to determine Pζ(t). This can be

done (Alhassid, Hormuzdiar, and Whelan, 1998) by cal-
culating the distribution of the square of a single com-
ponent using Eq. (70) and comparing it with the super-
symmetry calculation by Fal’ko and Efetov (1994) of the
wave-function-intensity distribution. It is found that

Pζ(t) = π2 1− t4

t3
ζ2e−

π2

2 ζ2(t−1/t)2

×
{

φ1(ζ) +

[

1

4

(

t+
1

t

)2

− 1

2π2ζ2

]

[1− φ1(ζ)]

}

, (71)

where φ1(ζ) =
1
∫

0

e−2π2ζ2(1−y2)dy.

van Langen, Brouwer, and Beenakker (1997) calcu-
lated Pζ(t) directly in the framework of RMT using a
result of Sommers and Iida (1994) for the joint distribu-
tion of an eigenvalue and its associated eigenvector for
a Hamiltonian in the ensemble (68). Rather than t, an
equivalent “phase rigidity” parameter ρ ≡ |∑i ψ

2
i |2 =

[(1− t2)/(1 + t2)]2 is used.
The crossover distribution of a single component of the

eigenfunction y ≡ |ψi|2 = ψ2
iR + ψ2

iI is found from Eq.
(70) to be (see also Fal’ko and Efetov, 1994)

Pζ(y) =

〈

1

2ȳ

(

t+
1

t

)

e−(t+1/t)2y/4ȳI0

(

1− t4

4t2
y

ȳ

)〉

,

(72)

where I0 is the modified Bessel function of order zero,
and 〈. . .〉 denotes an average over the distribution in Eq.
(71).

3. Gaussian processes

Consider a chaotic system that depends on an exter-
nal parameter and whose symmetry class is the same for
all values of the parameter. An interesting question is
whether any universality can be found in the fluctuations
of the system properties versus this parameter.
A semiclassical theory for a statistic that measures the

correlation of energy levels at different values of an exter-
nal parameter was proposed by Goldberg et al. (1991).

Szafer and Altshuler (1993) and Simons and Altshuler
(1993a, 1993b) discovered that certain parametric spec-
tral correlators of disordered systems are universal af-
ter an appropriate scaling of the parameter. Beenakker
(1993) and Narayan and Shastry (1993) suggested that
the parametric correlators can be studied in the frame-
work of Dyson’s Brownian-motion model (Dyson, 1962c).
The universality of eigenfunction correlators was

shown by Alhassid and Attias (1995) through the gener-
alization of Wigner-Dyson random-matrix ensembles to
random-matrix processes describing the statistical prop-
erties of systems that depend on an external parameter.
The supersymmetry approach was used to obtain the uni-
versal form of the oscillator strength-function correlator
(Taniguchi, Andreev, and Altshuler, 1995). A Brownian-
motion model for the parametric evolution of matrix ele-
ments of an operator between eigenstates was introduced
by Wilkinson and Walker (1995).
We first discuss the generalization of the Gaussian en-

sembles to Gaussian processes. We assume a system
whose Hamiltonian H(x) depends on an external param-
eter x. The system is chaotic or weakly disordered for
all values of x, and its underlying symmetry class is in-
dependent of x. To generalize the statistical description
of RMT to include such a parametric dependence, we
assume a Gaussian process H(x) characterized by

Hij(x) = 0 ; Hij(x)Hkl(x′) =
a2

2β
f(x, x′)g

(β)
ij,kl , (73)

where the coefficients g
(β)
ij,kl are defined in Eq. (59b). The

process correlation function is assumed to be stationary
and symmetric: f(x, x′) = f(|x−x′|). It is normalized to
f(x, x) = 1 so that the matrix elements of H(x) satisfy
the Gaussian ensemble relations (59) for each fixed value
of x.
The Gaussian process can also be defined in terms of

its probability distribution

P [H(x′′)] ∝ exp{−
(

β/2a2
)

∫

dxdx′

×Tr [H(x)K(x, x′)H(x′)]} , (74)

where the metric is DH ≡ ∏

x dH(x) with dH being
the usual Gaussian ensemble metric. Equation (74) is a
direct generalization of the Gaussian ensemble measure
(58) to include a parametric dependence of the random-
matrix Hamiltonian. The kernel K is the functional in-
verse of f .
Eq. (73) with f(x− x′) = δ(x− x′) describes a white-

noise random-matrix process Φ(x). Wilkinson (1989) in-
troduced the process H(x) =

∫

dx′w(x− x′)Φ(x′) in the
study of the statistics of avoided crossing in chaotic sys-
tems. It is a Gaussian process with a correlation function
f(x) =

∫

dx′w(x − x′)w(−x′).
Depending on the symmetry class of the matrices

H(x), there are three types of processes: the Gaussian
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orthogonal process (β = 1), the Gaussian unitary process
(β = 2), and the Gaussian symplectic process (β = 4). A
Gaussian process is characterized by a correlation func-
tion f , but in the asymptotic limit N → ∞, only the
short-distance behavior of f (in parameter space) is im-
portant. We therefore expand f to leading order in x−x′:
f(x − x′) ≈ 1 − κ|x − x′|η, where κ and η > 0 are con-
stants, and classify the Gaussian processes according to
the value of η.
Of particular interest are two-point parametric

correlators of observables O(x): cO(x − x′) =
δO(x)δO(x′)/[σ(O(x))σ(O(x′))], where δO(x) = O(x) −
Ō(x) and σ2(O(x)) = (δO(x))2 . To calculate cO(x − x′)
we only need to know the joint distribution of H(x) and
H(x′). The Gaussian process has the useful property
that the joint distribution of any finite number of ma-
trices H(x), H(x′), H(x′′), . . . is Gaussian. In particular
(Attias and Alhassid, 1995)

P [H(x), H(x′)]∝ exp{−(β/2a2)Tr
[

H(x)2 +H(x′)2

−2fH(x)H(x′)] /(1− f2)} , (75)

where f ≡ f(x− x′).
The Gaussian process parametric correlators depend

on a, f , and N , but become universal upon an appropri-
ate scaling of x. The dependence on a is eliminated by
unfolding the energies Ei → ǫi = Ei/∆. To eliminate the
dependence on f , we calculate the mean-squared para-
metric change (∆ǫi)2 of a given level using first-order
perturbation theory,

∆ǫ2i = Dǫ | ∆x |η +O
(

| ∆x |2η
)

, (76)

where Dǫ = lim∆x→0 ∆ǫ2i /∆x
η = 4Nκ/π2β. Equation

(76) suggests that the energy levels undergo short-range
“diffusion” as a function of the parameter x (character-
ized by an exponent η), with Dǫ playing the role of the
diffusion constant. For a Gaussian process with η < 2,
the levels show irregular behavior as a function of x which
becomes smooth in the limit η = 2. This is demonstrated
in Fig. 10(a). Gaussian processes with η = 2 are the
only differentiable Gaussian processes (Attias and Alhas-
sid, 1995); namely, they have the property that almost
every one of their members has a continuous derivative
dH/dx. Since in most physical applications the Hamil-
tonian is an analytic function of its parameter, we are
interested only in differentiable Gaussian processes, i.e.,
η = 2, and in the following we assume η = 2. Equation
(76) suggests the scaling (Simons and Altshuler, 1993a,
1993b)

x→ x̄ ≡
√

Dǫx =
[

(∂ǫi/∂x)
2
]1/2

x , (77)

under which the Gaussian process correlation function
becomes independent of the non-universal constant κ:
f ≈ 1 − (βπ2/4N) | x̄ − x̄′ |2. Analytic calculations

of certain correlators as well as numerical simulations
support the conjecture that, for large N , all two-point
correlators depend on N and f only through the combi-
nation N(1− f) = (βπ2/4) | x̄− x̄′|2. We conclude that
all parametric correlators are universal as a function of
| x̄ − x̄′ |. The universality can also be demonstrated
by relating the Gaussian process to Dyson’s Brownian
motion model (Mitchell, Alhassid, and Kusnezov, 1996).
The scaled x̄ measures x in units of the average paramet-
ric distance between avoided level crossings.

FIG. 10. Gaussian processes and parametric correlators: (a)
typical parametric variation of the energy levels of Gaussian
processes (73) with correlation functions f(x) = exp(−|x|η)
as a function of the scaled parameter x̄. Shown are processes
with η = 1, 1.5 and 2. η = 2 is the limit where the para-
metric variation of the energy levels becomes smooth. Pan-
els (b) – (d) show three parametric correlators in the GOE
(solid lines) and GUE (dashed lines) symmetries: (b) the
level-velocity correlator cv(∆x̄); (c) the level-diffusion correla-

tor
[

(∆ǫi)2
]1/2

; and (d) the wave-function-overlap parametric
correlator o(∆x̄) of Eq. (79). The correlators are calculated
using the Gaussian process (78). The level-velocity correlator
coincides with the one calculated by Simons and Altshuler
(1993a, 1993b) in the Anderson model. Adapted from Attias
and Alhassid (1995).

Since the parametric correlators are universal, any
Gaussian process can be used to calculate them. A par-
ticularly simple Gaussian process is given by (Austin and
Wilkinson, 1992; Alhassid and Attias, 1995)

H(x) = H1 cosx+H2 sinx , (78)

whereH1 and H2 are two independent Gaussian matrices
that belong to the appropriate symmetry. The process
(78) is characterized by f(x − x′) = cos(x − x′), and is
therefore an η = 2 process. It is stationary and particu-
larly useful for numerical simulations.
Several spectral parametric correlators were calculated

and their universality demonstrated in models of dis-
ordered dots as well as chaotic dots. The correlator
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cv(x − x′) of the level velocity vλ(x) ≡ ∂Eλ/∂x was cal-
culated by Simons and Altshuler (1993a, 1993b) using
the Anderson model. Its universal form, calculated us-
ing the Gaussian process (78), is shown in Fig. 10(b)
for both the orthogonal (solid line) and unitary (dashed
line) symmetries. The Gaussian unitary process corre-
lator decorrelates faster than the Gaussian orthogonal
process correlator. Also shown in Fig. 10(c) is the level-

diffusion correlator
[

(∆ǫi)2
]1/2

=
[

(ǫi(x) − ǫi(x′))2
]1/2

,

describing the root mean square (rms) of the change
of a given energy level over a finite parametric dis-
tance ∆x̄ (Attias and Alhassid, 1995). The level-density
correlator k(ω,∆x) ≡ δρ(ǫ, x)δρ(ǫ + ω, x+∆x), where
ρ(ǫ, x) =

∑

λ δ(ǫ− ǫλ(x)) [ǫλ are the unfolded energy lev-
els measured in units of ∆], can be calculated in closed
form using the supersymmetry method (Simons and Alt-
shuler, 1993a, 1993b).
Parametric correlators that depend on the eigenfunc-

tions, such as the averaged parametric overlap corre-
lator (Alhassid and Attias, 1995; Attias and Alhassid,
1995) and the strength-function correlator (Taniguchi,
Andreev, and Altshuler, 1995), were also found to be
universal. The overlap correlator measures the squared
overlap of an eigenfunction at different values of the ex-
ternal parameter:

o(x− x′) = | 〈ψλ(x) | ψλ(x′)〉 |2 . (79)

This correlator was calculated numerically using the
Gaussian process (78) and is shown in Fig. 10(d). The
wave functions are observed to decorrelate faster in the
unitary case. This parametric overlap correlator is well
fit by a Lorentzian in the orthogonal case (β = 1) and by
a squared Lorentzian in the unitary case (β = 2):

o(x̄ − x̄′) ≈
[

1

1 + (x̄− x̄′)2/α2
β

]β

, (80)

with α1 = 0.48 ± 0.03 in the orthogonal case and α2 =
0.64± 0.04 in the unitary case.

4. Circular ensembles

The Gaussian ensembles are well suited to the Hamil-
tonian approach, in which the Hamiltonian is assumed to
be “random” and the statistics of various physical quan-
tities of interest are then calculated from their relation to
the Hamiltonian. However, transport properties of elec-
trons through quantum dots can be related directly to the
S matrix (see Sec. II.B), and it is sometimes possible to
derive the fluctuations of the conductance by assuming
the S matrix to be the fundamental “random” object
(see Sec. IV.A). The S matrix associated with a Hermi-
tian Hamiltonian is unitary. Random-matrix ensembles

of unitary matrices are the circular ensembles introduced
by Dyson (1962a).
There are three types of circular ensembles: orthog-

onal, unitary, and symplectic. For systems with time-
reversal invariance, the S matrix is symmetric unitary,
while for systems with broken time-reversal symmetry,
the S matrix is an arbitrary unitary matrix. Finally,
the symplectic ensemble is composed of self-dual unitary
quaternion S matrices (Mehta, 1991). The measure of
the circular ensembles is uniform over the unitary group
of S matrices, subject to the consistency condition that
the symmetry properties of the S matrix are preserved.
More explicitly, the measure is required to satisfy

dµ(S) = dµ(USV ) (81)

for any unitary matrices U and V that preserve the sym-
metry properties as S under the transformation S →
USV . The measure satisfying Eq. (81) is known as the
Haar measure.
A unitary matrix S that belongs to any of the three cir-

cular ensembles can be diagonalized U−1SU = E, where
the eigenvector matrix U is orthogonal, unitary, or sym-
plectic for β = 1, 2, or 4, respectively. The eigenvalues
eiθi define the eigenphases of the S matrix. The eigen-
vector and eigenvalue distributions are uncorrelated, and

P (θ1, . . . , θN ) ∝
∏

i≤j

|eiθi − eiθj |β , (82)

where the measure is
∏

j dθj . In the symplectic case the
eigenvalues are doubly degenerate and only the nonde-
generate values are taken in Eq. (82). The density of
the eigenphases is uniform on the circle, and there is no
need for unfolding. In the limit N → ∞, various spectral
correlations and cluster functions coincide with those of
the Gaussian ensembles.

D. The supersymmetry method

The supersymmetry method provides a technique for
calculating ensemble averages over products of Green’s
functions, where the Hamiltonian is either a random ma-
trix or describes a single particle in a random potential.
This is a nontrivial problem since the random quanti-
ties appear in the denominator. The method maps the
original problem – after performing the ensemble aver-
age – onto a field-theoretical model, the supersymmetric
nonlinear σ model. For random matrices, the σ model
is in 0D, while for a weakly disordered system in d di-
mensions, the σ model is in d dimensions. However, for
energy scales below the Thouless energy, it reduces to the
0D σ-model, explaining the RMT universality in weakly
disordered systems. The supersymmetry method was in-
troduced for disordered systems by Efetov (1983), and its
use for random matrices was discussed by Verbaarschot,
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Weidenmüller, and Zirnbauer (1985). A variety of phys-
ical applications are included in a review by Altshuler
and Simons (1995). A book by Efetov (1997) discusses
the method and its numerous applications. The method
was used extensively in the calculation of spectral and
eigenfunction statistics in disordered systems; see a re-
cent review by Mirlin (2000).
We first describe briefly the supersymmetry method for

averaging over random-matrix ensembles. The starting
point is to write the Green’s function as a multidimen-
sional Gaussian integral where the ensemble average is
straightforward. In general, the inverse of a matrix K

can be written as
(

K−1
)

λµ
= (detK)

∫

ds sλs
∗
µe

−s
†Ks,

where sν are commuting complex variables and ds ≡
∏

ν(ds
∗
νdsν/2πi). The determinant of K can also be

written as a Gaussian integral: detK =
∫

dχ e−χ
†Kχ,

but over Grassmanian (anticommuting) variables χν with
dχ ≡∏ν(dχ

∗
νdχν). Combining both representations, we

can write the inverse of a matrix as a pure Gaussian inte-
gral over both commuting and anti-commuting variables:

(

K−1
)

λµ
=

∫

dsdχ sλs
∗
µe

−s
†Ks−χ

†Kχ . (83)

Equation (83) can be used to express the advanced and
retarded Green’s functions of an N×N Hamiltonian ma-
trixH as a Gaussian integral in the set (s,χ) by choosing
K = ∓i(E± −H). In the GOE case the quadratic form
in the exponent of Eq. (83) is rewritten by doubling the
number of components (the doubling is not needed for
the GUE case):

G(E±) = ∓i
∫

dΨ (ss†)

× exp

{

± i

2
Ψ

†[(E± −H)× I4]Ψ

}

. (84)

Here Ψ ≡ (s, s∗,χ,χ∗)T is a 4N -dimensional vector and
the measure is dΨ ≡ ds dχ, whileM⊗In denotes a block
diagonal matrix with n blocks M .
Equation (84) can be generalized to products of

Green’s functions by introducing a separate vector Ψj

for each Green’s function. We describe below the cal-
culation of quantities that involve the product of two
Green’s functions at two energies E and E′ and for
Hamiltonians H(x) and H(x′) taken at two different val-
ues of an external parameter. For example, the evalu-
ation of the parametric level-density correlator k[(E −
E′)/∆, x−x′] requires the calculation of terms like Ck ≡
TrG(E−, x)TrG(E′+, x′). We have

Ck =

∫

dΨ pk(Ψ)

× exp

[

i

2
Ψ

†(−EΛ + Ω/2 + iδ)Ψ

]

exp

(

i

2
Ψ†ΛHΨ

)

, (85)

where Ψ ≡
(

Ψ1

Ψ2

)

is an 8N -dimensional vector, and H
and Λ are 8N × 8N matrices. Here H has a 2 × 2
block-diagonal form, where the two diagonal blocks are
H(x) ⊗ I4 and H(x′) ⊗ I4. Moreover, Λ has a similar
structure with diagonal blocks of IN ⊗ I4 and −IN ⊗ I4.
We have also defined Ē = (E + E′)/2, Ω = E − E′,

and pk(Ψ) ≡ (s†1s1)(s
†
2s2). The calculation of Eq. (85)

can be mapped onto the 0D supersymmetric nonlinear σ
model as follows:
(i) The average in Eq. (85) is taken using the second-
order cumulant in the exponent. We obtain an integral
representation of Ck with an action quartic in Ψ.
(ii) The action is converted to one that is quadratic in Ψ

by introducing an auxiliary integration variable σ that is
an 8×8 graded matrix (the Hubbard-Stratonovich trans-
formation).
(iii) The Gaussian integral overΨ is done exactly, leading
to an effective action in σ.
(iv) The σ integral is evaluated by the saddle-point
method in the limit N → ∞ and ∆ ∝ 1/N → 0 (the
quantities ω ∝ Ω/∆, δ̃ ∝ δ/∆, and |x̄− x̄′| ∝ N1/2|x−x′|
are all kept constant in this limit). This leads to a non-
linear equation for σ that is a supersymmetric general-
ization of the nonlinear σ model.
(iv) The solutions Q of the saddle-point equation form a
manifold (satisfying Q2 = I). Here Ck can be expressed
as an integral over this saddle-point manifold,

Ck =

∫

dQ pk(Q) exp[−F(Q)] , (86)

where the “free energy” is given by

F(Q) = i(πω/4 + iδ̃)Trg(QΛ)

−(π2/64) | x̄− x̄′ |2 Trg([Q,Λ]2) (87)

and Trg is a supertrace. The integration over Q is per-
formed using a parametrization of the saddle-point man-
ifold by Efetov (1983). The integration can be done over
all but three commuting variables that appear in the fi-
nal analytic result for k(ω, x); see Simons and Altshuler,
1993a, 1993b.
The supersymmetry method for disordered systems fol-

lows along similar lines except that the discrete label n
(n = 1, . . . , N) of the supervector Ψ becomes the con-
tinuous spatial label r. The auxiliary supermatrices in
the Hubbard-Stratonovich transformation acquire a spa-
tial dependence σ(r). The saddle-point approximation
requires a large parameter – kF l, which plays a role anal-
ogous to N in RMT. By minimizing the action one finds
a spatially uniform saddle point Q0 = Λ that has the
same form as in RMT. However, the saddle-point mani-
fold now consists of matrix fields Q(r) that describe long-
wavelength fluctuations. By expanding the action around
the saddle point to leading order in 1/kF l, we find (for
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the case without an external parametric dependence of
the Hamiltonian) a free energy of the form

F [Q] =
πν

8

∫

dr[h̄DTrg(∇Q(r))2 + 2iΩTrg(QΛ)] , (88)

where D is the classical diffusion coefficient and ν is the
density of states (per unit volume). The physical quan-
tities are evaluated according to expressions of the form
of Eq. (86) but where now the integration is over dQ(r)
at each r.
The gradient term in Eq. (88) is of the order of the

Thouless energy Ec = h̄D/L2. In the limit Ω ≪ Ec,
one can ignore the r dependence of Q and the gradient
term vanishes. In this case, the volume integration of the
second term in Eq. (88) gives exactly the first term in
the RMT free energy (87). Deviations from the universal
behavior are important when Ω exceeds the Thouless en-
ergy: the electron does not have enough time to diffuse
to the boundaries and “senses” the dimensionality of the
system. Such nonuniversal corrections were derived by
Andreev and Altshuler (1995) for the asymptotic spec-
tral correlator K(ω) in terms of the nonzero eigenvalues
of the diffusion operator.
A supersymmetric σ model for ballistic chaotic sys-

tems was suggested by Muzykantskii and Khmelnitskii
(1995), using disorder averaging when l > L, and by
Andreev et al. (1996) using energy averaging in a pure
Hamiltonian system. The eigenvalues of the diffusion op-
erator in the disordered case are replaced by those of the
Perron-Frobenius operator in the ballistic case (Agam,
Altshuler, and Andreev, 1995). The first nonzero eigen-
value sets the scale for the ergodic time above which
we expect the RMT universality. However, the math-
ematical difficulties involved in implementing this ap-
proach seem so far to be insurmountable. Similar meth-
ods were used to investigate spectral and wave function
fluctuations in billiards with diffusive surface scattering
(Blanter, Mirlin, and Muzykantskii, 1998).

IV. MESOSCOPIC FLUCTUATIONS IN OPEN DOTS

In this section we apply the methods of Sec. III to open
quantum dots, where there are usually several conducting
channels in each lead, and the conductance is typically
much larger than e2/h. Open dots with a large number
of channels are characterized by many overlapping reso-
nances, i.e., Γ̄ ≫ ∆, where Γ̄ is an average width of a res-
onance level in the dot. When the single-electron dynam-
ics in the dot are chaotic and the electron spends enough
time in the dot before it escapes (i.e., τescape ≫ τc), the
conductance exhibits universal mesoscopic fluctuations
as a function of gate voltage or magnetic field, indepen-
dent of the dot’s size and shape. However, the fluctu-
ations do depend on the number of modes in the leads

and their transmission coefficients. In the limit of a large
number of open channels, the fluctuations become simi-
lar to the universal conductance fluctuations known from
disordered conductors. In the universal regime, RMT can
be used to characterize the conductance fluctuations. For
a comprehensive review of the random-matrix theory of
quantum transport, including applications to open dots,
see Beenakker (1997).
The semiclassical approximation becomes useful in the

limit of a large number of modes in the leads. It can
predict the magnitude of certain dynamical quantities
that cannot be calculated in RMT, e.g., the correlation
length of the conductance fluctuations versus magnetic
field. But the semiclassical approach is not suitable for
dots with fewer than ∼ 3 modes per lead, or for calcu-
lating quantities such as the conductance distribution.
For reviews of the semiclassical approach to transport
in open ballistic microstructures, see Baranger, Jalabert,
and Stone (1993b), Stone (1995), and Baranger (1998).
Our presentation in this Section integrates the random-
matrix and semiclassical approaches to open dots.
The experimental results, while confirming the ex-

pected phenomena, disagree quantitatively with theory.
The main reason is that the coherence length of the elec-
tron is finite at any nonzero temperature. When dephas-
ing as well as thermal smearing are included in the statis-
tical approach, good agreement is found between theory
and experiment. This point was nicely demonstrated in a
recent experiment (Huibers, Switkes, Marcus, Brouwer,
et al., 1998) in dots with single-mode leads.
Although the quantum dots used in experiments are

high-mobility ballistic structures, many of the derivations
in this section are also applicable to diffusive dots. In-
deed, as long as τescape ≫ τD, the same RMT universality
predicted in ballistic dots is expected for a diffusive dot.
Section IV.A presents two random-matrix approaches

to conductance fluctuations in open dots, while Sec. IV.B
describes the semiclassical approach. In Sec. IV.C we
quantify the mesoscopic fluctuations of the conductance
in open dots, including the conductance distributions,
weak-localization effect, and fluctuations versus energy
(Ericson fluctuations) or versus an experimentally con-
trollable parameter. Finally, Sec. IV.E discusses de-
phasing and its effects on the mesoscopic fluctuations.
Throughout the Section we include comparison to exper-
imental results, with an emphasis on more recent results.
Additional experimental results can be found in the re-
view of Westervelt (1998).

A. The random-matrix approach

Historically, the random-matrix approach to scattering
proceeded along two main directions: the Hamiltonian
approach, in which the system’s Hamiltonian is assumed
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to belong to a Gaussian ensemble (Sec. III.C.1), and the
S-matrix approach, in which the S matrix itself is as-
sumed to belong to a certain ensemble (e.g., the circular
ensemble of Sec. III.C.4).
The Hamiltonian approach in the regime of many over-

lapping resonances can be traced back to the statistical
theory of nuclear reactions (see, for example, Hauser and
Feshbach, 1952, and Feshbach, 1992). Ericson fluctua-
tions (Ericson, 1960, 1963; Ericson and Mayer–Kuckuk,
1966) of the cross section of statistical nuclear reactions
as a function of energy are a manifestation of the inter-
ference of a large number of overlapping resonances. The
Hamiltonian approach was followed by Verbaarschot,
Weidenmüller, and Zirnbauer (1985) in calculating the
autocorrelation function of S-matrix elements, and by
Fyodorov and Sommers (1996a, 1996b, 1997) in calcu-
lating various statistical properties of the S matrix in
chaotic systems.
The random-S-matrix approach was introduced in the

theory of statistical nuclear reactions by Mello, Pereyra,
and Seligman (1985) and by Friedman and Mello (1985),
through the maximal entropy approach. A similar ap-
proach was applied to quantum transport in disordered
metals; see, for example, the review by Stone et al.

(1991). The connection between the statistics of the
eigenphases in chaotic scattering and the circular en-
sembles was suggested by Blümel and Smilansky (1988,
1989, 1990); for a review see Smilansky (1990). Direct
applications of the random-S-matrix approach to trans-
port in open dots were initiated by Baranger and Mello
(1994) and Jalabert, Pichard, and Beenakker (1994); for
reviews see Mello (1995), Beenakker (1997), and Mello
and Baranger (1999). Both approaches turn out to be
equivalent when the external parameters of the system
are fixed, as proven by Brouwer (1995). Parametric cor-
relations can be successfully derived in the Hamiltonian
approach but not in the S-matrix approach.
In the Hamiltonian approach, we assume a Hamilto-

nian H that is taken from the appropriate Gaussian en-
semble of random matrices. The statistical properties of
the S matrix and of the conductance can then be inferred
from Eq. (20). Various moments and correlation func-
tions of the S matrix depend only on combinations of
the dot-leads coupling coefficients Wµc that are invari-
ant under the transformations that leave the ensemble
distribution invariant. Such invariant combinations are

Mcc′ ≡
2π

N

∑

µ

W ∗
µcWµc′ , (89)

measuring the degree of correlation among the open
channels. For example, the average S matrix is given
by

S =
I − πM/2∆

I + πM/2∆
, (90)

where M is the matrix defined in Eq. (89). It follows
from Eq. (90) that the matrix M = 2πW †W/N is com-
pletely determined by S̄, and therefore all moments and
correlations of the statistical S matrix are functions of S̄
only.
The average S matrix is not unitary. The eigenvalues

Tc of 1 − S̄S̄† measure the unitary deficiency of the S-
matrix (0 ≤ Tc ≤ 1) and are called the transmission

coefficients. In a set of “eigenchannels” for which the
M is diagonal (Mcc′ = w2

cδcc′), S̄ is diagonal too and

Tc ≡ 1− |S̄cc|2 = (2πw2
c/∆)/

(

1 + πw2
c/2∆

)2
.

