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Abstract

This is a review on theoretical and experimental studies on dielectric micro-

cavities, which play a significant role in fundamental and applied research.

The basic concepts and theories are introduced. Experimental techniques

for fabrication of microcavities and optical characterization are described.

Starting from undeformed cavities, the review moves on to weak deforma-

tion, intermediate deformation with mixed phase space, and then strong

deformation with full ray chaos. Non-Hermitian physics such as avoided

resonance crossings and exceptional points are covered along with various

dynamical tunneling phenomena. Some specific topics like unidirectional

output, beam shifts, wavelength scale microcavities, and rotating microcav-

ities are discussed. The open microdisk and microsphere cavities are ideal

model systems for the studies on wave chaos and non-Hermitian physics.
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I. INTRODUCTION

A. Motivation

Optical microcavities can greatly enhance light-matter interactions by storing optical

energy in small volumes (Chang and Campillo, 1996; Vahala, 2004). The ability to con-

centrate light is important not only to fundamental physics studies, but also to practical

device applications (Vahala, 2003). Instead of using metals which are usually lossy at opti-

cal frequencies, most microcavities are made of transparent dielectrics. In vertical cavities

with distributed Bragg mirrors or photonic crystal defect cavities, optical confinement is

achieved through constructive interference of multiply reflected or scattered light. An al-

ternative scheme is total internal reflection from a dielectric interface, which occurs when

light is incident from the higher refractive index (n1) medium to the lower index (n0) one

with an angle χ ≥ arcsin(n0/n1). Consider a light beam propagating in a circular disk or a

sphere via consecutive reflections from the boundary, the rotational symmetry of the cavity

shape keeps the angle of incidence constant, and the condition for total internal reflection

is maintained. The phase delay for light traveling one circle along the boundary must be

equal to 2πm (m = 1, 2, 3, ...), so that the returning field has the same phase as the original

field and a steady state is reached. Consequently, only light at certain frequencies can be

confined in a cavity, and these frequencies are called cavity resonant frequencies ωm. The

corresponding electromagnetic modes are whispering gallery modes (WGMs), in analogy

to the acoustic wave propagating along the smooth surface of a circular gallery (Rayleigh,

1945). They have also been referred to as “morphology-dependent resonances”. The first

observation of stimulated emission into optical WGMs was reported soon after the inven-

tion of laser in solid spheres of diameter 1-2 mm (Garrett et al., 1961). Since then, WGMs

have been studied in a range of micron-sized cavities, from liquid droplets and jets to solid

spheres, cylinders, disks and rings. The optical confinement is, however, not perfect. Due to

the curvature of the cavity boundary, light escapes out of the cavity via evanescent leakage,

the optical analogue of quantum tunneling. In addition, the surface roughness introduces
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scattering loss, and there is residual absorption in the bulk material and at the surface.

They all contribute to a finite lifetime τ of light in a WGM, which leads to a spectral width

δω = 1/τ . The quality factor is defined as Q = ωmτ .

Compared to other microcavity resonances, the WGMs have extraordinarily high Q and

small volume, which lead to diverse applications in linear and nonlinear optics as well as

quantum optics. Ilchenko and Matsko (2006) reviewed the applications of dielectric whis-

pering gallery resonators to optical devices such as filters, modulators, switches, sensors,

lasers, frequency mixers as well as to microwave photonics. Next we will mention a few re-

cent developments. The extremely long lifetime of light in a WGM makes it sensitive to the

adsorption of a single molecule or virus onto the cavity surface (Vollmer and Arnold, 2008).

Discrete changes in the resonance frequency have been observed due to the binding events of

individual molecules or virons, allowing real-time label-free detection (Armani et al., 2007;

Vollmer et al., 2008). A further enhancement of the sensitivity is realized using whispering-

gallery microlasers (He et al., 2011). The Purcell enhancement of optical density of states by

the WGM dramatically increases light emission and scattering (Chang and Campillo, 1996;

Vahala, 2004). Strong coupling of a single emitter (atom or quantum dot) to a WGM of a

microdisk or a microtoroid has been achieved (Aoki et al., 2006; Peter et al., 2005; Srinivasan

and Painter, 2006), facilitating the studies of cavity quantum electrodynamics. The strong

buildup of intracavity optical field greatly enhances nonlinear coupling of light with matter

(Chang and Campillo, 1996). For example, the Kerr-nonlinearity induced optical paramet-

ric oscillation in ultra-high-QWGMs produces optical frequency combs with high repetition

rate, permitting applications in astronomy, microwave photonics and telecommunications

(see the review of Kippenberg et al. (2011) and refs therein). The whispering gallery res-

onators also play a crucial role in the emerging field of cavity optomechanics (Aspelmeyer

et al., 2013; Kippenberg and Vahala, 2008). As light is reflected from the cavity boundary,

it exerts radiation pressure on the cavity wall, inducing a mechanical flex of the cavity struc-

ture. The intense circulating field of a WGM produces strong radiation pressure and excites

vibrational resonances. An interesting example is the acoustic WGMs excited via stimulated

Brillouin scattering of optical WGMs in a microsphere (Carmon and Vahala, 2007). The

optomechanical coupling may lead to amplification or cooling of mechanical motion (Bahl

et al., 2012, 2011; Schliesser et al., 2006).

Nearly perfect confinement of light also implies the difficulty of coupling light into or out
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of a WGM. Consequently whispering gallery microlasers do not provide adequate output

power despite of low lasing threshold. Moreover, the rotational symmetry of a sphere or

a circular disk leads to isotropic emission to free space, making it impossible to collect all

the output. This is a serious problem for certain applications, e.g., single photon emitters.

To increase the collection efficiency, a coupler such as a prism, a waveguide or a fiber is

often placed in close proximity of the cavity to extract the evanescent field (Matsko and

Ilchenko, 2006). High precision is required in positioning the coupler with respect to the

cavity boundary in order to obtain sufficient output while avoiding a dramatic reduction of

the quality factor (Q-spoiling). An alternative way of increasing the collection efficiency is to

make the emission to free space directional by modifying the cavity boundary. Shortly after

the first realization of semiconductor microdisk lasers, Levi et al. (1993) achieved directional

output by introducing a tab or patterning a grating on the disk circumference. This kind

of defects, however, also caused a serious Q-spoiling. To minimize this problem, Nöckel

and Stone (1997) proposed smooth deformation of cavity shape to break the rotational

symmetry and achieve anisotropic emission. They called such cavities “asymmetric resonant

cavities”. Even before their work, lasing in non-spherical liquid droplets was reported by

Chang and coworkers (Qian et al., 1986). The laser emission was confined to the liquid-air

interface, confirming the surface nature of the lasing modes. Later, Gmachl et al. (1998)

used semiconductor microcylinders with deformed cross section as laser resonators, and

achieved high-power directional output. In the favorable directions of the far field, a power

increase of up to three orders of magnitude over the conventional circularly symmetric lasers

was obtained. Following these works, various shapes of deformed cavities were studied

and fabricated (some examples are shown in Fig. 1), most of them either produce multi-

directional output beams or have relatively low Q factor (Wiersig et al., 2011b). The goal of

combining unidirectional emission with high Q has been reached recently with a deformed

microdisk whose boundary is described by the limaçon of Pascal (Shinohara et al., 2009; Song

et al., 2009b; Wiersig and Hentschel, 2008; Yan et al., 2009; Yi et al., 2009). In addition,

the reverse process, i.e., free space excitation of directional high Q modes in a deformed

cavity, is made efficient with an appropriate choice of the pump beam direction and impact

position. This has been utilized for nonresonant optical pumping of microcavity lasers (Lee

et al., 2007b; Yang et al., 2008) and cryogenic cooling of optomechanical resonators (Park

and Wang, 2009).
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From the fundamental physics prospective, deformed microcavities have become a model

system for the studies of nonlinear dynamics, quantum chaos, and non-Hermitian physics

(Stone, 2001; Tureci et al., 2005). For a classical chaotic system, the particle’s trajectory

depends with exponential sensitivity on the initial conditions. A common example is a two-

dimensional (2D) billiard with reflecting walls and negligible friction, in which a point mass

moves in a straight line until it hits the boundary and bounces back with the angle of reflec-

tion equal to the angle of incidence. Chaotic motion can be induced by proper shaping of

the billiard, physicists and mathematicians have learned a great deal about chaotic motion

and its onset by studying dynamical billiards with varied shape. If the billiard becomes

very small and the point mass is a quantum particle, the dynamics is governed by quantum

mechanics. The quantum billiard has been a focus of theoretical study on the quantum

manifestation of classical chaos, but it is difficult to realize experimentally. For example,

quantum dots were investigated as chaotic quantum systems, but the interactions of elec-

trons complicate the dynamics. A breakthrough came in the 1990’s when the microwave

cavities were used as quantum billiards, with the recognition of the formal analogy between

the wave properties of quantum particles and classical electromagnetism. The electromag-

netic fields of the Maxwell’s equations are the analog of the wavefunctions of the Schrödinger

equation, thus quantum chaos can be studied in the context of wave chaos for electromag-

netic fields. The “classical limit” corresponds to the limit of geometric optics where the

wavelength is much smaller than the cavity size. Statistical analysis of the eigenfrequen-

cies and eigenfunctions in 2D microwave cavities of varied shape illustrated the differences

between classical chaotic and non-chaotic systems. Reviews on microwave billiards can be

found in the book of H.-J. Stöckmann (Stöckmann, 2000) and the review of A. Richter

(Richter, 1999). Interesting effects studied in quantum billiards are, for example, dynamical

localization, and dynamical tunneling. Dynamical localization is the suppression of chaotic

diffusion by destructive interference (Fishmann et al., 1982; Frahm and Shepelyansky, 1997).

Dynamical tunneling is a generalization of conventional tunneling which allows passage not

only through an energy barrier but also through other kinds of dynamical barriers in phase

space (Davis and Heller, 1981). While most microwave billiards are closed systems with

reflecting boundaries, dielectric cavities have open boundaries through which waves may

escape. The openness makes the effective Hamiltonian of the system non-Hermitian. This

leads to various interesting phenomena such as an increase of the quality factor at avoided
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resonance crossings (Persson et al., 2000), chirality of mode pairs (Wiersig et al., 2008) and

exceptional points (Heiss, 2000), which are branch point singularities of eigenvalues and

eigenvectors of a non-Hermitian matrix. Therefore, deformed dielectric microcavities are

ideal models for the fundamental studies of open chaotic systems (Nöckel and Stone, 1997)

and non-Hermitian quantum physics (Lee et al., 2009a).

B. Scope

We will review the experimental and theoretical studies of dielectric microcavities as

open chaotic systems in the past two decades. There are previous short reviews on this

topic (Harayama and Shinohara, 2011; Stone, 2001; Tureci et al., 2005; Xiao et al., 2010),

which focus on either specific cavity shapes (e.g., quadrupolar deformation in (Stone, 2001;

Tureci et al., 2005)) or certain features (e.g., output directionality in (Xiao et al., 2010)).

Here we will cover a variety of cavity shapes, from smooth deformations of circle or sphere

to polygons and cavities with boundary defects. We will explain how the shape of cavity

boundary determines the intracavity ray dynamics and how light escapes out of the cavity.

Depending on the type and degree of shape deformation, the intracavity ray dynamics can be

regular, chaotic or partial chaotic. Correspondingly, there is a diversity of cavity modes with

rich spatial structures, e.g., whispering gallery modes, chaotic modes, scar modes (localized

on unstable periodic ray trajectories), etc. We will discuss how these modes are formed, and

explore their characteristics such as quality factor and far-field pattern.

In this review we will not cover the nonlinear interactions of light with gain materials or

the interactions of multiple lasing modes via the active media, which have been reviewed in

(Harayama and Shinohara, 2011). Instead we will focus on linear wave optics and (nonlinear)

ray optics in the following three regimes, (i) the “classical regime”, nkR > 103 (n is the

intracavity index of refraction, k = 2π/λ, λ is the vacuum wavelength), where the ray

dynamics rules, (ii) the “semiclassical regime”, nkR ∼ 102 − 103, where wave corrections

emerge, (ii) the “quantum regime”, nkR ∼ 10− 102, where wave effects become dominant.

We will explore the ray-wave correspondence, and emphasize the consequence of cavity

openness, e.g., the nonorthogonality of cavity modes which leads to excess quantum noise.

In addition to stationary cavities, we will review wave chaos in rotating microcavities, and

explain how the rotation will affect the resonance frequency, quality factor and far-field
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pattern.

II. THEORETICAL MODEL AND EXPERIMENTAL TECHNIQUES

A. Mode equation and wave simulations

The aim of this subsection is to give the definition of electromagnetic (optical) modes in

passive dielectric cavities, to introduce the corresponding mode equation with emphasis on

the deformed disk and to review the numerical schemes to solve it.

The geometry of a dielectric cavity is determined by the spatial profile of the refractive

index n(~r). For a given profile an electromagnetic mode is defined as a time-harmonic so-

lution of Maxwell’s equations with frequency ω, in the same way as a quantum mechanical

energy eigenfunction is a solution of the Schrödinger equation with fixed eigenenergy. How-

ever, dielectric cavities are open systems as light leaks out of the cavity. Hence, a mode

in a dielectric cavity is a quasi-bound state/quasi-normal mode (Gamow, 1928; Kapur and

Peierls, 1938) decaying exponentially in time with lifetime τ . This can be conveniently ex-

pressed by a complex-valued frequency ω, where the imaginary part is related to the lifetime

via τ = −1/2Im(ω) with Im(ω) < 0. The quality factor Q compares the lifetime τ with the

oscillation period of the light T = 2π/Re(ω),

Q = 2π
τ

T
= − Re(ω)

2Im(ω)
. (1)

The quasi-bound states are connected to the peak structure in scattering spectra (see,

e.g., (Landau, 1996)) as illustrated in Fig. 2.

To derive the mode equation one has to substitute the complex representation of time-

harmonic electric field ~E(~r, t) = ~E(~r) exp (−iωt) and magnetic field ~H(~r, t) = ~H(~r) exp (−iωt)
into Maxwell’s equations for non-magnetic, dielectric materials in the absence of free charges

and currents. As most dielectric cavities consists of one or several homogeneous regions the

refractive index n(~r) is often a piece-wise constant function. In that case one arrives at

(

∇2 + n2(~r)
ω2

c2

)





~E(~r)

~H(~r)



 = 0 (2)

provided that ~r is not a boundary point. If ~r is on a boundary separating two regions 1 and
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2 with constant refractive indices n1 and n2 the fields are subject to the continuity relations

~ν(~r)× [ ~E1(~r)− ~E2(~r)] = 0 , (3)

~ν(~r) · [n2
1
~E1(~r)− n2

2
~E2(~r)] = 0 , (4)

~ν(~r)× [ ~H1(~r)− ~H2(~r)] = 0 , (5)

~ν(~r) · [ ~H1(~r)− ~H2(~r)] = 0 , (6)

where ~ν(~r) is the local normal vector. The appropriate boundary condition at infinity is the

“outgoing wave” condition (Sommerfeld radiation condition). Together with this boundary

condition, Eqs. (2)–(6) define the modes in a dielectric cavity.

In the case of a (deformed) disk cavity, the mode equation and the boundary conditions

can be significantly simplified by replacing the disk by an infinite dielectric cylinder with an

arbitrary cross-section. The translation symmetry along the z-axis of this idealized geometry

allows the ansatz (Jackson, 1962; Tureci et al., 2005)

~E(~r) = ~E(x, y) exp (inkzz) (7)

and analog for ~H. The particular case of kz = 0 corresponds to light propagation in the

(x, y)-plane only. For this case the mode equation can be written as scalar Helmholtz

equation
(

∇2 + n2(x, y)
ω2

c2

)

ψ(x, y) = 0 , (8)

with ∇ now restricted to the x and y coordinates. The complex-valued wave function ψ

equals Ez in the case of transverse magnetic (TM) polarization (Hz = 0). For transverse

electric (TE) polarization (Ez = 0) the wave function ψ equals Hz. The other electric and

magnetic field components can be computed from Ez and Hz, respectively (Tureci et al.,

2005). Admissible solutions of the mode equation in Eq. (8) are those which remain finite

everywhere inside the cavity. The continuity relations (3)-(6) in the (x, y)-plane simplify to

ψ1 = ψ2, ∂νψ1 = ∂νψ2 TM polarization (9)

ψ1 = ψ2,
∂νψ1

n2
1

=
∂νψ2

n2
2

TE polarization. (10)

∂ν is the normal derivative defined as ∂ν = ~ν(~r) ·∇. Note the structural equivalence of mode

equation (8) and the stationary Schrödinger equation of a quantum particle in a piece-wise

constant potential. In polar coordinates (r, ϕ) the outgoing wave condition in two dimensions
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for large r can be written as

ψ ∼ ψout = h(ϕ, k)
exp (ikr)√

r
. (11)

Due to this boundary condition the solution of the mode equation has to decay in time. It

is therefore a quasi-bound state with complex-valued frequency ω; Im(ω) < 0. Moreover,

ψ diverges as exp [−Im(k)r] with Im(k) = Im(ω)/c < 0 as the radial coordinate r tends

to infinity. Hence, the quasi-bound state ψ is strictly speaking not normalizable. The

divergence does not affect the angular distribution of the emitted light, h(ϕ, k).

In practice a microdisk has a finite vertical extension which is usually taken into account

within the effective-index approximation; see, e.g., (Smotrova et al., 2005). The central

assumption is that the separation ansatz (7) is still valid, ignoring a weak mixing of TM and

TE polarizations. The resulting equation for the z-direction leads to a series of quantized

values of kz. Usually it is sufficient to consider the smallest one. Associated with this value

of kz is the mode equation (8) and the continuity relations (9) and (10) with n replaced by

an effective index of refraction neff = n
√

1− (kz/k)2 inside the cavity and neff = 1 outside

the cavity.

The effective-index approximation cannot be justified rigorously and no error estimates

can be given. However, many publications have confirmed that this approach works well

in terms of eigenfrequencies for different kinds of planar geometries such as photonic crys-

tals (Qiu, 2002), annular Bragg cavities (Scheuer et al., 2005), and microdisks (Michael,

2009). Even microcavities supported by a pedestal are described in sufficient accu-

racy (Lozenko et al., 2012). Moreover, the near-field pattern (Fang et al., 2007; Redding

et al., 2012b) and far-field pattern (Schwefel et al., 2004; Shinohara et al., 2009) of deformed

microdisks computed in the effective-index approximation agree with experimental data.

The validity of the effective-index approximation for dielectric disks has been questioned

recently by Bittner et al. (2009). However, the observed deviations of typically below 1

percent can be considered as being small having in mind that the bulk refractive index is

often known with less accuracy.

As most problems in electrodynamics do not allow for an analytical treatment, much

effort has been put in the development of numerical schemes. The most prominent one

is the finite-difference time-domain (FDTD) method (Taflove and Hagness, 2000) which is

perfectly suited to simulate the dynamics of light propagation in complex environments.
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It can also be used to determine light confinement in dielectric cavities (Fang et al., 2007,

2005b; Kim et al., 2004; Srinivasan et al., 2006), but for long-lived modes in the semiclassical

regime (short-wavelength regime), i.e. when the wavelength is small compared to the char-

acteristic length scales of the system, it requires immense computational power. In this case

it is more convenient to work in the frequency domain. This is in particular advantageous

if the frequency dependence of the refractive index has to be included. For the frequency

domain several approaches can be applied to quasi-two-dimensional geometries, such as the

finite-difference frequency-domain (FDFD) method (Shainline et al., 2009), wave-matching

method (Hentschel and Richter, 2002; Nöckel and Stone, 1995), internal scattering quantiza-

tion approach (Tureci et al., 2005), volume element methods (Martin et al., 1999), boundary

element methods (Wiersig, 2003a; Zou et al., 2011) and related methods based on boundary

integral equations (Boriskina et al., 2004). The FDFD and the volume element methods are

restricted to small structures because of the limited computational power that is available

today. The wave-matching method based on the expansion of the wave function into a basis

of Bessel and Hankel functions is more efficient and can be applied to large structures. How-

ever, usually the expansion is around a single point in position space (single pole method).

In this case the method relies on the Rayleigh hypothesis which fails for strongly deformed

disks (van den Berg and Fokkema, 1979). This same is true for the highly efficient internal

scattering quantization approach. No such problem exists for the boundary element methods

which are also efficient (Zou et al., 2011), in particular in combination with the harmonic

inversion technique (Wiersig and Main, 2008).

B. Ray model

The short-wavelength limit of wave optics is geometrical (ray) optics. In the semiclassical

regime much understanding about the wave dynamics in dielectric cavities can be gained by

studying the dynamics of rays inside the given structure. In the following we describe the

basic ray model introduced by Mekis et al. (1995); Nöckel and Stone (1995, 1997); Nöckel

et al. (1994, 1996) which is nowadays commonly used for dielectric cavities.

First, we address ray dynamics in a closed cavity with perfectly reflecting walls. This

problem is mathematically equivalent to a classical particle moving freely along straight lines

in a two-dimensional planar domain (billiard) with specular reflections at the boundary.
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Figure 3(a) depicts the elementary aspects of the billiard dynamics. According to the law

of reflection, the incident ray and the reflected ray make the same angle χ with respect to

the inward normal vector ~ν at the boundary point of the reflection. Clearly, only the shape

of the boundary determines the dynamical properties of the billiard.

The real-space trajectories in a typical billiard can be very complicated, so it is more

appropriate to study the trajectories in phase space. The phase space of a 2D billiard is

four dimensional consisting of two spatial degrees of freedom and two conjugate momenta.

However, due to conservation of the particle’s energy, the motion actually takes place on

a three-dimensional surface. A further reduction of dimensionality can be achieved by the

Poincaré surface of section (SOS) (Lichtenberg and Lieberman, 1992). For billiards, it is a

plot of the intersection points of a set of trajectories with the cavity’s boundary. This is

illustrated in Fig. 3. When a ray/particle is reflected at the cavity’s boundary, its position

in terms of the arclength coordinate along the boundary s and the quantity p = sinχ are

recorded. We follow here the convention that sinχ > 0 means counterclockwise rotation and

sinχ < 0 means clockwise rotation; cf. Figs. 3(a) and (b). The quantity p ∈ [−1, 1] can be

interpreted as the tangential component of the normalized momentum with respect to the

boundary curve at a given position s ∈ [0, smax]. The coordinate s and its canonical conju-

gate momentum p are called Birkhoff coordinates. This pair is the natural set of coordinates

since the mapping from bounce to bounce, (si, pi) → (si+1, pi+1), is area-preserving (Birkhoff,

1927); see also (Berry, 1981).

In the special case of the circular billiard, the angle of incidence χ is not changed by

the billiard mapping. Hence, rays are confined to two-dimensional surfaces of constant sinχ

and constant energy. The topology of such invariant surfaces is that of a two-dimensional

torus (Arnol′d, 1978). In the SOS these tori are lines sinχ = constant. The dynamics on

these lines can be periodic or quasi-periodic.

A more complicated example, the mushroom billiard, is shown in Fig. 4. This exotic

class of geometries has attracted much attention because the phase space of such a system is

sharply divided into regular and chaotic parts (Bunimovich, 2001). In a regular region, the

dynamics is similar to the case of the circular billiard with χ being a constant of motion. In

contrast, the dynamics in a chaotic region exhibit an exponential sensitivity on the initial

conditions (Lichtenberg and Lieberman, 1992). Moreover, the dynamics is ergodic, i.e. a

single trajectory eventually comes arbitrarily close to any point in the given chaotic region
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and as a result it covers a finite fraction of the SOS. The phase space of such a partially

chaotic system is called “mixed phase space”. A mushroom-shaped optical microcavity has

been studied in (Andreasen et al., 2009).

In a generic billiard, the coexistence of regular and chaotic dynamics in the mixed phase

space is much more involved. Regular regions (called “islands”) embedded in a chaotic

region (which is usually referred to as “sea” to complete the analogy) are surrounded by

a chain of smaller islands which in turn are surrounded by even smaller islands and so on,

leading to an infinite hierarchy of islands. Figure 5 shows as an example for a generic case

the SOS of a quadrupole billiard (Nöckel et al., 1996; Tureci et al., 2002) with boundary

given in polar coordinates by

r(ϕ) = R(1 + ε cos 2ϕ) . (12)

The ray dynamics is solely determined by the deformation parameter ε ≥ 0 and independent

on the average radius R. Only trajectories with positive χ are shown in Fig. 5. The SOS

is symmetric with respect to χ → −χ due to the time-reversal symmetry of the billiard

system. It can be clearly seen that the ray dynamics can be regular or chaotic depending

on the initial conditions. Figures 5(a)-(c) depict a quasi-periodic whispering-gallery ray, a

periodic ray from the center of an island, and a chaotic ray.

A ray in a billiard system never leaves the interior of the domain enclosed by the bound-

ary. In a dielectric cavity, however, a ray can leave the cavity via refractive escape. Figure 6

illustrates that the ray partially leaves the cavity when the angle of incidence χ is smaller

than the critical angle χc for total internal reflection; sinχc = 1/n assuming that air sur-

rounds the cavity. Hence, a dielectric cavity can be considered as an “open billiard” (Nöckel

and Stone, 1995, 1997).

In the SOS of such an open billiard the region between the “critical lines” sinχ = ±1/n

is called “leaky region”; see Fig. 7(a). The size of the leaky region increases with decreasing

refractive index n. Chaotic systems with a leaky region in phase space have been given a

lot of attention in recent years, for a review see (Altmann et al., 2013). When a ray inside

the dielectric cavity hits the leaky region then, in the crudest approximation, the ray is lost

for the internal ray dynamics and the transmitted ray contributes to the far-field intensity

pattern f(ϕ) according to Snell’s law n sinχ = sin η (Jackson, 1962); cf. Fig. 6. A more

sophisticated scheme is to account for the partial leakage in the leaky region by assigning
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an initial intensity I to a given ray. Whenever it hits the cavity’s boundary the intensity is

reduced according to

Ii → Ii+1 = RTM,TE(sinχi)Ii (13)

where RTM,TE(sinχ) ≤ 1 is the polarization-dependent reflection coefficient (Schwefel et al.,

2004). The simplest choice for RTM,TE is according to Fresnel’s laws for a planar dielec-

tric interface (Jackson, 1962); see Fig. 7(b). Note that in the case of TE polarization the

reflection coefficient goes down to zero at Brewster’s angle.

Tracing a single ray is not sufficient for the computation of the far-field intensity pattern

f(ϕ). What is needed is a properly chosen ensemble of rays which establishes a link to the

modes of the dielectric cavity. There is no general recipe for constructing these ensembles

as it depends on the geometry of the cavity, so we postpone this issue to Sec. IV.

The reflection coefficient RTM,TE can be used to incorporate tunneling into the ray

model (Nöckel and Stone, 1997). Tunneling is the main decay channel of the (weakly de-

formed) circular cavity as refractive escape is forbidden due to conservation of the angle of

incidence. In this case, the tunneling can be related to a modified reflection coefficient at

curved dielectric interfaces (Hentschel and Schomerus, 2002). Other extensions of the ray

model will be discussed in Sec. VIII.

Ray tracing has also been performed in deformed dielectric spheres. In the special case

of an axisymmetric deformed sphere the conservation of angular momentum reduces this

problem effectively to a two-dimensional billiard with centrifugal potential. Such a case has

been studied by Nöckel and Stone (1995). Ray dynamics in a nonaxisymmetric deformed

dielectric sphere has been analyzed in (Lacey and Wang, 2001). Here, the SOS is four-

dimensional, therefore the ray trajectories have to be laboriously visualized and analyzed in

a number of different projections.

C. Husimi functions

In this subsection we discuss a powerful tool for the comparison of ray and wave properties,

the Husimi function for dielectric cavities. The Husimi function is one of the simplest quasi-

probability distributions of a quantum state in phase space (Husimi, 1940). It is obtained

from the overlap of the wave function with a coherent state that represents a minimal-

uncertainty wave packet.
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The Husimi function has been adapted to billiards by Crespi et al. (1993). It can be

considered as a representation of the quantum state on the SOS at the boundary of the

billiard. This approach has been applied also quite extensively to dielectric cavities even

though the boundary conditions (9) and (10) are different. For TM boundary conditions (9)

Hentschel et al. (2003) have derived Husimi functions by using a saddle point approximation

valid in the semiclassical regime. In total four different Husimi functions have been obtained,

two for incident and emerging waves inside the cavity and two for those outside the cavity.

The Husimi functions for the internal waves have been widely used, so we focus on them in

the following. The incident and the emerging Husimi functions are

H inc(em)(s, p) =
nk

2π

∣

∣

∣

∣

Fhψ(s, p)− (+)
i

kF h∂ψ(s, p)

∣

∣

∣

∣

2

(14)

with weighting factor F =
√

n
√

1− p2. The function

hg(s, p) =

∫ smax

0

ds′ g(s′)ξ(s′; s, p) (15)

is the overlap of the wave function (g = ψ) or its normal derivative (g = ∂νψ) on the cavity’s

boundary with the minimal-uncertainty wave packet

ξ(s′; s, p) = (σπ)−
1

4

∞
∑

l=−∞

exp
[

− (s′ + smaxl − s)2

2σ

−inkp(s′ + smaxl)
]

. (16)

The wave packet ξ(s′; s, p) is centered around (s, p). The relative uncertainty in s and p can

be controlled with the parameter σ.

Figure 8 shows as example the Husimi function of a mode in an annular cavity (a microdisk

with an internal disk-shaped area of different refractive index; see, e.g., (Hentschel and

Richter, 2002; Preu et al., 2013; Schomerus et al., 2004; Wiersig and Hentschel, 2006))

superimposed on the SOS of the outer boundary. It can be seen that the mode is localized

in the chaotic region of phase space. The contribution in the leaky region determines the

emission properties.

There is an independently developed approach to visualize the mode in the leaky region of

the SOS, the so-called intensity flux distribution which is based on a coarse-grained Poynting

vector (Shinohara and Harayama, 2007). It has been proven that the flux distribution coin-

cides with the difference between the incident and the emerging Husimi function (Shinohara

and Harayama, 2011).

17



D. Cavity fabrication

In this subsection, we introduce various types of dielectric microcavities, and describe

briefly how they are fabricated. For more information, we refer the readers to several reviews

(Chiasera et al., 2010; He et al., 2013; Ilchenko and Matsko, 2006; Righini et al., 2011; Xiao

et al., 2010).

1. Liquid droplets and microjets

Liquid droplets are 3D microcavities formed by surface tension forces. In the early days

they were generated by Berglund-Liu piezoelectric vibrating-orifice aerosol generators (Qian

et al., 1986). As shown in Fig. 9, right below the vibrating orifice is a periodically perturbed,

continuously connected liquid cylinder, which develops to separate, highly distorted droplets

that oscillate between prolate spheroids and oblate spheroids. Farther away, the stream

transits to monodisperse, equally spaced spherical droplets. The radii of the droplets, which

depend on the size of the orifice aperture, are typically a few tens of micron. Instead of

flying in air, the droplets may also be suspended in liquids or placed on solid substrates (He

et al., 2013).

The total internal reflection of light at the liquid-air interface leads to the formation of

WGMs in the droplet. Despite of low refractive index contrast (commonly used liquids have

refractive index between 1.3 and 1.4), the droplet has very smooth surface, which minimizes

the scattering loss. Light emitting or amplifying materials can be easily incorporated into

the liquid droplets, e.g., by adding dye molecules or quantum dots to a solution before

creating droplets. Lasing was realized in dye-doped liquid droplets with optical excitation

of dye molecules (Tzeng et al., 1984). Micro-sized liquid droplets were also used for cavity

enhanced spectroscopy (Symes et al., 2004). Liquid microjet can create a continuous and

stationary column of liquid with a precise control of the hydrodynamics of the jet (see

Fig. 1(b) in Sec. I). Light propagating perpendicular to the axis of the column may be

trapped in one cross section by total internal reflection at the liquid-air interface. Thus

the microjet was used in the study of 2D microcavities (Moon et al., 1997). Moreover,

the cavity size and shape can be varied continuously along the stream. By deforming the

orifice aperture (Yang et al., 2006) or applying a lateral gas flow (Moon et al., 1997), the
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cross-section of the microjet column is distorted from circle. The exact surface profile may

be deduced from the optical diffraction pattern (Moon et al., 2008). The typical dimension

of the cross section is a few tens of micron, and the surface roughness induced scattering is

as weak as that in the droplets.

2. Solid microspheres and microtoroids

Solid microspheres have been produced from a large variety of materials, organic and in-

organic, amorphous and crystalline. The widely used amorphous microspheres are fabricated

with two techniques based on melting process and sol-gel chemistry. A detailed description

of these techniques is given in the reviews of Chiasera et al. (2010) and Righini et al. (2011).

As an example, we describe below a common and effective method of making a glass mi-

crosphere by melting the end of a glass fiber. The heating source can be an oxygen/butane

torch, a high power CO2 laser, or an electric arc as in a commercial fiber splicer. Upon

heating the distal tip of a silica fiber, the glass reflows to form a spherical volume under the

influence of surface tension. Due to high viscosity of silica, the reflowed structure becomes

extremely uniform and highly spherical (eccentricities < 3%). The sphere diameter varies

from ten to a hundred micron, depending on the original diameter of the fiber tip. Smaller

spheres are produced by first tapering the fiber to reduce the diameter of the tip. The silica

microsphere remains attached to the fiber stem from which it was formed, making it easy

to handle [Fig. 10(a)]. Typically one excites the WGMs that lie in the equatorial plane and

have very small overlap with the stem, thus the effect of the stem on the WGMs is negligible.

The surface roughness is extremely low, on the order of 1 nm, thus high quality factors can

be reached for the WGMs.

Asymmetric microspheres [Fig. 1(c)] have also been fabricated by fusing two silica spheres

together with a CO2 laser beam (Lacey and Wang, 2001). Alternatively, a single spherical

microsphere can be deformed by reheating with one or two laser beams incident on different

sides (Xiao et al., 2007, 2009). Microbottle resonators were made from optical fibers in a

two-step heat-and-pull process by sequentially tapering the fiber in two adjacent locations

to form the bottle (Poellinger et al., 2009). To facilitate sensing applications, liquid core

resonators were fabricated by blowing a silica microbubble (Sumetsky et al., 2010). The

process is similar to the traditional glass blowing, a gas pressure is applied while a glass
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capillary is heated.

To achieve on-chip integration, silica microtoroid cavities were fabricated on silicon wafers

(Armani et al., 2003). First, silica microdisks are made by photolithography and dry etching.

Then the underneath silicon is selectively etched to form a post that supports the silica disk.

Finally, a CO2 laser beam irradiates a silica disk to melt the silica along the rim, and a

toroid-like structure is formed by surface tension [Fig. 10(b)]. The reflow of silica produces

a nearly atomic-scale surface finish, greatly enhancing the Q factor. The dimension of the

toroid is determined by that of the initial disk and the reflow process. The toroid diameter

is typically between 20 µm and 100 µm, and the toroid thickness is a few micron.

To make microspheres and microtoroids optically active, various approaches have been

developed, such as fabricating the resonators from materials doped with active media, coat-

ing the resonators with light emitters, doping the resonators with gain material by ion

implantation, etc. More detail about these approaches can be found in the review of He

et al. (2013).

Single crystals have also been used to make spherical and toroidal cavities, and they

are expected to have less loss and stronger nonlinear response than amorphous materials

(Ilchenko and Matsko, 2006). The fabrication of crystalline spheres and toroids involves me-

chanical cutting, drilling and polishing. The typical diameter exceeds 1 mm. It is extremely

difficult, if not impossible, to make microscale resonators with crystalline materials.

3. Microdisks and micropillars

Well-developed micro- and nano-fabrication technologies, such as photo-lithography,

electron-beam lithography, chemical and physical etching, have been adopted to make mi-

crodisk and microcylinder resonators, allowing a precise control of the cavity shape and

size. The commonly used materials are semiconductor and polymer. The latter can be

either a passive polymer doped or coated with active material, e.g., dye-doped Poly(methyl

methacrylate) (PMMA), or an active polymer such as poly(para-phenylene vinylene) (PPV)

and poly(para-phenylene) (PPP). The polymer is first dissolved in a solvent and then spin-

coated on a glass substrate. The layer thickness is a few hundred nanometer to one micron,

depending on the spin speed and the concentration of the solution. To guide light in the

polymer layer, its refractive index must be higher than that of the substrate. In the case the
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substrate has a large refractive index, a low-index material is deposited on the substrate first

and then the polymer is spin-coated on top of it (Chern et al., 2004; Lebental et al., 2006).

The disk patterns are written on a resist layer covering the polymer by photolithography

or e-beam lithography, and then transferred to the polymer layer via wet or dry etching.

Alternatively, microdisks may be made by direct photo-lithography or e-beam lithography

with polymers or monomers that are active to UV light or electron beam (Djellali et al.,

2009; Fang and Cao, 2007). An additional bake may follow to reflow the polymer and

smooth the disk edges. Figure 11(a) shows a DCM-doped PMMA disk of spiral shape.