As long as we work at a fixed energy and given values
of the external parameters, it is possible to convert the
original probability density (58) for the Hamiltonian H
to a probability density P (S) in the space of unitary S
matrices of the respective symmetry. It was shown by
Brouwer (1995) that for Λtot = Λ1 + Λ2 open channels

P (S) ∝
∣

∣det(1 − S̄†S)
∣

∣

−β(Λtot−1)−2
, (91)

where S̄ is given by Eq. (90) and the measure dµ(S)
is that of the corresponding circular ensemble. For
S̄ 6= 0, Eq. (91) is known as the Poisson kernel (Hua,
1963). It was derived by Pereyra and Mello (1983) in nu-
clear physics through maximizing the entropy S[P (S)] =
−
∫

dµ(S)P (S) lnP (S) of an arbitrary distribution P (S)
subjected to the constraints Sn = S̄n (for any positive
integer n). For S̄ = 0, we recover Dyson’s circular en-
semble for the scattering matrices (see Sec. III.C.4). In-
deed, owing to the invariance (81) of the circular en-
semble’s measure, the average S matrix must satisfy
S̄ = USV = US̄V for arbitrary unitary matrices U and
V , a condition that can only be met by S̄ = 0. This
corresponds to the case of ideal leads where all Tc = 1.
Thus far we have not distinguished between channels

belonging to the left and right leads. This distinction be-
comes important in calculating the conductance through
the dot. In general, the S matrix is defined by the linear
relation between the incoming and outgoing amplitudes.

It can be written in the form S =
(

r
t
t′

r′

)

, where r and r′

are the reflection matrices on the left and on the right, re-
spectively, while t and t′ are transmission matrices from
left to right and from right to left, respectively. For Λ1

(Λ2) channels in the left (right) lead, r and r′ are square
matrices of dimension Λ1 × Λ1 and Λ2 × Λ2, while t and
t′ are rectangular matrices of order Λ1×Λ2 and Λ2×Λ1.
Here tt† and t′t′† share the same number min(Λ1,Λ2)

of nonzero transmission eigenvalues τa. The zero-
temperature conductance is proportional to the total
transmission T :

T = Tr (tt†) = Tr (t′t′†) =
∑

a

τa . (92)

For ideal leads (i.e., S̄ = 0), the distribution of the
transmission eigenvalues is given by (Baranger andMello,
1994; Jalabert, Pichard, and Beenakker, 1994)
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Pβ(τ1, τ2, . . .) ∝
(

∏

a<b

|τa − τb|β
)

∏

c

τ
β−2
2

c . (93)

In the more general case of nonideal leads, the Poisson
kernel (91) should be taken into account beyond Eq. (93);
see Brouwer, 1995.

B. The semiclassical approach

The semiclassical approach to open dots is useful in
the limit of a large number of modes Λ → ∞ (equivalent
to h̄ → 0). The starting point is an expression for the
transmission amplitude tc′c from mode c in the left lead
to mode c′ in the right lead in terms of the retarded
Green’s function GR. Assuming the dot-lead interfaces
are at x = xl and x = xr , we have

tc′c = −ih̄(vc′vc)1/2
∫

dy′dyφrc′
∗(y′)

× GR(xl, y;xr, y′;E)φlc(y) , (94)

where φ
l(r)
c (y) =

√

2/W sin(cπy/W) (c = 1, . . . ,Λ) are
the transverse channel wave functions in the left (right)
lead (W is the width of each lead). The retarded Green’s
function is then approximated by a sum over classical
paths [Eq. (49)]. The integrals over the lead-dot cross
sections are done by stationary phase, leading to (Jal-
abert, Baranger, and Stone, 1990)

tc′c = −
(

πi

2kW

)1/2
∑

α(c̄′c̄)

sign(c̄′)sign(c̄)

× Ãαe
i
h̄ S̃α(c̄′,c̄,E)−iπ2 µ̃α , (95)

where c̄ = ±c and µ̃α is a modified Maslov index (given
by Baranger, Jalabert and Stone, 1993b). The sum is
taken over paths α that start on the left at angle θ and
end on the right at angle θ′, determined by equating the
initial and final transverse momenta of the electron to
the quantized values of the momenta in modes c and c′,
respectively (i.e., sin θ = πc̄/kW and sin θ′ = πc̄′/kW).
The modified amplitude and action are given by

Ãα(θ, θ
′) =

[

1

W| cos θ′|

∣

∣

∣

∣

(

∂y

∂θ′

)

θ

∣

∣

∣

∣

]1/2

, (96a)

S̃α(c̄
′, c̄, E) = Sα(y

′
0, y0, E) + πh̄c̄y0/W − πh̄c̄′y′0/W , (96b)

where y0 and y
′
0 are determined from the stationary phase

conditions for the angles θ and θ′. Note that the energy
dependence in the sum of Eq. (95) appears only in the
action S̃α = kL̃α (where L̃α is the effective length of path
α).
Expression (95) holds only for “chaotic” isolated tra-

jectories that scatter from the boundary of the dot be-
fore exiting on the right. Direct trajectories give rise to
nonuniversal effects, and the geometry of the dot is usu-
ally chosen so as to minimize these effects.

C. Mesoscopic fluctuations of the conductance

1. Conductance distributions

According to Landauer’s for-
mula, the zero-temperature dimensionless conductance g
[g = G/(2e2/h)] is the total transmission T =

∑

a τa, and
its distribution for ideal leads can be determined from the
joint distribution (93) of the transmission eigenvalues.
For single-mode ideal leads (Λ1 = Λ2 = 1; Baranger and
Mello, 1994; Jalabert, Pichard, and Beenakker, 1994),

P (g) =
1

2
βg

β−2
2 (0 < g < 1) . (97)

The GOE and GUE distributions are shown by solid lines
in the upper panels of Fig. 11. In the absence of a mag-
netic field (β = 1), it is more probable to find smaller
conductances; in the presence of a magnetic field (β = 2),
all allowed values are equally probable; and in the pres-
ence of spin-orbit scattering (β = 4), larger conductances
are more probable.
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FIG. 11. Conductance distributions in open dots with Λ =
1, 2 and 3 channels in each lead for conserved (left) and fully
broken (right) time-reversal symmetries. The distributions
are calculated using Dyson’s circular random matrix ensem-
bles: solid lines, the distributions in the absence of phase
breaking; dashed lines (shown for Λ = 1, 2 only), the results
of the voltage-probe model with a single-mode phase-breaking
lead (Λφ = 1); dash-dotted lines (shown for Λ = 1 only),
Λφ = 2. Adapted from Baranger and Mello (1994, 1995).
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The conductance distributions are also sensitive to the
number of channels in each lead and were calculated for
Λ1 = Λ2 = Λ ≤ 3 (Baranger and Mello, 1994) using
the circular ensembles. The results are shown by the
solid lines in Fig. 11. Already for Λ = 3 they are quite
close to a Gaussian, which is their exact asymptotic limit
(Λ → ∞). The average and variance are given by

ḡ =
Λ

2
− Λ

2(2Λ− 1 + 2/β)

(

2

β
− 1

)

→ Λ

2
− 1

4

(

2

β
− 1

)

, (98a)

σ2(g) =
2

β

Λ2(Λ − 1 + 2/β)2

(2Λ + 2 + 2/β)(2Λ− 1 + 4/β)(2Λ− 1 + 2/β)2

→ 1

8β
, (98b)

where the limit is Λ → ∞. The asymptotic values were
derived earlier by Iida, Weidenmüller, and Zuk (1990a,
1990b) in the Hamiltonian approach.
The dominating term Λ/2 in the average conductance

(98a) is just its classical value, while the second term
is the quantum weak-localization correction (see below).
Its asymptotic value is −1/4 and 0 for conserved and
broken time-reversal symmetry, respectively.
One conclusion from Eq. (98b) is that the rms of the

conductance fluctuations is of order e2/h, irrespective of
the size of the average conductance Λe2/h or the size of
the system (the number of modes Λ = int[kW/π] is size
dependent). This is a manifestation of the phenomenon
of universal conductance fluctuations, known from dis-
ordered metals. In the limit Λ → ∞, the conductance
variance is twice as large in the absence of magnetic field
than in its presence.
The case of nonideal leads was treated in the Hamil-

tonian approach by Iida, Weidenmüller, and Zuk (1990a,
1990b). The S-matrix approach (where the appropri-
ate ensemble is the Poisson kernel) was followed by
Brouwer and Beenakker (1994). For equivalent channels
(Tc = T ), and in the limit ΛT ≫ 1, one can integrate
over the ensemble by diagrammatic methods (Brouwer
and Beenakker, 1996).
Direct paths connecting the leads can also lead to

S̄ 6= 0. This situation is analogous to nuclear reactions
in which both direct and equilibrated components con-
tribute to the reaction cross section (Feshbach, 1992).
Baranger and Mello (1996) extracted an average “opti-
cal” S matrix through an energy average of the numerical
data (in cavities). The distributions predicted by the cor-
responding Poisson kernel (91) were then found to be in
good agreement with the direct numerical calculations.
We can gain additional physical insight into the behav-

ior of the average conductance and its weak-localization
correction in the semiclassical approximation (Baranger,
Jalabert and Stone, 1993a). Using Eq. (95) in the di-

agonal approximation (see Sec. III.B.1) and replacing
∑

c →
∫ 1

−1 d sin θ, we obtain for the average transmission

T̄ = ΛT , where T is the classical transmission proba-
bility per incoming mode (Beenakker and van Houten,
1989). This result agrees with the leading-order term of
the RMT result (98a) if T = 1/2. Indeed, for a fully
chaotic system and ideal leads, the electron injected into
the dot forgets its origin and has equal probability of
exiting on the left or on the right.
The quantum correction to the average transmission

is of order unity and cannot be calculated directly in
the semiclassical approach. Instead we can evaluate
such a correction to the average of the total reflection
R =

∑

c′c |rc′c|2. To leading order R̄ ≈ ΛR, where R
is the classical reflection probability. However, if time
reversal is a good symmetry, a correction to the diag-
onal part of the reflection R̄D =

∑

c |rcc|2 comes from
pairs of time-reversed orbits – they have the same action
and Maslov index, and their contribution to the diagonal
reflection does not average to zero. We find that the cor-

rection to R̄D is δR̄D = 1
2

∫ 1

−1 d sin θ
∑

α(θ,±θ) |Ãα(θ, θ)|2,
where Aα(θ, θ) is given by Eq. (96a) for θ = θ′, and
the sum is over all classical paths α that enter and
exit at angle θ. For chaotic trajectories the function
P (θ, θ′) ≡ ∑

α(θ,θ′) |Ãα(θ, θ
′)|2 satisfies approximately

a uniformity condition P (θ, θ) ≈
∫ 1

−1
d sin θ′P (θ, θ′)

(Baranger, Jalabert, and Stone, 1993b), leading to the
weak-localization correction (for conserved time-reversal
symmetry)

δR̄D = R . (99)

In the absence of time-reversal symmetry, the re-
turn probability to the same channel is |rcc|2 =
∑

c′ |rc′c|2/Λ ≈ R/Λ. When time-reversal symmetry is
conserved, this probability increases by δR̄D/Λ ≈ R/Λ,
so its value doubles to 2R/Λ.
How does the weak-localization correction to the re-

flection affect the conductance? We use the unitarity
condition of the S matrix |Scc|2 +

∑

c′ 6=c |Sc′c|2 = 1, and

assume that all off-diagonal probabilities |Sc′c|2 (c′ 6= c)
are equal. An increase in the return probability |rcc|2 =
|Scc|2 by R/Λ must then be compensated for by a de-
crease ≈ R/2Λ2 in each individual off-diagonal prob-
ability. The change in the total average transmission
T̄ =

∑

c′∈r,c∈l |Sc′c|2 is then δT̄ ≈ −R/2. For ideal leads,
R = 1/2, and δT̄ = −1/4, in agreement with Eq. (98a).
The enhancement of the mean-square diagonal S-

matrix element relative to the mean-square off-diagonal
element due to time-reversal symmetry is well known in
the statistical theory of nuclear reactions, where it is
called the elastic enhancement factor. It was also ob-
served in quantum chaotic scattering (Doron, Smilansky,
and Frenkel, 1990; Blümel and Smilansky, 1992).

34



2. Weak localization

In Sec. IV.C.1 we saw that the average conductance
increases when time-reversal symmetry is fully broken. In
this section we discuss the dependence of ḡ on a magnetic
field B as time-reversal symmetry is broken gradually.
The semiclassical expression for ḡ versus B was de-

rived by Baranger, Jalabert, and Stone (1993a). For a
weak magnetic field the classical trajectories are approx-
imately the same as for B = 0, but the wave function
acquires an Aharonov-Bohm phase. The contribution to
the action in the presence of a field B derived from a
vector potential A is (e/c)

∫

A · dℓ. Under time rever-
sal, this action changes sign, and the action difference
between paths that are time-reversed pairs is nonzero:
(S̃α − S̃αT )/h̄ = (2e/h̄c)

∫

A ·dℓ = 2ΘαB/Φ0, where Θα

is the area (times 2π) swept by the classical trajectory α.
Following the method that led to Eq. (99), we now find

δR̄D(B) = R
∫

dΘP (Θ)e
2iΘB

Φ0 , (100)

where P (Θ) ≡ 1
2

∫

d sin θ d sin θ′
∑

α(θ,θ′) |Ãα|2δ(Θ−Θα)
is the distribution of the effective area Θ enclosed by the
electron trajectory. This area distribution is exponential
in chaotic systems (Doron, Smilansky, and Frenkel, 1990;
Jalabert, Baranger, and Stone, 1990) but satisfies only a
power law in nonchaotic systems. Using an exponential
form P (Θ) ∝ e−αcl|Θ| in Eq. (100), and the unitarity
argument discussed at the end of Sec. IV.C.1, we find

δg(B) ≡ ḡGUE − ḡ(B) =
R
2

1

1 + (B/Bcr)2
, (101a)

Bcr = αclΦ0/2 . (101b)

Here Bcr is the crossover field measuring a typical field
required to suppress the weak-localization correction.
δg(B) is largest at B = 0 (note that the average con-
ductance itself has a dip at B = 0).

In a chaotic system αcl ∝ τ
−1/2
escape (Jensen, 1991). The

basic argument is that area accumulation in a chaotic dot
is diffusive and Θ2 is therefore linear in time. Since the
average time spent by the electron in the dot is τescape, we

have (Θ2)1/2/A ∝ (τescape/τc)
1/2 (A is the dot’s area and

τc is the ergodic time). From αcl ∝ (Θ2)−1/2 and using
Eq. (101b), we obtain for the crossover flux Φcr = BcrA

Φcr

Φ0
=

1

2
κ

(

2π
τc

τescape

)1/2

=
1

2
κ

(

2π
Γ̄

ET

)1/2

, (102)

where ET = h̄/τc is the ballistic Thouless energy and
Γ̄ = h̄/τescape is the mean escape width of a level in the
dot. The quantity κ is a geometrical factor that depends
on the device. In a dot with a total of 2Λ ideal open

channels, Γ̄ = (∆/2π)2Λ, and Φcr/Φ0 = (κ/2)g
−1/2
T

√
2Λ,

where gT ≡ ET /∆ is the ballistic Thouless conductance.
In particular, Bcr ∝

√
Λ.

The exact weak-localization line shape δg(B) for a
small number of channels was calculated in the Hamil-
tonian approach using the crossover ensemble (68) for
H in Eq. (20) for the S matrix (Pluhar̆ et al., 1994).
The exact expression (evaluated by supersymmetry) is
a complicated triple integral [see, for example, Eq. (6)
of Pluhar̆ et al., 1994], but it is well approximated by a
Lorentzian

δg(B) ≈ δg(0)
1

1 + (ζ/ζcr)2
, (103)

where δg(0) = Λ/(4Λ + 2), in agreement with
the circular ensemble result (98a), and ζcr =

(
√
Λ/2π) (1− 1/2Λ)−1/2. This crossover scale of the con-

ductance is different from the crossover scale of the spec-
tral statistics (∼ 1), and can be understood in terms of a
competition between the mixing time h̄/τmix = 2π∆ζ2

and the decay time of a typical resonance in the dot
h̄/τescape = (∆/2π)Λ. The conductance statistics make
the crossover when τescape/τmix = 4π2ζ2/Λ ∼ 1 or

ζcr ∼
√
Λ/2π.

Comparing the RMT result [Eq. (103)] with the semi-
classical result [Eq. (101)], we conclude that if the time-
reversal symmetry is broken by a magnetic field, then
ζ ∝ B. This result is confirmed in billiard-model cal-
culations (Bohigas et al., 1995; Alhassid, Hormuzdiar,
and Whelan, 1998). A semiclassical expression can be
derived for the proportionality constant (Bohigas et al.,
1995; Pluhar̆ et al., 1995). Obviously ζcr and Bcr satisfy
the same proportionality relation, confirming our earlier
conclusion that Bcr ∝

√
Λ.

We have seen in Sec. IV.C.1 that the conductance
variance in open dots is reduced by a factor of 2 when
time-reversal symmetry is broken. Using the transition
random-matrix ensemble (68), Frahm (1995) derived the
complete dependence of the conductance variance on the
transition parameter ζ. In the limit Λ ≫ 1,

σ2
ζ (g)− σ2

GUE(g) ≈
[

δσ2(g)

1 + (ζ/ζcr)2

]2

, (104)

where σ2
GUE = 1/16 and δσ2(g) ≡ σ2

GOE(g)− σ2
GUE(g) =

1/16.
The weak-localization effect has been observed in open

quantum dots by several experimental groups (Mar-
cus et al., 1992; Berry et al., 1994a, 1994b; Chang et al.,
1994; Keller et al., 1994, 1996; Chan et al., 1995).
Methods employed to find the average conductance in-
clude averaging over energy (Berry et al., 1994a, 1994b;
Keller et al., 1996), over shapes (Chan et al., 1995), and
over an ensemble of dots (Chang et al., 1994).
Figure 12 shows −[Ḡ(B) − Ḡ(0)] = δG(B) − δG(0) as

a function of magnetic field B for two different ballis-
tic cavities – a stadium [panels (a) and (c)] and a circle
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[panels (b) and (d)]. Panels (a) and (b) display the ex-
perimental result of Chang et al. (1994) using an array
of 6 × 8 “identical” quantum dots. The ensemble aver-
age shows a clear weak-localization effect. While the line
shape for the stadium is a Lorentzian [Eq. (101)], ex-
pected for a chaotic cavity, the line shape for the circle is
triangular, consistent with a power-law area distribution
that is expected for an integrable system. Figures 12(c)
and 12(d) show the results of numerical calculations for
the same 2D geometries used in the experiment.

FIG. 12. Weak-localization effect in open quantum dots: ex-
periment [panels (a) and (b)] vs theory [panels (c) and (d)].
The experimental results for −[Ḡ(B) − Ḡ(0)] (averaged over
48 dots) are shown for (a) a stadium and (b) a circle. The
observed line shape is a Lorentzian for the stadium (a chaotic
structure) and triangular for the circle (a regular system).
The insets are electron micrographs of the fabricated micro-
cavities. Numerical results of the weak-localization effect are
shown for (c) a stadium and (d) a circle. The circle’s cav-
ity includes a weak disorder potential to account for possible
impurities in the experimental structures. Note the similarity
between experiment and theory for both geometries. Adapted
from Chang et al. (1994).

Chan et al. (1995) fabricated a dot whose shape could
be distorted and collected statistics at each value of the
magnetic field B from various shapes of the dot. The
measured weak-localization effect and the variances of
the conductance fluctuations (for Λ = 2 channels in each
lead) are well fitted to Eqs. (103) and (104), respectively
(ζ/ζcr = B/Bcr = 2B/αΦ0 was used in these formu-
las). However, the parameters found in the fit to the
data δg = 0.15 (where g is the conductance in units of
2e2/h) and δσ2(g) = 0.00475 are significantly smaller
than the RMT values of δg = 0.2 and δσ2(g) ≈ 0.0229
for Λ = 2 [see Eqs. (98)]. This can be explained by
dephasing effects that will be discussed in Sec. IV.E.
The characteristic inverse area parameter α is found to
be α = 0.14 ± 0.01 µm−2 and α = 0.11 ± 0.01 µm−2

from fits to the weak-localization line shape (103) and
variance curve (104), respectively. An independent mea-
surement of this parameter is from the power spectrum

of the conductance fluctuations versus magnetic field (see
Sec. IV.C.4).

3. Ericson fluctuations

One of the prominent features of stochastic nuclear
reactions is the rapid fluctuation of the cross section σ
versus the total reaction energy E [see, for example, Fig.
6(a)]. Ericson (1960, 1963) quantified these fluctuations
in terms of the energy autocorrelation function

cσ(∆E) = σ(E +∆E)σ(E) − σ(E)
2 ∝ Γ2

(∆E)2 + Γ2
,

(105)

where the average is taken over E. According to Ericson,
this autocorrelation function is a Lorentzian whose width
measures the average resonance width Γ in the compound
nucleus.
Do Ericson fluctuations also occur in quantum dots?

The experimental results in Fig. 6(c), showing the con-
ductance as a function of the Fermi momentum, exhibit
fluctuations that are indeed similar to those observed in
nuclear reactions. The quantity analogous to Eq. (105)
is the conductance autocorrelation function versus the
Fermi momentum k: cg(∆k) ≡ g(k +∆k)g(k) − g2.
This correlator can be estimated semiclassically (Jal-
abert, Baranger, and Stone, 1990). Similar work for the
autocorrelations of the S-matrix elements in chaotic sys-
tems was done by Blümel and Smilansky (1988, 1989,
1990). Using the Landauer formula and the semiclassical
expression (95) for the transmission amplitudes, we find

cg(∆k) =

∣

∣

∣

∣

∫ ∞

0

dLei∆kLP (L)

∣

∣

∣

∣

2

, (106)

where P (L) ≡ 1
2

∫

d sin θd sin θ′
∑

α(θ,θ′) |Ãα|2δ(L−L̃α) is

the classical distribution of path lengths (the sum is over
all trajectories that originate and end at the same angles
θ and θ′). In a chaotic system the length distribution is
exponential: P (L) ∝ e−γclL and cg(∆k) is a Lorentzian,

cg(∆k) ∝
1

1 + (∆k/γcl)2
. (107)

Thus the scale for the conductance variation as a func-
tion of the Fermi momentum is set by γcl, the inverse
average length of a chaotic trajectory traversing the dot.
To relate Eq. (107) to Ericson’s formula (105), it is
necessary to convert γcl to a correlation length in en-
ergy Ecor = h̄vF γcl. Using γcl = 1/vF τescape, we find
Ecor ≈ h̄/τescape = Γ̄, in agreement with Ericson’s for-
mula.
Fluctuations of the conductance as a function of

the Fermi momentum were studied experimentally by
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Keller et al. (1996). A typical measurement of G versus
kF is shown in Fig. 6(c). While the average conductance
increases linearly with the number of modes kW/π, the
fluctuations are of universal size σ2(g) ∼ 1. The power
spectrum Sg(fk) of g(k) [Sg(fk) = |

∫

dke2πifkg(k)|2] is
the Fourier transform of the conductance autocorrela-
tor cg(∆k), and for a Lorentzian line shape [Eq. (107)]
we expect an exponential power spectrum Sg(fk) =
Sg(0)e

−2πγcl|fk| [see, for example, Fig. 6(d)]. Numerical
calculations give good agreement between the classical
value of γcl and its value extracted from fitting an expo-
nential to the quantum calculations of the power spec-
trum (Jalabert, Baranger, and Stone, 1990).
The autocorrelation function cζg(∆E) for a fixed value

of the transition parameter ζ in the crossover regime be-
tween GOE and GUE was calculated in RMT for ideal
leads with Λ ≫ 1 (Frahm, 1995):

cζg(∆E) =
1

16



















1
[

1 +
(

ζ
ζcr
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.

(108)

Equation (108) reduces to a Lorentzian in both the GOE
(ζ = 0) and GUE (ζ ≫ 1) limits, in agreement with the
semiclassical result (107).

4. Parametric correlations

In this section we discuss the mesoscopic fluctuations
of the conductance as a function of an external param-
eter. Note that the energy should not be considered an
external parameter since it enters in a special way in Eq.
(20) for the S matrix, while a dependence on a generic
external parameter x is introduced through H = H(x).
Of particular experimental interest is the parametric

correlator when the parameter varied is a magnetic field:
cg(∆B) ≡ g(B +∆B)g(B)− ḡ2. Following the semiclas-
sical approach of Sec. IV.C.3, we now obtain

cg(∆B) =

∣

∣

∣

∣

∫ ∞

−∞

dΘeiΘ∆B/Φ0P (Θ)

∣

∣

∣

∣

2

, (109)

where P (Θ) is the classical area distribution swept by the
electron in the dot. In a chaotic dot, P (Θ) ∝ e−αcl|Θ| (see
Sec. IV.C.2), and cg(∆B) is a squared Lorentzian:

cg(∆B) ∝
[

1 + (∆B/2Bcr)
2
]−2

. (110)

The correlation field Bc is thus twice the crossover field
Bcr [Eq. (101b)], because the phase involved in the corre-
lator is proportional to the difference of areas as opposed
to their sum in the weak localization case.

Typical conductance fluctuations versus magnetic field
and the conductance correlator cg(∆B) in an open sta-
dium dot are shown in Fig. 13(a) and (b), respec-
tively (Jalabert, Baranger, and Stone, 1990). The cal-
culated correlator [solid line in panel (b)] compares well
with the semiclassical prediction (110) [dashed line in
panel (b)]. The power spectrum of g(B) [Sg(fB) ≡
|
∫

dBei2πfBBg(B)|2] is just the Fourier transform of
cg(∆B) and is given by (Marcus et al., 1993b)

Sg(fB) = Sg(0)(1 + 2παΦ0|fB|)e−2παΦ0|fB | , (111)

where we have used Bcr = αΦ0/2 [see Eq. (101b)]. The
inset of Fig. 13(b) shows the calculated power spectrum
Sg(fB) (solid line) in comparison with a best fit to Eq.
(111) (dashed line). Good agreement between the clas-
sical value of α (determined from the area distribution
in the stadium) and the quantum value of α [determined
from a fit of (111) to the power spectrum] is found over
a variety of the stadium dot’s parameters.
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FIG. 13. Conductance fluctuations vs magnetic field in an
open chaotic dot: (a) dimensionless conductance g vs B/B0

(where B0 = mcvF /eW) for an open stadium with R/W = 2
(see inset) and kFW/π = 4.5; solid line, the quantum cal-
culation; dashed line, the smoothed quantum result; dotted
line, the classical result. (b) The calculated conductance cor-
relator cg(∆B) vs ∆B/B0 for the open stadium (solid line)
and its semiclassical prediction (110) (dashed line). The inset
shows the smoothed power spectrum Sg(fB) of g(B) [i.e., the
Fourier transform of cg(∆B)]. The dashed line is the best fit
to Eq. (111). From Jalabert, Baranger and Stone (1990).

The power spectrum Sg(fB) was determined in the ex-
periment of Chan et al. (1995) by averaging over indi-
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vidual spectra from the measurement of g(B) at different
shapes. A two-parameter [Sg(0) and α] fit to (111) repro-
duces the data well with α = 0.14± µm−2, in agreement
with the value derived from the weak-localization effect
(see Sec. IV.C.2). In the same experiment the conduc-
tance g was also measured versus a shape-distortion volt-
age V . Figure 6(d) shows the power spectrum Sg(fV ),
averaged at ten different measurements of g(V ) collected
at various fixed values of the magnetic field. The dot-
ted line is a fit to Sg(V ) = Sg(0)e

−2πξfV , suggesting a
Lorentzian line shape for the conductance correlator ver-
sus shape: cg(∆V ) ∝ 1/[1 + (∆V/ξ)2].
Using RMT, it is possible to calculate the correlation

function in both energy and a time-reversal-symmetry-
breaking parameter ζ. For ideal leads with Λ ≫ 1 and
for completely broken time-reversal symmetry (Frahm,
1995),

cg(∆ζ,∆E) =
1

16

1
[

1 + (∆ζ/2ζcr)
2
]2

+ (∆E/Γ)
2
.

(112)

For ∆E = 0, Eq. (112) reduces to the squared Lorentzian
of Eq. (110). Efetov (1995) calculated this correla-
tor for nonideal leads. Asymptotic expressions for the
conductance correlator cg(∆ζ) in RMT were derived for
any number of channels Λ by Gossiaux, Pluhar̆, and
Weidenmüller (1998) and by Pluhar̆ and Weidenmüller
(1999). The limits considered were small and large ∆ζ
at fixed Λ, as well as large Λ at fixed ∆ζ/Λ.

D. Conductance fluctuations at finite temperature

Temperature affects the conductance fluctuations in
two ways, through thermal smearing and through the
increase of the dephasing rate with temperature. Both
effects reduce the fluctuations. In this section we discuss
the first effect, i.e., the role of temperature in mesoscopic
fluctuations in the limit of complete phase coherence.
Efetov (1995) derived the conductance correlator ver-

sus magnetic field cg(∆B;T ) at finite temperature
T . Using Eq. (11) for the finite-temperature con-
ductance, this correlator can be related to the zero-
temperature correlator cg(∆B,∆E) in both magnetic
field and energy (see Sec. IV.C.4): cg(∆B;T ) =

T 2
∫∞

−∞
d
dT [2T sinh (∆E/2T )]

−2
cg(∆B,∆E)d∆E. At

low temperatures T ≪ Γ/2π, this correlator reduces to
the squared Lorentzian of Eq. (110), while at high tem-
peratures T ≫ Γ/2π, this correlator is a Lorentzian,

cg(∆B;T ) =
πΓ

96T

1

1 + (∆B/2Bcr)2
. (113)

The high-temperature limit of the conductance variance
σ2(g) = πΓ/96T can be seen to be much smaller than

the zero-temperature variance of 1/16. Thus the con-
ductance fluctuations are reduced significantly when the
temperature exceeds a typical level width Γ.

E. Dephasing

The magnitudes of the observed weak-localization cor-
rection and conductance fluctuations in open dots are
often reduced compared to the theoretical expectations.
This discrepancy is explained by dephasing times that are
comparable with typical escape times in the dot. Dephas-
ing can be caused by a voltage probe (since an electron
absorbed by the probe is reinjected into the dot with an
uncorrelated phase) or by inelastic processes in the dot
such as electron-electron collisions.
There are two important issues concerning dephasing.

The first is to describe quantitatively how mesoscopic
fluctuations are affected by finite dephasing rates (Sec.
IV.E.1). The second is the dependence of the dephasing
rate on temperature (Sec. IV.E.2). Recent experimental
results in dots with single-mode leads are described in
Sec. IV.E.3.

1. Models for dephasing

The dephasing voltage-probe model was introduced by
Büttiker (1986a, 1986b) and applied to the conductance
fluctuations in open dots by Baranger and Mello (1995)
and by Brouwer and Beenakker (1995). A third dephas-
ing lead is added and its voltage Vφ is adjusted to keep
Iφ = 0, thus conserving the average number of elec-
trons in the dot. The effective two-lead conductance
2(e2/h)g = I1/(V2 − V1) can be expressed in terms of
the three probe conductance coefficients:

g = g21 +
g2φgφ1
gφ2 + gφ1

. (114)

Each of the first two leads has Λ equivalent modes, and
the third lead is assumed to have Λφ modes. The dephas-
ing rate Γφ is related to the total number Λφ of dephasing
modes by

Λeff
φ ≡ ΛφTφ = 2πΓφ/∆ , (115)

where Tφ is the transmission probability per mode in the
third lead. The parameter Λeff

φ ≡ ΛφTφ measures the
effective number of ideal dephasing modes.
The entire (2Λ + Λφ) × (2Λ + Λφ) S matrix is as-

sumed to be described by the respective circular en-
semble. The fluctuations of the measured conductance
g are then calculated from Eq. (114). Using the re-
lations g21 + g22 + g2φ = 0, g11 + g21 + gφ1 = 0 and
g12 + g22 + gφ2 = 0 (see Sec. II.B), it is possible to elimi-
nate from Eq. (114) all conductance coefficients that are

38



related to the third lead. The distribution of g can then
be inferred from the known distribution of the sub-S ma-
trix (Pereyra and Mello, 1983; Friedman andMello, 1985)
that corresponds to the two physical leads (Brouwer and
Beenakker, 1995).
Figure 11 shows conductance distributions calculated

by Baranger and Mello (1995) for Λφ = 1 dephasing mode
in open dots with single- or double-mode leads (dashed
lines) and for Λφ = 2 in dots with single-mode leads
(dashed-dotted lines). They also calculated analytically
(to leading order in 1/Λφ) the average and variance of
the conductance for an ideal, multimode voltage probe,

ḡ =
Λ

2
+

(

Λ

Λφ

)

β − 2

2β
+O(Λ−2

φ ) (116a)

σ2(g) =

(

Λ

Λφ

)2
2Λ + 2− β

4βΛ
+O(Λ−3

φ ) , (116b)

and found an interpolation formula for the weak-
localization correction (at B = 0):

δg ≡ −
(

ḡ(B = 0)− Λ

2

)

≈ −1

4

1

1 + Λφ/2Λ
. (117)

We see from Eq. (117) that the universal asymptotic
result for the weak-localization correction (−1/4) is valid
only if Λφ ≪ 2Λ.
The voltage-probe model describes localized dephas-

ing (at the point contact between the dot and the third
lead) and is less suitable to describe dephasing due to
inelastic processes that occur through the whole dot. A
way to introduce dephasing uniformly over the dot is to
add an imaginary part −iΓφ/2 to the dot’s Hamiltonian.
This model does not conserve the number of electrons
and was modified by Brouwer and Beenakker (1997) to
conserve electron number by mapping it on the voltage-
probe model. Compared with the standard voltage-probe
model, they found conductance distributions that were
narrower and with strongly suppressed tails. This is be-
cause the number-conserving imaginary-potential model
is more effective in dephasing than the localized ideal
voltage-probe model. Nevertheless, the asymptotic re-
sults for the average and variance coincide exactly with
Eqs. (116). Fig. 14(b) shows the dephasing rate Γφ

[calculated from Λeff
φ via Eq. (115)] versus the weak-

localization correction δg for both dephasing models.
The complete form of the weak-localization line

shape was calculated in the (non-number-conserving)
imaginary-potential model (Efetov, 1995): δg(B) ≡
ḡGUE − ḡ(B) = (1/4) [1 + (B/Bcr)

2 + Λeff
φ /2Λ]−1, and

found to have no explicit dependence on temperature.
This temperature independence is used to determine the
dephasing rate from the measured weak-localization ef-
fect at finite temperature, as is discussed in the next
section.

2. Temperature dependence of dephasing

Dephasing rates were determined experimentally in
disordered 2D (Choi, Tsui, and Alavi, 1987) and 1D
(Kurdak et al., 1992) semiconductors, in disordered 1D
metals (Lin and Giordano, 1986; Echternach, Gershe-
son and Bozler, 1993), and more recently in open quan-
tum dots (Marcus et al., 1993a, 1994; Clarke et al.,
1995; Huibers, Switkes, Marcus, Campman, and Gos-
sard, 1998). To determine τφ experimentally, it is best
to measure a quantity that is sensitive to dephasing,
yet is not affected explicitly by thermal smearing, e.g.,
the weak-localization effect in the magnetoconductance.
This was recently implemented by Huibers, Switkes,
Marcus, Campman, and Gossard (1998) in open quan-
tum dots using three independent methods:
(i) Measuring the weak-localization correction δg (at
B = 0). From δg one can determine the number of
effective dephasing channels Λeff

φ using one of the phe-
nomenological dephasing models [e.g., Eq. (117)] and
therefore determine Γφ from Eq. (115). The inset in Fig.
14(b) shows Γφ versus δg in the two dephasing models
discussed in Sec. IV.E.1.
Figure 14 shows the recent measurements of Huibers,

Switkes, Marcus, Campman, and Gossard (1998). Panel
(a) is the measured δg for four different dots as a function
of temperature. The smaller values of δg for larger dots
are consistent with Eq. (115) since ∆ ∝ A−1 and Λeff

φ ∝
A for a fixed value of the dephasing rate (i.e., at fixed
temperature). The extracted values of τφ, shown in Fig.
14(b) (symbols), are approximately independent of the
dot’s area.
(ii) Measuring the width of the weak-localization line
shape. According to Eqs. (101) or (103), δg(B) is a
Lorentzian characterized by a crossover field Bcr that is
proportional to the square root of the total number of
open channels. In the presence of phase breaking, this
total number of channels should include the number of
dephasing channels

BcrA/Φ0 = (κ/2)g
−1/2
T

√

2Λ + Λeff
φ , (118)

where κ is a geometrical constant of the dot and gT is
the Thouless conductance. Equation (118) can be used
to determine Λeff

φ from the measured Bcr. This equa-
tion contains an additional unknown parameter κ, but it
is temperature independent and can be determined, for
example, by a best fit to the δg data.
(iii) Measuring the power spectrum Sg(fB) of the conduc-
tance fluctuations versus magnetic field (Marcus et al.,
1993a, 1994; Clarke et al., 1995). At higher tempera-
tures, the conductance correlator in open dots is given
by a Lorentzian (113) and its Fourier transform is expo-
nential: Sg(fB) = Sg(0)e

−2πiBc|fB | (where Bc = 2Bcr).
Using a two-parameter fit to the measured power spec-
trum it is possible to extract the correlation field Bc and
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then use Eq. (118) to determine the dephasing time, as
in the second method above.
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FIG. 14. The measured temperature dependence of the de-
phasing time in open quantum dots: (a) measured weak-
localization correction δg in four dots as a function of tem-
perature T ; note the decrease in δg for the larger dots [in
agreement with Eq. (115), see text]; inset, ḡ vs magnetic
field at several temperatures for the first device; (b) sym-
bols, the extracted dephasing time vs temperature; dashed
line, τee from Eq. (117); solid line, a fit to the theoretical
τφ = (τ−1

ee + τ−1)−1 of a 2D disordered system (see text) with
l = 0.25 µm; inset, the effective number of dephasing chan-
nels Λeff

φ vs δg in the voltage-probe model (dashed line) and
in the number-conserving imaginary-potential model (solid
line). Adapted from Huibers, Switkes, Marcus, Campman,
and Gossard (1998).

The dependence of the dephasing time on temperature
in disordered conductors is theoretically understood (Alt-
shuler and Aronov, 1985; for a recent review see Aleiner,
Altshuler, and Gershenson, 1999). At low tempera-
tures, the electron-electron scattering rate dominates the
electron-phonon rate. There are two contributions to the
electron-electron dephasing rate in 2D: a large-energy-

transfer contribution quadratic in T that is character-
istic of clean metals, τ−1

ee = [(πkT )2/2hEF ] ln (EF /kT )
(see, for example, Pines and Nozières, 1966), and a small-
energy-transfer (<∼ kT ) contribution (Nyquist rate) lin-
ear in T , τ−1 = (kTλF /hl) ln (πl/λF ) (Altshuler and
Aronov, 1985; Imry, 1996). The total rate is approx-
imately τ−1

φ ≈ τ−1 + τ−1
ee . At low temperatures the

Nyquist rate dominates, and it vanishes as T → 0. Some
experiments (e.g., Mohanty, Jariwala, and Webb, 1997)
find an apparent saturation of the dephasing rate as
T → 0 for a reason that is not yet understood.
In ballistic quantum dots (0D systems) the situation is

less clear. Microscopic estimates in closed ballistic dots
by Sivan et al. (1994) and Altshuler et al. (1997) give
τ−1
φ ∝ T 2 for kT ≫ ∆. However, no theoretical esti-
mates are available for open quantum dots. The results
of Huibers, Switkes, Marcus, Campman, and Gossard
(1998) offer a puzzle: they suggest a temperature depen-
dence of the rate that is characteristic of 2D disordered
systems and not just a T 2 dependence [see Fig. 14(b)].
More experiments and theoretical work may be necessary
to resolve this issue.

3. Conductance distributions

Using the experimentally determined dephasing rates,
one can apply the phase-breaking models described in
Sec. IV.E.1 to predict the conductance distributions and
compare them with the experimental distributions. Re-
alistic calculations should include effects due both to de-
phasing and to thermal smearing.
A detailed comparison between experiment and theory

for single-mode leads was reported by Huibers, Switkes,
Marcus, Brouwer, et al. (1998). The measured weak-
localization correction was used to determine τφ(T ) as
in Sec. IV.E.2, and found to be consistent with the
results shown in Fig. 14(b). The number-conserving
imaginary-potential model (Sec. IV.E.1) was then used
together with a thermal smearing procedure to calculate
the conductance distributions. Figure 15 compares some
of these theoretical distributions with the measured ones
for both conserved (left) and fully broken (right) time-
reversal symmetry. The distributions measured at the
lower temperature [panels (a) and (c)] are clearly asym-
metric. The dotted lines in panels (a) and (c) of Fig. 15
are the predicted RMT distributions (97) without any
phase breaking and at T = 0. The dashed lines include
the correct dephasing rate at the corresponding temper-
ature but ignore thermal smearing effects. Finally, the
solid lines include both dephasing and explicit thermal
effects and are in good agreement with the data. The
results show that both direct thermal effects and finite
dephasing rates play an important role.
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FIG. 15. Finite-temperature conductance distributions in
single-mode open dots without a magnetic field [panels (a)
and (b)] and with a magnetic field [panels (c) and (d)].Panels
(a) and (c) are for kT = 0.61 ∆ and panels (b) and (d) are
for kT = 2.8 ∆. The solid circles are the experimental re-
sults. The dotted lines in panels (a) and (c) are the fully
phase-coherent T = 0 distributions (97). The dashed lines
in all panels are the theoretical calculations without thermal
smearing but with the experimentally determined effective
number of dephasing modes at the relevant temperatures –
Λeff

φ = 0.3 in panels (a) and (c), and Λeff
φ = 1.5 in panels

(b) and (d). The solid lines in all panels are the theoretical
predictions when both the finite dephasing rate and thermal
smearing effects are accounted for. Adapted from Huibers,
Switkes, Marcus, Brouwer, et al. (1998).

V. MESOSCOPIC FLUCTUATIONS IN CLOSED DOTS

Recent studies of statistical fluctuations in quantum
dots have focused on almost-isolated or “closed” dots
that are separated by barriers from the leads. Our main
interest is in the quantum Coulomb-blockade regime,
where the temperature is comparable to or smaller than
the mean level spacing in the dot. Experimentally, a se-
ries of peaks is observed in the conductance versus gate
voltage; see, for example, Fig. 7(c). The width of these
peaks is thermally broadened, but their heights fluctuate
strongly. Whereas in open dots the conductance fluctua-
tions originate from the interference of many overlapping
resonances, in closed dots the peak-height fluctuations re-
sult from the spatial fluctuations of individual resonance
wave functions at the dot-lead interfaces.
A statistical theory of the conductance peaks in

Coulomb-blockade dots was introduced by Jalabert,
Stone and Alhassid (1992). The peak-height distribu-
tions were derived from RMT, and found to be universal
and sensitive only to the symmetry class. The sensi-
tivity of a Coulomb-blockade peak to an experimentally
controlled parameter can be studied by changing a mag-
netic field or the shape of the dot. Alhassid and Attias
(1996a) derived the peak-height parametric correlation

function and showed that it is universal once the parame-
ter is scaled. The predicted statistics of the peak heights
for both conserved and broken time-reversal symmetry
were observed by two experimental groups (Chang et al.,
1996; Folk et al., 1996) using dots of different design and
size. The latter group also confirmed the predicted func-
tional form of the peak-height autocorrelation function
in a magnetic field.
In a closed dot, the charge on the dot is quantized

and the Coulomb interactions cannot be ignored. The
simplest model is the constant-interaction model (26),
which takes into account only the average Coulomb en-
ergy of the dot’s electrons. Interaction effects beyond
the constant-interaction model are probably less relevant
for the fluctuations of sufficiently highly excited states.
However, interactions may cause deviations from RMT
for the low-lying part of the spectrum, which is the region
of interest in this section. We shall see that the constant-
interaction model can explain some, but not all, of the
observed statistical fluctuations. The main evidence for
the breaking of the constant-interaction model comes
from the peak-spacing fluctuations. In the constant-
interaction model, these fluctuations reflect the spac-
ings between the single-particle levels in the dot and are
expected to follow a Wigner-Dyson distribution. How-
ever, the observed distribution is more symmetric and
closer to a Gaussian (Sivan et al., 1996; Simmel, Heinzel
and Wharam, 1997; Patel, Cronenwett, et al., 1998).
A discussion of interaction effects beyond the constant-
interaction model is deferred to Sec. VI.
Charging energy affects the statistics of the Coulomb-

blockade peaks at finite temperature. An outstanding
issue has been the observed peak-to-peak correlations:
temperature enhances these correlations but the exper-
imental correlations at low temperatures are stronger
than expected. An interesting phenomenon is the satu-
ration of peak-to-peak correlations as a function of tem-
perature (Patel, Stewart, et al., 1998). This effect can
be explained by the statistical scrambling of the dot’s
spectrum as electrons are added to the dot.
Section V.A describes the main elements of the statis-

tical theory of closed dots. Sections V.B and V.C review
the statistics and parametric correlations respectively, of
the conductance peaks. The crossover statistics in the
presence of a time-reversal symmetry-breaking field are
discussed in Sec. V.D. The peak-spacing statistics in the
framework of a single-particle model plus constant charg-
ing energy are reviewed in Sec. V.E. Finally, a statistical
theory at finite temperature, and the use of temperature
to probe the statistical scrambling of the dot’s spectrum
versus electron number, are presented in Secs. V.F and
V.G, respectively.
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A. Statistical theory at low temperatures

We first discuss Coulomb-blockade dots at T ≪ ∆.
Typically these low temperatures are still much larger
than a typical resonance width and the observed con-
ductance peaks are thermally broadened (see Sec. II.D).
The interesting information is carried by the conductance
peak height Gpeak

λ ∝ ΓlΓr/(Γl+Γr) [see Eq. (24)], where
Γl(r) is the width of a resonance level to decay in to the

left (right) lead. Here Γl(r) =
∑

c |γ
l(r)
c |2, where γl(r)c is

the partial amplitude to decay into channel c in the left
(right) lead. The quantity γcλ is given by Eq. (17), and
can be expressed as a scalar product of the resonance
wave function ψλ = (ψλ1, ψλ2, . . .) and the channel wave
function φc = (φc1, φc2, . . .):

γcλ = 〈φc|ψλ〉 ≡
∑

j

φ∗cjψλj . (119)

Here we expanded the wave function Ψλ =
∑

j ψλjρj in
a fixed basis ρj in the dot and defined the channel vector

φcj ≡
(

h̄2kcPc/m
)1/2 ∫

C dl ρ
∗
j (r)φc(r) =

√
2πWjc [W is

the dot-lead coupling matrix introduced in Eq. (19)].
The scalar product in Eq. (119) is defined over the dot-
lead interface and differs from the usual scalar product
in the Hilbert space of the dot.
Another modeling of a quantum dot assumes pointlike

contacts, and each lead is composed of several such point
contacts rc (Prigodin, Efetov, and Iida, 1993; Mucciolo,
Prigodin, and Altshuler, 1995). Each point contact con-
stitutes one channel, and the partial width of a level λ
to decay into it is γcλ = (αcA∆/π)1/2 Ψλ(rc), where αc

is a dot-lead coupling parameter and A is the area of the
dot. The partial width can still be expressed as a scalar
product [Eq. (119] but now the channel vector is defined
by φcj ≡ (αcA∆/π)1/2ρ∗j (rc).

Fluctuations in Gpeak
λ arise from fluctuations of the

widths Γl and Γr. These widths are determined by the
partial width amplitudes γcλ, which in turn are expressed
by Eq. (17). The penetration factor Pc in Eq. (17) is
a smooth function of the Fermi energy (or gate voltage),
and fluctuations can only arise from the overlap integral
∫

C dlφ
∗
cΨλ, i.e., from the spatial fluctuations of Ψλ(r)

across the dot-lead interface C. For a chaotic ballistic dot,
these fluctuations are described by RMT. A key relation
for connecting the physical quantity (i.e., width) to RMT
is Eq. (119), expressing the partial-width amplitude as
a projection of the random-matrix eigenfunction ψλ on a
fixed channel vector φc.

B. Conductance peak statistics

The main goal of this section is to derive the statisti-
cal distributions of the conductance peak heights. These

distributions were derived by Jalabert, Stone, and Al-
hassid (1992) using RMT and by Prigodin, Efetov, and
Iida (1993) using supersymmetry. The case of correlated
channels in two-channel leads was treated by Mucciolo,
Prigodin and Altshuler (1995) for broken time-reversal
symmetry, and the general case of multimode leads with
possibly inequivalent and correlated channels was dis-
cussed by Alhassid and Lewenkopf (1995).

1. Partial-width amplitude distribution

The joint distribution of the partial-width amplitudes
γ = (γ1, γ2, . . . , γΛ) of a resonance λ can be computed
from the RMT wave-function statistics. Using Eqs. (66)
and (119),

P (γ) =
Γ(βN/2)

πβN/2

∫

D[ψ]

[

Λ
∏

c=1

δ(γc − 〈φc|ψ〉)
]

× δ

(

N
∑

µ=1

|ψµ|2 − 1

)

, (120)

where D[ψ] ≡ ∏N
µ=1 dψµ for the GOE and D[ψ] ≡

∏N
µ=1 dψ

∗
µdψµ/2πi for the GUE. The integral (120) can

be evaluated following the methods of Ullah (1967) and
transforming to a new set of orthonormal channels. For
Λ ≪ N and N → ∞, we recover a Gaussian distribution
(Alhassid and Lewenkopf, 1995),

P (γ) = (detM)−β/2 e−
β
2 γ

†M−1
γ . (121)

The distributions (121) are normalized with the mea-

sure D[γ] ≡ ∏Λ
c=1

(

dγc/
√
2π
)

for the GOE and D[γ] ≡
∏Λ

c=1 (dγ
∗
c dγc/2πi) for the GUE. They can also be de-

rived (Krieger and Porter, 1963; Ullah, 1963) from the
requirement that their form be invariant under orthogo-
nal (unitary) transformations for the GOE (GUE). The
quantityM in Eq. (121) is the channel correlation matrix

Mcc′ = γ∗c γc′ =
1

N
〈φc|φc′〉 (122)

and is identical with the matrixM = 2πW †W/N defined
in Sec. IV.A [see Eq. (89)]. The eigenvalues w2

c ofM are
just the average partial widths Γ̄c [see Eq. (122)], and for
the present case of isolated resonances Γ̄c ≈ (∆/2π)Tc.
For a general set of channels, the matrix M can be non-
diagonal (describing correlated channels) and have dif-
ferent diagonal elements (corresponding to inequivalent
channels).
We note that in chaotic systems the joint distribu-

tion of an eigenfunction’s amplitudes at Λ spatial points
r1, . . . , rΛ is a special case of Eq. (121). Indeed, the
partial-width amplitudes of the point-contact model are
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proportional to the wave-function amplitudes at a set of
fixed spatial points (see also Srednicki, 1996).
In the point-contact model, Mc′c is a measure of the

spatial wave-function correlations at two different spa-
tial points Ψ∗(r)Ψ(r′). Expanding the eigenfunction
in the fixed basis Ψ(r) =

∑

j ψjρj(r), and using the

RMT relation ψ∗
jψj′ = δjj′/N , we find Ψ∗(r)Ψ(r′) =

∑

j ρ
∗
j (r)ρj(r

′)/N . The fixed basis ρj(r) is chosen such
that the eigenfunction’s components are distributed ran-
domly on the unit sphere in N dimensions. Random-
matrix theory is expected to describe fluctuations in a
chaotic system on a local energy scale. Therefore, for
the problem of a free particle in a cavity, we choose this
basis to be the free-particle states at the given energy
E = h̄2k2/2m. In polar coordinates r, θ such a basis
is ρj(r) ∝ Jj(kr)e

ijθ (j = 0,±1,±2 . . .), where Jj are
Bessel functions of the first kind. Using the addition
theorem for the Bessel functions, we obtain

Ψ∗(r)Ψ(r′) = A−1J0(k|r − r′|) . (123)

Similar results are obtained if ρj are chosen to be plane
waves with fixed energy but random orientation of mo-
mentum k. Equation (123) was first derived by Berry
(1977), assuming that the Wigner function of an ergodic
system is microcanonical on the energy surface and av-
eraging over a spatial region whose linear extension is
large compared with the particle’s wavelength. It fol-
lows that in the point-contact model, the channel cor-
relation matrix of a chaotic dot is given by Mcc′ =
(√
αcαc′∆/π

)

J0(k|rc − rc′ |).
In d dimensions the spatial correlations of eigenfunc-

tions are

Ψ∗(r)Ψ(r′)/|Ψ(r)|2 = 2d/2−1Γ(d/2)
Jd/2−1(k|r − r′|)
(k|r − r′|)d/2−1

≡ fd(|∆r|) . (124)

The envelope of fd(|∆r|) decays as a power law
(k|∆r|)−(d−1)/2. For weakly disordered systems, fd con-
tains an additional factor of e−|∆r|/2l, resulting in an ex-
ponential cutoff of the spatial correlations beyond l (Muc-
ciolo, Prigodin, and Altshuler, 1995; Prigodin, 1995).