Semiconductor microdisks/microcylinders have been made with GaAs/AlGaAs, InP/InGaAsP,

Si, GaN/InGaN. They are single crystals grown by molecular beam epitaxy (MBE) or metal-

organic chemical vapor deposition (MOCVD). The semiconductor disks have large refractive

index contrast with the surrounding air, leading to strong light confinement even in small

disks. It enables lasing in disks that are merely a few micron or even submicron in diameter

(Song et al., 2009a; Zhang et al., 2007b). The disk thickness is typically a few hundred

nanometer. Gain materials such as quantum wells (McCall et al., 1992), quantum dots (Cao

et al., 2000), or nanocrystals (Liu et al., 2004) are embedded in the disk layer or deposited

on top of the disk. To isolate a disk from the high-index substrate, selective etching of the

substrate forms a pedestal underneath the disk (Liu et al., 2004). If this is not possible,

e.g., the substrate is made of the same material as the disk, another semiconductor layer is

grown between the disk and the substrate, and it is selectively etched to form a pedestal

(McCall et al., 1992), as shown in Fig. 11(b). The WGMs that locate near the edge of

a disk are barely affected by the presence of the pedestal. Alternatively, a lower-index

semiconductor layer is sandwiched between the higher-index disk layer and the substrate,

enabling index-guiding of light in the disk layer (Fukushima and Harayama, 2004; Gmachl

et al., 1998).

In addition to the planar cavities, vertical cavities can be formed by stacking two Bragg

mirrors. Standard lithography and etching have been used to make micropillars that are

a few micron in height. Quantum wells or dots are embedded in the cavity. Figure 11(d)

shows a micropillar with the limaçon-shaped cross-section. Since the spacing of the two

Bragg mirrors is on the order of one wavelength, only one longitudinal mode of the cavity

falls in the emission spectra. However, if the cross section of the cavity is large (a few tens of

micron in diameter), multiple transverse modes exist, and they may produce complex field
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patterns (Gensty et al., 2005; Huang et al., 2002).

One advantage of the semiconductor microdisk/microcylinder lasers is that they can be

pumped electrically with current injection [Fig. 11(c)], while previously discussed micro-

cavities are optically pumped by another laser. However, their sidewall roughness, which

is created during the fabrication process, is much larger than that of the surface-tension-

formed microcavities. Since the melting temperature of GaAs/AlGaAs, InP/InGaAsP, or

GaN/InGaN is very high, at which the quantum wells or quantum dots would be damaged,

one cannot reflow the semiconductor to remove the sidewall roughness. Light scattering due

to sidewall roughness reduce the quality factor, making the lasing threshold higher. One

way of reducing the scattering loss is to make the sidewall wedge-shaped to push the optical

modes away from the rough lithographic edge (Kippenberg et al., 2006). Another solution

is to replace the sidewall with the atomic-flat facets. This can be done with the bottom-up

approach, e.g., which makes crystalline microdisks or microneedles (Gargas et al., 2010; Zhu

et al., 2009). The cross sections of these cavities are polygons, so light may diffract from

the sharp corners (Wiersig, 2003b).

E. Optical characterization

In this subsection, we describe the experimental techniques used to probe the microcavity

resonances, e.g., their frequencies, quality factors, intracavity intensity distributions and

far-field patterns. The characterization has been done on both passive cavities and active

cavities that contain light emitting or amplifying media.

1. Passive cavities

To probe the resonances of a passive cavity, light must be efficiently coupled into the cav-

ity. Several schemes have been developed. In terms of free-space coupling, a tightly focused

Gaussian light beam passing outside but near a spherical cavity preferentially excite specific

WGMs, depending on its distance from the cavity center (Lin et al., 1998). For a deformed

cavity, the modes with directional output can be efficiently excited by external beams in

reversed directions. In addition to free-space coupling, cavity resonances may be excited

with evanescent field couplers such as prisms, waveguides, tapered fibers. Typically, the
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input light is swept in frequency and a dip in the transmission spectrum gives the resonance

frequency. The spectral width of the dip reflects the quality factor of the resonance. By

varying the coupling position and/or direction, the intra-cavity mode profile may be inferred

or confirmed (Gao et al., 2007).

2. Active cavities

With light emitters embedded inside the microcavity or coated on its surface, the cavity

resonances, especially the ones with high quality factors, appear as peaks in the spontaneous

emission spectrum. The position and width of each peak tell the frequency and quality

factor of the corresponding resonance. At high pump level, stimulated emission and lasing

oscillation may occur.

Pumping can be either electrical or optical. The optical pumping is usually non-resonant,

i.e., the frequency of the pump light differs from that of the emission. Thus the pump light

and emitted light couple to different cavity modes. The pump beam may be incident onto

the cavity from free space or coupled evanescently. To enhance the pump efficiency, ray

and wave chaos were used to trap the pump light inside deformed microcavities (Lee et al.,

2007b).

A broad-band emission will couple to multiple cavity modes. The emission is collected

either in free space or via an evanescent field coupler. Near-field imaging of light scattered

at the cavity boundary reveals the locations where most emission escape from the cavity.

The directions of the emission can be measured by placing a photodetector in the far-field

zone and moving it around the cavity. A bandpass filter may be used to select one particular

mode. To measure the spectra of emission into different directions, the detector is replaced

by a fiber or fiber bundle connected to a spectrometer. The angle-resolved emission spectra

give the far-field patterns of individual modes that appear in the spectra. Alternatively, a

large ring may be fabricated around a microdisk, the in-plane emission from the disk reaches

the ring and is scattered vertically. By imaging the intensity of scattered light along the

ring from above the sample, one may infer the output directions (Song et al., 2009b). A

simultaneous measurement of the emission direction and location on the cavity boundary is

possible by imaging the intensity profile from the sidewall of a micropillar as viewed from

different angles (Schwefel et al., 2004).
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Finally we briefly discuss the microwave dielectric cavities. Most optical processes in pas-

sive microcavities can be studied in microwave cavities with higher precision (Bittner et al.,

2009; Kuhl et al., 2011; Richter, 1999; Schäfer et al., 2006). The much longer wavelength

makes the microwave cavity much larger (see Fig. 1(d)) and thus much easier to fabricate.

Moreover, both the amplitude and phase of the electromagnetic field can be readily measured

at the microwave frequency by using antennas, which are difficult to realize in optics.

III. OVERVIEW OF NON-DEFORMED DIELECTRIC MICROCAVITIES

This section briefly reviews the properties of nondeformed WGM cavities.

A. Whispering gallery modes

For a circular microdisk with refractive index n and radius R the solution of the mode

equation (8) with outgoing-wave condition (11) and with the requirement for a finite wave

function inside the cavity is

ψ(r, ϕ) =







amJm(nkr)e
imϕ if r ≤ R

bmH
(1)
m (kr)eimϕ otherwise

, (17)

where m ∈ Z is the azimuthal mode number, Jm and H
(1)
m are the mth order Bessel function

and first-kind Hankel function. The boundary conditions (9)-(10) lead to the “quantization

condition”

Sm(kR) = 0 (18)

with

Sm(kr) =
n

µ

J ′
m(nkr)

Jm(nkr)
− H

(1)′

m (kr)

H
(1)
m (kr)

, (19)

where µ = 1 (= n2) for TM (TE) polarization, and ′ denotes the first derivative with respect

to the argument. For given m Eq. (18) is to be solved numerically for the discrete values of

k = kml ∈ C labeled by the radial mode number l ∈ N.

Modes with azimuthal mode number m 6= 0 are two-fold degenerate due to the rotational

symmetry. The mode with m > 0 (m < 0) is a counterclockwise (clockwise) traveling wave

in the azimuthal direction. Linear superpositions of these two modes are also modes of the
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cavity. A particular superposition are standing waves in the azimuthal direction with sinmϕ

and cosmϕ dependence with m restricted to positive integers.

Figure 12 shows exemplarily two standing wave modes in the circular microdisk. Modes

with small radial mode number l are called whispering-gallery modes. Beside the inter-

nal modes (Feshbach resonances) shown in Fig. 12 there are also external modes (shape

resonances, above-barrier resonances) with much lower Q-factor which are located mostly

outside the cavity (Bogomolny et al., 2008; Dettmann et al., 2009a; Dubertrand et al., 2008;

Nöckel, 1997). Only the internal modes become bound states in the small opening limit

n→ ∞.

A straightforward calculation based on the stationary phase approximation shows that

the Husimi function (14) of a mode in a circular microdisk (17) is strongly localized around

sinχ =
m

nkR
, (20)

where kR is here understood as the real part of kR. This relation between ray and wave

properties of the dielectric disk has been first derived by Nöckel and Stone (1995) using the

eikonal approximation.

For microspheres analytical solutions of the mode equation are available in terms of

vectorial spherical harmonics; see, e.g., in the review of Chiasera et al. (2010) on spherical

WGM microresonators.

B. Optical losses and quality factors

In the ideal situation the quality factor (1) of an optical mode is determined solely by its

radiation losses through the curved boundary of the cavity; Q = Qrad. Asymptotic formulas

for these losses are given in (Apalkov and Raikh, 2004; Dubertrand et al., 2008; McCall

et al., 1992; Nöckel, 1997) for microdisks and in (Chiasera et al., 2010) for microspheres. In

practice, however, also absorption and Rayleigh scattering in the bulk material as well as

scattering upon rough surfaces or contaminants contribute to the decay of light. According

to Slusher et al. (1993) the total quality factor can be written as

1

Qtotal
=

1

Qrad
+

1

Qmat
+

1

Qsurf
. (21)

The quantity Qmat is related to the material absorption coefficient α by

Qmat =
2πn

λα
, (22)
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where the dispersion of the refractive index n is ignored; λ is the vacuum wavelength. The

coefficient α can also describe Rayleigh scattering in the bulk material which, however,

can be significantly altered by the modified optical density of states in the presence of

the microcavity (Gorodetsky et al., 2000). These internal losses in the material can be

alternatively taken into account by the mode equation using a complex-valued refractive

index ñ = n + iλα/4π. Also the surface roughness Qsurf can be directly modeled by the

mode equation provided that fluctuations in the boundary function ρ = ρ(ϕ) are taken

explicitly into account; see, e.g., (Rahachou and Zozoulenko, 2003).

The maximal total Q-factor achievable in microcavities depends on the size and refractive

index (determining the radiation losses) and the quality of the material (determining the

internal losses and surface scattering). For semiconductor microdisks the highest Q-factors

can be achieved for “large” silicon cavities. Here, the Q ranges from 3 · 106 to 6 · 107 with

disk radius of 20−60µm (Borselli et al., 2005; Kippenberg et al., 2006; Soltani et al., 2007).

For AlGaAs disks with much smaller radius 2.25µm the quality factor is lower but can be

still high Q ≈ 3.5 · 105 (Srinivasan et al., 2005). For a GaAs-disk with a tiny radius 361 nm

the quality factor is still around 4000 (Song et al., 2009a). For AlN/AlGaN microdisks of

radii 2 − 5µm the quality factor is ranging from 5000 to 7300 (Mexis et al., 2011). For

polymer-based microdisks a quality factor around 6000 has been reported (Lozenko et al.,

2012).

The Q-factors in microspheres are usually larger. For silica microspheres the record Q is

around 8 · 109 (Gorodetsky et al., 1996). For spherical droplets made of Rhodamine 6G in

water solution a quality factor of about 108 has been measured (Lin, 1992). In microtoroid

cavities the quality factors can be also very high, e.g., 108 for a toroid made of silica (Armani

et al., 2003).

Optical gain may be introduced to microcavities to compensate the optical losses men-

tioned above. Coherent amplification of light via stimulated emission effectively increases

the photon lifetime, and reduces the mode linewidth. When optical amplification fully com-

pensates the total loss, self-sustained oscillation occurs in the cavity, which corresponds to

the onset of lasing action.
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C. Lasing in whispering gallery cavities

Because of the high quality factors and the small mode volumes, WGM microcavities are

excellent resonators for low threshold and narrow linewidth lasers. This subsection briefly

reviews the pioneering works on WGM microlasers. More details can be found in a recent

review on this topic by He et al. (2013).

Lasing in whispering-gallery cavities was first observed in spheres with diameter between 1

and 2mm made of CaF2 doped with Sm+2 (Garrett et al., 1961). Later, stimulated emission

in liquid ethanol droplets containing Rhodamine 6G dye as active medium was observed

by Tzeng et al. (1984). Sandoghdar et al. (1996) have reported on the realization of a

WGM laser based on neodymium-doped silica microspheres. A Raman laser with ultralow

threshold based on a microsphere was fabricated by Spillane et al. (2002).

Lasing in microdisks has been first observed in semiconductor disks made of InP/InGaAsP

with InGaAs quantum wells as active medium (McCall et al., 1992). Stimulated emission

from microdisks with InAs quantum dots as active medium has been reported by Cao et al.

(2000). Liu et al. (2004) fabricated ultraviolet microdisk lasers on silicon substrates. The

first room-temperature continuous-wave lasing in GaN/InGaN microdisks has been observed

by Tamboli et al. (2007). Lasing in submicron disks has been achieved by Shainline et al.

(2009); Song et al. (2009a); Zhang et al. (2007a). The first quantum cascade microdisk laser

was demonstrated by Faist et al. (1996). Kuwata-Gonokami et al. (1995) achieved laser

emission from polymer microdisk lasers.

Microlasers based on microtoroids covered by Erbium-doped sol-gel films have been fab-

ricated by Yang et al. (2003). WGM Lasing in electrically driven quantum-dot micropillars

has been achieved by Albert et al. (2010).

D. Evanescent field coupling

To couple light into and out of a WGM, an evanescent field coupler is often used. It pro-

vides efficient energy transfer through the evanescent field of a guided wave in a fiber/channel

waveguide or the evanescent wave produced by total internal reflection of light at the surface

of a dielectric prism/side-polished fiber (Chiasera et al., 2010; Matsko and Ilchenko, 2006).

Let us consider a waveguide/fiber positioned parallel to the boundary of a microdisk/microsphere.
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To couple light from the waveguide to a WGM in the cavity requires the phase synchronism,

i.e. the tangential component of the wave vector of the guided wave matches that of the

WGM. This can be achieved by adjusting the waveguide width or orientation. Complete

energy exchange between the waveguide and the resonator is possible when the coupling

strength matches the intrinsic loss of the resonator (Yariv, 2000). This is called critical

coupling, a notion that was developed earlier in radio frequency (RF) engineering. By

changing the distance from the waveguide to the cavity, the coupling strength is varied

and the critical coupling may be reached for the lowest-order mode of the waveguide (Cai

et al., 2000). Parasitic coupling to higher-order waveguide modes and radiation modes is

quantified by the “ideality” - the ratio of power coupled to a desired mode by power coupled

or lost to all modes. An ideality of 99.97% was shown with the coupling of a tapered fiber

to a silica microsphere (Spillane et al., 2003).

Next we discuss the prism coupler by considering a microsphere placed on the surface

of a dielectric prism (Gorodetsky and Ilchenko, 1994). A laser beam is directed into the

prism and undergoes total internal reflection at the prism surface. The resulting evanescent

optical field at the prism surface may be coupled to a WGM of the microsphere. The phase

matching is obtained by adjusting the incident angle of the input light.

The evanescent field coupler has also been used as the output coupler for the WGMs.

A detailed analysis of the coupling can be found in (Chiasera et al., 2010; Gorodetsky and

Ilchenko, 1999).

IV. SMOOTH DEFORMATION

In this section we discuss the properties of smoothly deformed microdisks cavities. The

degree of deformation is here classified in terms of the chaoticity of the internal ray dynamics.

To illustrate this concept, we consider a specific boundary curve, the limaçon of Pascal which

reads in polar coordinates (r, ϕ)

r(ϕ) = R(1 + ε cosϕ) . (23)

The limiting case of vanishing deformation parameter ε is the circle with radius R. An

experimental realization is shown in Fig. 11(d).

For ε < 0.5 the limaçon shape is a smooth convex deformation of the circle. The ray
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dynamics in billiards with such a boundary obey the Kolmogorov-Arnol′d-Moser (KAM)

theorem (Arnol′d, 1963; Kolmogorov, 1954; Moser, 1962). It states that for a sufficiently

smooth perturbation of an integrable system some of the invariant tori survive, while others

are destroyed giving rise to partially chaotic dynamics. Figure 13 illustrates this so-called

KAM transition to chaos for the limaçon billiard by varying the deformation parameter ε

from small to large values. For a small but nonzero value of ε most of the invariant curves

survive with their shape sightly distorted. The others are replaced by chains of stable

and unstable periodic orbits as dictated by the Poincaré-Birkhoff theorem (Lichtenberg and

Lieberman, 1992; Ott, 1993). The stable periodic orbits are surrounded by new invariant

curves which form small islands; see Fig. 13(a). The unstable periodic orbits are located in

tiny chaotic layers not visible in Fig. 13(a). A boundary deformation which leads to such a

nearly integrable ray dynamics is here classified as weak deformation.

Increasing the deformation parameter leads to the disappearance of more invariant curves

and to an increase of the chaotic layers; cf. Fig. 13(b). The remaining invariant curves

prevent rays from exploring the whole SOS. These curves act as barriers for the ray dynamics

and divide the phase space into disjoint regions. This situation of a mixed phase space is

classified here as moderate deformation. Note that as long as the billiard boundary is

convex and sufficiently smooth, there is always an infinite family of invariant curves in the

whispering-gallery region | sinχ| ≈ 1. This fact is implied by Lazutkin’s theorem (Lazutkin,

1973).

For large deformation these invariant curves and most of the others have been broken up

and therefore the dynamics is predominately chaotic as shown in Fig. 13(c). A ray starting

in the region well above the critical line can diffuse to the leaky region.

A. Weak deformation – nearly integrable ray dynamics

Considering the ray dynamics in smoothly deformed microcavities it seems that the case

of weak deformation is not interesting. A ray starting well above the critical line for total

internal reflection |p| = | sinχ| > 1/n (see the invariant curve in the upper part of Fig. 13(a))

is not able to enter the leaky region and therefore no light is emitted. However, this reasoning

is not the full picture for several reasons to be discussed in this subsection.

For systems with more than two degrees of freedom, e.g., deformed microspheres, the
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KAM invariant curves no longer divide the phase space into disjoint regions, leading to

the possibility of diffusion over large distances in phase space. This phenomenon is called

Arnol′d diffusion (Arnol′d, 1964). It has been suggested to explain directional emission from

deformed fused-silica microspheres (Fig. 1(c)) by Lacey and Wang (2001).

In the absence of Arnol′d diffusion the light output of a weakly deformed cavity is dom-

inated by evanescent leakage (tunneling) of waves. It came as a surprise to observe ex-

perimentally directed emission even in this situation (Lacey et al., 2003). This sensitivity

to small shape deformations had been explained by preferential tunneling from the local

minima of the invariant curves |p(s)|. Later, however, Creagh has provided a toy model

which clearly demonstrated that the distinctness of the local minima of the invariant curves

is not correlated with the degree of directionality of light emission (Creagh, 2007). Based

on this observation Creagh and White (2010, 2012) introduced a more sophisticated expla-

nation using the complex Wentzel-Kramers-Brillouin (WKB) approximation and canonical

perturbation theory for weakly deformed microcavities.

The sensitivity of the emission directionality to weak boundary deformations can be fur-

ther enhanced by a strong mixing of nearly degenerate modes induced by the deformation (Ge

et al., 2013a,b).

B. Moderate deformation – mixed phase space

1. Adiabatic curves and dynamical eclipsing

In the case of moderate deformation a considerable amount of rays is still confined by

invariant curves; see upper part of Fig. 13(b). A ray starting in a sufficiently large chaotic

part of phase space, however, can diffuse towards the leaky region and escape refractively;

see around sinχ ≈ 0.5 in Fig. 13(b). For moderate deformation the phase-space diffusion

can be rather slow, so that the reduction of the Q-factor of the corresponding optical mode

(Q-spoiling) is not serious (Mekis et al., 1995; Nöckel et al., 1994). Another consequence of

the slow diffusion in sinχ is that refractive escape typically occurs near the border of the

leaky region, i.e. at the critical angle for total internal reflection χc, implying that the ray

is emitted almost tangentially to the boundary of the cavity.

In two later papers Nöckel et al. (1996) and Nöckel and Stone (1997) showed that a ray
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in the diffusive part of phase space of a moderately deformed cavity follows for some time

the adiabatic curve (see Fig. 14)

sinχ(s) =
√

1− ακ(s)2/3 (24)

with α being an adiabatic constant and κ(s) being the curvature of the boundary curve at

the position s. Equation (24) is based on an adiabatic approximation introduced by Robnik

and Berry (1985) for billiards in magnetic fields. For longer times the chaotic whispering-

gallery ray diffuses to the leaky region by going through a continuous sequence of adiabatic

curves (24) with slowly increasing α. In the moment when the adiabatic curve touches

the critical angle χc the ray can escape tangentially. From Eq. (24) it can be seen that the

mimina of the adiabatic curves occur at the points of maximum curvature. This is consistent

with the intuitive expectation that the escape of light happens primarily near the points of

maximum curvature. The localization in the spatial coordinate (at the maximum of the

curvature) and in the angle (light is emitted tangentially) results in strong emission maxima

in the far field in directions tangent to the highest-curvature points (Nöckel and Stone, 1997;

Nöckel et al., 1996).

Moreover, using the adiabatic curves allows to derive an approximate quantization of the

system via the semiclassical Einstein-Brillouin-Keller (EBK) quantization scheme (Nöckel,

1997; Nöckel and Stone, 1997; Nöckel et al., 1996). In this way a correspondence is made

between a set of optical modes and a set of initial conditions for the rays in phase space.

This correspondence is needed to set up a ray model to describe quantitatively the properties

of optical modes, as mentioned in Sec. II.

The prediction based on Eq. (24) concerning the tangential emission from the highest-

curvature points fails if regular islands are located at the critical angle right at the highest-

curvature points; cf. Fig. 14 for the low refractive index n = 1.54. As the rays cannot

enter the regular islands, they do not escape at the maximum of the curvature but mainly

at two points separated by roughly the size of the islands. This effect is called dynamical

eclipsing (Nöckel et al., 1996). It leads to a splitting of the emission peaks in the far field.

The first experimental demonstration of dynamical eclipsing of chaotic WGMs has been

done for prolate-deformed lasing microdroplets (Chang et al., 2000), see, e.g., Fig. 9. Later,

dynamical eclipsing has been also observed in moderately deformed cylindrical polymer

lasers (Schwefel et al., 2004).
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2. Gaussian modes based on stable periodic orbits

In moderately deformed microcavities there exist not only chaotic WGMs but also other

types of long-lived modes depending on boundary shape and refractive index. A particular

important example is the bowtie mode, see Fig. 15, first observed by Gmachl et al. (1998)

in the flattened quadrupole

r(ϕ) = R
√

1 + 2ε cos 2ϕ . (25)

In phase space the bowtie mode is localized inside a regular island centered around a stable

periodic ray with the shape of a bowtie. The periodic ray is born in a period-doubling

bifurcation as the deformation parameter ε is increased through the critical value of about

0.1. For sufficiently high refractive index, n ≈ 3.3, and ε ≈ 0.15 the regular island is

located right on the border of the leaky region which results in directed emission based on

refractive escape (in mainly four directions; cf. Fig. 15) and moderate Q-factors. Gmachl

et al. (1998) demonstrated high-power directional emission from such a bowtie mode in a

semiconductor quantum cascade microlaser (Fig. 1(a)) with R = 30− 50µm at wavelength

of around 5.2µm. This experiment can be considered as a milestone as it allowed for the

first time to systematically vary the shape of a microdisk cavity in a controlled manner.

Optical modes based on regular islands in phase space can be analytically described

in a generalized Gaussian optical approach based on the parabolic equation approxima-

tion (Tureci et al., 2002).

3. Dynamical tunneling

Dynamical tunneling is a wave phenomenon which couples two distinct regions of ray-

dynamical phase space (Davis and Heller, 1981); see also (Bäcker et al., 2008b; Löck et al.,

2010). An example is the tunneling from a regular to the chaotic region in the phase space of

the mushroom billiard, see Fig. 4, as studied theoretically and experimentally in a microwave

mushroom billiard by Bäcker et al. (2008a).

Tunneling between regular islands that are separated by a chaotic sea can be enhanced

by the presence of the chaotic part of phase space (Doron and Frischat, 1995; Podolskiy

and Narimanov, 2003; Tomsovic and Ullmo, 1994). This chaos-assisted tunneling can be

considered as a three-step process: (i) dynamical tunneling from the initial island into the
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chaotic sea, (ii) (classical) ray propagation through the chaotic sea to the border of the other

island, and (iii) dynamical tunneling into the island. Chaos-assisted tunneling has been first

experimentally observed in a microwave billiard (Dembowski et al., 2000).

In open systems such as dielectric microcavities, however, chaos-assisted tunneling may

also appear as a two-step process (Nöckel and Stone, 1997): (i) dynamical tunneling from

the initial island into the chaotic sea and (ii) ray propagation through the chaotic sea into

the leaky region where the ray escapes from the cavity. Effects of this two-step chaos-

assisted tunneling have been often discussed for the annular microcavity where outside the

leaky region a clear separation of two regular whispering-gallery regions and a chaotic re-

gion can be observed; see Fig. 8(a). While rays in these whispering-gallery regions stay in

the cavity forever, the rays in the chaotic region can diffuse to the leaky region and leave

the cavity. Hackenbroich and Nöckel (1997) showed that modes in this kind of cavity can

show strong fluctuations of the quality factor due to dynamical tunneling between the dif-

ferent phase-space regions; for a general theory of this effect see (Podolskiy and Narimanov,

2005). Moreover, dynamical tunneling in this cavity can be utilized to achieve unidirec-

tional light emission from high-Q modes (Wiersig and Hentschel, 2006). For the annular

cavity, the quantitative connection of the quality factors to the dynamical tunneling has

been established by Bäcker et al. (2009). Based on the concept of the fictitious integrable

system (Bäcker et al., 2008b) analytical expressions for the tunneling rates from the regular

whispering-gallery region to the chaotic sea (see SOS for the annular cavity in Fig. 8(a)) can

be derived. If rays in the chaotic region leave the cavity quickly, the dynamical tunneling

rates approximate the cavity losses, and therefore allow to compute the Q-factors. The

approximation can be improved by including the rates for direct tunneling along the radial

degree of freedom to the exterior of the cavity; see Fig. 16.

Shinohara et al. (2010, 2011b) were the first to provided clear experimental evidence

for dynamical tunneling in optical microcavities. They used a cavity whose ray dynami-

cal phase space consists of a dominant chaotic region and an island chain, supporting a

rectangular-shaped ray orbit fully confined by total internal reflection. Light emission from

the corresponding optical mode happens via dynamical tunneling from the island chain to

the chaotic sea. In such a situation, measuring the near and far fields of the light emission

unambiguously proves the mechanism of dynamical tunneling (Podolskiy and Narimanov,

2005).
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Another clear experimental demonstration of dynamical tunneling in optical microcavities

has been achieved by free-space excitation of a liquid-jet cavity (Fig. 1(b)) (Yang et al., 2010).

Here, the light couples from outside to the chaotic sea inside the cavity and from there the

light tunnels into regular islands which supports high-Q modes for lasing. This scheme is

of practical use as the pump efficiency of this microcavity laser is increased by two orders

of magnitude. The same scheme has been used to demonstrate experimentally tunneling-

induced transparency in a chaotic microcavity similar to the case of electromagnetically

induced transparency (Xiao et al., 2013).

Chaos-assisted tunneling as a three-step process has been discussed to determine the

frequency splitting of nearly degenerate bowtie modes (Fig. 15) in the quadrupole cav-

ity (Podolskiy and Narimanov, 2003; Tureci et al., 2002).

Another variant of dynamical tunneling is resonance-assisted tunneling (Ozorio de

Almeida, 1984; Brodier et al., 2001; Löck et al., 2010). Here, island structures in phase

space (also called nonlinear resonances) can enhance dynamical tunneling rates. Kwak et al.

(2013) demonstrated resonance-assisted tunneling in a liquid-jet microcavity (Fig. 1(b))

by measuring avoided resonance spectral gaps which are proportional to the square of the

phase-space area associated with the given island chain.

Chaos-assisted tunneling can be exploited for channeling rays into waveguides for efficient

collection of light emission from microcavity lasers (Song et al., 2012). Figure 17 shows

that an attached waveguide introduces a vertical exit window in the phase space of the

microcavity. This exit window seriously spoils the quality factor of (chaotic) WGMs but

only mildly influences the quality factor of the modes related to the island chain around

the diamond shaped period-4 orbit. In a laser based on this waveguide-cavity system these

modes reach the lasing threshold first. Their emission is efficiently collected by the waveguide

because emission is due to dynamical tunneling from the island chain into the chaotic sea

from which most chaotic rays diffuse laterally to the exit window as illustrated in Fig. 17

instead of vertically down to the critical line. Using this scheme more than 95% of the

emission can be collected by the waveguide.
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C. Large deformation – predominantly chaotic dynamics

In the case of large boundary deformation the ray dynamics is predominantly chaotic.

From a phase space plot such as in Fig. 13(c) one could naively expect that modes in a

strongly deformed cavity should be short-lived and exhibit rather diffuse far-field pattern.

This is, however, not necessarily the case as we see in the following.

1. Chaotic saddle and its unstable manifold

In nonlinear dynamics it is known for quite some time that the long-time behavior of

an open chaotic system with time reversible dynamics is governed by the so-called chaotic

saddle and its stable and unstable manifolds; see, e.g., (Lai and Tél, 2010; Lichtenberg and

Lieberman, 1992). The chaotic saddle is the set of points in phase space that never visits the

leaky region both in forward and backward time evolution. The stable (unstable) manifold

of a chaotic saddle is the set of points that converges to the saddle in forward (backward)

time evolution. The unstable manifold of the chaotic saddle therefore describes the route of

escape from the chaotic system. The stable (unstable) manifold of the chaotic saddle is also

called the forward (backward) trapped set. The intersection of both sets is the chaotic saddle.

The concept of the chaotic saddle and its manifolds had been applied to several physical

systems both classical and quantum mechanical; see, e.g., (Gaspard and Rice, 1989a,b). In

the field of optics of deformed microcavities this knowledge has been reinvented to a large

part as it is discussed below.

In experiments on polymer microlasers with various shapes, Schwefel et al. (2004) demon-

strated that light emission from microcavities with predominately chaotic ray dynamics can

be highly directional. This unexpected finding was explained by the numerical observation

that typical rays escape the cavity by following the unstable manifolds of short periodic

orbits close to boundary of the leaky region; see Fig. 18(a).

The stable (unstable) manifold of a periodic orbit is defined as the set of points in phase

space which converge to the periodic orbit in the forward (backward) time evolution. The

numerical simulation of intensity-weighted ray dynamics (13) shown in Fig. 18(a) revealed

that the asymptotic escape behavior of initially randomly chosen rays above the critical line

are well approximated by the unstable manifolds of short periodic orbits. This was nicely
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confirmed by wave simulations and by a reconstruction of light intensity in the leaky region

of phase space by using experimental far-field data of multimode fields; cf. Figs. 18(a) and

(b).

In the same year Lee et al. (2004) introduced the survival probability distribution (SPD)

of intensity of rays inside the microcavity to explain the spatial localization of optical modes

inside spiral-shaped cavities (an example is shown in Fig. 11(a)). The SPD is defined as the

probability P (s, p, t) with which a ray with Birkhoff coordinates (s, p) can survive in the

cavity at time t. In strongly chaotic systems, this distribution decays exponentially in time,

and the dependence on (s, p) is independent on initial conditions (Ryu et al., 2006).

The SPD of Lee et al. (2004) and the computed asymptotic behavior of initially randomly

chosen rays by Schwefel et al. (2004) is equivalent to the unstable manifold of the chaotic

saddle extended by the intensity-weighted ray dynamics (13) as first noted by Wiersig and

Hentschel (2008). A systematic and clear discussion of this extended version of the chaotic

saddle and its relation to the ergodic theory of transient chaos can be found in (Altmann,

2009; Altmann et al., 2013). Altmann (2009) pointed out that the unstable manifolds of short

periodic orbits (which are part of the chaotic saddle) close to the critical line as discussed

by Schwefel et al. (2004) are parallel to the unstable manifold of the chaotic saddle and

therefore lead to nearly the same far-field emission.

Often, the term “chaotic repeller” instead of “chaotic saddle” is used to describe the

light emission from dielectric cavities. However, as emphasized by Altmann (2009), the term

“chaotic saddle” is more appropriate as the dynamics is time reversible. A “chaotic repeller”

appears in noninvertible dynamical systems and possess only unstable manifolds (Lai and

Tél, 2010).

The emission mechanism along the unstable manifold of the chaotic saddle indicates

that all long-lived modes in a given strongly deformed microcavity exhibit a similar far-

field pattern; see Fig. 19. This universal output directionality of single modes was proven

without ambiguity in experiments on a liquid-jet microcavity (Lee et al., 2007c). Using this

concept Wiersig and Hentschel (2008) provided numerical evidence that all long-lived modes

in the limaçon cavity (23) with deformation parameter ε ≈ 0.43 and refractive index between

2.7 and 3.9 exhibit the universal and unidirectional light emission. This was confirmed

experimentally by a number of groups (Albert et al., 2012; Shinohara et al., 2009; Song

et al., 2009b; Wang et al., 2009; Yan et al., 2009; Yi et al., 2009).
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In the case of mixed phase space the chaotic saddle is divided into hyperbolic and non-

hyperbolic components (Altmann, 2009). The mechanism of escape of electromagnetic ra-

diation along the unstable manifold works also in this case as demonstrated by experiments

on microwave cavities of quadrupolar shape (Schäfer et al., 2006). Moreover, a combination

with dynamical tunneling is possible. As discussed in subsection IV.B.3 Shinohara et al.

(2010, 2011b) demonstrated experimentally and theoretically that modes localized in an

island chain (a nonhyperbolic component) can tunnel into the chaotic sea (the hyperbolic

component). From there, the rays follow the unstable manifold of the chaotic saddle.

The details of the relation between optical modes and the chaotic saddle of the ray

dynamics are still not fully understood. For open quantum maps it has been rigorously

proven that in the semiclassical limit the right eigenvectors of the non-unitary time evolution

matrix U are supported by the corresponding classical unstable manifold of the chaotic

saddle (Keating et al., 2006). Long-lived states are localized on the chaotic saddle (which

is part of the unstable manifold). The localization, however, is not uniform because of

quantum fluctuations. In the case of microcavities these fluctuations can have a significant

impact on the far-field emission pattern (Shinohara et al., 2008, 2009).

2. Dynamical localization and scar modes

It is natural to expect that modes in chaotic microdisks have low-Q factors. This Q spoil-

ing (Nöckel and Stone, 1995; Nöckel et al., 1994) would limit the possible applications of

deformed microdisks considerably. However, wave localization effects discovered in the field

of quantum chaos provide the possibility of high-Q modes in chaotic microcavities. For

example, wave packets mimic to some extend the chaotic ray diffusion in phase space. How-

ever, destructive interference suppresses the chaotic diffusion on long time scales (Borgonovi

et al., 1996; Casati et al., 1979; Fishmann et al., 1982; Frahm and Shepelyansky, 1997). This

dynamical localization in phase space is closely related to real-space Anderson localization in

disordered solids (Fishmann et al., 1982). The first experimental observation of dynamical

localization was reported by Moore et al. (1994) using ultracold atoms placed in a modulated

standing wave of a near-resonant laser.

Another experimental verification of dynamical localization used a microwave circular

billiard with boundary roughness (Sirko et al., 2000). In the regime of dynamical localiza-
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tion, the angular momentum l ∼ sinχ in such a “rough billiard” is exponentially localized

around a mode-dependent value. The localization in sinχ is of interest for optical micro-

cavities as it suppresses the diffusion into the leaky region and therefore allows for modes

with high quality factor even in the regime of fully chaotic ray dynamics (Frahm and Shep-

elyansky, 1997). The first theoretical study of dynamical localization in optical microdisks

with boundary roughness has been performed by Starykh et al. (2000). They showed that

the dynamical localization leads to a log-normal distribution of the modes’ linewidths/decay

rates. The direct observation of lasing action from dynamically-localized modes has been

reported by Podolskiy et al. (2004) and Fang et al. (2005a) using GaAs-InAs microdisks

with enhanced boundary roughness; see Fig. 20.

Another wave localization phenomenon known from closed chaotic systems is scar-

ring (Heller, 1984). It refers to the existence of a small fraction of quantum eigenstates with

strong concentration along unstable periodic orbits of the underlying classical system. In

optical microcavities, the localization of wave intensity along unstable periodic ray trajec-

tories has been observed experimentally first in liquid-jet microlasers (Lee et al., 2002) and

shortly after in GaN microlasers (Rex et al., 2002) and in GaAs/GaInAs/GaInP quantum

well microlasers (Gmachl et al., 2002). The observed modes, such as the one shown in

Fig. 21, can have high quality factors since the corresponding short periodic orbit is located

entirely outside the leaky region, and is therefore part of the chaotic saddle.

A well studied system in the field of quantum chaos is the stadium billiard given by

two semicircles and two parallel segments. This system is not a smooth deformation of

the circle as the radius of curvature changes discontinuously at the points of connection.

For this billiard it is rigorously proven that the ray dynamics is fully chaotic, i.e. there

are no regular regions in phase space (Bunimovich, 1974). A microcavity of stadium shape

is shown in Fig. 11(c). Theoretical analyzes of such a microcavity revealed a localization

along multiple periodic orbits (Fang et al., 2005b; Harayama et al., 2003). Associated with

this localization is a non-monotonic decrease of the Q-factor with increasing deformation

because of interference of waves propagating along different constituent orbits (Fang et al.,

2005b). This interference effect has been discussed in terms of a periodic-orbit-sum formula

by Fukushima et al. (2006). These theoretical findings have been confirmed experimentally

in GaAs/AlGaAs (Harayama et al., 2003), GaAs (Fang et al., 2007) and polymer microsta-

dia (Fang and Cao, 2007). The observation of localization along multiple periodic orbits
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is consistent with a recent study of an open three-disk system (Weich et al., 2014) which

relates this phenomenon to the formation and interaction of resonance chains in the complex

frequency plane.