2. Width distribution

We next determine the level-width distribution (note
that for a symmetric dot Γl = Γr, and the conduc-
tance peak height is proportional to the width). Using
Γ =

∑

c |γc|2 = γ†γ and the Gaussian nature (121) of
the partial width amplitudes, we can easily calculate the
characteristic function of the width distribution P (u) ≡
∫∞

0
dΓ exp(iuΓ)P (Γ) = [det(I − 2iMu/β)]−β/2. This

width distribution P (Γ) is then (Alhassid and Lewenkopf,
1995)

P (Γ) =
1

2π

∫ ∞

−∞

du
e−iuΓ

[det(I − 2iuM/β)]
β/2

(125)

and depends only on the eigenvalues w2
c of the positive-

definite correlation matrix M .
Equation (125) can be evaluated by contour integra-

tion. All the singularities of the integrand are along
the negative imaginary axis u = −iτ at τ = 1/w2

c .
For the GOE case the singularities are of the type
(τ − 1/2w2

c)
−1/2, leading to

PGOE(Γ)=
1

π2Λ/2

(

∏

c

1

wc

)

Λ
∑

m=1

(−)m+1

∫ 1/2w2
2m

1/2w2
2m−1

dτ

× e−Γτ

√

∏2m−1
r=1 (τ − 1

2w2
r
)
∏Λ

s=2m( 1
2w2

s
− τ)

, (126)

where the eigenvalues of M are arranged in ascending
order and we have defined 1/2w2

Λ+1 → ∞ for an odd
number of channels. For the GUE statistics, all the sin-
gularities are poles. If the eigenvalues of M are nonde-
generate, then the poles are simple and

PGUE(Γ) =

(

∏

c

1

w2
c

)

Λ
∑

c=1





∏

c′ 6=c

(
1

w2
c′

− 1

w2
c

)





−1

× e−Γ/w2
c . (127)

In the special case of uncorrelated and equivalent chan-
nels, all the eigenvalues of M are degenerate, w2

c = w2,
and the width distribution can be found directly from Eq.
(125) to be the χ2 distribution in βΛ degrees of freedom.

3. Peak-height distributions

In a closed dot we define g to be the (dimension-
less) conductance peak height Gpeak measured in units
of (e2/h)(πΓ/4kT ) [see Eqs. (24)]. Assuming that the
widths Γl and Γr are uncorrelated, P (g) can be com-
puted using Eq. (24b) and the known width distributions
of Sec. V.B.2. In the simple case of one-channel symmet-
ric leads (Λ = 1; Γ̄l = Γ̄r), we find (Jalabert, Stone, and
Alhassid, 1992; Prigodin, Efetov, and Iida, 1993)

PGOE(g) =
√

2/πge−2g , (128a)

PGUE(g) = 4ge−2g [K0(2g) +K1(2g)] , (128b)

where K0 and K1 are the modified Bessel functions.
The peak-height distributions were measured indepen-

dently by Chang et al. (1996) and by Folk et al. (1996)
for dots with single-channel tunneling leads. The results
of Chang et al. [(1996), Figs. 16(a) and 16(b)] are from
dots with ∼ 100 electrons. The histograms are the exper-
imental results at T = 75 mK; 72 peaks were collected
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for B = 0 and 216 peaks for B 6= 0. The solid lines are
the predicted theoretical distributions (128a) and (128b)
for B = 0 and B 6= 0, respectively. The conversion from
the measured conductance peak Gpeak to the dimension-
less conductance g requires an unknown parameter – the
average width Γ̄ of a resonance in the dot. Since Γ̄ is in-
dependent of the magnetic field, the theoretical distribu-
tions in Figs. 16(a) and 16(b) represent a one-parameter
fit Γ̄ ≈ 0.086 kT to both curves. The measured distribu-
tions are non-Gaussian and characterized by a large num-
ber of small peaks with more small peaks for the B = 0
case, in agreement with the theoretical predictions. The
inset of Fig. 16(a) shows a B = 0 peak sequence versus
gate voltage at T = 75 mK (lower trace); three of the
peaks are too small to be observed, but can be seen at
a higher temperature trace (T = 600 mK) of the same
peaks (upper trace).
Figures 16(c) and 16(d) show the experimental results

of Folk et al. (1996) at T = 70 ± 20 mK. Their dots
are larger (∼ 1000 electrons) than in the previous ex-
periment, so that kT/∆ ∼ 0.3 − 0.5 ∆ is higher. Us-
ing shape-distorting gates, larger statistics could be col-
lected. Each distribution includes ∼ 600 peaks, although
only ∼ 90 are statistically independent. The solid lines
are fits to the RMT predictions, (128a) and (128b). The
insets show the same distributions on a linear-log scale,
where good agreement between theory and experiment is
seen over two to three orders of magnitude. We remark,
however, that the strong correlations observed between
heights of neighboring peaks [see, for example, Fig. 7(c)]
is at variance with RMT, and we shall return to this point
in Sec. V.F.1.
It is also possible to calculate the peak-height distri-

butions for a general leads configuration for both the or-
thogonal (Alhassid and Lewenkopf, 1995, 1997) and uni-
tary ( Alhassid and Lewenkopf, 1995, 1997; Mucciolo,
Prigodin and Altshuler, 1995) symmetries. The RMT
predictions for the peak-height distributions were tested
in a model of a ballistic dot – the conformal billiard (see
Sec. III.A.3) – in its chaotic regime. Good agreement
is found for dots with single-channel (Stone and Bruus,
1993; Bruus and Stone, 1994) and multimode leads (Al-
hassid and Lewenkopf, 1995, 1997).
The Coulomb-blockade peaks exhibit a

weak-localization effect. The average conductance peak
height for symmetric leads with Λ channels in each lead
is

ḡΛ =

{

Λ2

2(Λ+1) (GOE)
Λ2

2Λ+1 (GUE)
. (129)

Thus ḡΛ for GOE is smaller by an amount Λ2/[2(Λ +
1)(2Λ + 1)] than its GUE value – a weak-localization ef-
fect. The relative reduction of the average conductance
δgΛ/ḡ

GUE
Λ = 1/(2Λ + 2) (where δgΛ = ḡGUE

Λ − ḡGOE
Λ ) is

Gpeak  (0.01 e2/h)
4

3

2

1

0

B = 0

2

1

0
2.01.51.00.50

B = 0 

P(
g)

P(
g)

g

g

100

10-1

10-2

10-3
0 0.5 1 1.5 2

P(
g)

g

100

10-1

10-2

10-3
0 0.5 1 1.5 2

0.0

0.2

0.4

0.6

0 2 4 6 8
0.0

0.2

0.4

0.6

8
6

4

2

0
(a)

(b)

(c)

(d)
P(

Gpe
ak

)

Gpe
ak

 (0
.01

 e2 /h
)

Vg  (mV)
-770 -750 -730

B = 0

B = 0 

FIG. 16. Conductance peak-height distributions in small and
large Coulomb-blockade quantum dots. Panels (a) and (b):
measured distributions of Chang et al. (1996) [panel (a)] at
B = 0 and [panel (b)] at B 6= 0 in small dots of effective
size 0.25 µm×0.25 µm at T = 75 K (N ∼ 100 electrons
and kT/∆ ∼ 0.15); solid lines, the theoretical predictions
(128a) and (128b) of Jalabert, Stone, and Alhassid (1992) for
conserved and broken time-reversal symmetry, respectively.
Inset in panel (a): lower trace, a sequence of B = 0 Coulomb-
blockade peaks as a function of gate voltage at T = 75 mK;
upper trace, the same peak series but at T = 660 mK. Notice
the large fluctuations in the peak heights and the presence
of very small peaks (three of them are unobserved) at low
temperature. From Chang et al. (1996). Panels (c) and (d):
measured peak-height distributions of Folk et al. (1996) in
Coulomb-blockade dots at T = 70 ± 20 mK, compared with
the theoretical predictions (solid lines) for [panel (c)] B = 0
and [panel (d)] B 6= 0. The two dots used in the experiment,
with areas 0.32 µm2 and 0.47 µm2, are relatively large (N ∼
1000). This allows for a larger number of peaks (∼ 40) to be
observed in each sweep of the gate voltage, but kT/∆ is only
∼ 0.3− 0.5. The insets show the same distributions on a log-
linear scale (histograms are from the experiment). Adapted
from Folk et al. (1996).
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smaller by a factor of (2Λ + 1)/(2Λ + 2) than its corre-
sponding value for open dots [see Eq. (98a)]. For exam-
ple, in single-channel leads the weak-localization correc-
tion in closed dots is δg/ḡGUE = 1/4 compared with 1/3
in open dots.
In the limit of large Λ, the GUE variance of the conduc-

tance peak heights is smaller by a factor of two than the
GOE variance (Alhassid, 1998). A similar behavior was
found in open dots [see Eq. (98b)]. For single-channel
symmetric leads, the variance of the conductance peak
reduces from 1/8 in the GOE to 4/45 in the GUE.

C. Parametric correlations of the conductance peaks

In closed dots one can follow a specific conductance
peak as a function of an external parameter such as mag-
netic field or shape [see, for example, Fig. 17(a)], and
calculate the correlation between peak heights at differ-
ent values of the external parameter. Alhassid and Attias
(1996a) calculated this conductance peak correlator us-
ing the framework of Gaussian processes discussed in Sec.
III.C.3 and found it to be universal upon an appropriate
scaling of the external parameter.
The parametric width correlator cΓ(x − x′) =

δΓ(x)δΓ(x′)/
{

[δΓ(x)]2 [δΓ(x′)]2
}1/2

, where δΓ(x) ≡
Γ(x) − Γ̄(x) can be calculated in the framework of the
Gaussian process and is universal upon the scaling (77)
of the external parameter. It can also be shown to be
independent of the channel correlation matrix M (Al-
hassid and Attias, 1996b) and is therefore determined
by the symmetry class alone. The width correlator co-
incides with the overlap correlator (79) of Sec. III.C.3
in the limit N → ∞ and is thus well approximated by
Eq. (80), a Lorentzian in the Gaussian orthogonal pro-
cess and a squared Lorentzian in the Gaussian unitary
process.
The conductance peak-height correlator

cg(x − x′) = δG(x)δG(x′)/
{

[δG(x)]2 [δG(x′)]2
}1/2

(130)

depends on the number of channels in each lead Λl and
Λr and on the eigenvalues (wl,r

c )2 of the correlation ma-
tricesM l andM r in the left and right leads, respectively.
The case most relevant to experiments is that of single-
channel leads. When the leads are symmetric (Γ̄l = Γ̄r),
the deviation of the corresponding cg(∆x) from the width
correlator is the largest. This correlator is well fitted by
the form of Eq. (80), i.e., a Lorentzian for the Gaus-
sian orthogonal process and a squared Lorentzian for the
Gaussian unitary process [see inset in Fig. 17(b)], but
with α1 = 0.37± 0.04 and α2 = 0.54± 0.04, respectively.

The universality of the conductance correlator was veri-
fied in Anderson-model simulations (Alhassid and Attias,
1996a) as well as in billiard-model calculations (Bruus,
Lewenkopf, and Mucciolo, 1996). For multichannel sym-
metric leads it was found that the conductance correlator
approaches the width correlator as the number of chan-
nels increases (Alhassid and Attias, 1996b).
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FIG. 17. Conductance peak-height fluctuations vs magnetic
field in closed dots: (a) the measured peak height of a sin-
gle Coulomb-blockade peak as a function of magnetic field
B (solid line) and −B (dashed line), showing the symmetry
and reproducibility of the data; (b) the peak-height autocor-
relation function in a magnetic field cg(∆B); diamonds, the
experimentally determined peak-height autocorrelation func-
tion in a magnetic field cg(∆B) at T = 70± 20 mK, averaged
over many traces of the type shown in panel (a) (Folk et al.,
1996); solid line, the fitted squared-Lorentzian line shape
(80) predicted by Alhassid and Attias (1996a); inset, the
universal Gaussian unitary process correlator calculated by
random-matrix process simulations (circles) compared with
its squared-Lorentzian fit (80) with α2 = 0.54 (solid line).
Adapted from Folk et al. (1996) and Alhassid and Attias
(1996a).

The correlator cg(∆x) can be calculated perturbatively
to leading order in ∆x̄ (Alhassid and Attias, 1996a,
1996b),

cg(∆x) ≈











1− b1 | ∆x̄ |2
×
(

−π2

6 ln | ∆x̄ | +const
)

(β = 1)

1− b2
π2

3 | ∆x̄ |2 (β = 2)

, (131)
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and for the Gaussian orthogonal process it is nonanalytic
at ∆x̄ = 0. The constant bβ in Eq. (131) depends on the
leads. For single-channel symmetric leads b1 = 7/4 and
b2 = 3.
The peak-height autocorrelation versus a magnetic

field was measured by Folk et al. (1996). The results are
shown in Fig. 17(b) (diamonds) and compared with the
theoretical prediction (80) of Alhassid and Attias (1996a;
solid line). Random-matrix theory predicts a universal
correlator after the parameter is scaled. However, the
scaling factor itself – for a particular choice of the pa-
rameter – cannot be computed in RMT. When x is a
magnetic field, we can rewrite Eq. (80) as

cg(∆B) ≈
[

1 + (∆B/Bc)
2
]−2

, (132)

where Bc is the correlation field. The curve in Fig. 17(b)
represents a one-parameter fit (i.e., Bc) to the data. It
is found that Bc = 8.1± 0.5 mT or Φc ≈ 0.8Φ0.
The correlation field in closed dots can be estimated

semiclassically, similarly to the open dot case (see Sec.
IV.C.2). Since the decay time of a resonance in a closed
dot is much longer than the Heisenberg time, the latter
becomes the relevant time scale for the diffusive area ac-
cumulation. The estimate for Bc in a closed dot is then
obtained by replacing τescape in (102) with τH :

BcA/Φ0 = κ (2πτc/τH)1/2 = κg
−1/2
T = κ4π2N−1/4

,

(133)

where gT is the ballistic Thouless conductance. A semi-
classical derivation can be found in Bohigas et al. (1995).
In the conformal billiard with a flux line (Berry and Rob-
nik, 1986) Φc ≈ 0.1Φ0, but for a stadium in a uniform
magnetic field (Bohigas et al., 1995) flux is accumulated
less efficiently and Φc ≈ 0.3Φ0 (Alhassid, Hormuzdiar,
and Whelan, 1998). This is still below the experimen-
tal value Φc ≈ 0.8Φ0, indicating that the single-particle
picture is inadequate for estimating the correlation field.
We shall return to this problem in Sec. VI.C.

D. Crossover from conserved to broken time-reversal

symmetry

Following Alhassid, Hormuzdiar, and Whelan (1998),
we derive in this section the peak-height statistics in the
crossover between GOE and GUE. We use the crossover
random-matrix ensemble (68), which is characterized by
the transition parameter ζ. When time-reversal symme-
try is broken by a magnetic field, ζ = Φ/Φcr, where Φcr

is a characteristic crossover flux of the same order as the
correlation field in Eq. (133).

1. Conductance peak distributions

Using the method of Sec. III.C.2, we decompose the
partial amplitudes of an eigenfunction ψ in the principal
frame: γc = γcR + iγcI = 〈φc|ψR〉+ i〈φc|ψI〉. The joint
partial-width amplitude distribution is then given by

Pζ(γ) = 〈P (γ|t)〉 ,

P (γ|t) =
(

1 + t2

2πt

)Λ

(detM)−1

× exp

(

−1 + t2

2
γT
RM

−1γR − 1 + t2

2t2
γTI M

−1γI

)

, (134)

where the brackets 〈. . .〉 denote an average over the dis-
tribution Pζ(t) in Eq. (71). Here M is the correlation
matrix [Eq. (122)] and is assumed to be independent of
ζ. This is correct as long as the dot-leads geometry is
held fixed as the magnetic field is changed.
The width for decay into a one-channel lead is given

by Γ = |γ|2 = γ2R + γ2I . Using Eq. (134) we find Pζ(Γ̂) =

〈a+e−a2
+Γ̂I0(a+a−Γ̂)〉, where a± ≡ (t−1 ± t)/2, and I0 is

the modified Bessel function of order zero.
For the general case of Λ inequivalent and/or corre-

lated channels, we note that the joint conditional dis-
tribution P (γ|t) in Eq. (134) is identical to the joint
partial-width amplitude distribution for a GOE problem
of 2Λ channels with partial amplitudes γcR, γcI and an
extended correlation matrix M composed of four Λ × Λ
blocks:

M =

(

1
1+t2M 0

0 t2

1+t2M

)

.

We can therefore use the known GOE width and con-
ductance peak distributions from Secs. V.B.2 and
V.B.3. The 2Λ eigenvalues of M are given by {ω2

j} =

{ 1
1+t2w

2
c ,

t2

1+t2w
2
c}, where w2

c are the Λ eigenvalues of M .
Sorting the inverse eigenvalues of M in ascending order,
ω−2
1 < ω−2

2 < . . ., we find for the crossover width distri-
bution

Pζ(Γ)=

〈

1

π2Λ

(

∏

c

1

ωc

)

Λ
∑

m=1

(−)m+1

∫ 1/2ω2
2m

1/2ω2
2m−1

dτ

× e−Γτ

√

∏2m−1
r=1 (τ − 1

2ω2
r
)
∏2Λ

s=2m( 1
2ω2

s
− τ)

〉

. (135)

In the crossover regime Γl and Γr are no longer statis-
tically independent, i.e., P (Γl,Γr) = 〈P (Γl|t)P (Γr|t)〉 6=
〈P (Γl|t)〉〈P (Γr|t)〉 = P (Γl)P (Γr). This is just the man-
ifestation of the long-distance correlations in the tran-
sition statistics discovered by Fal’ko and Efetov (1996).
On the other hand, at fixed t, Γl and Γr are indepen-
dent, and P (g|t) is calculated in closed form by following
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the same steps as for the GOE case (Alhassid, Hormuz-
diar, and Whelan, 1998). The peak-height distributions
Pζ(ln g) in the crossover from GOE to GUE are shown
in Fig. 18. Here ln g is chosen as the variable in order to
show the behavior at small intensities over several orders
of magnitude (Alhassid and Levine, 1986). The left inset
confirms the RMT predictions for the conformal billiard.
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FIG. 18. Coulomb-blockade conductance peak-height distri-
butions in the crossover from conserved to broken time-
reversal symmetry. The distributions for single-mode leads
are shown vs ln g for ζ = 0 (GOE, dashed line), ζ =
0.1, 0.25, 0.5 (solid lines), and ζ ≫ 1 (GUE, dot-dashed line).
Left inset, distributions obtained from simulations of the con-
formal billiard threaded by different amounts of magnetic flux
(histograms) are compared with theoretical distributions cal-
culated for ζ ≈ 4Φ/Φ0 (solid lines). Right inset, the analytic
weak-localization line shape δg(ζ)/ḡGUE for a dot with single-
channel symmetric leads (solid line), compared with a recent
experiment (solid circles) by Folk et al. (2000). The quan-
tity ḡGUE is measured away from B = 0 and ζ = B/Bcr

with Bcr ≈ 6 mT. Adapted from Alhassid, Hormuzdiar and
Whelan (1998) and Alhassid (1998).

2. Weak localization

We already know from Sec. V.B.3 that a weak-
localization correction is predicted for the average con-
ductance peak height. The complete dependence of ḡ on
ζ (for symmetric leads with Λ channels in each lead) was
calculated in closed form by Alhassid (1998). The calcu-
lation is simpler than the corresponding one in open dots
(see Sec. IV.C.2) and can be done within the framework
of RMT. For a dot with single-channel symmetric leads
(Λ = 1),

ḡ(ζ) =
1

4
+

〈

(

t

1− t2

)2(
2t2

1− t4
ln t+

1

2

)

〉

. (136)

As in the case of open dots, we define δgΛ(ζ) ≡ ḡGUE
Λ −

ḡΛ(ζ). The quantity δgΛ(ζ) is largest at ζ = 0 (GOE
limit) where δgΛ(0)/ḡ

GUE
Λ = 1− ḡGOE

Λ /ḡGUE
Λ = 1/[2(Λ+

1)], and approaches zero for ζ → ±∞. The right inset of
Fig. 18 shows that the predicted weak-localization line
shape δgΛ(ζ)/ḡ

GUE
Λ for a dot with one-channel symmetric

leads (solid line) agrees well with a recent experiment
(Folk et al., 2000) after scaling of B.
In closed dots, the full width at half maximum

(FWHM) of the weak-localization line shape is almost
independent of the number of channels Λ, in contrast
with open dots, where the FWHM behaves as ∼

√
Λ

for large Λ. This difference can be understood in terms
of the different time scales involved. In open dots,
the crossover in the average conductance occurs when
τescape/τmix = 4π2ζ2/Λ2 ∼ 1, leading to ζopencr ∼

√
Λ/2π

[see the discussion following Eq. (103)]. In closed dots,
on the other hand, the “escape” time (by tunneling) is
much longer than the Heisenberg time τH , and it is the
latter that competes with the mixing time. Since τH is
longer by a factor of Λ than the escape time in an open
dot with Λ ideal channels, we conclude that the crossover
in the average conductance in closed dots occurs when
ζclosedcr ∼ 1, independent of the number of channels.
The variance of the conductance peak height in the

crossover from GOE to GUE can also be calculated in
closed form (Alhassid, 1998). For single-channel sym-
metric leads,

g2(ζ) =
3

16
+

27

2

〈

(

t

1 + t2

)2(
t

1− t2

)4 [
1 + t2

1− t2
ln t

+1 +
1

12

(

1− t2

t

)2

− 2

27

(

1− t2

t

)4
]〉

. (137)

E. Peak-spacing statistics

The spacings ∆2 between successive Coulomb-blockade
peaks are observed to fluctuate around an average charg-
ing energy that changes smoothly as more electrons are
added to the dot (Sivan et al., 1996). In the constant-
interaction model, ∆2 = eα(V N+1

g − V N
g ) = EN+1 −

EN+e2/C [see Eq. (27]. Thus if the single-particle states
are not spin degenerate (but without treating the spin-up
and spin-down manifolds as statistically independent),
we expect a (shifted) Wigner-Dyson distribution of the
peak spacings. A detailed discussion of the experimental
results is postponed to Sec. VI.A. Here we remark only
that the observed distribution does not have a Wigner-
Dyson shape but is closer to a Gaussian (Sivan et al.,
1996; Simmel, Heinzel and Wharam, 1997; Patel, Cro-
nenwett, et al., 1998).
Can Gaussian-like spacing distributions be explained

in the constant-interaction–plus–RMT approach? It was
pointed out by Vallejos, Lewenkopf and Mucciolo (1998)
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that deviations from aWigner-Dyson distribution may be
due to shape deformation of the dot as the gate voltage
changes. At gate voltage V N

g , corresponding to the N th
conductance peak, the shape of the dot is xN . However,
at the degeneracy point V N+1

g of the next peak, the shape
of the dot has changed to xN+1. The spacing ∆2 is now
given by ∆2 − e2/C = EN+1(xN+1) − EN (xN ), where
Eλ(x) are the single-particle energies of the dot with
shape x. The generic variation of the energy levels with x
can be studied in the framework of the Gaussian process
(see Sec. III.C.3). Measuring all energies in units of the
average level spacing ∆, we have for ∆̃2 ≡ (∆2−e2/C)/∆

∆̃2 = [ǫN+1(xN+1)− ǫN (xN+1)] + [ǫN (xN+1)− ǫN (xN )]

≡ ∆ǫ(N+1) +∆ǫN , (138)

where ∆ǫ(N+1) denotes the spacing between successive
levels in a dot with a fixed shape xN+1, while ∆ǫN de-
notes the parametric variation of the N -th level as the
shape of the dot changes between peaks. The parametric
fluctuations of the levels are universal once x is scaled
according to Eq. (77). Defining δxN ≡ xN+1 − xN , we
assume that the scaled δx̄N ≈ δx̄ is independent of N
(δx̄ is the parametric distance δxmeasured in units of the
average distance between avoided level crossings). The
distributions P (∆̃2) are then universal and depend only
on δx̄ and the symmetry class. Figure 19(c) shows the
standard deviation of the spacings σ(∆̃2) versus δx̄. It
increases with δx̄, i.e., the peak-spacing fluctuations are
larger when the single-particle spectrum changes faster
with the addition of electrons into the dot. The inset
in Fig. 19(c) shows the GOE σ(∆̃2) (solid line) in com-

parison with
[

(∆ǫN )2
]1/2

(the level-diffusion correlator

calculated in Sec. III.C.3). The σ(∆̃2) curve interpo-
lates between the Wigner-Dyson value at δx̄ = 0 and
[

(∆ǫN )2
]1/2

at large δx̄.

For small δx̄, the distributions can be calculated in
closed form. Using the Gaussian process (78) near x = 0,
we find that ∆ǫN ≈ 〈ψN |H2|ψN 〉δx, where ψN is an
eigenfunction of H1. At fixed H1, ∆ǫN is thus a Gaus-
sian variable with zero mean and variance of (δx̄)2, i.e.,
P (∆ǫN ) = (2π)−1/2(δx̄)−1 exp[−(∆ǫN )2/2(δx̄)2]. Fol-
lowing Eq. (138), we convolute this Gaussian with the
Wigner-Dyson distribution PWD(s) [see Eq. (62)] to find

P (∆̃2) ≈ (2π)−1/2

∫ ∞

0

dsPWD(s)(δx̄)
−1e

−
(∆̃2−s)2

2(δx̄)2 .

(139)

The distributions for finite δx̄ are easily calculated by
simulations. Figures 19(a) and 19(b) show the peak-
spacing distributions (histograms) for δx̄ = 0.75. Each of
the distributions is compared with the Wigner-Dyson dis-
tribution of the same symmetry class (solid lines). The

distributions are more Gaussian-like and have tails ex-
tending to negative spacings.
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FIG. 19. Peak-spacing statistics and the parametric motion
of energy levels: panels (a) and (b), the peak-spacing distribu-
tion P (∆̃2) (histograms) at δx̄ = 0.75 for the (a) orthogonal
and (b) unitary symmetries are compared with the Wigner-
Dyson nearest-neighbor spacing distribution for the respective
symmetry (solid lines); (c) the standard deviation of the peak
spacing σ(∆̃2) as a function of δx̄ for both the GOE and GUE
statistics. Inset in panel (c), σ(∆̃2) (solid line) compared with
[

(∆ǫN )2
]1/2

, the rms of the change of a given energy level
(dashed line). The latter is just the level-diffusion correlator
shown in Fig. 10(c).

We shall return to the subject of peak-spacing statistics
in the context of finite temperature (Sec. V.F.2) and
interaction effects (Sec. VI).

F. Finite-temperature statistics

At finite temperatures that are not much smaller than
∆, several resonances in the dot may contribute to the
same conductance peak owing to the thermal smearing
of the electron energy in the leads. The charging energy
EC plays an important role. When EC ≫ ∆, only two
manifolds of the many-electron energy levels with N and
N−1 electrons in the dot contribute significantly since all
other manifolds are pushed away by the charging energy.
The rate-equations theory of Beenakker (1991) discussed
in Sec. II.E takes into account this charging energy effect,
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and was used by Alhassid, Gökçedağ, and Stone (1998)
to extend the statistical theory of closed dots to finite
temperature.