Numerical simulations indicate that scarring in optical microcavities with strongly chaotic

ray dynamics is rather the rule than the exception; see, e.g., (Fang and Cao, 2007; Fang

et al., 2007, 2005b; Harayama et al., 2003; Lee et al., 2002, 2007c, 2004, 2005; Rex et al.,

2002; Wiersig, 2006; Wiersig and Hentschel, 2008; Wiersig et al., 2010). This conclusion

can also be drawn from studies of open quantum maps (Ermann et al., 2009; Wisniacki and

Carlo, 2008).

An interesting phenomenon not observed in any closed system is the appearance of quasis-

carred modes showing a strong localization on simple geometric structures with no underlying

periodic ray (Lee et al., 2004, 2008a). Lasing on quasiscarred modes has been successfully

realized for spiral-shaped InGaAsP microcavity lasers (Kim et al., 2009). Quasiscars find a

natural explanation in terms of an extended ray dynamics as discussed in Sec. VIII.A.

3. Level statistics

A central topic of quantum chaos is the analysis of the statistical properties of energy

levels in quantum systems whose classical counterpart is chaotic (Stöckmann, 2000). In the

last decade, the focus has shifted from closed to open systems. For a review of unsolved

problems in this field consult (Nonnenmacher, 2011).

One particularly interesting aspect is the fractal Weyl law for long-lived states in open

fully chaotic systems. This conjecture, based on the work of Sjöstrand (1990) and Zworski

(1999), is an extension of the well-known Weyl’s formula for closed systems. The Weyl’s

formula states that the number of energy levels N(k) with wave number km ≤ k, or more

precisely, the smooth part of it, N̄(k), behaves asymptotically as ∼ k2 for the particular case

of a two-dimensional system which scales with the energy such as quantum billiards. For an

open system the number of resonances with complex wave numbers km can be defined as

NC(k) = {km : Im(km) > −C, Re(km) ≤ k} . (26)

The cutoff constant C > 0 ensures that only long-lived states are taken into account; fast

decaying states are ignored. The fractal Weyl law for an open chaotic system (which again
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scales with the energy) can be written as

N̄C(k) ∼ kα . (27)

It is conjectured that the non-integer exponent in Eq. (27) is

α =
D + 1

2
=
d+ 2

2
, (28)

where D is the fractal dimension of the chaotic saddle/repeller (Lin and Zworski, 2002);

d = D − 1 is the dimension of the saddle in a properly chosen SOS.

The fractal Weyl law has been numerically confirmed for a number of physical model sys-

tems: a three-bump scattering potential (Lin, 2002; Lin and Zworski, 2002), a three-disk sys-

tem (Lu et al., 2003), open quantum maps (Nonnenmacher, 2006; Schomerus and Tworzydlo,

2004; Shepelyansky, 2008), a Hénon-Heiles Hamiltonian with Coriolis term (Ramilowski

et al., 2009), and a four-sphere system (Eberspächer et al., 2010). The asymptotic form (27)

has been rigorously proven only for a simplified variant of the open quantum baker’s

map (Nonnenmacher and Zworski, 2007). Experimental evidence for the fractal Weyl law

has been obtained for a five-disk microwave system (Potzuweit et al., 2012).

For dielectric cavities the situation is more complicated than in the above examples. First,

a dielectric cavity possesses internal and external modes (Bogomolny et al., 2008; Dettmann

et al., 2009a; Dubertrand et al., 2008); see the discussion in Sec. III. However, the latter are

extremely short-lived and are therefore conveniently withdrawn from the counting process

by the cutoff constant C. Second, the partial leakage of intensity according to Fresnel’s laws

has an important implication. Consider a dielectric cavity (n finite) and the corresponding

closed billiard system (n → ∞). The states in the billiard system have zero decay rate

and their number satisfies the conventional Weyl law. When the openness of the system

is gradually increased by reducing n, each mode acquires a nonzero but finite decay rate

because the transmission through the boundary is not complete (except at Brewster’s angle

for TE polarization). Therefore, “no mode can disappear to infinity” along the imaginary

direction in complex frequency space. This implies that the total number of internal modes

of a dielectric cavity fulfills the conventional k2 law as it was pointed out by Bogomolny

et al. (2008). This, however, is not in contradiction with the fractal Weyl law which applies

to the long-lived modes within the set of internal modes.

The fractal Weyl law for dielectric microcavities has been tested only for the stadium-

shaped cavity (Wiersig and Main, 2008). The numerically computed spectral data is consis-
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tent with the fractal Weyl law if the concept of the chaotic saddle is extended to a multifractal

by using the intensity-weighted ray dynamics (13) incorporating Fresnel’s laws (Wiersig and

Main, 2008). However, Nonnenmacher and Schenk (2008) demonstrated that a damped

quantum map used as a toy model for dielectric cavities shows the conventional Weyl law.

While the Weyl law characterizes the smooth part of the density of states, the statistical

analysis of the energy levels addresses the fluctuations in the density of states. For closed

chaotic systems random-matrix theory (RMT) has been applied successfully to describe

the universal properties of the spectral statistics; see, e.g., the book of Stöckmann (2000).

Quantum eigenenergies of open systems are complex valued with the imaginary part being

related to the decay rate and the lifetime of the state. In the case of open systems much work

is devoted to resonators with small openings (Fyodorov and Sommers, 1997; Misirpashaev

and Beenakker, 1998). Dielectric microcavities, however, allow for refractive escape along

the entire boundary, and are in this sense far more open than the resonators considered in

standard RMT. It is more related to microwave billiards with an absorber region extended

over a significant part of the boundary (Kuhl et al., 2008; Poli et al., 2012).

The first theoretical study of spectral statistics of dielectric cavities has been performed

by Starykh et al. (2000) in the context of dynamical localization. It was demonstrated

for a rough dielectric disk that in the presence of dynamical localization the decay-rate

distribution exhibits a log-normal behavior.

The statistics of frequencies in the ideal dielectric disk have been studied numerically and

analytically by Ryu et al. (2008). As expected for a system with integrable ray dynamics the

nearest level spacing distribution (of the real part of the frequencies) is in good agreement

with the Poisson distribution. The decay-rate distribution shows a peak structure which

details are consistent with the properties of the survival probability distribution.

A RMTmodel for deformed dielectric cavities has been developed by Keating et al. (2008).

It combines the internal wave chaos and the Fresnel laws for reflection and refraction at the

cavity’s boundary. For large refractive index the spectral properties are consistent with

RMT for systems with small openings. For low refractive index, the details of the statistics

become nonuniversal. Schomerus et al. (2009) have confirmed that the model is capable to

accurately describe the numerically obtained data for a dielectric microstadium.

An experimental study of the statistical properties of dielectric microcavities in the optical

regime has not been done yet. However, an interesting experiment on an optical microsta-
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dium billiard bounded by a two-dimensional photonic crystal and attached to waveguides

shows good agreement with RMT for systems with a small number of openings (Di Falco

et al., 2012).

4. Partial barriers and turnstile transport

In the regime of large deformation all KAM invariant curves, separatrices, and islands

are broken. There are no longer perfect barriers which prevent classical trajectories or rays

from diffusing across the entire SOS, see, e.g., the transition circle-oval-stadium studied

by Tanaka et al. (2007). But there are imperfect or partial barriers, remnants of the broken

invariant structures in phase space (Bensimon and Kadanoff, 1984; MacKay et al., 1984);

see also the review by Meiss (1992). On intermediate time scales, a trajectory first explore

one subregion of the chaotic sea without crossing the partial barrier under consideration.

Later, the trajectory crosses the partial barrier and explores the next subregion, etc. The

transport through such a partial barrier resembles that through a revolving door or turnstile.

It is well known that these partial barriers to classical dynamics can act as perfect barriers

to quantum wave packet evolution (Brown and Wyatt, 1986; Geisel et al., 1986). This

happens when the action flux Φ (the phase-space area escaping through the partial barrier

per iteration) is much less than Planck’s constant h (MacKay et al., 1984; MacKay and Meiss,

1988). The turnstile transport is then suppressed by the quantum mechanical uncertainty

principle. The partial barriers therefore lead to localization of energy eigenstates (Casati

and Prosen, 1999). Experimental evidence for this kind of quantum localization phenomenon

has been found in ultracold cesium atoms in a standing wave of near resonant light (Vant

et al., 1999). For a designed quantum map with an isolated partial barrier it has been shown

that the quantum localizing transition is universal with the scaling parameter Φ/h (Michler

et al., 2012). The width of this transition is rather broad, being two orders of magnitude in

Φ/h.

For deformed microcavities the first theoretical and experimental observation of an

uncertainty-limited turnstile transport has been reported by Shim et al. (2008). The role

of h is here played by the effective Planck’s constant heff = 1/nkR. In the experiment a

liquid-jet cavity with quadru-octapole shape

r(ϕ) = R(1 + η0 cos 2ϕ+ εη20 cos 4ϕ) (29)
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is used; R = 14.8µm, ε = 0.46, and refractive index n = 1.361. As the deformation

parameter η0 is varied from 0 to 0.26 the suppression of turnstile transport can be identified

by the behavior of the far-field emission pattern measured experimentally and compared to

ray simulations.

For the same kind of liquid-jet cavity with quadru-octapole shape (29) it has been demon-

strated that the concept of turnstile transport can be exploited to enhance the efficiency of

optical pumping (Yang et al., 2008) by one order of magnitude. To do so, the pump beam is

tightly focused onto the relevant turnstile in the time-reversed ray dynamics. In this way, it

is ensured that the pump intensity is efficiently transported to the whispering-gallery regions

of phase space where the long-lived modes are located.

The suppression of chaotic diffusion by partial barriers can lead to the adiabatic formation

of high-QWGMs in strongly deformed microcavities (Shim et al., 2013, 2011), in particular in

the ultrasmall regime where the vacuum wavelength λ is of the order of the average radius R

of the cavity. This effect provides a natural explanation of the observed lasing action from

InAs quantum dots in strongly deformed GaAs microdisks with R below 1µm (Song et al.,

2010).

Note that many aspects discussed here for the chaotic phase space of a strongly deformed

cavity apply equally to the chaotic component of the mixed phase space of a cavity with

moderate boundary deformation.

D. Perturbation theory

In this subsection we review a powerful perturbation theory for optical modes in deformed

microcavities introduced by Dubertrand et al. (2008) for TM polarization. The extension

to TE polarized modes can be found in (Ge et al., 2013b). The perturbation theory treats

a boundary deformation of the form

r(ϕ) = R [1 + λf(ϕ)] (30)

in polar coordinates (r, ϕ). R is the radius of the unperturbed disk for which the solutions of

the mode equation (8) are known, λ is a formal perturbation parameter. The deformation

function f(ϕ), which we define here to be dimensionless in contrast to Ref. (Dubertrand

et al., 2008), is assumed to be single-valued and symmetric: f(−ϕ) = f(ϕ). The pertur-
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bation theory in its present formulation is restricted to cavities with at least one mirror-

reflection symmetry. Modes in this kind of cavity can be classified as odd-symmetry and

even-symmetry modes. The formulas given below are restricted to even-symmetry modes.

For odd-symmetry modes all cos functions have to be replaced by sin functions.

The perturbation theory is valid in the perturbative regime

k2δa≪ 1 , (31)

with k being the wave number and δa being the area where the perturbation in terms of the

refractive index is nonzero; cf. Fig. 22. For some more, subtle details consider (Dubertrand

et al., 2008). It is important to emphasize that the perturbation theory applies also to

cavities with large boundary deformation as long as the wave number k is sufficiently small

such that the validity of the perturbative regime (31) is guaranteed.

A WGM in an ideal circular cavity is characterized by the azimuthal mode number m and

the radial mode number l with dimensionless frequency Ω0 = k0R given by the quantization

condition (18). For the frequency of the perturbed mode Ω = kR it is found up to order

O(λ2)

Ω = Ω0

[

1− λAmm + λ2
(

3A2
mm − Bmm

2

+Ω0(A
2
mm −Bmm)

H
(1)
m

′(Ω0)

H
(1)
m (Ω0)

−(n2 − 1)Ω0

∞
∑

j=0

j 6=m

Amj
1

Sj(Ω0)
Ajm












(32)

with

Apm =
εp
π

∫ π

0

f(ϕ) cos (pϕ) cos (mϕ)dϕ , (33)

Bpm =
εp
π

∫ π

0

f 2(ϕ) cos (pϕ) cos (mϕ)dϕ , (34)

εp =







2 for p 6= 0

1 for p = 0 .
(35)
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The wave function with azimuthal mode number m inside and outside the cavity is

ψin(r, ϕ) =
Jm(nkr)

Jm(nΩ)
cos (mϕ)

+

∞
∑

p=0

p 6=m

ap
Jp(nkr)

Jp(nΩ)
cos (pϕ) , (36)

ψout(r, ϕ) = (1 + bm)
H

(1)
m (kr)

H
(1)
m (Ω)

cos (mϕ)

+
∞
∑

p=0

p 6=m

(ap + bp)
H

(1)
p (kr)

H
(1)
p (Ω)

cos (pϕ) (37)

with coefficients up to order O(λ2)
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
, (38)

bp = λ2
Ω2

0

2
(n2 − 1)Bpm . (39)

If the frequency Ω0 of the unperturbed mode with azimuthal mode number m is nearly

degenerate with the frequency of another unperturbed mode with azimuthal mode number

j 6= m then the term 1/Sj(Ω0) in Eqs. (32) and (38) become considerably large. It such a

case the perturbation treatment requires modification (Dubertrand et al., 2008).

From Eq. (37) the far-field amplitude F (ϕ) can be derived by exploiting the asymptotical

behavior of the Hankel function for large r to give

F (ϕ) = (1 + bm)
e−iπm/2

H
(1)
m (Ω)

cos (mϕ)

+

∞
∑

p=0

p 6=m

(ap + bp)
e−iπp/2

H
(1)
p (Ω)

cos (pϕ) . (40)

The perturbation theory has been applied successfully to compute frequencies, Q-factors

and far-field patterns of the cut disk cavity (Dubertrand et al., 2008), microcavities sub-

jected to local boundary perturbations (Wiersig, 2012), and the limaçon cavity (Kraft and
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Wiersig, 2014). In all cases the internal ray dynamics is strongly chaotic, i.e. the degree

of deformation can be considered to be large. Nevertheless, the wave number k is such

that the left-hand side of Eq. (31) is below 1 or close to it. Therefore, the system is in the

perturbative regime.

Moreover, the perturbation theory has been proven to be very useful for developing an

understanding of an extreme sensitivity of the far-field pattern to subwavelength bound-

ary deformations (Ge et al., 2013b). Another application is the description of multimode

coupling by boundary wave scattering (Ge et al., 2013a).

V. CAVITY WITH SHARP CORNER OR BOUNDARY DEFECT

In the previous section, we described the smoothly deformed cavities. In this section,

we will consider cavities with a discontinuity at the boundary, and describe how the sharp

corners or boundary defects influence the optical modes and ray dynamics.

A. Polygonal cavity

Polygonal cavities differ from the cavities with smooth boundary in two respects. First,

they can be fabricated with the bottom-up approach, namely they are self-assembled dur-

ing the crystal growth processes, leading to crystal facets with a high degree of perfection.

Second, the ray dynamics in polygonal billiards is neither chaotic – there is no exponen-

tial divergence of trajectories – nor integrable (apart from the rectangles, the equilateral

triangles, the π/2, π/4, π/4-triangles, and the π/2, π/3, π/6-triangles). The motion inside a

typical polygon is conjectured to be ergodic on the three-dimensional constant-energy sur-

faces in phase space (Gutkin, 1996), while the motion inside a rational polygon (all angles are

rationally related to π) is restricted to two-dimensional invariant surfaces, like in integrable

systems, but the genus of the surfaces is larger than 1; loosely speaking, such a surfaces

is a torus with additional handles. Rational polygonal billiards are therefore characterized

as pseudo-integrable (Richens and Berry, 1981). The dynamics on such a surface of higher

genus is not quasiperiodic, which is reflected by multifractal Fourier spectra of dynamical

variables (Artuso et al., 2000; Wiersig, 2000). Moreover, the quantum-classical correspon-

dence is exotic (Bogomolny and Schmit, 2004; Wiersig, 2001) and the quantum spectrum
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obeys critical statistics (Bogomolny et al., 1999; Wiersig, 2002).

However, it has turned out that the properties of rays and modes in dielectric polygons

are simpler, in particular if the system is strongly open as in the case of low refractive index

contrast (Wiersig, 2003b). Often, it is sufficient to discuss one or two families of periodic

ray trajectories to understand the basic optical properties.

The most frequently studied polygonal dielectric cavity is the regular hexagon. The first

microcavities with the shape of a regular hexagon have been zeolitic aluminophosphate-

cavities with side length R ranging from 2.6 to 4.6µm (Braun et al., 2000; Vietze et al.,

1998); see Fig. 23(a). These cavities have been used for microlasers by putting organic laser

active dye guest molecules into the channel pores of the zeolitic crystal. Numerical simu-

lations have shown that in this kind of low-index cavity (n = 1.466, λ ≈ 690 nm) the light

is localized on whispering-gallery-like modes along a family of periodic-6 ray trajectories,

which is the only one confined by total internal reflection (Braun et al., 2000); see Fig. 23(b)

and (c). Most of the features of these modes can be explained by a semiclassical approx-

imation (R ≫ λ) based on wave interference along the periodic-6 orbits to determine the

resonant frequencies, and pseudointegrable ray dynamics and boundary waves to determine

the quality factors (Wiersig, 2003b).

Hexagonal-shaped cavities have also been realized as cross-section of ZnO nanoneedles,

nanonails, nanodisks, and microwires. Since the refractive index n ≈ 2 (n ≈ 2.35 in the

ultraviolet) is larger, other orbits than the periodic-6 orbit are confined by total internal

reflection, e.g., periodic-3 orbits with the shape of an equilateral triangle, which can lead to

higher Q-factors (Kouno et al., 2011; Song et al., 2013a). The nanoneedles studied by Nobis

et al. (2004) have a conical shape with diameter varying smoothly from 900 down to 270 nm;

λ ≈ 530 nm. This smooth variation of the diameter permitted a systematic study of the

whispering-gallery-like modes for small azimuthal mode numbers m in good agreement with

the theory by Wiersig (2003b) even close to the ground state. Explicit numerical simulations

of low-order modes can be found in (Nobis and Grundmann, 2005).