1. Conductance peaks

In Sec. II.E we saw that the finite-temperature con-
ductance is a weighted average of the single-level conduc-
tances: g =

∑

λ wλ(T, ẼF )gλ, with thermal weights wλ

given by Eq. (33) for T ≪ e2/C. These thermal weights
depend on the canonical free energy FN and canonical
occupation numbers 〈nλ〉N . The latter are calculated ex-
actly using particle-number projection (Ormand et al.,
1994):

ZN = e−FN /T =
e−βE0

Nsp

×
Nsp
∑

m=1

Nsp
∏

i=1

(

1 + e−β|Ei−µ|eiσiφm

)

, (140a)

〈nλ〉N =
e−βE0

NspZN

Nsp
∑

m=1





Nsp
∏

i=1

(

1 + e−β|Ei−µ|eiσiφm

)





× 1

1 + eβ(Eλ−µ)eiφm
, (140b)

where the quadrature points are φm = 2πm/Nsp (Nsp is
the number of single-particle states), and E0 =

∑

iEi.
The quantity µ is a chemical potential chosen anywhere
in the interval EN ≤ µ < EN+1; σi = 1 for a hole
(Ei ≤ µ) and −1 for a particle (Ei > µ).
The effect of energy-level fluctuations on the conduc-

tance statistics is small, and one can use a picket-fence
spectrum to demonstrate the results. An example is
shown in panels (a) and (b) of Fig. 20 for T = 0.5 ∆.
The canonical occupation numbers as a function of Eλ

follow a curve that is similar to a Fermi-Dirac distribu-
tion with a chemical potential of (EN + EN+1)/2 but
with an effective temperature smaller by almost a factor
of 2 in the vicinity of the chemical potential [see inset
of Fig. 20(b)]. These results are in agreement with es-
timates by Kamenev and Gefen (1997). The thermal
weights [Eq. (33] are shown in Fig. 20(a) as a func-
tion of the effective Fermi energy for several levels in the
vicinity of the central level through which the tunneling
occurs at low temperatures (denoted in the following by
λ = 0). The ratio of the thermal weights wλ(T,E0) to
the noninteracting weights [Eq. (34)] is shown in Fig.

20(b). For all λ 6= 0, we have wλ/w
(0)
λ ≈ 1/2 to within

20% or better. On the other hand, the ratio for the

central level w0/w
(0)
0 = 〈n0〉 > 1/2 is enhanced with re-

spect to that for other levels. This enhancement causes
the distribution of the conductance peaks (see below) to
be less sensitive to temperature than what we would ex-
pect from a non-interacting theory. For temperatures

above ∼ 2 − 3 ∆, 〈n0〉 ≈ 1/2 and the conductance peak
approaches G ≈ G(0)/2 (Beenakker, 1991), where G(0)

is the classical conductance in the absence of Coulomb
blockade (see the discussion at the end of Sec. II.E).

 Dot 1:  ∆ = 20 µeV
 Dot 2:  ∆ = 28 µeV
 Dot 2:  ∆ = 38 µeV
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FIG. 20. Thermal weights of level conductances and finite-
temperature statistics of the conductance peaks: (a) thermal
weights wλ(T, ẼF ) of several level conductances vs Fermi en-
ergy ẼF at kT = 0.5 ∆; (b) ratio of thermal weights to their

non-interacting values wλ/w
(0)
λ at ẼF = E0 vs kT/∆. Solid

lines, λ = 0; dashed lines, λ = ±1; dotted lines, λ = ±2.
The results are for a picket-fence spectrum. The inset in
(b) shows the canonical occupations (solid squares) compared
with the Fermi-Dirac distribution at kT = 0.5∆ (dashed
line). Adapted from Alhassid, Gökçedağ and Stone (1998);
(c) the measured ratio σ(g)/ḡ between the standard deviation
of the peak-height fluctuations and the average peak height
for three dots (symbols), compared with the RMT results
(solid curve). The insets compare several of the measured
distributions (histograms) with the finite-temperature RMT
distributions (solid lines). From Patel, Stewart, et al. (1998).

a. Distributions

Complete RMT simulations show that spectral fluc-
tuations have a small effect on the finite-temperature
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peak-height distribution P (g) (Alhassid, Gökçedağ, and
Stone, 1998). Closed expressions for P (g) can be ob-
tained if these fluctuations are ignored. In RMT, eigen-
functions that belong to different levels are uncorrelated
and P (g1, g2, . . .) =

∏

λ P (gλ), where P (gλ) is the distri-
bution of a single-level conductance, derived in Sec. V.B.
It follows that for a fixed sequence of energy levels, the
characteristic function of the conductance peak distribu-
tion P (u) ≡

∫∞

0
dgeiugP (g) factorizes. Using the known

single-level conductance distributions Eqs. (128a) and
(128b), we find

P (u) =























∏

λ

(

1− iuwλ

2

)−1/2
(GOE)

∏

λ

1

2(1−
iuwλ

4 )

×
[

1 +
arcsin(

iuwλ
4 )1/2

(
iuwλ

4 )1/2(1−
iuwλ

4 )1/2

]

(GUE)

. (141)

Figure 20(c) compares recent experimental results by
Patel, Stewart, et al. (1998) for the temperature depen-
dence of σ(g)/ḡ with the RMT predictions (solid line).
The observed fluctuations exhibit a similar temperature
dependence, but are smaller than the RMT predictions.
Also shown are some of the experimental distributions
(histograms) in comparison with the RMT distributions
(solid lines). The deviations are larger at higher temper-
ature, suggesting that they might be due to decoherence
effects. Finite-temperature phase-breaking effects on the
conductance of closed dots have not yet been studied.

b. Peak-to-peak correlations

The measured distributions of the Coulomb-blockade
peak heights at low temperatures have confirmed the pre-
dictions of the statistical theory (see Sec. V.B.3). How-
ever, one of these experiments (Folk et al., 1996) also
produced a puzzle: neighboring peaks are observed to
be correlated [see Fig. 7(c)] although in RMT different
eigenfunctions are uncorrelated. Since the temperature
in this experiment is only∼ 0.3−0.5 ∆, some of these cor-
relations might be due to the finite temperature, where
several resonances contribute to the same peak. We de-
fine the peak-to-peak correlator

c(n) = δGN δGN+n/(δGN )2 , (142)

where δGN = GN − ḠN is the fluctuation of the N th
conductance peak around its average. An approximate
expression for c(n) is obtained by assuming that the lo-
cation of the N th peak is fixed at its low-temperature
value, ẼF = EN [note that ẼF is measured relative to
(N − 1/2)e2/C]. Since eigenvectors and eigenvalues are

uncorrelated in RMT, and using gλgµ = g2λδλµ + g2λ(1 −
δλµ), we find

c(n) ≈
∑

λwλ(N + n)wλ(N )
∑

λ w
2
λ(N )

, (143)

where wλ(N ) ≡ wλ(T,EN ), and the remaining average
is over the spectrum. Equation (143) can be simplified
for a picket-fence spectrum: c(n) ≈∑λwλ−nwλ/

∑

w2
λ,

where wλ are the weights for a fixed number of electrons
in the dot. The number nc of correlated peaks, defined as
the FWHM of the correlator c(n), is shown in Fig. 21(c)
versus T/∆ and compared with a recent experiment by
Patel, Stewart, et al. (1998) for three dots of different
size. [The measured correlators c(n) are shown in Figs.
21(a) and (b) for two of the dots.] While the qualitative
increase of correlations with temperature is confirmed, we
see enhanced correlations in the low temperature data.
This is not fully understood, although several possible
explanations were suggested:
(i) The correlations are enhanced because of spin-paired
levels. Such levels can be identified by their similar mag-
netoconductance traces.

FIG. 21. Finite-temperature peak-to-peak correlations and
spectral scrambling (experiment). The peak-to-peak correla-
tor c(n) is shown at different temperatures for (a) a larger
dot with ∆ = 20 µeV and (b) a smaller dot with ∆ = 38 µeV
(right). Notice that the correlator saturates sooner in the
smaller dot. Compare with panels (a) and (b) of Fig. 23.
(c) The number of correlated peaks nc as a function of T/∆
in three dots of different sizes. Also shown (solid line) are
the RMT results for an unchanging spectrum. From Patel,
Stewart, et al. (1998).

(ii) A mechanism was suggested (Hackenbroich, Heiss,
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and Weidenmüller, 1997; Baltin et al., 1999) whereby
the change in deformation of the confining potential
upon the addition of an electron into the dot results
in a level crossing between successive Coulomb-blockade
peaks such that the next added electron is essentially fill-
ing the same state. This can lead to a series of strongly
correlated peaks. The mechanism assumes certain ge-
ometries (e.g., harmonic potentials) that are more suit-
able to nearly integrable dots. It remains to be seen
whether this model can also explain enhanced correla-
tions in “generic” chaotic dots.
(iii) A semiclassical theory of the Coulomb-blockade peak
heights was discussed by Narimanov et al. (1999). The
level width to decay into one of the leads is expanded as
a sum over periodic orbits that are well coupled to the
lead. A periodic modulation of the peak-height envelope
is expected with a period of ∼ h̄/τ∆, where τ = L/vF
is the period of the shortest orbit. For the dot used in
the experiment of Patel, Stewart, et al. (1998), the esti-
mated period corresponds to ∼ 12 peaks, close to the ex-
perimental value of ∼ 15. The peak heights have Porter-
Thomas fluctuations only locally around the semiclassi-
cal envelope (Kaplan and Heller, 1998), but the resulting
peak-height distribution is still found to be very close
to the RMT distribution. The modulation also leads to
enhanced correlations of adjacent peaks. However, this
explanation requires certain geometries with periodic or-
bits that are strongly coupled to at least one of the leads.
An intriguing effect in the experimental results of Fig.

21 is the saturation of nc vs temperature at a value that
depends on the dot’s size. This effect will be explained
in Sec. V.G.

2. Peak spacings

The finite-temperature statistical theory can also
be used to calculate the temperature dependence of
the peak-spacing distribution. Unlike the conductance
peaks, the peak spacings are sensitive to the fluctuations
of both the spectrum and the wave functions. While for
T ≪ ∆ the peak height is located at EN , at tempera-
tures of order ∆ several levels contribute to a given peak,
and fluctuations of the individual level conductances gλ
may shift the peak location away from EN .
While we do not expect to reproduce the observed

functional form of the distribution using a single-particle
spectrum that is unchanged with the addition of elec-
trons into the dot (see Sec. V.E), it is still of interest to
understand the dependence of its width σ(∆̃2) on T/∆.
Figure 22(a) shows a typical sequence of peak spacings at
two different temperatures, demonstrating the decrease
in peak-spacing fluctuations with temperature. Figure
22(b) compares the RMT result (solid line) for σGUE(∆̃2)
(Alhassid and Malhotra, 1999) with the experimental re-
sults of Patel, Cronenwett, et al. (1998) for B 6= 0.

Above T/∆ ∼ 0.5, we observe a sharp decrease of σ(∆̃2),
in agreement with the experimental results. The inset is
the calculated ratio σGOE(∆̃2)/σGUE(∆̃2) as a function
of T/∆. The experimental ratio (∼ 1.2− 1.3) measured
at T ∼ 100 mK is consistent with the calculations.

FIG. 22. Temperature dependence of the peak-spacing statis-
tics in closed dots: (a) a sequence of peak spacings vs peak
index at T/∆ = 0.5 (lower trace) and T/∆ = 2 (upper trace)
obtained from one random-matrix realization; (b) the stan-
dard deviation σ(∆̃2) in the GUE statistics is shown versus
T/∆ on a log-log scale. The theoretical RMT results (solid
line) are compared with recent experimental data by Patel,
Cronenwett, et al. (1998) taken at B 6= 0 for two dot configu-
rations: solid circles, ∆ = 21 µeV; open circles, ∆ = 14 µeV.
The charging energy is EC = 590 µeV. The results are ex-
pressed in units of the mean level spacing ∆. Inset, the ratio
σGOE(∆̃2)/σGUE(∆̃2) as a function of T/∆. From Alhassid
and Malhotra (1999).

G. Spectral scrambling

In Sec. V.F, the finite-temperature statistics were dis-
cussed assuming that the single-particle spectrum is un-
changed as electrons are added to the dot. However, in
Sec. V.E we saw that a changing electronic spectrum
has important effects on the T ≪ ∆ peak-spacing dis-
tribution. The single-particle spectrum is expected to
change with the addition of electrons not only because
of changes in the dot’s shape, but, more importantly, be-
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cause of electron-electron interactions that lead to charge
rearrangement on the dot. A detailed discussion of this
point is postponed to Secs. VI.A.1 and VI.A.3, and
here we simply assume that the changing spectrum can
be modeled by a parametric dependence of an effective
single-particle potential: the dot’s Hamiltonian H(x) de-
pends on a parameter x that assumes a discrete set of
values xN as electrons are added to the dot. From the
theory of Gaussian processes (Sec. III.C.3), we expect
the peak-to-peak correlator to be determined universally
(for a fixed T/∆) by the value of the scaled parametric
change δx̄ between two successive peaks.

FIG. 23. Finite-temperature peak-to-peak correlations and
spectral scrambling (theory). The peak-to-peak correlator
c(n) at T/∆ = 0.5, 1, 2, and 3 is shown for (a) a closed dot
with a fixed spectrum (δx̄ = 0) and (b) a dot whose spectrum
changes with the addition of electrons (δx̄ = 0.5). Here δ̄x
is a parameter characterizing the degree of statistical scram-
bling upon the addition of one electron to the dot. Notice the
saturation of the correlator with temperature for the δx̄ 6= 0
case. (c) The number of correlated peaks nc [FWHM of c(n)]
as a function of T/∆ for δx̄ = 0, 0.1, 0.2, 0.5, and 1. The
correlation length saturates sooner in a dot whose spectrum
scrambles faster (i.e., in a dot with larger δx̄). From Alhassid
and Malhotra (1999).

Peak-to-peak correlations should be sensitive to a
changing spectrum. For a fixed spectrum, the number
of correlated peaks nc increases approximately linearly
with T , as the number of levels that contribute to each
peak is ∼ T/∆. However, if the addition of each electron
changes the spectrum, then nc is expected to saturate at
a certain value ∼ m that measures the number of added

electrons required to scramble the spectrum completely.
These expectations are confirmed both experimentally
and theoretically. Panels (a) and (b) of Fig. 23 show the
calculated peak-to-peak correlator c(n) at several tem-
peratures for δx̄ = 0 and δx̄ = 0.5. We see that the
correlator’s width saturates in the δx̄ 6= 0 case. In Fig.
23(c) we show the number of correlated peaks nc as a
function of temperature for several values of the scram-
bling parameter δx̄. We observe that nc saturates at a
value m that decreases rapidly with increasing δx̄.
Similar qualitative results are found in experiment (Pa-

tel, Stewart, et al., 1998). Figure 21(c) shows the experi-
mental nc vs temperature for dots of different sizes. Also
shown in Figs. 21(a) and 21(b) is the temperature depen-
dence of the correlator c(n) for two of the dots. Notice
the similarity to the theoretical correlators of Figs. 23(a)
and 23(b). We see that in the smallest device, saturation
occurs at m ∼ 3− 4 already for T >∼ 0.5 ∆, while for the
larger dots, nc continues to increase with temperature.
This suggests that spectral scrambling is slower in the
larger dots. Indeed, it is argued in Sec. VI.A.3 that δx̄
is smaller for a dot with a larger ballistic Thouless con-
ductance gT [see Eqs. (158) below]. Since gT ∝

√
N , we

expect the spectrum of the larger dots to have a smaller
δx̄ and thus to be less sensitive to the addition of elec-
trons.

H. Correlations between the addition and excitation spectra

In the constant-interaction model, the ground state of
a dot with N + n electrons is obtained by adding n elec-
trons to the first excited single-particle states of the N -
electron dot. On the other hand, we have seen in Sec.
V.G that interactions scramble the single-particle spec-
trum when electrons are added to the dot, leading to the
loss of correlations between the addition and excitation
spectra. The measured finite-temperature peak-to-peak
correlations shown in Fig. 21 suggest that a complete
scrambling of the single-particle spectrum occurs only
after several electrons (∼ m) are added to the dot. We
thus expect that for a small n (<∼ m), the ground state of
a dot with N +n electrons is still correlated with the nth
excited state of the dot with N electrons. The low-lying
excited states in the dot can be observed through non-
linear transport experiments in the single-charge tunnel-
ing regime (see Sec . II.G).
Stewart et al. (1997) observed large correlations be-

tween the addition and excitation spectra up to m ∼ 4.
The strongest evidence for such correlations was observed
in the magnetoconductance traces of the ground and ex-
cited levels in the dot. The height and position (in gate
voltage Vg) of the differential conductance peak at finite
source-drain voltage Vsd could be followed as a function
of magnetic field and compared with similar traces of the

52



ground state in the linear Coloumb-blockade measure-
ments. Stewart et al. found that the magnetoconduc-
tance trace of the nth excited states of an N -electron
dot was similar to the trace of the ground state of an
N + n-electron dot for n < 4.
Another important result of the above experiment is

the absence of spin degeneracy, contrary to the results
observed in a few-electron dot (Tarucha et al., 1996;
Kouwenhoven, Oosterkamp, et al., 1997). An excited
level appears in the excitation spectrum for every elec-
tron that is removed from the dot.

VI. INTERACTION EFFECTS

Electron-electron interactions – beyond the average
interaction energy N 2e2/2C of the constant-interaction
model – are expected to play an important role in closed
dots. Theoretical studies of interaction effects on the
mesoscopic fluctuations in closed dots have been largely
motivated by experiments showing deviations from the
constant-interaction–plus–RMT model:
(i) The peak-spacing distributions (Sivan et al., 1996;
Simmel, Heinzel, and Wharam, 1997; Patel, Cronenwett,
et al., 1998; Simmel et al., 1999) do not have the Wigner-
Dyson form and their width is larger than expected from
the constant-interaction model (see Sec. V.E).
(ii) The measured correlation flux of a conductance peak
height is larger than its single-particle estimate (see Sec.
V.C).
(iii) Correlations between the addition and excitation
spectra diminish after the addition of a small number
of electrons (see Sec. V.H).
(iv) The saturation of the peak-to-peak correlator with
increasing temperature indicates spectral scrambling due
to interactions (see Sec. V.G).
One way to include interaction effects while retain-

ing a single-particle picture is in the Hartree-Fock ap-
proximation. Assuming that the Hartree-Fock single-
particle wave functions do not change upon the addition
of an electron to the dot, Koopmans’ theorem (Koop-
mans, 1934) states that the addition energy is given by
the Hartree-Fock single-particle energy of the added elec-
tron. It is then possible to relate the peak spacing to
the change in a single-particle Hartree-Fock level. This
change is dominated by a certain diagonal interaction
matrix element, which fluctuates due to the fluctuations
of the single-particle wave functions. Blanter, Mirlin, and
Muzykantskii (1997) used the random-phase approxima-
tion (RPA) to construct an effective screened potential
from the bare Coulomb interaction in systems with finite
geometries. They estimated the variance of a diagonal
interaction matrix element, and find peak-spacing fluc-
tuations that are larger but still of the order of the mean
level spacing.

The RPA breaks down at strong interactions.
Sivan et al. (1996) used an Anderson model of a dis-
ordered dot with electron-electron interactions to calcu-
late numerically the the peak-spacing distribution. These
calculations can be done only for a very small number of
electrons (much fewer than in the experiments), but they
explain the Gaussian shape of the distributions and yield
larger widths for these distributions at stronger interac-
tions. Berkovits and Sivan (1998) used the same model
to study interaction effects on the peak-height statistics.
Their results indicate that the peak-height distributions
are only weakly sensitive to interactions but that the cor-
relation field increases with interaction strength.
How does the electron’s spin manifest itself in quan-

tum dots? In the absence of interactions, the single-
particle states come in spin-degenerate pairs and the
peak-spacing distribution is expected to be bimodal.
No bimodality was seen in the experiments, an ef-
fect explained by strong electron-electron interactions
(Berkovits, 1998). However, a recent experiment in dots
with higher electron densities (where the Coulomb in-
teractions are effectively weaker) showed spin-pairing ef-
fects in both the peak spacings and the parametric de-
pendence of the peaks (Lüscher et al., 2000). The spin
of the ground state and how it is affected by disorder
or one-body chaos was the subject of recent theoretical
investigations, and experimental results are expected in
the near future.
The gas parameter rs measures the strength of the

Coulomb interaction at an average distance between the
electrons relative to their kinetic energy. It is univer-
sally determined by the density ns of the electron gas.
In 2D, π(rsaB)

2 = 1/ns, where aB = h̄2/m∗e2 is the
Bohr radius. The gas parameter rs is thus the ra-
dius, in atomic units, of the circle that encloses one
unit of electron charge. The Fermi momentum is given
by kFaB =

√
2/rs, while the Fermi energy is EF =

(h̄2/2m∗a2B)(2/r
2
s). The ratio between a typical Coulomb

interaction energy e2/2rsaB and the average kinetic en-
ergy EF /2 is thus given by rs. rs can also be expressed
in terms of the Fermi velocity and the electron charge:
rs = e2/h̄vF . The RPA is valid for rs < 1, but in typical
semiconductor quantum dots rs ∼ 1− 2.
In Sec. VI.A we discuss interaction effects on the peak-

spacing statistics using mean-field approximations and
exact simulations. Spin effects are reviewed in Sec. VI.B
and interaction effects on the peak-height statistics are
discussed in Sec. VI.C. A random interaction matrix
model is discussed in Sec. VI.D.

A. Peak-spacing statistics and interactions

The first experiment to measure the peak-spacing dis-
tribution in Coulomb-blockade quantum dots was car-
ried out by Sivan et al. (1996). The spacing between
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successive Coulomb-blockade peaks is related to a sec-
ond difference of the ground-state energy as a function
of the number of electrons N . To see that, we denote

by E(N )
j the ground-state energy of a dot with N elec-

trons at a gate voltage Vg(j) that corresponds to the
degeneracy point of the j − 1 → j transition. Since the
average one-body potential induced by the gate is lin-
ear in the gate voltage Vg, the total energy of N elec-

trons at the jth peak is E(N )
j − eNαVg(j), where α is

the ratio between the capacitance of the dot with respect
to its gate and the total capacitance (see Sec. II.E).
The degeneracy condition for the N + 1 peak is then

EF + eαVg(N + 1) = E(N+1)
N+1 − E(N )

N+1. The spacing be-
tween two consecutive peaks ∆Vg = Vg(N + 1)− Vg(N )
is (Sivan et al., 1996)

∆2(N + 1) ≡ eα∆Vg = E(N+1)
N+1 + E(N−1)

N − E(N )
N+1 − E(N )

N .

(144)

If the ground-state energy of the dot is independent of the
gate voltage, then ∆2 = E(N+1) + E(N−1)− 2E(N ). How-
ever, generally the change in the gate voltage is accom-

panied by a deformation of the dot so that E(N )
N+1 6= E(N )

N .
In the constant-interaction model, the ground-state en-

ergy is E(N )
j = N 2e2/2C +

∑N
k=1 Ek (where Ek are the

single-particle energies), and ∆2(N +1) = EN+1−EN +
e2/C. Thus if we ignore the spin degrees of freedom, we
expect ∆̃2 ≡ (∆2 − e2/C)/∆ to have a Wigner-Dyson
distribution PWD(∆̃2). The variance of ∆2 would then
be 0.52∆ in the GOE and 0.42∆ in the GUE. This is the
standard constant-interaction–plus–RMT model that we
have used in earlier sections.
In the case of spin-degenerate single-particle states, we

expect in the constant-interaction model ∆2(N + 1) −
e2/C = 0 for odd N (since two electrons with spin up and
down can occupy the same level E(N+1)/2), but ∆2(N +
1) − e2/C = EN/2+1 − EN/2 for even N . The resulting

distribution of ∆̃2 is bimodal:

P (∆̃2) = (1/2)

[

δ(∆̃2) +
1

2
PWD

(

∆̃2

2

)]

, (145)

where the δ function and the Wigner-Dyson distribu-
tion originate in odd and even N ’s, respectively. This is
the constant-interaction–plus–spin-degenerate-RMT (CI
+ SDRMT) model, where the spacing for even N is on
average larger by 2∆ than the spacing for odd N , lead-
ing to a larger variance than in the constant-interaction–
plus–RMT model: σ(∆̃2) = 1.24∆ for GOE and 1.16∆
for GUE.
Finally, another simple model considered in the litera-

ture is the constant-interaction–plus–spin-resolved-RMT
model (CI+SRRMT). Here the assumption is that, be-
cause of exchange interactions, the different spin states
are nondegenerate. However, the spin is a good quantum
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FIG. 24. Measured peak-spacing statistics in Coulomb-
blockade dots: (a) peak-spacing series from Sivan et al. (1996)
at B = 0 showing ∆Vg between neighboring peaks vs the num-
ber of electrons N in the dot; solid line, linear fit describing
the increase in capacitance with N ; (b) sequence of peak-
spacing fluctuations νg ≡ (∆Vg−∆Vg)/∆Vg vs Vg from Patel,
Cronenwett, et al. (1998); solid symbols, B = 30 mT; open
symbols, B = −30 mT. The dashed lines in panels (a) and
(b) show the standard RMT deviation. Panels (c) and (d),
spacing distributions P (νg) for B = 0 and B 6= 0. The shaded
histograms are the measured distributions at T ∼ 100 mK.
The data contain 4300 peaks for B = 0 of which 720 are sta-
tistically independent, and 10800 peaks for B 6= 0, of which
1600 are statistically independent. The data were collected
at T ∼ 100 mK from three dots with ∆ = 9− 11 µeV so that
T/∆ ∼ 0.8. The solid lines are Gaussian fits. The right insets
in (c) and (d) present the data and the fit on a log-linear scale
to show deviations from Gaussians at the tails. The left insets
in (c) and (d) are the bimodal constant-interaction–plus–spin-
degenerate-RMT distributions before (dotted lines) and after
(solid lines) convolution with a Gaussian noise. From Patel,
Cronenwett, et al. (1998).
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number, and therefore the subspaces of spin up and
spin down are described by two independent random-
matrix ensembles. The statistics of a superposition
of two uncorrelated spectra were discussed by Dyson
(1962b). The corresponding level-spacing distribution
(see Mehta, 1991, Appendix A.2, p. 402) is characterized
by a nonzero value at zero spacing. The corresponding
widths σ(∆̃2) = 0.70∆ for GOE and 0.65∆ for GUE
are in between the values predicted by the CI+RMT and
CI+SDRMT models.
Sequences of peak spacings measured in gate voltage

∆Vg are shown in Figs. 24(a) and 24(b). The sequence
in panel (a) is from Sivan et al. (1996), and the sequence
in panel (b) is from Patel, Cronenwett, et al. (1998),
where the quantity drawn is νg ≡ (∆Vg − ∆Vg)/∆Vg.
The dashed lines describe the standard deviation of the
Wigner-Dyson distribution. The fluctuations in Fig.
24(a) are significantly larger than in RMT, while those in
24(b) are somewhat larger than in RMT. The difference
between the experiments in the magnitude of the fluc-
tuations is not currently understood. The peak-spacing
distribution is found to be more symmetric than in any
of the above simple models and closer to a Gaussian. In
particular, no bimodal structure is observed, suggesting
the absence of spin degeneracy. An example of the ob-
served distributions (histograms) is shown in panels (c)
and (d) of Fig. 24 (Patel, Cronenwett, et al., 1998),
where the solid lines are Gaussian fits. The scale of the
mean level spacing is shown in units of the charging en-
ergy EC . The ratio between the B = 0 and B 6= 0 widths
is σB=0(∆2)/σB 6=0(∆2) ≈ 1.23.
The discussion here is limited to almost-closed dots.

The statistics of the peak spacings for a partially open
dot were recently discussed by Kaminski and Glazman
(2000), but only within the constant-interaction model.
For a partially open dot, the peak position is affected by
the dot-lead couplings, and the randomness of the elec-
tronic wave functions at the point contacts contribute
to the peak-spacing fluctuations. This contribution in-
creases with the strength of the dot-lead couplings and
becomes comparable to the fluctuations of the single-
particle spacing while Coulomb-blockade peaks can still
be observed.
In the following discussions of peak spacings and inter-

actions, we ignore spin. Spin effects will be discussed in
Sec. VI.B.