WGMs have also been observed in experiments on hexagonal ZnO nanodisks (Kim et al.,

2006) and nanonails (Liu et al., 2008) and for other material systems, such as GaN (Peng

et al., 2005; Tessarek et al., 2013), GaAs (Paek et al., 2010), In2O3 (Dong et al., 2009), and

Al2O3 (Kudo et al., 2013).

Optically pumped WGM lasing action in hexagonal nano- and microresonators has been
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achieved for ZnO nanonails (Wang et al., 2006), ZnO nanodisks (Gargas et al., 2010), ZnO

microwires (Czekalla et al., 2008), ZnO microneedles (Zhu et al., 2009), ZnO nanodisks (Yu

et al., 2007), GaN microdisks (Kouno et al., 2011), and InGaAs nanopillars (Chen et al.,

2011).

Experiments and simulations on ZnO microwires with slightly deformed (elongated, bent)

hexagonal cross-section show the appearance of in-plane Fabry-Pérot modes and WGMs

based on periodic-3 orbits (Dietrich and Grundmann, 2012; Dietrich et al., 2011).

The effect of rounding the corners of hexagonal microcavities has been studied in (Dietrich

et al., 2012; Kudo et al., 2013; Wiersig, 2003b). While Wiersig (2003b) and Kudo et al. (2013)

concluded that rounding the corners increases the Q-factor, Dietrich et al. (2012) claimed

the opposite. It is, however, possible that the conclusion of Dietrich et al. (2012) is spoiled

by surface roughness in the experiment and the peculiar way the corners are rounded in the

numerical simulations.

Other dielectric polygonal cavities have been studied as well, such as squares (Chen et al.,

2006; Guo et al., 2003; Lohmeyer, 2002; Poon et al., 2001), rectangles (Wiersig, 2006), regular

pentagons (Bogomolny et al., 2011; Lebental et al., 2007), equilateral triangles (Lai et al.,

2007; Wysin, 2005), regular dodecagons (Nobis et al., 2007), and octahedrons (Korthout

et al., 2009).

A deep insight into the structure of optical modes in polygonal microcavities has been

provided by the superscar model (Lebental et al., 2007), which had been originally invented

for polygonal billiards (Bogomolny and Schmit, 2004) and experimentally confirmed in mi-

crowave cavities (Bogomolny et al., 2006). In brief, the families of periodic ray trajectories

in polygonal cavities are unfolded to fictitious straight rectangular channels passing through

cavity corners. In the semiclassical limit, wave functions obey simple boundary conditions

on the channel boundaries. One can therefore consider the wave functions as states confined

in the rectangles, which allows to derive analytic solutions.

B. Boundary defect

Levi et al. (1993) were the first who demonstrated that a microdisk with a local bound-

ary defect can show improved emission directionality. The fabricated defect was a small

deformation of the boundary with the shape of a “tab”. The same shape and the inverted
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version (a “notch”) had been used by Backes et al. (1998) for the same purpose and also

for mode discrimination. Microwave studies of dielectric disks with notch were performed

by Kuhl et al. (2011). Boriskina et al. (2006) suggested the possibility to further improve the

directionality by using an ellipse with a notch. This idea has been realized in experiments

on elliptical-shaped quantum cascade lasers (Wang et al., 2010). It has been demonstrated

that this geometry allows for unidirectional light emission with very low divergence angle

and high quality factors. The mechanism behind this observation is roughly (for details

see Section VII.F) that the notch acts as a small scatterer that scatters light rays towards

the opposite side of the elliptical cavity, where the outgoing rays are collimated as a par-

allel beam by the elliptical boundary. To achieve this goal for a given refractive index, the

eccentricity of the ellipse has to be adjusted. An alternative way to direct the scattered

rays is to insert a vertical groove at which the light is reflected back towards the cavity’s

boundary (Cai et al., 2011). The effect of internal point-like defects on WGMs has been

analyzed by Dettmann et al. (2008, 2009b) and Deych et al. (2011). A line defect inside the

disk has been studied by Apalkov and Raikh (2004).

A perturbative approach based on the perturbation theory for deformed disks discussed in

Sect. IV.D has been applied to disks with a local boundary deformation by Wiersig (2012).

This approach allows the efficient and accurate calculation of frequencies, quality factors

and far-field patterns.

Mode discrimination for single-mode lasing can be enhanced by considering two or three

notches (Schlehahn et al., 2013). The case of many notches is realized in the microgear

cavity, which is a disk with Bragg grating at the circumference (Fujita and Baba, 2001,

2002).

A linear increase of the radius of a circle with the polar angle ϕ gives the spiral shape

with a localized defect, the boundary is defined as

r(ϕ) = R
(

1− ε

2π
ϕ
)

(41)

with deformation parameter ε ≥ 0 and “radius” R at ϕ = 0. The radius jumps back to R

at ϕ = 2π creating a notch as shown in Fig. 24(a). Chern et al. (2003) have introduced

the spiral-shaped cavity to demonstrate unidirectional light emission from a microdisk laser,

see Fig. 24(b), which will be discussed in more detail in Sec. VII. In the spiral cavity

Lee et al. (2004) first observed quasi-scarred modes, i.e. modes localized along simple ge-
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ometric structures which are not supported by any periodic ray, as already mentioned in

Sect. IV.C.2. One characteristic feature of the spiral cavity is the broken chiral symmetry:

clockwise rotation is distinct from the counter-clockwise rotation (Chern et al., 2003). This

broken chirality leads to the appearance of copropagating pairs of almost-degenerate and

highly nonorthogonal modes (Wiersig, 2008; Wiersig et al., 2008); see also the discussion in

Sec. VI.B. The notch of the spiral can be used to couple a waveguide to the cavity in a

non-evanescent manner (Lee et al., 2007a).

VI. MODE COUPLING

This section deals with non-Hermitian physics related to coupling between modes in

open dielectric cavities due to, e.g., the change of cavity shape or introduction of external

scatterers in the vicinity of the cavity boundary.

A. Avoided resonance crossings

For the convenience of the reader this section begins with a brief summary of the basic

knowledge on avoided level crossings (also known as anticrossings) in closed or conservative

systems. As illustrated in Fig. 25 such avoided crossings occur when the curves of two

energy eigenvalues, as function of a real-valued parameter ∆, come close but then repel each

other (von Neumann and Wigner, 1929). This behavior can be understood in terms of a

simple toy model, a 2× 2 Hamiltonian matrix

H =





E1 V

W E2



 . (42)

The eigenvalues and (not normalized) eigenvectors can be easily computed to be

E± =
E1 + E2

2
± r , (43)

~φ± =





V

E2−E1

2
±r



 (44)

with V 6= 0 and

r =

√

(E1 − E2)2

4
+ VW . (45)
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If the matrix H is Hermitian, describing a closed system, then the diagonal elements Ej

are real and the off-diagonal elements W = V ∗ are complex valued. Sufficiently far away

from the region of resonant coupling, |E1 − E2| ≫ 2|V |, the eigenvalues of the coupled

system E± equal the energies of the uncoupled system Ej . Exactly at resonant coupling,

E1 = E2, there is an energy splitting E+ −E− = 2|V | whenever the coupling strength |V | is
nonzero. Around the region of resonant coupling, the eigenstates of the coupled system are

hybridized, i.e. the eigenvectors of the matrix (42) are superpositions of the eigenvectors of

the uncoupled system; cf. Fig. 25. Note the “exchange of identity” between the eigenstates

participating in an anticrossing.

Avoided resonance crossings in open or dissipative systems can be described by a non-

Hermitian matrix (42). The energies Ej of the uncoupled system are then complex numbers,

with the imaginary part being related to the lifetime τj ∝ −1/Im(Ej) of the quasi-bound

state. We focus first on the case W = V ∗ where the internal coupling of states is as in a

closed system but each state is individually coupled to the continuum. Exactly at resonant

coupling, Re(E1) = Re(E2), the number r is here either real or purely imaginary which

allows for two different kinds of avoided resonance crossings (Heiss, 2000). In the weak

coupling regime, |V | < Vc with Vc = |Im(E1) − Im(E2)|/2, there is a crossing in the real

part of the energy. In the strong coupling regime, |V | > Vc, there is an avoided crossing in

the real part and a crossing in the imaginary part. These two generic cases are depicted in

Fig. 26. The hybridization of modes due to the coupling can be again seen. Note that in

the weak coupling regime the hybridization is weak.

The more general case W 6= V ∗ allows external coupling of states via the continuum.

Here, the number r can be complex with nonzero real and imaginary part which allows for

a new behavior. Figure 27 shows an example in which one of the states has a significantly

increased lifetime at the center of the avoided crossing. The lifetime of the other mode

has decreased accordingly. In real physical systems the increased (decreased) lifetime is

due to the reduction (enhancement) of a major decay channel by destructive (constructive)

interference. This remarkable effect is essentially the same as “resonance trapping” where,

however, the coupling strength is the parameter that is varied; see, e.g., Desouter-Lecomte

and Jacquest (1995) and Persson et al. (1998).

In the electromagnetic setting one can consider the Hamiltonian matrix like the one

in Eq. (42) as representing the linear operator describing the dynamics of electromagnetic
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modes in the slowly-varying envelope approximation in the time domain (Siegman, 1986).

Energies are then translated to frequencies and energy eigenstates to modes.

Avoided resonance crossings with internal coupling have been experimentally demon-

strated first in a microwave cavity with absorbing walls (Philipp et al., 2000) and later in

dielectric microcavities in the optical regime (Lee et al., 2009b). The experimental verifica-

tion of the external coupling type has been done first with a microwave cavity with attached

waveguide (Persson et al., 2000). Here, the avoided resonance crossings reduce the coupling

of some modes to the waveguide thereby increasing their lifetime. In the optical domain

external coupling has been experimentally demonstrated in coupled photonic-crystal defect

cavities (Atlasov et al., 2008), coupled microdisk cavities (Benyoucef et al., 2011), and for a

rolled-up microtube bottle cavity (Strelow et al., 2012).

The formation of a high-quality mode in the case of external coupling is of particular

relevance for optical microcavities as this may allow to tailor light-matter interaction in

such devices. The enhancement of the quality factor of modes in optical microcavities has

been theoretically analyzed by Boriskina (2006, 2007); Song and Cao (2010); Song et al.

(2013a,b); Wiersig (2006); Yang and Huang (2007); Yang et al. (2009).

A theoretical analysis of two coupled microdisks in terms of periodic orbits in complexified

phase space, see (Shudo and Ikeda, 1995, 2012), has been presented in (Shim and Wiersig,

2013). The semiclassical approach leads to an analytical formula for the frequency splitting

originating from the evanescent coupling.

Another interesting aspect of mode coupling is the modification of the spatial mode

pattern caused by avoided resonance crossings. In the strong coupling regime one can observe

in the near-field of the cavity, beside the conventional hybridization of modes (Carmon et al.,

2008), a surprising phenomenon, the localization of intensity along special marginal stable

periodic rays (Unterhinninghofen et al., 2008; Wiersig, 2006; Yi et al., 2011); see Fig. 28.

Because of the resemblance to scarred states in closed systems these modes have been termed

scarlike modes. The relation between avoided resonance crossings and scarlike modes in the

dielectric ellipse finds a natural explanation in terms of an extended ray dynamics discussed

in Sec. VIII.A.

Even in the weak coupling regime, in which the intracavity mode pattern is not influenced

by the weak hybridization associated with the avoided crossing, the far-field pattern of

one mode can be strongly modified provided that the other mode has a significant shorter
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lifetime. Here the small but leaky contribution to the hybridized mode dominates the far-

field pattern. This effect has been utilized to weakly couple high-quality modes with isotropic

light emission to low-quality modes with directional light emission. One of the hybridized

modes then has kept the high Q-factor while acquired directional light emission (Wiersig

and Hentschel, 2006). This scheme to achieve directional light emission from high-quality

modes has been studied for several cavity geometries (Redding et al., 2012b; Ryu et al.,

2009; Song et al., 2010) which will be addressed in Sec. VII.

Moreover, avoided crossings play an important role in the distribution of resonances in

the complex frequency plane (Cho et al., 2011; Dettmann et al., 2009a). The statistics of

avoided resonance crossings in open cavities has been studied by Poli et al. (2009).

There is a considerable amount of literature on chains of coupled passive cavities, so

called coupled resonator optical waveguides (CROWs); for a review see, e.g., Morichetti et al.

(2012). However, non-Hermitian effects of the kind discussed here are often not explicitly

studied; a commendable exception is Grgić et al. (2011) who investigated the impact of the

imaginary part of the frequencies of the uncoupled cavities on the maximum delay time

achievable in CROWs.

B. Exceptional points

A non-Hermitian eigenvalue problem does in general not have an orthogonal set of eigen-

vectors. In an extreme case, two eigenvectors can become even collinear. In our toy Hamil-

tonian this happens if the complex number r is vanishing as an inspection of Eq. (44) shows.

Simultaneously, the eigenvalues in Eq. (43) become degenerated. As a result, the eigenvec-

tors do not form a complete basis of the Hilbert space. A point in parameter space at which

this happens, i.e. at which at least two eigenvectors and eigenvalues of a non-Hermitian

matrix coalesce is called exceptional point (EP) (Heiss, 2000; Kato, 1966). The EP is a

non-Hermitian degeneracy which must be distinguished from a diabolic point at which only

eigenvalues coalesce (Berry and Wilkinson, 1984).

The EP can also be considered as the critical point where a transition from weak to

strong coupling occurs. In the language of the toy model in Eq. (42) it would mean that

not only ∆ is varied but also another real-valued parameter, let say |V |, is precisely tuned

to the intermediate situation between the left and right panel of Fig. 26 such that both
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branches of real and imaginary part of the eigenvalues touch. Varying both parameters

simultaneously, the real and imaginary parts of the eigenvalues form rather complicated

surfaces as illustrated in Fig. 29. Due to the square root in Eq. (45) these eigenvalue surfaces

exhibit a complex-square-root topology with a branch point at the EP for two eigenvalue

sheets. A consequence of this topology becomes apparent when the EP is encircled in

parameter space. Continuously tracking the pair of eigenvalues reveals that both the real

and the imaginary parts cross from one to the other sheet with the result that the eigenvalues

swap; see black curves in Fig. 29. One has therefore to encircle the EP twice to recover

the original eigenvalues. The eigenstates acquire a phase of π when the EP is encircled

twice (Heiss, 1999). Hence, to recover also the original eigenstates one has to encircle the

EP even four times.

The physical existence of EPs has been demonstrated by experiments on a number of

physical systems as reviewed by Heiss (2012). The first direct experimental verification of

the topology of eigenvalue surfaces has been done for a microwave cavity (Dembowski et al.,

2004, 2001). In these experiments one had full control over the eigenvalues and eigenstates

which allowed also to show the recovery of the eigenstates after encircling the EP four times.

Figure 30 shows the experimental data for a liquid-jet microcavity which clearly confirms

the complex-square-root topology of eigenfrequencies also in an optical microcavity (Lee

et al., 2009a). The EP is reached by varying a deformation parameter controlling the cavity

shape and a quasicontinuous parameter labeling different mode families. Till now, it was not

possible to provide experimental evidence for the expected behavior of the wave functions in

an optical microcavity near an EP. A theoretical study can be found for a stadium-shaped

microcavity in (Lee, 2010).

The temporal behavior of modes near an EP is discussed in detail by Heiss (2010).

One experimental signature is the disappearance of Rabi-frequency beats between the two

involved modes when the EP is approached. At the EP a quadratic time decay of intensity

is expected. Both effects have been experimentally verified by Dietz et al. (2007) with a

microwave billiard.

Consider a physical system which is invariant under time reversal. Representing the

corresponding Hamiltonian in a basis consisting of standing waves (which are also invariant

under time reversal) leads to a non-Hermitian matrix (42) withW = V (but in generalW 6=
V ∗). Heiss and Harney (2001) have shown that the single eigenstate of such a symmetric
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Hamiltonian at the EP (Eq. (44) for r = 0) is given by

~φ ∝





1

±i



 . (46)

The sign in Eq. (46) determines the chirality of the EP. It depends on the system and can

differ from EP to EP. This intrinsic chirality of EPs has been confirmed by Dembowski

et al. (2003) in an experiment on microwave cavities. If time-reversal symmetry is violated

then the chirality generically persists, only one of the components gathers an additional

phase (Harney and Heiss, 2004). This prediction has been successfully tested for a microwave

cavity perturbed by an internal ferrite (Dietz et al., 2011).

The chirality of EPs plays an important role for the structure of modes in slightly de-

formed or perturbed microdisk cavities which lack mirror symmetries. The chirality of a

given mode has here a clear physical interpretation as a preferred sense of rotation in real

space. Also in the vicinity of the EP the mode exhibit an unbalanced contribution of clock-

wise and counter-clockwise traveling-wave components. This kind of partial chirality has

been predicted by Wiersig et al. (2011a, 2008) and Wiersig (2011) and has been confirmed

in experiments by Kim et al. (2014); see Fig. 31. In such cavities almost all modes appear

in highly nonorthogonal pairs of copropagating modes with a preferred sense of rotation.

Both features, the nonorthogonality and the chirality, can be related to the EPs. The phys-

ical origin of the chirality and the non-Hermiticity in this kind of cavities is asymmetric

backscattering between counterpropagating traveling waves. In a traveling-wave basis the

strong asymmetry in the backscattering can be well described by the toy Hamiltonian (42)

with |W | ≪ |V | (or |V | ≪ |W |). A derivation of the matrix (42) for this case can be found

in (Wiersig, 2011, 2014a).

The nonorthogonality of modes in open cavities has drastic consequences for lasers. It

leads to quantum excess noise and therefore to an enhancement of the laser linewidth with

respect to the well-known Schawlow-Townes formula (Chong and Stone, 2012; Petermann,

1979; Pillay et al., 2014; Schomerus, 2009; Schomerus et al., 2000; Siegman, 1986). This is

usually quantified by the Petermann factor K. At an EP the Petermann factor is expected

to diverge (Berry, 2003). Lee et al. (2008b) have investigated this divergence with extensive

numerical simulations on a stadium-shaped microcavity.

Exceptional points not only induce interesting effects in the laser operation; also the laser

operation can induce EPs. This possibility has been put forward for microcavity lasers with
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spatially nonuniform pumping by Liertzer et al. (2012); see also (Ge et al., 2011); and has

recently been confirmed experimentally (Brandstetter et al., 2014). Here, the signatures of

the induced EP can be found in the above-threshold characteristics of the laser.

Like avoided resonance crossings, EPs can play a significant role in the organization of

resonances in the complex frequency plane. This has been shown in theoretical works for a

microdisk with a point scatterer (Dettmann et al., 2009b) and a deformed microdisk (Ryu

and Lee, 2011).

One potential application of EPs is in the field of label-free optical detection at single-

particle resolution (Armani et al., 2007; Shao et al., 2013; Vollmer and Arnold, 2008; Vollmer

et al., 2008). Nowadays, it is possible to detect single viruses and nanoparticles by the fre-

quency splitting of a pair of WGMs induced by near-field coupling of the particle to a

microcavity. A serious problem in this scheme is the unavoidable finite frequency splitting

present already in the uncoupled case due to fabrication tolerances. In an elaborate exper-

iment, Zhu et al. (2010) have demonstrated that this problem can be removed by carefully

placing two nano-fiber tips in the evanescent field of a microtoroid cavity. By a controlled

positioning of the nano-fiber tips the cavity-tip system have been tuned to an EP at which

the frequency splitting vanishes. Subsequently, it was shown by analytical and numerical

calculations that the sensitivity of frequency splitting detection can be significantly enhanced

at an EP (Wiersig, 2014b).

The coalescence of three eigenvalues show considerable more involved topologies of eigen-

value surfaces (Demange and Graefe, 2012). The topological structure of eigenvalue surfaces

for several neighboring EPs has been studied for the case of two coupled nonidentical mi-

crodisks by Ryu et al. (2012); see also (Ryu et al., 2009).

Finally, EPs are related to symmetry breaking in PT -symmetric systems. Bender and

Boettcher (1998) have discovered that non-Hermitian Hamiltonians which are invariant un-

der a combination of parity (P) and time reversal (T ) can have a real spectrum. This is

the case if the eigenstates of the Hamiltonian are also symmetric under the PT operation.

When the symmetry is broken for the eigenstates then the eigenvalues appear in complex

conjugate pairs. The point in parameter space at which this symmetry breaking occurs is an

EP. PT -symmetric systems can be realized by electromagnetic systems which have a bal-

anced arrangement of absorbing and amplifying regions (El-Ganainy et al., 2007; Guo et al.,

2009; Rüter et al., 2010). The study of electromagnetic PT symmetry has become a highly
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active field which cannot be covered in this review. In the following we therefore focus on

PT -symmetric cavities. The general scattering theory of PT -symmetric systems has been

presented by Schomerus (2010, 2013) and Chong et al. (2011). Schomerus (2010) revealed

that quantum noise turns PT -symmetric cavities with stationary states into self-sustained

sources of radiation. The relation of quantum noise and mode nonorthogonality in PT -

symmetric cavities is theoretically analyzed by Yoo et al. (2011). Longhi (2010) discovered

that a PT -symmetric cavity that acts as a laser must behave simultaneously as a coherent

perfect absorber; see also (Chong et al., 2011). A random-matrix theory for PT -symmetric

cavities has been developed by Birchall and Schomerus (2012). An experimental realization

of a PT -symmetric cavity in the microwave and in the optical regime has been reported

by (Bittner et al., 2012c) and (Chang et al., 2014; Peng et al., 2014), respectively.

In summary, the literature reviewed in this section shows that dielectric cavities are

interesting model systems for many features of non-Hermitian physics near avoided resonance

crossings and exceptional points.

VII. UNIDIRECTIONAL FREE-SPACE LIGHT EMISSION FROM DEFORMED

MICROLASERS

Shortly after the first fabrication of microdisks, it was shown experimentally that de-

forming the disk boundary from circularity allows for improved directionality of emission

and therefore for more efficient extraction and collection of light (Levi et al., 1993; Nöckel

et al., 1996). Many shapes have been proposed and realized since then, but only a few

lead to light emission into approximately a single direction. Since unidirectional emission

is essential to many applications such as lasers and single-photon sources, it has been the

driving force behind the development of optical microcavities with various shapes over the

years. Moreover, most deformed microcavities suffered severe Q-spoiling: the Q factor de-

grades dramatically upon deformation (Nöckel et al., 1994), in the worst case ruling out

any application. The trade-off between the Q factor and directionality is a critical issue for

deformed microcavities. This section will provide an overview over different approaches that

have been developed to obtain unidirectional emission while minimizing Q-spoiling. These

works illustrate how the cavity shape can be used effectively as a “control knob” to achieve

the desired performance, which is important to device applications.
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A. Spiral-shaped cavity

In the early studies, the asymmetric resonant cavities retained two discrete reflection

symmetry axes, and emitted multiple beams. To obtain emission in a single direction,

cavities with only one symmetry axis, e.g., rounded isosceles triangle (Hentschel et al., 2010;

Kurdoglyan et al., 2004), space capsule (Schwefel, 2004), were proposed. They, however,

suffer severe Q-spoiling, making for instance the lasing threshold too high experimentally.

Another approach to unidirectional emission is to break the chiral symmetry, the promi-

nent example is the spiral-shaped microdisk (Chern et al., 2003; Kneissl et al., 2004). As

shown in Section V.B, the notch on the disk boundary scatters light out of the cavity; see

Fig. 24. The original idea was that the counter-clockwise (CCW) propagating mode feels the

notch, while the CCW one does not; thus the CCW mode has stronger outcoupling than the

clockwise (CW) one, giving directional emission (Lee et al., 2007a). Experimentally emission

in approximately single direction was obtained by pumping optically or electrically only the

edge of the cavity (Chern et al., 2003; Kneissl et al., 2004). Later studies showed that uni-

form pumping of the entire cavity does not produce directional output (Audet et al., 2007;

Hentschel et al., 2009). Further analysis revealed that pairs of CW and CCW modes do not

exist in the spiral (Wiersig, 2008; Wiersig et al., 2008). Both modes in a quasi-degenerate

pair are dominated by the CW component (in the orientation shown in Fig. 24). Boundary

pumping enables a mode-beating mechanism that leads to directional emission (Hentschel

and Kwon, 2009).

From the numerical simulations, the optimal size of the notch should be about two wave-

lengths, so that it is sufficiently large to break the chiral symmetry, but at the same time

small enough to ensure the best possible light confinement. Nevertheless, the Q factor of

the spiral cavity is greatly reduced from that of a circular cavity with the same area.

B. Interior whispering gallery modes

Next we discuss a different approach based on the construction of cavities with con-

tinuous families of periodic orbits (Baryshnikov et al., 2004). Such a cavity can support

invariant lines of whispering-gallery type above the critical line of total internal reflection

but below the region of conventional whispering-gallery trajectories. These interior WGMs
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predominately emit by tunneling into the leaky region. Provided that the invariant line has

a sufficient asymmetric shape in phase space, this mechanism can lead to directional or even

unidirectional emission.

Figure 32 shows that this concept can indeed be used to get optical modes in a deformed

microdisk which has emission mainly into a single direction. Unfortunately, the quality

factor in this particular case was not reported (Baryshnikov et al., 2004). For bidirectional

emission theoretical (experimental) quality factors around 104 (6000) are reported (Gao

et al., 2007).

One serious problem of such a cavity for laser application is the coexistence of interior and

conventional WGMs. The latter have higher quality factors as the distance from the leaky

region is larger. In the case of flood (uniform) pumping, the conventional WGMs lase first

due to lower threshold, producing non-directional output. Carrier injection to the cavity

center selects interior WGMs for lasing because they have better spatial overlap with the

gain region (Baryshnikov et al., 2004). This selective pumping method, however, is difficult

to implement for microcavities of dimension less than 5µm.

Another way to suppress the lasing of conventional WGMs is to deliberately introduce

surface roughness. As the conventional WGMs are located closer to the boundary of the

cavity than the interior ones, the quality factor of the conventional WGMs will suffer more

strongly from the Q-spoiling due to surface roughness. In this way the quality factors of

the conventional WGMs can be made slightly smaller than those of the interior ones (Gao

et al., 2007). Obviously, this approach limits the achievable quality factors and is therefore

not favorable.

C. Annular cavity

In this subsection we describe a scheme which overcomes the trade-off between quality

factor and directionality by exploring mode coupling (see Section VI) as introduced by Wier-

sig and Hentschel (2006). The general idea is to exploit the weak coupling scenario to slightly

hybridize a high-Q mode (HQM) and a directional low-Q mode (LQM) to a mode with high

quality factor and the directed far-field pattern of the LQM. This scheme can be realized

in three steps. First, take a cavity with HQMs, e.g., a microdisk. Second, introduce a

one-parameter family of perturbations such that at least one HQM is almost unaffected and
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at least one HQM turns into a LQM having directed emission via refractive escape. Third,

vary the parameter such that an avoided resonance crossing occurs between the HQM and

the LQM. This scheme allows the systematic design of modes with high quality factors and

highly directed emission.

This scheme has been demonstrated first by a theoretical study of an annular cavity, a

GaAs microdisk with a circular air hole (Wiersig and Hentschel, 2006). Figure 33 shows for

this system an avoided resonance crossing in the weak coupling regime, i.e. the frequencies

cross and the quality factors repel each other. Both modes involved in this avoided crossing

have even parity with respect to the symmetry axis. One mode has a high Q-value above

5 · 105, the other one has a low Q-value of ≈ 300 and unidirectional emission due to light

reflection at the air hole. The hybridization is weak, which keeps the quality factors and the

near-field patterns almost unaffected while the far-field pattern is in both cases dominated

by the low-Q component; cf. the solid and dashed lines in the lower right panel of Fig. 33. As

a result a high-Q mode with unidirectional emission is obtained. This theoretical prediction

has been confirmed in an experiment (Wilde, 2008). Recently, another experiment on an

annular cavity coupled to a waveguide showed unidirectional emission as well (Preu et al.,

2013).

The problem of this particular system is the coexistence of even and odd symmetry modes.

Since the scenario of avoided resonance crossings is in general different for the two symmetry

classes, the respective output directionality may differ. In most of the practical cases both

modes are involved in the process of light emission which then spoils the directionality. To

avoid this problem of the mode coupling approach a less symmetric geometry is needed,

which will be discussed in VIII.B.

D. Limaçon cavity

This subsection introduces a robust and general mechanism that combines directional

light output and ultralow loss in deformed microdisks (Wiersig and Hentschel, 2008). The

key idea is to exploit light emission along unstable manifolds of the chaotic saddle of the

ray dynamics (see Sec. IV.C) to achieve unidirectional emission and to use wave localization

such as scarring (see again Sec. IV.C) to get high Q-factors. When the cavity size is much

larger than the wavelength, the output directionality is universal for all the high-Q modes
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because the corresponding escape routes of rays are similar. This property enables one to

robustly achieve unidirectional emission without selective excitation of specific modes in

experiments.

The applicability of this idea was demonstrated for the limaçon cavity defined as in

Eq. (23). In Fig. 34(a), ray simulations of far-field intensity patterns from the limaçon cav-

ity with refractive index n = 3.3 and deformation parameter ε = 0.43 are plotted for the

TE polarization (solid curve) and TM polarization (dashed curve). The far-field pattern

is determined by the unstable manifold in the leaky region (| sinχ| < 1/n), which can be

computed from the survival probability distribution for an ensemble of rays starting uni-

formly in phase space with identical intensity. Figure 34(b) depicts the resulting Fresnel

weighted unstable manifold of the chaotic saddle for the limaçon cavity, revealing the man-

ifold is concentrated on very few high-intensity spots in the leaky region. Therefore, the

escape routes of rays, regardless the starting points, are closely nested in the phase space,

leading to highly directional output. Due to the existence of the Brewster angle for the TE

polarization, the unidirectionality is better in the TE case than in the TM case (Wiersig

and Hentschel, 2008).

Numerical solution to the wave equations confirmed that the limaçon cavity supports

high-Q modes of both TE and TM polarization. As an example, Fig. 35 shows a TE mode

of Q = 185, 000 at the normalized frequency Ω = ωR/c = 26.0933, which corresponds

to, e.g., a free-space wavelength of about 900 nm for R = 3.75µm. The mode is spatially

confined near the boundary of the cavity. The Husimi function shows the mode intensity is

enhanced around an unstable periodic ray trajectory, which is located well above the critical

line for total internal reflection (| sinχ| = 1/n). Hence, the scarring phenomenon results in

exponentially small intensity in the leaky region that gives the high Q factor.

Even though the Husimi function has a small contribution in the leaky region, it is

precisely this outgoing light that determines the far-field pattern. Figure 35 shows that the

Husimi function in the leaky region agrees to the unstable manifold in Fig. 34, confirming its

responsibility for the directional emission. Owing to the ray-wave correspondence (Shinohara

and Harayama, 2007), all high-Q modes exhibit unidirectional emission patterns closely

corresponding to the ray calculation.

Soon after the theoretical proposal by Wiersig and Hentschel (2008), several groups fab-

ricated limaçon cavity lasers (Albert et al., 2012; Shinohara et al., 2009; Song et al., 2009b;
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Yan et al., 2009; Yi et al., 2009). Song et al. (2009b) studied GaAs limaçon cavities with

R = 2.18µm (dimensionless size parameter nωR/c ≈ 48) and measured a Q factor of 22,000,

significantly higher than all the previously reported Q values of deformed microcavities. The

high-quality factor and small modal volume results in very low lasing threshold, allowing con-

tinuous wave operation. The inhomogeneously broadened gain spectrum of InAs quantum

dots leads to lasing in multiple modes well separated in wavelength. All the lasing modes

have single output beam in the same direction, regardless of their wavelengths and intracav-

ity mode structures. The unidirectionality is robust against cavity sidewall roughness and

small shape deviation, allowing fabrication by standard photolithography and wet chemical

etching. Shinohara et al. (2009) investigated larger GaAs cavities with R = 20 to 50µm

(nωR/c ≈ 480 to 1200) and obtained lasing by electric pumping with pulsed currents. Yi

et al. (2009) also achieved lasing in the InGaAsP cavities with R = 50µm (nωR/c ≈ 650)

by electric pumping with continuous currents. In all of these studies, measured light emis-

sions were TE-polarized and unidirectional emissions corresponding to the ray simulations

were confirmed. TM-polarized unidirectional emission was confirmed by Yan et al. (2009)

for quantum cascade lasers with the limaçon cavities of R = 80µm (nωR/c ≈ 161), where

again close agreement with the ray simulations was reported. In addition to dielectric disks,

vertical cavities with limaçon cross section were fabricated, and directional far-field emis-

sion was demonstrated from electrically driven quantum dot micropillar lasers (Albert et al.,

2012).

For the GaAs-based microcavities described above, the refractive index is around 3.3

and the optimal deformation for unidirectional emission is ε = 0.43. Numerically highly

directional far-field pattern and high quality factor were also found for 0.41 ≤ ε ≤ 0.49, and

the refractive index between 2.7 and 3.9 (Wiersig and Hentschel, 2008).

E. “Face” cavity

Since the unidirectional emission of limaçon-shaped cavities is valid only for high-

refractive-index materials (n ≥ 2.7), the remaining question is how to obtain high Q and

unidirectional emission from low-refractive-index microcavities, such as silica (n = 1.45).

Experimentally silica microspheres can have much higher Q than GaAs microdisks, and

slight deformations of spheres are shown to make the output directional, but not in a single
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direction (Lacey and Wang, 2001; Xiao et al., 2007, 2009).

Recently, Zou et al. (2013) came up with a guideline for the design of low-refractive-index

microcavities with high Q-factor and unidirectional emission. First, the cavity deformation

must be small, continuous and smooth in order to support high-Q WGMs. Second, the

boundary shape should have no more than one axis of symmetry. For planar deformed

cavities, two or more lines of symmetry or m-fold rotational symmetry with m > 1 will lead

to at least two emission directions in far field. According to the aforementioned guidelines,

the cavity boundary can be expressed in a general form

r(ϕ) =











R(1− ε
∑

i ai cos
i ϕ), −π/2 < ϕ ≤ π/2

R(1− ε
∑

i bi cos
i ϕ), π/2 < ϕ ≤ 3π/2

(47)

where ϕ is the polar angle, ε is the general deformation, ai and bi are coefficients with i ≥ 2.

With small and continuous deformation, the cavity is in the regime of ‘mixed phase space’ or

‘soft chaos’, namely, the phase space has a combination of chaotic and regular regions. The

high-QWGMs stay well above the critical line for total internal reflection; through dynamical

tunneling light escapes to the chaotic sea and diffuses to the leaky region (| sinχ| < 1/n)

along unstable manifolds. The relative positions of unstable periodic orbits and regular

islands for stable periodic orbits determine the shapes of manifolds and the regions on the

boundary where rays refract out (called ‘refraction regions’). Thus the positions of the

refraction regions can be tuned by changing the cavity shape via ε, ai and bi.

Zou et al. found the cavity of highest unidirectionality in an ensemble of 1000 cavity

shapes, with the parameters ε = 1.0, a2 = 0.2491, a3 = −0.0520, a4 = −0.0783, b2 = 0.2538,

b3 = 0.0446, and b4 = −0.0214. The refractive index of the cavity is n = 1.45. As shown in

Fig. 36(a)-(b), the islands for stable rectangle period-4 orbit in the SOS shape the unstable

manifolds, making the far-field pattern highly unidirectional [Fig. 36(c)]. Because its SOS

assembles a monster face, this cavity is called the “Face” cavity (Zou et al., 2013).

While the results of the ray simulations are impressive, there are problems with respect to

the mode properties. Since the approach is based on a mixed phase space, there exist modes

located in regular islands which, at least partly, leave the cavity by directed tunneling.

Such modes have high Q but cannot entirely follow the unstable manifold in the desired

direction. The same is true for modes confined by partial barriers which play an important

rule in mixed phase space. This mechanism becomes dominant for low to moderately low
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kR (Shim et al., 2011). It is therefore to be expected that Zou et al.’s approach does not

provide universal far-field patterns already for moderately small cavities.

Recently, shapes of the type in Eq. (47) have been realized experimentally with mi-

crodisks (Liu et al., 2013), microtoroids (Jiang et al., 2012), and microspheres (Cui et al.,

2013). In the first case Liu et al. (2013) fabricated polymer (n = 1.503) microcavities by

two-photon polymerization. In the second case Jiang et al. (2012) fabricated doped silica

microtoroids. In the third case, the equator of a silica microsphere is deformed by shooting

CO2 laser pulses to one side of the microsphere. The deformation can be well controlled by

adjusting the intensity and the number of heating laser pulses. Using this method, direc-

tional emission from WGMs with high quality factor of 107 is achieved in these microspheres,

and a transition from two-directional to single-directional emission is observed for the special

case of a traveling wave excitation using a fiber taper (Cui et al., 2013).

F. Ellipse with a notch

Although the unstable manifolds can produce emission predominantly in a single direc-

tion, the far-field divergence angle of the main lobe is relatively large, and side lobes persist.

To obtain an output beam with small divergence angle, Wang et al. (2010) took a different

approach. Instead of utilizing the unstable manifold, they introduced a defect at the cavity

boundary to scatter light, most of which was then focused by the cavity boundary to a

collimated beam.