1. Hartree-Fock approximation and Koopmans’ theorem

A consideration of interaction effects while retaining
a single-particle picture is best done in the Hartree-Fock
approximation. We start from a Hamiltonian of interact-
ing electrons: H =

∑

ij hija
†
iaj +

1
4

∑

ijkl v
A
ijkla

†
ia

†
jalak,

where h = t + V is the one-body part (V describes

one-body disorder or a confining potential) and vAij;kl ≡
〈ij|v|kl〉 − 〈ij|v|lk〉 are the antisymmetrized matrix el-
ements of the two-body interaction. The single-particle
Hartree-Fock energies and wave functions are determined
self-consistently by solving the Hartree-Fock equations

(see, e.g., Kittel, 1987). Denoting by E
(N )
k the energy of

the kth single-particle state in a dot with N electrons,
we have in the self-consistent basis

E
(N )
k = hkk +

N
∑

i=1

vAki;ki , (146)

where the sum is over the N lowest occupied single-
particle states. The Hartree-Fock ground-state energy

for N electrons is then given by E(N )
HF =

∑N
k=1 hkk +

(1/2)
∑N

i,j=1 v
A
ij;ij .

Numerical solutions of the Hartree-Fock equations will
be discussed in Sec. VI.A.4. Here we use the framework
of Koopmans’ theorem (Koopmans, 1934), enabling us
to relate the peak spacing to the single-particle Hartree-
Fock energies. Koopmans’ theorem states that

E(N+1)
HF − E(N )

HF ≈ E
(N )
N+1 . (147)

Its basic assumption is that the single-particle wave func-
tions do not change when an electron is added. This
assumption should hold only for large systems (Kittel,
1987), but it might be a good starting point for a dot with
several hundred electrons. Under this assumption we find

E(N+1)
HF −E(N )

HF ≈ hN+1,N+1+
∑N

i=1 v
A
N+1,i;N+1,i = E

(N )
N+1,

which is just Eq. (147). Under the conditions of Koop-

mans’ theorem we also have E
(N )
N+1 = E

(N+1)
N+1 , and the

peak spacing can be written as

∆2(N + 1) ≈ E
(N+1)
N+1 − E

(N )
N = ∆E(N+1) +∆EN .

(148)

Here ∆E(N+1) ≡ E
(N+1)
N+1 −E(N+1)

N measures the spacing
between the N th and N + 1st levels for a fixed number
of electrons (N + 1) and is of the order of the mean
level spacing ∆ (both levels are occupied and their spac-
ing is expected to follow Wigner-Dyson statistics), while

∆EN ≡ E
(N+1)
N − E

(N )
N is the change in energy of the

same N th level when the number of electrons in the dot
is increased from N to N + 1:

∆EN ≈ vAN+1,N ;N+1,N

=

∫

drdr′
[

|ψN (r)|2v(r, r′)|ψN+1(r
′)|2

− ψ∗
N (r)ψN (r′)v(r, r′)ψN+1(r)ψ

∗
N+1(r

′)
]

. (149)

The quantity ∆EN is of the order of the charging en-
ergy, and is a constant e2/C in the constant-interaction
model. However, the fluctuations of the single-particle
wave functions in Eq. (149) lead to fluctuations of ∆EN

and can modify the peak-spacing statistics.
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2. Random-phase approximation in disordered dots

Blanter, Mirlin, and Muzykantskii (1997) calculated
the fluctuations of ∆EN in Eq. (149) using the RPA and
assuming a disordered dot in its metallic regime. The
derivation consists of (i) calculating an effective interac-
tion in the RPA to replace the bare Coulomb interaction
in Eq. (149), and (ii) calculating the variance of the ma-
trix element in Eq. (149) from the fluctuations of the
single-particle eigenfunctions.
The Coulomb interaction v0(r1 − r2) = e2/ǫ|r − r′|

(where ǫ is the dielectric constant) is screened. An effec-
tive screened potential v(r, r′) in the finite geometry of
the dot can be found in the RPA (Fetter and Walecka,
1971):

v(r, r′) = v0(r − r′)−
∫

dr1dr2v0(r − r1)

×Π0(r1, r2)v(r2, r
′) , (150)

where Π0 is the static polarization function re-
lating the electric potential fluctuation δV to the
charge density fluctuations δρ through δρ(r) =
−2e

∫

dr′Π0(r, r
′)δV (r′). In the limit where the screen-

ing length is large compared to the Fermi wavelength, the
polarization function can be approximated by a localized
function Π0(r, r

′) ≈ ν[δ(r − r′) − A−1], where ν is the
density of states per unit area and A is the area of the
dot. In an infinite system, Eq. (150) is easily solved by a
Fourier expansion. In a finite geometry, the equations are
solved by expanding in a complete set of eigenfunctions
χλ(r) of the Laplacian in the dot with eigenvalues q2α that
include the zero mode χ0 = 1/A. Three contributions to
the effective potential are found:

v(r, r′) = e2/C + [Vκ(r) + Vκ(r
′)] + vκ(r, r

′) . (151)

The first term is the usual charging energy, and the
third term is the 2D screening potential vκ(r, r

′) =
(2πe2/ǫ)

∑

α6=0(qα + κ)−1χα(r)χ
∗
α(r

′), where κ =

2πe2ν/ǫ is the inverse screening length. The new contri-
bution in a finite geometry is a one-body potential, which
for a disk of radius R is Vκ(r) = −(e2/2κR)(R2−r2)−1/2.
This potential is the result of excess charge that is pushed
to the boundaries of the dot: the added electron attracts
a positive cloud around it, generating excess negative
charge at the boundaries.
Using the effective interaction [Eq. (151)] in Eq. (149),

the variation ∆EN of the N th Hartree-Fock level when
an electron is added to the dot is composed of three con-
tributions,

∆EN = e2/C +∆E
(1)
N +∆E

(2)
N , (152)

corresponding to the three parts of the effective potential
[Eq. (151)]. Fluctuations of ∆EN originate from fluctu-

ations of the single-particle wave functions, and the vari-

ances σ(∆E
(i)
N ) (where i = 1, 2) can then be expressed in

terms of wave-function correlations. For example,

σ2(∆E
(1)
N ) = 2

∫

drdr′Vκ(r)Vκ(r
′)|ψN (r)|2|ψN (r′)|2 ,

(153)

where we have ignored the exchange term in Eq. (149).
The universal RMT result for the correlation of the

intensities of two eigenfunctions in chaotic systems is
A2|ψλ(r)|2|ψµ(r

′)|2 − 1 = δλµ(2/β)f
2
d (|r − r′|), where

fd is defined in Eq. (124). In diffusive systems (l ≪ L)
this correlation is short-range (with a range of ∼ l) be-
cause of an additional exponential factor e−|∆r|/2l in fd.
Long-range (diffuson) correlations are weaker by 1/gT
but become important when integrated over in Eq. (153).
Wave-function correlations in disordered systems were
studied to order 1/gT by Blanter and Mirlin (1997) and
reviewed by Mirlin (1997, 2000). For β = 1, 2 and eigen-
functions ψλ, ψµ (λ 6= µ) whose energy separation is
smaller than Ec, they find

A2|ψλ(r)|2|ψλ(r
′)|2 − 1

=
2

β

[

f2
d (|r − r′|)

(

1 +
2

β
ΠD(r, r′)

)

+ΠD(r, r′)

]

, (154a)

A2|ψλ(r)|2|ψµ(r
′)|2 − 1

=
2

β
f2
d (|r − r′|)ΠD(r, r′) , (154b)

A2ψ∗
λ(r)ψµ(r)ψλ(r

′)ψ∗
µ(r

′)

= f2
d (|r − r′|)[1 + (2 − β)ΠD(r, r′)] + ΠD(r, r′) , (154c)

where ΠD(r, r′) = (πν)−1
∑

α6=0 χα(r)χα(r
′)/Dq2α is the

diffusion propagator expressed in terms of the eigenfunc-
tions χα(r) and eigenvalues Dq2α of the diffusion oper-
ator. Here ΠD ∼ 1/gT is negligible at short distances
compared with f2

d , but dominates at long distances.
Using the correlator (154a) in Eq. (153), we find for

the variance of ∆E
(1)
N

σ2(∆E
(1)
N ) =

4

βA2

∫

drdr′Vκ(r)[f
2
d (r − r′)

+ΠD(r, r′)]Vκ(r
′) . (155)

We now estimate the contribution to Eq. (155) of the
short-range and long-range parts of the wave-function
correlator. In 2D, Vκ ∼ e2/κA over the whole dot
while

∫

drdr′f2
2 (r − r′) ∼ Al/kF and ΠD ∼ 1/gT .

The contribution of f2
2 to Eq. (155) is then ∼

β−1(e2/ǫκA)2Al/kF ∼ β−1(l/L)2∆2/kF l, while the con-
tribution of ΠD is ∼ β−1∆2/gT . Since gT ∼ kF l, we
conclude that the short-range contribution is suppressed
by a factor of (l/L)2 relative to the long-range contribu-
tion, and
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σ2(∆E
(1)
N ) =

4

βA2

∫

drdr′Vκ(r)ΠD(r, r′)Vκ(r
′)

∼ 1

β

∆2

gT
. (156)

A similar calculation of ∆E
(2)
N using the two-body

screened potential vκ(r, r
′) in Eq. (149) and the cor-

relator (154b) gives

σ2(∆E
(2)
N ) ≈ 4∆2

β2A2

∫

drdr′Π2
D(r, r′)

∼ 1

β2

(

∆

gT

)2

. (157)

The charging energy e2/C also fluctuates because
of small deviations (∼ 1/κR) of the capacitance from
its purely geometrical value (Berkovits and Altshuler,
1997; Blanter and Mirlin, 1998), leading to σ

(

e2/C
)

∼
(ln gT /β)

−1/2∆/gT .
The largest contribution to σ(∆EN ) comes from the

surface charge: σ(∆EN ) ∼ ∆/
√
βgT [see Eq. (156)].

In its absence (e.g., using periodic boundary condi-
tions), the dominating contribution is from the usual 2D
screened interaction σ(∆EN ) ∼ ∆/βgT [se Eq. (157)].
It was assumed that the added-electron charge is spread
over the complete dot. In practice, this will depend on
the geometry of the dot and the gates. An opposite
extreme is when the added-electron charge is confined
to an area whose linear dimension is ∼ λF , leading to
σ(∆EN ) ∼ ∆/

√
β.

The standard deviation σ(∆2) is obtained by combin-
ing the usual RMT fluctuations (∼ ∆) with the fluctu-
ations of ∆EN [see Eq. (148)]. This results in peak-
spacing fluctuations that are enhanced with respect to
RMT, but still of the order of ∆.
The dots used in the experiments are ballistic rather

than diffusive, requiring a new estimate of the fluctua-
tions using wave-function correlations in chaotic systems.
The leading universal contribution to the correlations in
2D is f2

2 , whose envelope decays slowly like 1/kF |r − r′|
over the whole area of the dot, and leads to σ(∆E

(1)
N ) ∼

∆/
√
βkFL. A similar estimate for σ(∆E

(1)
N ) is obtained

if we replace gT in the diffusive result [Eq. (156)] by
its ballistic analog kFL ∼ N 1/2 (since l > L). How
important are nonuniversal contributions to the wave-
function correlator in the chaotic case? Blanter, Mir-
lin, and Muzykantskii (1998) derived the wave-function
statistics in a billiard with diffusive surface scattering.
They found A2|ψλ(r)|2|ψλ(r

′)|2 − 1 = (2/β)ΠB(r, r
′),

where ΠB is the ballistic analog of the diffusion propa-
gator. The contribution to ΠB(r, r

′) from straight-line
trajectories connecting r to r′ gives ΠB = 1/kF |r − r′|,
which is just the smoothed version of the universal corre-
lations f2

2 (r−r′). Evaluation of ΠB beyond the universal
part requires knowledge of the classical dynamics. Scars

along periodic orbits can enhance ΠB and lead to larger
peak-spacing fluctuations (Stopa, 1998) in self-consistent
density-functional calculations (Stopa, 1996). Analogous
results for the wave-function correlations were derived for
a purely ballistic chaotic dot using semiclassical methods
(Hortikar and Srednicki, 1998).

3. Parametric variation of the mean field

As electrons are added to the dot, the Hartree-Fock
potential changes owing to charge rearrangement caused
by the two-body interaction. We denote the Hartree-
Fock Hamiltonian for N electrons by H(xN ). Rather
then solving the microscopic Hartree-Fock equations, we
can adopt a “macroscopic” approach assuming that, for
a chaotic dot, H(xN ) describes a discrete Gaussian pro-
cess (Attias and Alhassid, 1995). In Koopmans’ limit we
can relate the peak spacing to the single-particle levels
through Eq. (148). In particular, the quantity ∆EN

describes a discrete parametric variation of the N th
eigenvalue when the Hamiltonian changes from H(xN )
to H(xN+1). Since a discrete Gaussian process can be
embedded in a continuous Gaussian process H(x) (Sec.
III.C.3), we obtain the formulation already discussed in
Sec. V.E. However, the conceptual difference is that
here the parametric variation of the single-particle spec-
trum is due to interaction effects, while in Sec. V.E it
originated from a deformation of the dot’s shape. Exper-
imental results (Patel, Stewart, et al., 1998) suggest that
the primary cause of a changing single-particle spectrum
is interactions.
The variation of the spectrum with the addition of one

electron to the dot is described by the scrambling pa-
rameter δx̄ (see Sec. V.G). This parameter can be de-
termined from the dot’s properties in the limit of Koop-
mans’ theorem where the single-particle wave functions
are unchanged. In the parametric approach, this limit
corresponds to first-order perturbation theory, where
σ2(∆EN ) = ∆2(δx̄)2. Since ∆EN in the parametric ap-

proach corresponds to ∆E
(1)
N +∆E

(2)
N in the microscopic

approach of Sec. VI.A.2 (e2/C has been subtracted in
both cases), we can compare σ2(∆EN ) with Eq. (156)
[or Eq. (157)] to find that (Alhassid and Malhotra, 1999;
Alhassid and Gefen, 2000)

δx̄ ∼ (βgT )
−1/2 ∼ β−1/2N−1/4 (158a)

or δx̄ ∼ (βgT )
−1 ∼ β−1N−1/2 , (158b)

where Eq. (158b) holds in the absence of surface charge.
Equations (158) are valid in the regime where σ2(∆EN )
is linear in (δx̄)2, i.e., for δx̄ <∼ 0.3. Complete scrambling
(upon the addition of m electrons) is expected when the
overall parametric change is one avoided crossing, i.e.,
mδx̄ ∼ 1. We conclude that m ∼ (βgT )

1/2 or m ∼ βgT
for Eqs. (158a) or (158b), respectively.
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4. Anderson model with interactions

The RPA estimate in interacting disordered systems
gives a peak-spacing standard deviation of the order of
∆. However, the RPA is valid in the limit of high densi-
ties (rs ≪ 1) and breaks down at the lower electron den-
sities in semiconductor quantum dots (where rs ∼ 1−2).
Yet rs is still substantially below the limit of Wigner
crystallization, and additional insight into this regime
of intermediate interactions can be gained by numerical
calculations. Exact numerical diagonalizations are pos-
sible only for dots with a very small number of electrons
(∼ 10) on a lattice with m ∼ 20 sites (compared with
several hundred electrons in the experiment). Berkovits
and Sivan (see Sivan et al., 1996) used a 2D Ander-
son model with on-site disorder and Coulomb interac-
tions. The Hamiltonian is H = H1 + H2, where H1

is a one-body Anderson Hamiltonian [Eq. (46)], and

H2 = 1
2Uc

∑

i6=j(|ri−rj |/a)−1a†iaia
†
jaj describes the two-

body Coulomb interaction between electrons on the lat-
tice, where Uc = e2/a is the interaction strength over
one lattice spacing. They used small lattices (∼ 4 × 5)
with N ≤ 13 to study the distribution and variance
of ∆2 as a function of the interaction strength Uc. As
rs ∼ (πm/N )1/2(Uc/4t) increases from zero, the spacing
distribution deviates from the Wigner-Dyson distribution
and becomes approximately a Gaussian for rs >∼ 1. The
variance continues to increase with rs, and for rs ≫ 1
they find σ(∆2) ∝ 〈∆2〉 ≈ e2/C with a proportionality
constant of about 0.1− 0.2.
Larger dots can be solved under certain approxima-

tions. The self-consistent Hartree-Fock approximation
was used to calculate the ground state of dots with up to
∼ 100 spinless electrons (Cohen, Richter, and Berkovits,
1999; Levit and Orgad, 1999; Walker, Montambaux,
and Gefen, 1999). The single-particle orbits are com-
puted self-consistently, allowing for configuration rear-
rangement as an electron is added to the dot. The domi-
nant contribution to the peak spacing comes from the di-
rect matrix element vN+1,N ;N+1,N (which in Koopmans’
limit gives ∆EN ). The self-consistent Hartree-Fock cal-
culations confirm that, for increasing rs, the occupied
(and unoccupied) levels exhibit Wigner-Dyson statistics,
while the peak-spacing distribution evolves rapidly into a
Gaussian-like distribution (at rs ∼ 1) with a width that
is enhanced compared with the noninteracting picture.
The gap in the Hartree-Fock spectrum between the high-
est filled level and lowest empty level is dominated by an
interaction matrix element vN ,N+1;N ,N+1 and is found
to have a Gaussian-like distribution for large values of
rs.
Screening may not be very effective in the small dots

used in the exact numerical simulations. Furthermore,
screening can also be generated by external charges
on nearby metallic plates. Consequently, Hartree-Fock

simulations were also carried out for short-range (e.g.,
nearest-neighbor) interactions (Walker, Montambaux,
and Gefen, 1999).
The dependence of the width σ(∆2) on the size of the

dot is not fully understood. The RPA estimates predict
σ(∆2) ∝ ∆ for rs ≪ 1, while classical calculations by
Koulakov, Pikus, and Shklovskii (1997) give σ(∆2) ∝
e2/C ≈ 〈∆2〉 for rs ≫ 1. The RPA scaling ∆ ∝ 1/L2

has a different size dependence than the classical scaling
〈∆2〉 ∼ 1/L, a difference due to the delocalized character
of the wave functions. It is not clear which is the correct
scaling in the intermediate regime relevant to the experi-
ments (rs ∼ 1− 2), although the self-consistent Hartree-
Fock calculations (for Coulomb interactions) suggest typ-
ical fluctuations of σ(∆2) ∼ 0.52∆+a〈∆2〉/√gT +O(r2s ),
where a is a constant (Bonci and Berkovits, 1999; Walker,
Montambaux, and Gefen, 1999). For short-range inter-
actions, a scaling of ∼ rs∆ is observed for rs <∼ 1.
The measured width of the spacing fluctuations shows

substantial variation between different experiments. The
experiments of Sivan et al. (1996), and Simmel, Heinzel,
and Wharam (1997) gave σ(∆2) ≈ (0.10 − 0.15)e2/C ∼
(2 − 3)∆, while Patel, Cronenwett, et al. (1998) found
smaller fluctuations σ(∆2) ≈ 0.05e2/C ∼ ∆ for similar
GaAs dots (rs ∼ 1).
For short-range interactions Koopmans’ theorem

breaks down at rs >∼ 1, and the self-consistent Hartree-
Fock ground state develops charge-density modulations
and increased short-range density correlations (Walker,
Gefen, Montambaux, 1999). The addition spectrum
shows nonuniversal features, and 〈∆2〉 exhibits sharp
maxima at certain magic numbers of N , in agreement
with a classical model of interacting charges. This re-
sult is quite surprising since rs is still much smaller
than the Wigner crystal limit. A model of classical
charges in a parabolic confining potential (Koulakov and
Shklovskii, 1998) has explained the capacitance exper-
iments of Zhitenev et al. (1997), where bunching was
observed in the addition spectrum.
Nonuniversal effects were found in the addition spec-

tra of clean chaotic dots for strong Coulomb interactions
(Ahn, Richter, and Lee, 1999). They were explained by
charge rearrangement that forms geometry-dependent or-
dered states localized at the edge of the dot.

B. Spin effects and interactions

In the presence of spin degrees of freedom, the single-
particle levels come in degenerate pairs of spin up and
spin down with identical spatial wave functions. Though
the Coulomb interaction does not depend explicitly on
spin, the Pauli principle leads to an exchange interaction
that favors larger spin values. Indeed, in a spin-polarized
state, the orbital part of the wave function (having per-
mutation symmetry conjugate to that of the spin part) is
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less symmetric, thus lowering the Coulomb repulsion. In
the limit gT ≫ 1, it is possible to write a simple Hamilto-
nian for the dot (Kurland, Aleiner, and Altshuler, 2000).
The fluctuations of the matrix elements in the disorder
basis are O(1/gT ) [see, for example, Eq. (157)], and in
the limit gT → ∞ only the average diagonal interaction
survives. We obtain

Hdot =
∑

λs

Eλa
†
λsaλs +

e2

2C
N̂ 2 − 1

2
ξS2 , (159)

where ξ/2 ≡ vαβ;βα is the average exchange matrix ele-

ment and S is the total spin operator of the dot. a†λs and
aλs are creation and annihilation operators of an electron
at orbital state λ and spin s = ±1/2. Both interaction
terms in Eq. (159) are invariant under a change of the
single-particle basis (an additional Cooper-channel inter-
action is possible for the orthogonal symmetry, and is
not included here). The single-particle part of Eq. (159)
satisfies RMT statistics. Compared with the constant-
interaction model, the Hamiltonian (159) contains a new
parameter ξ. Its statistical properties are expected to be
universal for a given value of ξ. An RPA estimate gives
ξ/2 ∼ 0.3∆ for GaAs dots with rs ∼ 1− 2.
A quantity that might be sensitive to spin is the peak

spacing. In the absence of interactions, Eq. (148)
for the peak spacing still holds, but the explicit ex-
pressions for ∆E(N+1) and ∆EN depend on the par-
ity of N : ∆E(N+1) = EN/2+1 − EN/2 for N even

and ∆E(N+1) = 0 for N odd as in the CI+SDRMT
model. ∆EN can still be approximated by an interac-
tion matrix element [see Eq. (149)]. However, for even
N , ∆EN = vN/2+1,N/2 ; N/2+1,N/2, while for odd N ,
∆EN =

∫

drdr′|ψ(N+1)/2(r)|2v(r, r′)|ψ(N+1)/2(r
′)|2,

since the N+1 electron (with spin down) is now added to
the same spatial orbital occupied by a spin-up electron.
Using the effective RPA interaction (151), we obtain a
decomposition of ∆EN into three parts, as in Eq. (152).

While the charging energy term and ∆E
(1)
N are similar

in magnitude for both odd and even N , the term ∆E
(2)
N ,

which originates from the two-body screened interaction,
is on average larger for odd N than it is for even N , since
in the former case the spin-up and spin-down electrons
occupy the same spatial wave function. We find (Mirlin,
1997)

2ξ̃ ≡ ∆E
(2)
N |odd N −∆E

(2)
N |even N

≈ 2

βA2

∫

drdr′f2
d (|r − r′|)vκ(r − r′) . (160)

This shift moves the average peak spacing for odd N to-
wards the average spacing for even N and is expected to
reduce the degree of bimodality. In the RPA regime, the
estimate for this shift, ∼ ∆(κ/kF ) ln(kF /κ), is small com-
pared with ∆, since the screening length is much larger

than λF (κ/kF ∼ rs ≪ 1). Thus, in the weak-interaction
limit, the odd-even structure is expected to persist. How-
ever, as rs increases, the shift increases towards ∆ and
the bimodality is expected to be lost. We remark that the
considerations leading to Eq. (160) are based on S = 0
and S = 1/2 ground states of the dot with even and
odd N , respectively. For stronger exchange interactions,
we expect a spin distribution in the dot (see end of this
section) that will further affect the spacings distribution.
Can signatures of spin pairing be observed in the

peak-spacing distribution? In a recent experiment,
Lüscher et al. (2000) used a GaAs quantum dot with
a relatively high density, ns = 5.9 × 1015 m−2, corre-
sponding to rs = 0.72, a value smaller than in previous
experiments. While the measured peak-spacing distribu-
tion does not have a bimodal structure, it is found to be
asymmetric. It is interpreted as a superposition of two
components that evolve from the noninteracting formula
(145): (i) The δ function in Eq. (145) is shifted by an
amount ξ̃/∆ [see Eq. (160)] and broadened to a Gaus-
sian of width σ (due to fluctuations of the interaction
matrix elements); (ii) The Wigner-Dyson distribution in
Eq. (145) is shifted to have an average of 2− ξ̃/∆ (since
the spacing from the upper level of a spin pair to the
lower level of the next spin pair is reduced from 2∆ to
2∆ − ξ̃), and is convoluted with the Gaussian of width
σ. Good fits are obtained with two fit parameters ξ̃ and
σ. Of the two, ξ̃ is found to be smaller in the presence of
magnetic field, in qualitative agreement with theory [see,
for example, Eq. (160)].
To study spin effects at intermediate and strong values

of rs, Berkovits (1998) extended his exact diagonalization
calculations of the Anderson model with interactions to
include the spin degrees of freedom. Denoting by a†is and
ais the creation and annihilation operators of an electron
with spin s = ±1/2 at lattice site i, he included in the
interaction part H2 of the Hamiltonian an on-site inter-
action between electrons with opposite spins (in addition
to the long-range Coulomb interaction among electrons
at different sites):

H2 =
1

2
Uc

∑

i6=j

s,s′

1

|ri − rj |/a
a†isaisa

†
js′ajs′

+
1

2
U ′
∑

i,s

a†isaisa
†
i−sai−s . (161)

The on-site interaction U ′ = 10Uc/3 was chosen to agree
with Hubbard’s estimate based on hydrogenlike orbitals
(Hubbard, 1963). Calculations were done for up to N =
9 electrons on a 3× 4 lattice. The standard deviation of
∆2 is shown in Fig. 25(a) as a function of Uc and for
both an odd and an even number of electrons. The odd-
even asymmetry of σ(∆2), expected in the noninteracting
limit, disappears above Uc ∼ 0.6 (rs ∼ 0.3). The peak-
spacing distributions are shown in Fig. 25(b) for several
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FIG. 25. Peak-spacing statistics in the Anderson model with
w/t = 3 and Coulomb interactions [Eq. (161)]: (a) the stan-
dard deviation σ(∆2) (in units of ∆) as a function of the
Coulomb interaction strength Uc for N = 7 and 8 electrons
in the dot; (b) the distributions of (∆2 − e2/C)/〈∆2 − e2/C〉
for several values of Uc (note that 〈∆2 − e2/C〉 ≈ 0.81∆).
The dashed line is the Wigner-Dyson distribution and the
solid line is a Gaussian fit to the Uc = 6 distribution. No-
tice the absence of a bimodal distribution already at weak
interactions and the crossover to Gaussian shapes at stronger
interactions. From Berkovits (1998).

values of the interaction parameter Uc. For Uc = 0 (not
shown) the distribution is bimodal [see Eq. (145)], as
expected. However, already for Uc = 0.6 (rs ∼ 0.3) this
bimodal structure is lost. The calculated distributions for
weak interactions (Uc ∼ 0.5 − 2) are closer to the usual
spinless constant-interaction–plus–RMT model (dashed
line) rather than to the CI+SRRMT model (not shown).
For rs >∼ 1, the distribution is approximately a Gaussian
with a width that continues to increase with rs.
Another signature of spin and interactions is expected

when a conductance peak position is followed as a
function of an external parameter. Baranger, Ullmo,
and Glazman (2000) suggested the appearance of kinks,
i.e., abrupt changes in the parametric dependence of a
Coulomb-blockade peak position. This is illustrated in
Fig. 26. Consider for simplicity an even number of elec-
trons. In the absence of interactions, the single-particle
levels are doubly degenerate and follow a Gaussian pro-
cess as a function of the parameter x. Because of inter-
actions, the top two electrons can either occupy the
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FIG. 26. Spin pairing leading to kinks in the Coulomb-
blockade peak positions: (a) the solid lines are two orbital
levels EN/2 and EN/2+1 from a Gaussian process vs a scaled
parameter x̄ (assuming evenN ). When a second electron with
opposite spin occupies such a level, its energy is displaced by
an interaction energy ξ̄. The displaced levels are shown by
dashed lines. In the vicinity of the avoided crossing shown by
the shaded area, the triplet state (top two electrons occupy
levels EN/2 and EN/2+1) has a lower energy than the singlet
state (the electrons occupy levels EN/2 and EN/2 + ξ̄). (b)
Coulomb-blockade peak positions corresponding to the level
diagram in panel (a) (traces are offset by the charging en-
ergy). Crossings of the singlet and triplet states lead to kinks
in the peak position. A pair of such kinks in the vicinity of
an avoided crossing is indicated by arrows. From Baranger,
Ullmo, and Glazman (2000).

same spatial orbital, forming a singlet S = 0 at the cost of
an average interaction energy ξ, or fill two successive or-
bitals, forming a triplet S = 1 at the cost of a kinetic en-
ergy EN/2+1−EN/2 [see Eq. (159)]. Suppose that S = 0;
we can imagine the top two electrons filling paired levels
EN/2 and EN/2 + ξ. As we change the parameter x, the
next single-particle level EN/2+1 can intersect EN/2 + ξ,
in which case the triplet S = 1 becomes the lowest state
and the top two electrons will occupy the levels EN/2

and EN/2+1 [see, for example, the shaded region in Fig.
26(a)]. This configuration change causes a kink in the
peak position [see Fig. 26(b)]. Kinks are more likely to
occur near an avoided crossing of the levels and therefore
appear in pairs versus the parameter x. We note that
a kink occurs in the limit when only the ground-state
level participates in the conductance. However, around
a kink both the singlet and the triplet levels contribute
to the conductance, so that the kinks in Fig. 26(b) are
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expected to become smoother. Recently Lüscher et al.

(2000) observed apparent signatures of kinks versus a
magnetic field B. Spin-paired levels are identified by the
correlation of their magnetoconductance traces. These
correlations are interrupted at certain values of B and
an apparent kink in the peak position is observed, pre-
sumably due to a rearrangement of the ground-state spin.
Baranger, Ullmo, and Glazman (2000) showed that the
average density of the kinks and the distribution of their
separation are sensitive to the breaking of time-reversal
symmetry by a magnetic field.
Another important question is the ground-state spin

distribution in a disordered or chaotic dot. The exchange
interaction favors a spin-polarized state, while the kinetic
energy is minimized when the single-particle orbits are
occupied pairwise, leading to an unpolarized S = 0 state
(for an even number of electrons). In a clean metal, the
(unscreened) short-range part of the Coulomb interaction
leads to a ferromagnetic (spin-polarized) instability when
ξ/2 >∼ ∆. This is known as the Stoner instability. An-
dreev and Kamenev (1998) studied the Stoner instability
in a dot or metallic nanoparticle in the presence of disor-
der. They took into account only the disorder-averaged
diagonal matrix elements of the interaction v̄αβ;αβ and
v̄αβ;βα and found that the Stoner instability can develop
even though the clean system is still paramagnetic. This
can be traced to the effective enhancement of the in-
teraction by the diffusive dynamics where the electrons
spend more time together (Altshuler and Aronov, 1985).
Brouwer, Oreg, and Halperin (1999) considered a one-
body RMT Hamiltonian with on-site Hubbard interac-
tion and computed the spin distribution of the ground
state in the mean-field approximation. They concluded
that the probability of a nonzero spin state can be ap-
preciable even for interaction strengths below the Stoner
instability. Jacquod and Stone (2000) pointed out that
fluctuations of the off-diagonal interaction matrix ele-
ments (in the disorder basis) favor minimal spin for the
ground state and therefore compete with exchange effects
that favor large spin at strong interactions. The fluctu-
ations of the interaction matrix elements determine the
bandwidth of the many-body density of states and are
largest for minimal spin. This effect is demonstrated us-
ing a random interaction matrix model (see Sec. VI.D).
A similar model for nuclei also showed high probability
of a zero-spin ground state in even-even nuclei (Johnson,
Bertsch, and Dean, 1998)
Berkovits (1998) studied the ground-state spin in ex-

act simulations of the small Anderson model plus inter-
actions [Eq. (161)]. For rs < 1 there is a finite proba-
bility for S = 1 states for an even number of electrons
but almost no S = 3/2 states for an odd number of
electrons. Indeed, a spin flip costs a kinetic energy of
EN/2+1 −EN/2 for even N but E(N+3)/2 −E(N−1)/2 for
odd N , and it is much less likely to find two consecutive

small single-particle level spacings than one small spac-
ing. For rs > 1, higher spin values can occur.
Experimentally, the spin of a quantum dot is difficult

to measure. A promising technique is conductance mea-
surements in the presence of an in-plane magnetic field
that leads to a Zeeman splitting of the ground state. For
a theoretical study of the (in-plane) magnetic field de-
pendence of the conductance peak position and height,
see Kurland, Berkovits, and Altshuler (2000). Nonzero
spin has been observed in metallic nanoparticles (Ralph,
Black, and Tinkham, 1997; Davidović and Tinkham,
1999) and in some carbon nanotube ropes (Cobden et al.,
1998).

C. Peak-height statistics and interactions

How do interactions affect the distributions of the con-
ductance peak heights and their parametric correlations?
Experimentally, the predictions of RMT were confirmed
(Chang et al., 1996; Folk et al., 1996) for the distributions
and for the parametric correlations. However, a semiclas-
sical estimate of the correlation flux gives Φc ∼ 0.3Φ0

(assuming a geometric factor of order unity) – signifi-
cantly lower than the experimental value of Φ ∼ 0.8Φ0

(see Sec. V.C). Since the geometrical factor is unknown,
we cannot completely rule out a single-particle theory,
but the discrepancy suggests that the interactions affect
the correlation flux. Here Φc is a nonuniversal parameter
that depends on the details of the system’s dynamics and
cannot be calculated in a pure RMT.
Berkovits and Sivan (1998) used the spinless Anderson

model with Coulomb interactions to study numerically
the peak-height statistics and sensitivity to a magnetic
flux. A 4 × 6 lattice with disorder w = 3t was used for
N = 3 and N = 4 electrons.
At low temperatures, the conductance peak height is

still given by Eq. (24), but Γl(r) are partial widths of the
many-particle ground state of the dot. R-matrix theory
(Sec. II.C) is also valid for a many-body system (Lane
and Thomas, 1958). The partial-width amplitude is ex-
pressed as in Eq. (17) but with ψλ replaced by the in-

teracting many-body eigenfunction ΨN of N electrons in
the dot, and the channel wave function Φ describing the
transverse wave function of one electron in the lead and
the interacting wave function ΨN−1 of N − 1 electrons
in the dot. In second-quantized notation (Berkovits and
Sivan, 1998)

Γl(r) ∝ |
∑

m∈ l(r)

〈ΨN+1|a†m|ΨN 〉|2 , (162)

where a†m is the creation operator of the electron injected
into the dot at the sitem belonging to the respective lead.
The width average and variance are found to decrease

with rs. This suppression is explained by an interaction-
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induced short-range order. The distributions of the di-
mensionless peak heights are shown in Figs. 27(a) and
27(b) for several values of the interaction strength Uc.
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FIG. 27. Interaction effects on the conductance peak height
statistics and parametric correlations: Panels (a) and (b),
conductance peak-height distributions in the presence of
Coulomb interactions. The distributions P (g) [where g is de-
fined in Eq. (24b)] are calculated from simulations of a 2D An-
derson model with Coulomb interactions. Results are shown
for several values of the interaction parameter Uc = 0, 2, 4, 6
(a) without and (b) with a magnetic field B; solid lines, GOE
prediction [Eq. (128a)]; dashed lines, GUE prediction [Eq.
(128b)]. The distributions show only weak sensitivity to the
strength of the interaction and are in agreement with the
RMT predictions. (c) The autocorrelation function cg(∆Φ)
of the conductance peak height vs magnetic flux ∆Φ for sev-
eral values of Uc. The correlators at Uc = 0 and Uc = 10 can
be fitted to the RMT form [Eq. (133)], but with Φc = 0.5 Φ0

(solid line) and Φc = 1.75 Φ0 (dashed line), respectively. Note
the strong sensitivity of the correlation flux to the interaction
strength. From Berkovits and Sivan (1998).

They are rather insensitive to the two-body interaction,
confirming the predictions of RMT for both conserved
(Φ = 0) and broken (Φ = 0.4Φ0) time-reversal sym-
metry. At large values of rs, some enhancement of the
small conductance probability is observed in the case of
Φ 6= 0, in agreement with the experimental results of
Chang et al. (1996). Similar conclusions are reached
when spin is included in the model as in Sec. VI.B
(Berkovits, 1999).
The parametric correlator of the peak height

G as a function of magnetic flux, cg(∆Φ) ≡
δG(Φ)δG(Φ +∆Φ)/

{

[δG(Φ)]2 [δG(Φ +∆Φ)]2
}1/2

,

where δG = G − Ḡ, is shown in Fig. 27(c) for different
values of Uc. At rs = 0 and rs >∼ 1.4, the RMT functional
form, Eq. (80), of the correlator is reproduced. However,
the value of the correlation flux is increased from its non-
interacting value Φc = 0.5Φ0 to Φc = 1.75Φ0 at rs ∼ 3.5.
Thus, in the regime relevant to semiconductor quantum
dots, the correlation field is a factor of 2− 3 larger than
its noninteracting value, in general agreement with the
experiment.

D. Random interaction matrix model

An important issue is whether RMT can be used to
describe interacting systems. RMT was originally devel-
oped to describe the statistics of a strongly interacting
system – the compound nucleus – at high excitations.
Calculations in interacting systems in nuclear, atomic,
and condensed-matter physics suggest that the Wigner-
Dyson statistics are generic to complex many-body sys-
tems at sufficiently large excitations (Montambaux et al.,
1993; Flambaum et al., 1994; Zelevinsky et al., 1996).
In quantum dots, however, our interest is in the statis-
tical behavior at or near the system’s ground state as
the number of electrons varies. Standard RMT makes
no explicit reference to interactions or number of par-
ticles. Generic interaction effects on the statistics can
be studied in a random-matrix model that contains in-
teractions explicitly. A two-body random-interaction
matrix model, introduced in nuclear physics by French
and Wong (1970) and Bohigas and Flores (1971), was
used together with a random single-particle spectrum to
study thermalization (Flambaum, Gribakin, and Izrailev,
1996) and the transition from Poisson to Wigner-Dyson
statistics (Jacquod and Shepelyansky, 1997) in many-
body systems. However, the Poissonian single-particle
statistics of this model are not suitable for studying
dots whose single-particle dynamics is chaotic. Alhas-
sid, Jacquod, and Wobst (2000) introduced a random
interaction matrix model (RIMM) to study generic fluc-
tuations in chaotic dots with interactions. The RIMM is
an ensemble of interacting Hamiltonians,
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H =
∑

ij

hija
†
iaj +

1

4

∑

ijkl

uAijkla
†
ia

†
jalak , (163)

where the one-body matrix elements hij are chosen from
the appropriate Gaussian random-matrix ensemble, and
the antisymmetrized two-body matrix elements uAij;kl ≡
uij;kl − uij;lk form a GOE in the two-particle space

P (h) ∝ e−
β

2a2 Tr h2

; P (uA) ∝ e−Tr (uA)2/2U2

. (164)

The variance of the diagonal (off-diagonal) interaction

matrix elements is U2 (U2/2). The states |i〉 = a†i |0〉 de-
scribe a fixed basis of m single-particle states. Here h is
an m ×m GOE (GUE) matrix when the single-particle
dynamics conserve (break) time-reversal symmetry, while
the two-body interaction preserves time-reversal symme-
try and forms a GOE, irrespective of the symmetry of the
one-body Hamiltonian. In general, the two-body inter-
action can include a nonvanishing average part ū that is
invariant under orthogonal transformations of the single-
particle basis. For spinless electrons, the only such invari-
ant is the charging energy e2N 2/2C, which is a constant
and does not affect the statistical fluctuations of (163).
In the presence of spin, an additional contribution to ū
is an exchange interaction −ξS2/2. We remark that in
a physical model of a dot, the Coulomb interaction ma-
trix elements are given in a fixed basis. Fluctuations of
the interaction matrix elements were introduced in the
RIMM to obtain a generic model that is independent of
a particular interaction, in the original spirit of RMT
(French and Wong, 1970; Bohigas and Flores, 1971).
The model was used to study both the peak-spacing

(Alhassid, Jacquod, and Wobst, 2000) and peak-height
statistics (Alhassid and Wobst, 2000). The peak-spacing
distribution describes a crossover from a Wigner-Dyson
distribution to a Gaussian-like distribution as U/∆ in-
creases [see Fig. 28(a)]. The partial level width is cal-
culated from an expression analogous to Eq. (162), and
for a GOE one-body Hamiltonian, its distribution P (Γ̂)
is found to be a GOE Porter-Thomas distribution inde-
pendent of U/∆. However, for a GUE one-body Hamil-
tonian, the width distribution makes a crossover from
GUE to a GOE Porter-Thomas distribution as a func-
tion of U/∆ [see Fig. 28(b)]. The crossover distribu-
tions are well described by Pζ(Γ) of Eq. (72), where
ζ is a monotonically decreasing function of U/∆. This
is due to the competition between the asymptotic GUE
symmetry of the one-body Hamiltonian h and the GOE
symmetry of the two-body interaction u. In the range
U/∆ ∼ 0.7 − 1.5, the peak-spacing distribution is al-
ready Gaussian-like, while the width statistics are still
close to the GUE limit. In the RIMM, U/∆ is a free
parameter, and reasonable values can be determined by
comparing its results against physical models. Such a
comparison was made to a small (4× 5) Anderson model

with Coulomb interactions and periodic boundary condi-
tions. Apart from finite-size effects, similar behavior was
observed where the range U/∆ ∼ 0.7− 1.5 in the RIMM
corresponded to Uc/t ∼ 2− 5 in the Coulomb model.
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FIG. 28. Peak-spacing and peak-height statistics in the ran-
dom interaction matrix model [RIMM; Eq.(163)]. (a) Peak-
spacing distributions P (∆̃2) in the RIMM with GOE one-
body statistics for m = 12, N = 4: solid circles, U/∆ = 0;
open squares, U/∆ = 0.35; solid diamonds, U/∆ = 0.7; open
triangles, U/∆ = 1.1; solid triangles, U/∆ = 1.8. Notice
the crossover from a Wigner-Dyson distribution at U = 0
(dashed line) to Gaussian-like distributions (solid lines) for
U/∆ >

∼ 1. Inset to panel (a), standard deviation σ(∆̃2) of the
peak spacings vs U/∆ for GOE (solid) and GUE (dashed)
one-body statistics. (b) Width distributions in the RIMM
with GUE one-body statistics. Distributions P (ln Γ̂) vs ln Γ̂
are shown for m = 12, N = 4: open circles, U/∆ = 0; open
squares, U/∆ = 2.4; open diamonds, U/∆ = 4; solid line,
GOE Porter-Thomas distribution; dashed line, GUE Porter-
Thomas distribution; short-dashed lines; analytic width dis-
tributions Pζ(ln Γ̂) in the crossover between the GUE and
GOE (see Section V.D.1). Inset to panel (b), crossover pa-
rameter ζ vs U/∆. Adapted from Alhassid, Jacquod and
Wobst (2000) and Alhassid and Wobst (2000).
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VII. CHARGING ENERGY EFFECTS IN QUANTUM

DOTS

In this section we discuss other mesoscopic phenom-
ena in quantum dots where the charging energy plays
an important role: fluctuations of the off-resonance con-
ductance in closed (or semiopen) dots and mesoscopic
Coulomb blockade in dots that are strongly coupled to a
single-channel lead.
The dominant mechanism for the off-resonance con-

ductance is cotunneling (see Sec. II.F). In particular,
for kT <

√
EC∆, the dominant process is elastic cotun-

neling, describing the virtual tunneling of an electron or
hole through a large number ∼ EC/∆ of excited levels in
the dot. The coherent superposition of a large number
of weak amplitudes exhibits fluctuation properties that
are qualitatively different from those of the conductance
peaks. Since a virtual transition occurs across a gap of
∼ EC/2, we expect the charging energy to play an im-
portant role in determining the statistics of the minima.
The mesoscopic fluctuations in elastic cotunneling were
derived by Aleiner and Glazman (1996) and observed by
Cronenwett et al. (1997). They are discussed in Sec.
VII.A.
In the crossover from closed to open dots, the classi-

cal Coulomb-blockade oscillations (observed in the limit
∆ → 0) gradually weaken. Matveev (1995) showed that
these oscillations completely disappear for a fully trans-
mitting one-channel lead (Tc = 1). However, Aleiner
and Glazman (1998) showed that for a dot with finite ∆,
quantum Coulomb blockade is not fully destroyed and the
conductance exhibits mesoscopic fluctuations that are pe-
riodic in the gate voltage but have a random phase. The
signatures of this mesoscopic Coulomb blockade can be
seen in the correlation functions of various fluctuating
observables. The main mechanism for these fluctuations
is the backscattering of electrons from the boundaries of
the dot into the strongly coupled channel. An experi-
ment by Cronenwett, et al. (1998) confirms signatures
of mesoscopic Coulomb blockade in dots with one fully
open lead T l ∼ 1 and one weakly coupled lead T r ≪ 1.
Among the striking effects seen is the strong suppres-
sion of Coulomb-blockade oscillations at finite magnetic
fields, contrary to the behavior in closed dots. Meso-
scopic Coulomb blockade is discussed in Sec. VII.B.
In a partially open dot, the charge is not quantized

and exhibits mesoscopic fluctuations, as does the dif-
ferential capacitance dQ/dVg. The capacitance fluctu-
ations in an open dot were derived by Gopar, Mello, and
Büttiker (1996) in the limit of noninteracting electrons
using the distribution of the scattering time delays in
the dot. However, the charging energy should be taken
into account in dots with a partially open single chan-
nel. The statistical properties of the capacitance fluctu-
ations in the presence of charging energy were calculated

by Kaminski, Aleiner, and Glazman (1998), and are dis-
cussed in Sec. VII.C.

A. Mesoscopic fluctuations in elastic cotunneling

The mesoscopic fluctuations of the conductance min-
ima were derived by Aleiner and Glazman (1996) in the
diagrammatic approach. According to Eq. (38), the
off-resonance conductance amplitude is determined by a
large number of fluctuating terms, of which ∼ Ee/∆ and
∼ Eh/∆ contribute significantly to the sum over particles
and over holes, respectively. When Ee and Eh are below
the Thouless energy, the contributing levels are in the
universal regime where the partial widths γcλ and ener-
gies Eλ have RMT statistics. In this regime, we can ap-
ply an RMT approach for both the on- and off-resonance
conductance. In both cases the mesoscopic fluctuations
are determined by the same underlying statistics of the
partial widths of the resonance levels. The difference
between the statistics of the conductance maxima and
minima originates from their different transport mecha-
nisms.
We first discuss the distribution of the conductance

minima in the crossover between conserved and broken
time-reversal symmetry. The cotunneling amplitude T in
Eq. (38) is the sum of a large number of terms, and we ex-
pect the central limit theorem to apply, leading to Gaus-
sian distributions for both the real and the imaginary
parts of T . The distribution of G ∝ (Re T )2 + (Im T )2

(measured in units of Ḡ) is then given by

P (Ĝ) = (1− χ)−1e−
Ĝ

1−χ I0

( √
χ

1− χ
Ĝ

)

, (165)

where I0 is a Bessel function and

χ ≡
{

(Re T )2/|T |2 − (Im T )2/|T |2
}2

. An expression

of the form (165) was obtained by Aleiner and Glazman
(1996) when the time-reversal symmetry was broken by
a magnetic field B. They found χ = Λ(B/Bvalley

c ), where
Bvalley

c is a correlation (or crossover) field for the conduc-
tance “valleys” [see Eq. (168) below] and

Λ(x) ≡ 1

π2x4
[

lnx2 ln(1 + x4) + π arctanx2

+ Li2(−x4)/2
]2
. (166)

The function Li2 in Eq. (166) is the second polylogarithm
function.
The average cotunneling conductance is found to be

Ḡ =
e2

h

(

Γl

∆

Γr

∆

)

∆

(

1

Eh
+

1

Ee

)

, (167)

where Ee (Eh) is the distance between the Fermi energy
and the closest state available for electron (hole) tun-
neling (see Sec. II.F). Thus, in striking contrast to the
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average conductance peak, the average off-resonance con-
ductance is independent of magnetic field and does not
exhibit a weak-localization effect. This has been con-
firmed experimentally (Cronenwett et al., 1997).
The correlation field Bvalley

c for the conductance val-
leys (which is of the same order as the crossover field)
can be estimated semiclassically as for the conductance
peaks, except that the Heisenberg time τH = h/∆ is
now replaced by the virtual tunneling time h/E, where
E = min(Ee, Eh). In analogy with Eq. (133) we find

Bvalley
c A/Φ0 = κ

√

E/ET , (168)

where ET ∼ h̄vF /
√
A is the ballistic Thouless energy,

and κ is a geometric factor of the dot. The valley corre-
lation field is seen to be larger than the peak correlation
field

Bvalley
c /Bpeak

c =
√

E/∆ . (169)

We next turn to the parametric correlations of the co-
tunneling conductance versus magnetic field (Aleiner and
Glazman, 1996). Assuming a point-contact model, the
cotunneling amplitude [Eq. (38)] can be rewritten as

T =

√
Γ̄lΓ̄r

∆

1

ν

∫

dω

2πi

[

GA(rl, rr, ω)

− GR(rl, rr, ω)
]

Gret(ω) . (170)

The quantity ν is the average density of states in the
dot per unit area, GR and GA are retarded and ad-
vanced Green’s functions of the non-interacting dot and
Gret(ω) = −(|ω| + Ee)

−1 + (|ω| + Eh)
−1 is the re-

tarded cotunneling Green’s function of a dot with in-
teractions (Baltin and Gefen, 2000). The calculation
of the parametric correlator requires the ensemble av-
erages of the corresponding products of Green’s func-
tions. In the metallic regime and for E ≫ ∆, the latter
can be calculated in the diagrammatic approach and ex-
pressed in terms of the diffuson D and the cooperon C:
GR

B(r, r
′, ω)GA

B′(r′, r, ω′) = 2πνDB,B′(r, r′, ω − ω′) and

GR
B(r, r

′, ω)GA
B′(r, r′, ω′) = 2πνCB,B′(r, r′, ω − ω′). If

E < ET , a typical ∆ω = ω − ω′ that contributes to the
correlator is below ET and one can use the zero-mode
approximation:

DB,B′ =
1

A

[

−i∆ω +

(

AB −B′

Φ0

)2

ET

]−1

;

CB,B′ =
1

A

[

−i∆ω +

(

AB +B′

Φ0

)2

ET

]−1

. (171)

Equations (171) lead to a universal parametric correlator
for the off-resonance conductance

cG(∆B) = δG(B)δG(B′)/Ḡ2

= Λ

(

∆B

Bvalley
c

)

+ Λ

(

2B +∆B

Bvalley
c

)

, (172)

where Λ(x) is the scaling function (166) and the correla-
tion field Bvalley

c is given by Eq. (168), with κ = 1. The
GUE correlator is obtained from Eq. (172) in the limit
B ≫ Bvalley

c , where cG(∆B) = Λ(∆B/Bvalley
c ).
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FIG. 29. Elastic cotunneling in Coulomb-blockade dots: pan-
els (a) and (b), conductance fluctuations of a peak vs a valley.
Panel (a), a conductance peak and an adjacent conductance
minimum (valley) as a function of a magnetic field B (differ-
ent scales are used for G at a peak or a valley). The valley
fluctuates on a longer scale than the peak. Panel (b), the
measured conductance correlator vs ∆B for a peak (dashed
line) and for a valley (solid line). Panels (c) and (d) describe
an experimental test of the scaling relation (173). Panel (c),
the measured average correlation field B̄c (solid line) and the
average conductance Ḡ (dashed line) as the gate voltage varies
between two neighboring peaks. The ensemble-averaged B̄c

is obtained from ∼ 30 statistically independent traces of the
conductance. Panel (d), B̄−2

c as a function of Ḡ (solid line)
using the same data as in (c). The diagonal dashed line is
Eq. (173). From Cronenwett et al. (1997) and Marcus et al.
(1997).

The correlation field Bvalley
c for the conductance val-

leys is enhanced by
√

E/∆ compared with the correlation
field of the peaks [see Eq. (169)]. This enhancement was
observed in the experimental results of Cronenwett et al.
(1997) shown in Fig. 29. In order to measure the weak
conductance in the valleys, the dots used were semiopen
with Γ̄ ∼ 0.7∆. Typical fluctuations versus magnetic
field of a conductance peak in comparison with a con-
ductance valley are shown in Fig. 29(a). The valley
fluctuates on a scale that is larger than the scale over
which a peak fluctuates. The conductance autocorrela-
tion functions for the peaks and the valleys are shown in
Fig. 29(b). The observed ratio Bvalley

c /Bpeak
c ∼ 1.6 is

smaller than the expected value of ∼ 4. The discrepancy
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is not fully understood, but we remark that (i) the peak
correlation field is larger than the single-particle estimate
owing to interaction effects (see Sec. VI.C), and (ii) the
theoretical estimate for the peak correlation field is for
T ≪ ∆, while in the experiment T ∼ ∆. Both effects lead
to enhancement of the peak correlation field and might
explain the observed reduction in the valley-to-peak ratio
of the correlation fields.
The enhancement of the correlation field for the off-

resonance conductance is a charging energy effect. Ac-
cording to (168), the largest correlation field is obtained
at midvalley, where E obtains its maximal value EC/2.
At this gate voltage the average conductance is mini-
mal according to Eq. (167). Using the approximation
Ḡ ∝ E−1 [see Eq. (167)], we obtain

B2
c Ḡ ≈ const. (173)

Thus the correlation field is maximal when the aver-
age conductance is smallest, and vice versa. Figure
29(c) shows the measured correlation field Bc (solid line),
averaged over independent peak-valley-peak data sets,
and the average conductance Ḡ (dashed line) plotted
as a function of gate voltage in the region between two
Coulomb-blockade peaks. To test the approximate scal-
ing relation (173), the same data are used to plot B̄−2

c

versus Ḡ in Fig. 29(d) (solid lines). The diagonal dashed
line is the scaling relation (173).
Baltin and Gefen (2000) have used Eq. (170) to calcu-

late the normalized cotunneling conductance correlator
between valleys N and N + n. Parametrizing the frac-
tional distance between two neighboring peaks by y [so
that Eh = yEC and Ee = (1 − y)EC ], they find

cG(n, y) =





y(1− y)
(

1 + n ∆
EC

)

n ∆
EC





2
[

ln

(

1 +
n

y

∆

EC

)

+ ln

(

1 +
n

1− y

∆

EC

)]2

. (174)

The cotunneling amplitudes in two neighboring valleys
contain a sum over similar contributions from intermedi-
ate states, except that one particle state becomes a hole
state. The correlator (174) is then expected to decay
slowly with n on a scale set by ∼ EC/∆. The mea-
sured correlator (Cronenwett et al., 1997) is found to
decay faster, presumably due to scrambling of the single-
particle spectrum when an electron is added to the dot.
Another interesting issue is the phase change ∆α of the

transmission amplitude between two consecutive valleys.
Two experiments (Yacoby et al., 1995; Schuster et al.,
1997) have measured the phase of the transmission ampli-
tude through a dot, employing an interferometer with two
arms, one of which contains a quantum dot. A surprising
result of these experiments was that ∆α = 0 (mod 2π)
across all measured peaks. Since the phase changes by π

across a resonance, an additional “phase lapse” of π must
occur. This is contrary to what one expects in a dot with
noninteracting electrons where the values of ∆α across a
series of peaks form some sequence of 0 and π. Various
possible explanations have assumed specific geometries
that lead to preferred levels in the dot (see, for example,
Baltin et al., 1999). A more generic mechanism for a
disordered or chaotic dot, suggested by Baltin and Gefen
(1999), employs a formula that interpolates between the
valley transmission amplitude [Eq. (38)] and the Breit-
Wigner peak amplitude (see also Oreg and Gefen, 1997).
An approximate sign sum rule states that the number
of π changes of the phase between two neighboring val-
leys (each due to a resonance, a near-resonance phase
lapse, or a valley phase lapse) is even. The probability
to deviate from this sign sum rule is small (∼ ∆/EC).
The sign sum rule relies on the strong correlations of the
transmission phase in neighboring valleys, and spectral
scrambling would lead to its breakdown. However, in the
experiments only ∆α = 0 was observed.
At very low temperatures and in the strong-tunneling

regime, the valley conductance that corresponds to an
odd number of electrons can be enhanced due to the
Kondo effect. Higher-order virtual tunneling processes
that effectively flip the unpaired spin on the dot can
lead to a coherent many-body resonance at the Fermi
energy, known as the Kondo resonance (Glazman and
Raikh, 1988; Ng and Lee, 1988; Meir, Wingreen, and
Lee, 1993). It is formed between the spin of the dot
and the delocalized electrons in the leads – in analogy
to the Kondo effect (Kondo, 1964), which occurs when a
magnetic impurity is placed in a metal and the unpaired
electron in the impurity forms a singlet state with the
metal’s electrons. The Kondo effect in a quantum dot
was only recently observed by Goldhaber-Gordon et al.

(1998) and by Cronenwett, Oosterkamp, and Kouwen-
hoven (1998). The energy scale for observing the Kondo
resonance is the Kondo temperature TK , which is essen-
tially the binding energy of the resonance. At midvalley
TK ∼ √

ECΓe
−πEC/8Γ, and to bring TK within the range

of experimentally accessible temperatures it was neces-
sary to fabricate much smaller dots (L ∼ 100 nm). In
a smaller dot, ∆ is larger and Γ can be increased sub-
stantially while the dot remains semiopen (i.e., Γ < ∆).
The appearance of a Kondo resonance in the density of
states enhances the conductance in the valley that corre-
sponds to an odd number of electrons as the temperature
decreases below TK .

B. Mesoscopic Coulomb blockade

In Secs. IV and V we discussed mesoscopic fluctuations
of the conductance in two opposite limits – open dots
and almost-closed dots. In the crossover from closed to
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open dots, the charge quantization and the Coulomb-
blockade oscillations gradually disappear. An interesting
case is a lead with one fully transmitting channel. Rather
than discussing a dot with symmetric leads, it is easier
to study the asymmetric limit where, e.g., the left lead
has a transmission coefficient of T l ≈ 1, while the right
lead has a large barrier (T r ≪ 1). The Hamiltonian of
this system is different from the Hamiltonian (36) used
to describe cotunneling in that the subsystem of the dot
plus the left lead is now described by a single Hamiltonian
(because of the strong coupling):

H =

∫

dr ψ†(r)
[

−∇2/2m∗ + U(r)− µ
]

ψ(r) +
Q̂2

2C

−αVgQ̂+
∑

k,s∈r

Eksc
†
kscks

+
∑

k,s∈r

[Vksc
†
ksψ(rc) +H.c.] . (175)

The first term on the right describes the dot-channel
Hamiltonian with a confining potential U(r) and chem-
ical potential µ [ψ†(r) is the creation operator of an
electron at r]. The term Q̂2/2C, with Q̂ = eN̂ ≡
e
∫

dot dr ψ†(r)ψ(r) being the charge operator of the
dot, describes the Coulomb interaction in the constant-
interaction model. The last two terms describe the
Hamiltonian of the right lead and the tunneling Hamilto-
nian between the dot and the right lead (where c†ks is the
creation operator of an electron in the leads with wave
number k and spin s, and rc is the right point contact).
Furusaki and Matveev (1995a, 1995b) calculated the

conductance for the Hamiltonian (175) in the classical
Coulomb-blockade limit kT ≫ ∆. The calculation is
nonperturbative in the charging energy. In the limit of
perfect transmission (T l = 1), the dot-channel Hamilto-
nian can be effectively described by a one-dimensional
fermionic Hamiltonian that is solved using bosoniza-
tion methods. At perfect transmission, Coulomb block-
ade disappears, but even a small reflection (due to a
weak backscatterer at the dot-channel interface) causes
Coulomb-blockade oscillations with an amplitude that
depends quadratically on temperature away from the
charge degeneracy points, in analogy with inelastic co-
tunneling.
Aleiner and Glazman (1998) generalized the model to

the quantum regime where the temperature is compa-
rable to ∆ and found mesoscopic Coulomb-blockade ef-
fects that resemble elastic cotunneling. The coherent
backscattering of an electron into the lead mimics the
backscatterer effects in the classical case and leads to
mesoscopic Coulomb-blockade oscillations even at per-
fect transmission (T l = 1). However, their phase is ran-
dom, and the signature of mesoscopic Coulomb blockade
is thus best quantified in terms of conductance correla-
tions at different values of the gate voltage.

Since the dot is in 2D, it is not possible to describe
the backscattering from the dot’s boundaries by a one-
dimensional Hamiltonian. Instead, an effective action
that is nonlocal in time but expressed in terms of the one-
dimensional channel variables is derived. The charging
energy is then treated exactly using bosonization meth-
ods. For spinless electrons and in the limit T l = 1, the
correlation function of the conductance fluctuations ver-
sus gate voltage is given by

δG(Vg1)δG(Vg2)/G
r2

= 0.78β−1

(

∆

EC

)2

cos

(

2π
αC

e
∆Vg

)

, (176)

where Gr is the conductance of the right point contact.
The average conductance and its standard deviation are
proportional to ∆/EC , similarly to elastic cotunneling.
The periodicity of the correlation function versus gate
voltage corresponds to a period of one electron charge
and is just the manifestation of mesoscopic Coulomb
blockade. The fluctuations are larger in the absence of
magnetic field (β = 1), since the constructive interference
of time-reversed trajectories enhances coherent backscat-
tering.
When the spin of the electrons is taken into account,

the results are quite different:

δG(Vg1)δG(Vg2)/G
r2

= 0.83β−2∆

T

(

∆

EC

)2

ln3
(

EC

T

)

cos

(

2π
αC

e
∆Vg

)

. (177)

In particular, the mesoscopic fluctuations become sensi-
tive to temperature, and the suppression of the fluctua-
tions with magnetic field is stronger.
Some of the predicted characteristics of mesoscopic

Coulomb blockade were confirmed qualitatively in an ex-
periment by Cronenwett et al. (1998). Experimentally, it
is more convenient to study the power spectrum PG(f)
of G(Vg), i.e., the Fourier transform of the correlation
function (177). It is found to be centered in a narrow
band around the Coulomb-blockade frequency, and the
integrated power is given by

P (T ) = 0.207Gr2β−2∆

T

(

∆

EC

)2

ln3
(

EC

kT

)

. (178)

The crossover field from conserved to broken time-
reversal symmetry is similar to the one found for the
conductance minima. For magnetic fields that are large
compared with this correlation field (β = 2), the power of
the mesoscopic fluctuations is expected to be four times
smaller than without a magnetic field (β = 1). Figure
30 compares typical Coulomb-blockade fluctuations as a
function of gate voltage for the one-channel regime (left)
and the weak-tunneling regime (right), both with [panels
(c) and (d)] and without [panels (a) and (b)] a magnetic
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field. A striking effect is the strong suppression of the
fluctuations in the one-channel regime when a magnetic
field is applied. This strong sensitivity to magnetic field
is also seen in the integrated power spectrum versus mag-
netic field [Figs. 30(e) and 30(f)]. The power spectrum
for the one-channel regime is strongly peaked at B = 0,
while it does not show any particular field dependence
in the weak-tunneling regime. The enhancement of the
B = 0 power relative to its large-B value is found to be
∼ 5.3 ± 0.5, somewhat larger than the predicted value
of 4. The experiment also confirms the sensitivity of the
mesoscopic fluctuations to temperature.

FIG. 30. Conductance fluctuations in a one-channel dot (left)
and in a closed dot (right). Traces of conductance vs gate
voltage are shown for [(a) and (b)] B = 0 and [(c) and (d)]
B = 100 mT. Notice that the mesoscopic Coulomb-blockade
oscillations in the one-channel dot are suppressed by a mag-
netic field, in contrast to the closed dot. Panels (e) and (f)
show the integrated power of the Coulomb-blockade oscilla-
tions as a function of magnetic field. For a one-channel dot
[panel (e)] the power decreases with magnetic field, while for
a closed dot [panel (f)] there is only weak dependence of the
power on magnetic field. From Cronenwett et al. (1998).

Brouwer and Aleiner (1999) showed that mesoscopic
charge quantization also affects the conductance in open

dots with ideal leads. A charging energy term in the
Hamiltonian of an open dot plus leads does not af-
fect the average conductance in the unitary case, but
does enhance the weak localization correction in the or-

thogonal case Λ/(4Λ + 2) [see Eq. (98a) for β = 1]
by (cΛ/Λ)Λ∆/(8π

2T ), where Λ is the number of open
channels in each lead (c1 ≈ 3.18 and c∞ = π2/6).
Furthermore, the variance of G in the unitary case,
Λ∆/(96T ) [see Eq. (113)], acquires an additional term
(cΛ/Λ)Λ

2∆2/(32π2T 2) in the limit T ≫ Λ∆ and with
cΛ ≈ 6.49 for Λ ≫ 1.

C. Mesoscopic fluctuations of the differential capacitance

In the weak-coupling regime (where the transmission
coefficient Tc ≪ 1), the charge on the dot is quantized
and increases in a steplike manner as the gate voltage
changes. As the conductance of the point contact in-
creases (but is still small compared with e2/h), the de-
viation of the average charge from its quantized value
is linear in Tc (Glazman and Matveev, 1990b; Matveev,
1991), except near the degeneracy points where the av-
erage charge increases sharply by about one unit e. A
related quantity is the differential capacitance of the
dot Cdiff(Vg) ≡ ∂Q/∂Vext = α−1∂Q/∂Vg, which, in the
weak-coupling limit, exhibits sharp peaks at the degen-
eracy points of Vg. Matveev (1995) and Flensberg (1993)
showed that when a single-channel lead is connected to a
dot and in the classical limit ∆ → 0, Coulomb blockade
vanishes at perfect transmission (i.e., Tc = 1). In this
limit, the average charge increases linearly as a function
of gate voltage and the differential capacitance is a con-
stant. However, for nearly perfect transmission (i.e., Tc
slightly smaller than 1), the average charge and differen-
tial capacitance exhibit weak Coulomb-blockade oscilla-
tions versus gate voltage.
Aleiner and Glazman (1998) studied the mesoscopic

fluctuations of the differential capacitance (of a dot with
single-channel lead) for finite ∆ assuming the dynamics
in the dot is chaotic. In the case of perfect transmission,
δCdiff(Vg) = 0, and the Coulomb-blockade periodicity is
seen in the correlation function of the differential capac-
itance versus gate voltage. The capacitance correlations
are found to be

δCdiff(Vg1)δCdiff(Vg2)/C
2

= 5.59β−1

(

∆

EC

)

cos

(

2π
αC

e
∆Vg

)

(179a)

δCdiff(Vg1)δCdiff(Vg2)/C
2

= 0.54β−1

(

∆

EC

)

ln3
(

EC

T

)[(

∆

EC

)

ln

(

EC

T

)]

× cos

(

2π
αC

e
∆Vg

)

, (179b)

for the cases without and with spin, respectively.
Capacitance fluctuations in the weak-coupling regime

were studied by Kaminski, Aleiner and Glazman (1998).
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Away from the peaks, the capacitance could be calcu-
lated by treating the tunneling Hamiltonian as a per-
turbation. The capacitance fluctuations could then be
related to the fluctuations of the single-electron Green’s
function of the dot at the point contact. The latter are
universal when E = min(Ee, Eh) (see Sec. II.F) is below
the Thouless energy and could be expressed in terms of
the diffuson and cooperon [Eqs. (171)]. For example, the
standard deviation of the capacitance fluctuations in the
absence of magnetic field was found to be σ(δCdiff) =
(Cg0/

√
6π2)(∆/E)1/2(EC/E), where g0 = G0/(2e

2/h)
(≪ 1) is the dimensionless point-contact conductance.
The correlation field of the capacitance fluctuations in
a magnetic field had the same scale as the correlation
field [Eq. (168)] for the cotunneling conductance fluctu-
ations. The capacitance fluctuations were also studied in
the strong-tunneling regime, and it was concluded that
the maximal fluctuations are reached for a partially open
channel (G0 < 2e2/h).
Recently, high-sensitivity single-electron transistors

were used to measure a dot’s charge and capacitance,
and fluctuations of the differential capacitance were ob-
served (Berman et al., 1999). However, the accuracy of
these experiments is insufficient to quantify these fluctu-
ations. Kaminski and Glazman (1999) pointed out that
certain mesoscopic fluctuations in a partially open dot
can be more easily measured in a double-dot geometry,
where each dot is weakly coupled to a lead. The inter-
dot coupling can be adjusted, resulting in peak doublets
as a function of the gate voltages on each of the dots.
The spacing between the doublets fluctuates because of
the fluctuations of the interdot tunneling amplitude. The
rms-to-average ratio of the doublet spacing was found to
be ∼ (2∆/βEC)

1/2. This provides information on the
mesoscopic fluctuations of the ground-state energy of a
partially open dot, which are otherwise difficult to mea-
sure directly.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Since they were first produced about a decade ago,
quantum dots have become a powerful tool for investigat-
ing the physics of small, coherent quantum systems. The
ability to control their shape, size, number of electrons,
and coupling strength has made them particularly attrac-
tive for experimental studies. This review has focused on
the statistical regime of quantum dots, a regime charac-
terized by quantum interference effects, chaotic dynamics
of the quasiparticles, and electron-electron interaction ef-
fects.
Table I summarizes the main mesoscopic effects in

quantum dots versus the main theoretical techniques
used to calculate them. For each case, a reference is
made to the equation (in parentheses) and/or the figure

(in square brackets) that is relevant to the effect. The ta-
ble is restricted to effects that have been experimentally
observed.
Quantum dots have several energy scales. Among

them are the mean level spacing ∆, arising from the con-
finement of the electrons and inversely proportional to
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the dot’s area, and the average level width Γ̄, representing
the strength of the dot-lead couplings. In an open dot,
where Γ̄ ≫ ∆, the electrons can be treated as noninter-
acting quasiparticles, and electron-electron interactions
are considered indirectly through their effect on the de-
coherence rate Γφ. The limit Γφ ≪ Γ̄ (i.e., τescape ≪ τφ)
is the limit of full phase coherence, where quantum in-
terference effects dominate the mesoscopic fluctuations of
the conductance. The universality of these fluctuations
is determined by another energy scale ET – the ballis-
tic Thouless energy (or the Thouless energy in a disor-
dered dot). For Γ̄ ≪ ET (i.e., τescape ≫ τc, where τc is
the ergodic time) the fluctuations are universal. Finite
temperature can reduce the fluctuations through thermal
smearing and shorter dephasing times. In the absence of
dephasing, the fluctuations are largest and temperature
independent when T ≪ Γ̄.
Phase breaking becomes important at temperatures

where Γφ is comparable to Γ̄ and leads to deviations from
universality. Indeed, even at the lowest temperatures at-
tained in the experiments, dephasing must be included to
obtain good agreement between theory and experiment.
With the introduction of tunnel barriers between the

dot and the leads, the charge on the dot is quantized
and an additional energy scale becomes relevant – the
charging energy e2/C. In the almost-isolated dots typ-
ically used in experiments, all three scales, Γ, ∆, and
e2/C, separate: Γ̄ ≪ ∆ ≪ e2/C, and the temperature
determines which energy scales are resolved. The regime
of interest in this review is the quantum regime, where
the temperature is around or smaller than ∆ and meso-
scopic fluctuations are observed. In typical experiments
in closed dots, Γ̄ ≪ T , and the level width is not directly
resolved.
The statistical theory of disordered or ballistic chaotic

dots is well understood in the limit of noninteracting
quasiparticles. In closed dots this “single-particle” ap-
proach includes a constant-interaction term N 2e2/2C
(the constant-interaction model). While the constant-
interaction model is the simplest way to include charging
energy effects in closed dots, several experiments indicate
that electron-electron interactions play an important role
in the statistical properties of such dots. This is not sur-
prising considering that the Coulomb interaction is rather
strong in semiconductor dots where the gas parameter rs
is ∼ 1 − 2. Understanding the effects of interactions on
the statistical fluctuations is one of the major current
directions in mesoscopic physics in general, and in the
statistical theory of quantum dots in particular. Recent
progress includes Hartree-Fock and RPA estimates, but
the experimental values of rs are in the range where it is
necessary to go beyond the RPA. Currently, most of the
results for rs >∼ 1 are based on numerical simulations of
small disordered systems that include interactions. The
number of electrons used in the simulations is smaller

than in the experiments. The effects seen are believed
to be independent of the number of electrons, but this
is not proven. Except for rs ≪ 1, it is not known what
is the parametric dependence of the fluctuations on the
gas parameter rs and on properties of the dot such as its
Thouless conductance gT .
Another problem of current interest is the role played

by electron spin in closed dots. Indirect evidence of spin
pairing was recently found in the statistical properties
of the conductance peaks (Lüscher et al., 2000). In a
chaotic or disordered dot we expect a spin distribution
in the ground state, but its dependence on interactions
and on the Thouless conductance gT is not yet under-
stood (the limit gT → ∞ was recently studied by Kur-
land, Berkovits, and Altshuler, 2000). Hund’s rules are
not expected to hold in chaotic dots that do not possess
any particular symmetries, and we would like to under-
stand how the total spin of these dots changes with the
addition of electrons. Several experimental groups are
now working on measuring spin in dots. A promising
technique is an in-plane magnetic field that couples to
the spin but does not directly affect the orbital motion.
While the limits of almost-closed dots (Γ̄ ≪ ∆) and

open dots (Γ̄ ≫ ∆) have been studied extensively, less
is known about the intermediate regime where the cou-
pling to the leads is strong but some charge quantiza-
tion remains. In this regime, transport becomes more
complicated even within the constant-interaction model,
leading to cotunneling and mesoscopic Coulomb block-
ade. A recent experiment (Maurer et al., 1999) in-
vestigated Coulomb-blockade fluctuations in dots with
symmetric leads as a function of the dot-lead couplings.
Few theoretical results are available for this intermediate
regime. Some of the experimental results were not ex-
pected within the theory of cotunneling, e.g., a Kondo-
like anomalous temperature dependence of the conduc-
tance valleys. In general, the coupling to the leads makes
interaction effects within the dot more difficult to han-
dle than in completely closed systems. For example, at
low temperatures Kondo-type resonance can be formed
between an unpaired electron in the dot and the delocal-
ized electrons in the leads, and a perturbative approach
is not possible. A consistent formulation of transport in
the presence of interactions can be done in the Keldysh
formalism (Meir and Wingreen, 1992) but is difficult to
implement.
Another important topic for future research is the

statistical properties of excited states in quantum dots.
Thus far, statistical studies have focused on the linear
regime of a small source-drain voltage Vsd, where the ob-
served Coulomb-blockade peaks probe the ground state
of a dot with different numbers of electrons. Informa-
tion about excited states in a dot with a fixed number
of electrons can be obtained through nonlinear measure-
ments (see Sec. V.H). The experiment of Stewart et al.
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(1997) suggests certain similarities between the low exci-
tation spectrum and the addition spectrum of a quantum
dot. However, the statistical properties of these low-lying
states and their manifestation in the fluctuations of the
nonlinear differential conductance have not been investi-
gated.
A theory of the quasiparticle lifetime (due to electron-

electron interactions) in a quantum dot has suggested
that, above a critical value of the excitation energy,
the quasiparticle width becomes finite (Altshuler et al.,
1997). This behavior is deduced by relating the prob-
lem to Anderson localization in real space and is the re-
sult of a delocalization phase transition in Fock space
where the interacting wave function becomes fragmented
over a large number of noninteracting states. The
crossover from Poisson to Wigner statistics at high exci-
tations as a function of the interaction strength has been
linked to this Fock-space delocalization (Berkovits and
Avishai, 1998). Numerical investigations in a more real-
istic random-matrix model with one-body disorder and
interactions (Mejia-Monasterio et al., 1998) found that
at the low excitations relevant to the experiments there
was a smooth crossover from almost-localized to delocal-
ized states but no Anderson-like localization. This model
could explain the main features of an experiment by
Sivan et al. (1994) that found only a few (∼ 7) resolved
excited levels (of the order of gT ) before their width grew
beyond the mean level spacing. Recent numerical stud-
ies suggest a possible localization transition for very large
values of gT , where the transition occurs at very high ex-
citations (Leyronas, Tworzydlo, and Beenakker, 1999).
Several models have been proposed to explain the effect

of dephasing on the conductance statistics in open dots.
Dephasing in almost-closed dots and how it might affect
the conductance is not well understood. Theoretical esti-
mates for the temperature dependence of the dephasing
time in closed dots due to e-e interactions were derived by
Sivan, Imry, and Aronov (1994) and by Blanter (1996).
Full phase coherence is expected in a closed dot below
a temperature that is parametrically larger than ∆ (Alt-
shuler et al., 1997). However, reduced values of the weak-
localization correction are found experimentally at lower
temperatures (Folk et al., 2000). Also, deviations of the
experimental peak-height distributions from the theoret-
ical phase-coherent predictions are found to increase with
temperature (Sec. V.F.1). These results suggest appar-
ent phase breaking and are not understood. It is possible
that e-e interaction is not the main dephasing mechanism
in the experimentally studied devices. Other suggested
mechanisms are external radiation (Gershenson, 1999)
and nuclear spins (Dyugaev, Vagner, and Wyder, 2000).
Most investigations of transport in quantum dots have

concentrated on chaotic dots. Much less is known
about fluctuations in nonchaotic dots, especially in the
Coulomb-blockade regime. In such systems the fluctu-

ations are not expected to be universal and the semi-
classical approach is the most suitable one. However,
this approach encounters difficulties at long time scales
of the order of the Heisenberg time. In a recent study
of conductance fluctuations in an integrable cavity, the
conductance fluctuations were found to increase with in-
coming energy (Pichaureau and Jalabert, 1999), unlike
the universal fluctuations in chaotic cavities. Ketzmer-
ick (1996) argued that the conductance through a cav-
ity with mixed phase space displays a fractal behavior
as a function of an external parameter, e.g., a magnetic
field. This behavior originates from trajectories that are
trapped near the boundary between regular and chaotic
regions, leading to an algebraic decay of the enclosed-
area distribution. The change of the conductance ∆G
with a magnetic field is expected to have a variance of
(∆G)2 ∝ (∆B)γ where 1 < γ < 2 [in contrast with a
chaotic dot where (∆G)2 ∝ (∆B)2 for small ∆B]. An
experiment by Sachrajda et al. (1998) claims to have ob-
served this fractal behavior in dots coupled to unusually
wide (∼ 0.7 µm) leads.
In the work discussed in this review, transport through

the dot is driven by an applied bias. Another way to pro-
duce a dc current through an open dot (at zero bias) is by
a cyclic change of its deformation or any other parameter
that affects the interference pattern of the electron’s wave
function. For low-frequency changes, the electrons main-
tain equilibrium and the device is known as an adiabatic
quantum pump. In an open dot, the electronic wave func-
tion extends into the leads and an adiabatic cyclic change
of at least two parameters can cause a net charge trans-
port Q per cycle. The theory of parametric pumping
was worked out by Zhou, Spivak, and Altshuler (1999)
and by Brouwer (1998), and an experiment was carried
out by Switkes et al. (1999). While confirming some
of the theoretical predictions at weak pumping (e.g.,
〈Q2〉 ∝ S2

A where SA is the area enclosed by the con-
tour in the two-parameter space), there were unexplained
quantitative differences at strong pumping (e.g., the de-
pendence of 〈Q2〉 on SA was slower than linear). Re-
cently the theory was generalized to the strong-pumping
regime (Shutenko, Aleiner, and Altshuler, 2000), and it
was found that 〈Q2〉 ∝ lA (lA being the length of the con-
tour) – slower than the naive expectation of 〈Q2〉 ∝ SA.
Issues of dissipation and dephasing, important for the
temperature dependence of pumping, still need to be un-
derstood. Aleiner and Andreev (1998) showed that for
an almost-open dot the charge transmitted in one cycle
is quantized in the limit T → 0.
Recent years have seen the fabrication of new conduct-

ing nanostructures smaller than quantum dots. These
devices have similarities to quantum dots, and Coulomb-
blockade peaks are observed in both linear and nonlinear
I-V measurements versus gate voltage. A particularly
interesting example is the nanometer-scale Al particle,
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part of a tunneling device that includes a gate electrode
(Ralph, Black, and Tinkham, 1997). The spectrum of
the Al particle as a function of the number of electrons it
contains can be determined from nonlinear measurements
similar to those made on semiconductor quantum dots.
Odd-even effects in the number of electrons can be under-
stood in terms of the pairing interaction. Davidović and
M. Tinkham (1999) measured the spectra of Au nanopar-
ticles. At higher excitations the resonances of the parti-
cles overlapped to form broad resonances that eventually
merged into the continuum around the Thouless energy,
in overall agreement with the theory of Altshuler et al.

(1997). Another type of conducting nanostructure is the
carbon nanotube, which also exhibits charging-energy ef-
fects (Bockrath et al., 1997; McEuen, 1998). Figure 31
shows Coulomb-blockade peaks in the measured conduc-
tance of a nanotube, where large fluctuations of the peak
heights can be seen (Cobden et al., 1998). The statistical
theory of quantum dots should find interesting applica-
tions in some of these novel nanoscale devices.

FIG. 31. The conductance vs gate voltage in a carbon nan-
otube rope (∼ 200 nm segment). Sharp Coulomb-blockade
peaks are observed, each describing the tunneling through
a single resonance level. Note the strong fluctuations in
the peak heights. The inset is an image of the device with
schematic wires drawn. From Cobden et al. (1998).
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Büttiker, M., 1988a, IBM J. Res. Dev. 32, 63.
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