Figure 37(a) shows light scattered by a wavelength-size notch at the edge of an elliptical

cavity, then collimated as a parallel beam in the far field by the right boundary of the

notched ellipse. To achieve optimal collimation, Wang et al. utilized the well-known focusing

property of the ellipse (auxiliary ellipse in dashed line): for any given refractive index n > 1,

one can find an auxiliary ellipse such that all incoming parallel rays are collected into one

of its foci; conversely in the reciprocal process light emerging from the left focus of the

auxiliary ellipse in Fig. 37(a) is refracted by its right half-side into parallel rays. Note that

the notch is located at one of the foci of the auxiliary ellipse, but not at the focus of the

elliptical cavity. The long-to-short aspect ratio of the elliptical cavity is chosen such that

its right-side boundary best (i.e., over the largest possible angle) approximates that of the

auxiliary ellipse. Figure 37(b) presents the ray simulation of the collimation effect: a number
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of rays are started at the position of the notch with different outgoing angles, simulating

a scattering process. They travel inside the cavity until they hit its boundary, upon which

they either are specularly reflected or, if the angle of incidence at the surface is smaller than

the critical angle for total internal reflection, get refracted out. The solid rays, which leave

the notch under relatively smaller outgoing angles, get collimated; the collimation is worse

for higher outgoing angles (outermost rays). The dash-dotted ray leaves the notch at a high

outgoing angle and is relaunched into a WGM. Figure 37(c) shows the ray simulation of

whispering-gallery dynamics. A single ray is started at some position along the resonator

boundary with an initial condition such that the angle of incidence is larger than the critical

angle. It is then specularly reflected many times, corresponding to a whispering-gallery-like

mode, until at some point it hits the notch. It then gets reflected to the opposite boundary,

and refracted out, leaving the cavity parallel to the horizontal axis due to the collimation

effect.

Experimentally the notched-elliptical cavities were fabricated for the quantum cascade

laser operating at the free-space wavelength of 10µm (Wang et al., 2010); see Fig. 37(d).

The long axis and short axis were 96µm and 80µm, respectively. The optimized notch width

was 3µm and depth 2µm. Wave simulation of a first-order WGM with TM polarization

and refractive index n = 3.2 gave a Q factor of 590,000. According to the calculated

intracavity intensity distribution, only the outermost part of the mode had an overlap with

the notch, which explained the high Q factor. The laser output was highly unidirectional,

with FWHM (full-width-at-half-maximum) beam divergence angle of merely 6 degree as

shown in Fig. 37(e)

For a refractive index below 3 the emission starts to become more uniform. This is due

to the fact that for a low index, most of the rays hitting the notch are partially transmitted,

and thus much of the intensity is not reflected to the opposite side where collimation can

take place (Unterhinninghofen, 2011).

Recently, the collimation effect has been exploited in numerical simulations by coupling

a microdisk to a lens-shaped cavity nearby (Ryu and Hentschel, 2011). By a proper choice

of parameters unidirectional light emission from high-quality modes is possible even in the

low-index regime.
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VIII. BEAMS SHIFTS AND SEMICLASSICAL APPROACHES

In this section we discuss beam shifts and semiclassical approaches which are in particular

relevant for wavelength-scale microcavities. As will be explained later, the wavelength-scale

cavities are important not only for practical applications, but also for fundamental studies

on the ray-wave transition in non-Hermitian systems.

A. Beam shifts

As discussed in Sec. IV, certain modes in microdisk cavities possess a simple geometric

structure, for instance a Gaussian mode based on a stable periodic orbit (Fig. 15), a scarred

mode along an unstable periodic orbit (Fig. 21), or a quasiscarred mode without underlying

periodic orbit. In such a case, it is convenient to describe the mode by a single optical beam

propagating periodically inside the cavity. It is well-known that when a beam of finite angu-

lar spread is incident to a dielectric interface, the reflected and the transmitted beams both

undergo spatial and angular shifts. In general, four different kinds of beam shifts can occur,

see the recent review (Bliokh and Aiello, 2013), but only the two shifts that are in the plane

of incidence are relevant for the quasi-two-dimensional geometry of a (deformed) microdisk

cavity. In the geometric optics limit λ → 0, the beam shifts disappear and the center of

the beam follows the prediction of geometric optics. For finite wavelength λ, however, the

effective beam center dynamics including beam shifts deviate from the prediction of geo-

metric optics. In this sense, the beam shifts can be considered as a semiclassical correction

to the ray dynamics (Chowdhury et al., 1994; Hentschel, 2001; Hentschel and Schomerus,

2002; Herb et al., 1999).

The beam shift that was discovered first is the spatial Goos-Hänchen shift (GHS) (Goos

and Hänchen, 1947). Upon reflection of a beam at a dielectric interface near or above the

critical angle of incidence for total internal reflection χc, the different partial waves in such

a beam accumulate different phases, which leads to a lateral shift ∆s along the interface

due to interference; see Fig. 38(a). The GHS ∆s is proportional to the wavelength λ. At a

planar interface between two normal dielectrics ∆s is positive, but it can be negative for an

interface between a normal dielectric and a negative-index metamaterial; see, e.g., (Berman,

2002; Wiersig et al., 2010). A simple analytical formula for ∆s(χ) at a planar interface above
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the critical angle, χ > χc, is due to Artmann (1948). Right at the critical angle the formula

exhibits an unphysical singularity. The same is true at sinχ = 1. For Gaussian beams, there

is an analytical result due to Lai et al. (1986), which is valid if the beam width σ is much

larger than 1/k, where k is the wave number. In the regime of kσ ≈ 1, the Lai result also

shows unphysical singularities (Unterhinninghofen and Wiersig, 2010). Measurements of the

GHS in the microwave regime have been done by Müller et al. (2006) and Unterhinninghofen

et al. (2011).

While the GHS is related to the χ-dependence of the phase of the complex reflectivity

r, the other beam shift relevant for microdisk cavities is associated with the χ-dependence

of the absolute value of r. In this case, partial waves with angles of incidence χ below the

critical angle χc are (partially) refracted out of the cavity, leading to an angular shift ∆χ

(or ∆p, if one considers the dimensionless momenta p = sinχ of the partial waves) of

the reflected beam – a violation of the law of reflection – and an angular shift ∆η of the

transmitted beam – a violation of Snell’s law; see Fig. 38(b). For the case of reflection the

beam shift is called angular Goos-Hänchen shift (Chan and Tamir, 1985; Ra et al., 1973) and

for the case of transmission Fresnel filtering (FF) (Tureci and Stone, 2002). There are subtle

differences in the precise definition of FF and angular Goos-Hänchen shift which are of no

relevance for the discussion here; see (Götte et al., 2013) for a comprehensive comparison.

In the following we use the term FF effect both for the reflected and the transmitted beam.

The FF effect in transmission has been observed experimentally in the far-field pattern of

a scarred optical mode in a GaN microlaser with quadrupolar shape (Rex et al., 2002) and

of a Gaussian optical mode in a quasi-stadium GaAs/AlGaAs microlaser (Shinohara et al.,

2011a). The FF effect in reflection has been measured in the microwave regime (Müller

et al., 2006) and in the optical regime (Merano et al., 2009).

Studies of beam shifts at curved interfaces have also been done; see, e.g., (Hentschel and

Schomerus, 2002; Schomerus and Hentschel, 2006; Tran et al., 1995; Zhou et al., 2011).

As both beam shifts, GHS and FF, are associated to the χ-dependence of the reflectivity r

they can be considered as two aspects of a unique beam-propagation phenomenon (Aiello

et al., 2009) which becomes obvious in the mode representation using the Husimi function

in the SOS (Schomerus and Hentschel, 2006).

Extending the ray dynamics by incorporating the GHS preserves the Hamiltonian charac-

ter of the dynamical system (Altmann et al., 2008; Unterhinninghofen et al., 2008) whereas
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the FF effect leads to non-Hamiltonian features as will be discussed below. A number of

interesting effects on the phase space and the mode properties have been discovered. For in-

stance, the GHS increases the round-trip optical path and thereby modifies the mode spacing.

This has been demonstrated by Mie theory calculations for dielectric spheres (Chowdhury

et al., 1994).

Foster et al. (2007) were the first to show that the GHS can modify the structure of

phase space not only quantitatively but also qualitatively and can therefore lead to new

types of mode patterns. In their dome-shaped cavity the GHS creates in phase space a

stable periodic orbit surrounded by a small island. Following the semiclassical eigenfunc-

tion hypothesis (Berry, 1977; Percival, 1973) the island can support modes which have been

indeed observed in the dome cavity by numerical calculations. Unterhinninghofen et al.

(2008) have confirmed this GHS-induced localization for modes in the dielectric ellipse; see

Fig. 39. Moreover, they have shown that the GHS applied to integrable ray dynamics cannot

only create stable periodic orbits but also unstable ones in accordance with the Poincaré-

Birkhoff theorem (Lichtenberg and Lieberman, 1992; Ott, 1993). The existence of scarred

modes localized along such unstable periodic orbits has been confirmed in numerical simu-

lations (Unterhinninghofen et al., 2008) and experiments (Yi et al., 2011) on the dielectric

ellipse. If the GHS is sufficiently small, the created stable and unstable periodic orbits

are spatially close to the corresponding geometric-optics orbits; cf. Fig. 39 and Fig. 28(c).

Hence, the discussed modes are also localized near these special marginal stable periodic

orbits. Because of this, these modes have been originally termed scarlike modes as discussed

in Sec. VI. The scarlike modes in the ellipse appear together with avoided resonance cross-

ings (see Fig. 28) since the GHS breaks the integrability of the internal ray dynamics in this

kind of cavity (Unterhinninghofen et al., 2008).

The dynamical interplay of GHS (calculated for a planar interface) and boundary curva-

ture of a deformed disk leads to shifts of phase-space structures in momentum direction (Un-

terhinninghofen and Wiersig, 2010), which had been misinterpreted as FF effect before (Lee

et al., 2005). Using the local radius of curvature ρ, one finds the periodic-orbit shift

∆pPOS =
∆s

2ρ
cosχ. (48)

Numerical calculations confirm that the modes localize along the shifted periodic orbits

rather than along the periodic orbits of the conventional ray dynamics. The periodic-orbit
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shift (48) has turned out to be important for a quantitative understanding of resonance-

assisted tunneling in deformed microcavities (Kwak et al., 2013). The extended ray dynamics

with GHS calculated for a curved interface has been studied in (Kotik and Hentschel, 2013).

While the GHS is a Hamiltonian correction, the FF renders the extended ray dynamics

non-Hamiltonian (Altmann et al., 2008). This can have dramatic consequences on the long-

time dynamics shown in phase space portraits since attractors and repellers may replace

KAM invariant curves, regular islands, and chaotic regions (Altmann et al., 2008; Arroyo

et al., 2009; Unterhinninghofen and Wiersig, 2010).

The ray dynamics augmented by FF explicitly takes the openness of the system into

account. Because of this the extended ray dynamics violates time-reversal symmetry (Alt-

mann et al., 2008). One consequence is that time-reversal periodic orbit partners of the

conventional ray dynamics are distorted differently by the FF and therefore split (Altmann

et al., 2008; Redding et al., 2012b; Shim et al., 2012; Song et al., 2011).

The quasiscars (modes localized on simple geometric structures without underlying

geometric-optics rays; see Sec. IV) observed in spiral-shaped microcavities (Lee et al., 2004)

can be understood as real scars localized along unstable periodic orbits in a ray dynamics

augmented by FF (Altmann et al., 2008).

B. Wavelength-scale microcavities

In recent years there has been a strong push towards further reduction of microlaser size

for applications to nanophotonic circuits, on-chip optical interconnects, very local chemi-

cal and biological sensing. The typical microdisk lasers have diameter over 1µm to avoid

high optical bending losses inside dielectric disks (Baba, 1997). In 2007 Zhang et al. real-

ized submicron disk lasers which operated at room temperature and emitted in the visible

regime (Zhang et al., 2007b). The smallest disks for which they achieved lasing opera-

tion have a diameter of 645 nm, which is equal to the lasing wavelength in vacuum. In

2009 Song et al. reported single-mode lasing in subwavelength GaAs disks at near-IR fre-

quency (Song et al., 2009a). The smallest disk diameter, about twice of the wavelength

inside the disk, is 30% less than the emission wavelength in free space. These submicron

disks, fabricated by standard photolithography and wet chemical etching, had good circular-

ity, smooth boundary, and vertical sidewalls, which facilitated lasing in whispering-gallery
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modes of the azimuthal number as small as 4. The rotational symmetry of the circular

microdisk, however, results in an uniform far-field emission pattern, which is a considerable

disadvantage for most applications. In order to obtain directional emission, wavelength-scale

deformed microcavities were investigated subsequently.

As elaborated in previous sections, directional output from cavities of size much larger

than the optical wavelength (kR ≫ 1) has been obtained by manipulating the intracavity ray

dynamics via deliberate deformation of the cavity shape. As the wavelength approaches the

cavity size, the classical ray model breaks down, and wave phenomena become significant.

High-Q modes (HQMs) may be formed by partial barriers in phase space (Shim et al., 2011),

and their emission to free space is not as directional as from larger cavities. Moreover, the

output directionality is no longer universal, it varies from mode to mode, in contrast to the

prediction of the ray model. Nevertheless, unidirectional emission can still be generated from

such small cavities by coupling an isotropic HQM to an anisotropic low-Qmode (LQM) (Song

et al., 2010, 2011). As an example, let us consider a cavity of shape similar to the limaçon

cavity discussed in Section VII.D. The intracavity ray dynamics is predominantly chaotic,

the escape of rays is dictated by the unstable manifolds which gives unidirectional emission.

Experimentally, both unidirectional and bidirectional emission were observed for different

lasing modes in the size regime 5 < kR < 10. Wave simulations revealed that in this regime

there are a set of HQMs and a set of LQMs with different mode spacing [Fig. 40(a)]. At

kR ≃ 7, the particular pair of modes, one from each set, are nearly degenerate in frequency

and become coupled. The coupling results in a drop in the Q of the HQM and an increase

of its emission directionality

U =

∫

f(ϕ) cosϕdϕ , (49)

(with the far-field intensity pattern f(ϕ) normalized to unity) as shown in Fig. 40. Com-

parison of the intensity distributions of the HQM and LQM at frequencies away from the

coupling region and near the coupling point reveals a hybridization of the HQM and the

LQM at the coupling point. Such hybridization makes the HQM possess the directed far-

field pattern of the LQM, which is the same as the mechanism discussed in Section VII.C

for the annular cavity.

The directional emission of the LQM is attributed to the beam shifts (see Section VIII.A)

in the wavelength-scale cavity. The Husimi function on the classical Poincaré SOS reveals

that the LQM is concentrated on a periodic orbit of triangle shape with three bounces from

70



the cavity boundary. The beam shifts, i.e., the GHS and the FF, are evident in the incident

and emergent Husimi functions (Song et al., 2010, 2011). Consequently, the triangle orbit

is broken into two distinct CW and CCW periodic pseudo-orbits. This split is confirmed by

direct calculation of periodic orbits with the extended ray dynamics that incorporates the

beam shifts (Song et al., 2011). Figure 41 plots the CW and CCW orbits of period 3 that

correspond to the LQM. In the case of CCW (CW) motion the angle of incidence is smallest

at bounce point iii (i) leading to the strongest emission there. In both cases the emitted

rays emanate in the same direction leading to a unidirectional output.

The beam shifts, which are significant for the LQM and makes its emission directional,

are negligible for the HQM, which is concentrated on a period-4 orbit with larger angle

of incidence (Song et al., 2010, 2011). Hence, directional output for a HQM can only be

obtained by accidental coupling to a LQM. However, with a further reduction of the cavity

size, the underlying orbits for the HQMs have decreasing number of bounces and the angles

of incidence approach the critical angle for total internal reflection. Let us again take the

limaçon cavity as an example. In the regime of 2 < kR < 5, the HQMs correspond to

triangle orbits with angle of incidence near the critical angle; consequently, the beam shifts

(FF and GHS) become much stronger, making the HQM directional without coupling to a

LQM. Figure 42(a,b) shows the constitute CW and CCW waves in a directional HQM of

kR = 3.2. The CW wave has enhanced amplitude at three locations on the cavity boundary,

which are close to but not coincident with the bounce points of a triangle orbit predicted

by ray optics. A similar phenomenon is seen for the CCW wave, with enhanced intensity

at different locations. These locations agree well with the positions of the bounces from the

Husimi function of the HQM. The spatial separation of the CW and CCW intensity maxima

results from the beam shifts, which produces directional output, as shown in Fig. 42(c,d).

Experimentally lasing was realized in the HQM of kR down to 3, and unidirectional emission

was observed (Song et al., 2010, 2011).

The spatial separation of the intensity maxima for the CW and CCW waves introduces

local chirality, defined as W (θ) ≡ [ICCW (θ)− ICW (θ)]/[ICCW (θ)+ ICW (θ)], where θ specifies

the angle along the cavity boundary (Redding et al., 2012b). Despite that the cavity shape

possesses chiral symmetry r(−ϕ) = r(ϕ), the local balance between the intensities of CW

and CCW waves is broken by GHS and FF, namely, ICW (θ) 6= ICCW (θ) at the cavity

boundary. By placing a waveguide tangentially to the cavity boundary, either CW and

71



CCW wave is selectively coupled out, depending on the coupling position, thus making the

evanescent waveguide coupling directional (Redding et al., 2012a,b). Figure 43 shows a

straight waveguide with the same refractive index as the deformed disk placed in the near

field of the disk boundary, and the location of the coupling point is specified by the angle θ.

At each θ, JCW (JCCW ) represents the intensity of emission from a cavity resonance to the

waveguide in the CW (CCW) direction. Quantitatively, the directionality of the coupled

emission, defined as V (θ) ≡ [JCCW (θ) − JCW (θ)]/[JCCW (θ) + JCW (θ)], was plotted as a

function of the coupling position θ in Fig. 43(b). As the coupling point moves along the

cavity boundary, the sign of V (θ) changes, reflecting the switch of the outcoupling direction.

The variation of V (θ) mirrors that of the local chirality W (θ) in Fig. 43(d), confirming

that the directional coupling originates from local chirality. Experimentally local chirality

and directional coupling to a waveguide have been demonstrated with wavelength-scale

semiconductor lasers (Redding et al., 2012a,b).

Selective coupling of CW (CCW) wave reduces its amplitude inside the cavity, making

CCW (CW) wave dominant. In other words, with this selective coupling scheme, the cavity

resonance is composed mainly of the less coupled CCW (CW) wave. The standing wave

pattern is thus replaced by a propagating wave, which produces a more uniform spatial

distribution of the field intensity inside the cavity (Redding et al., 2012a). In the application

to laser, the spatial hole burning effect is reduced, and the lasing mode can utilize the optical

gain at the field nodes of a standing wave pattern. This effect is most significant in gain

materials with limited carrier mobility, such as quantum dots.

C. Semiclassical approaches

An important tool of the semiclassical description of multidimensional wave and quantum

systems are trace formulas (Balian and Bloch, 1970, 1971, 1972; Berry and Tabor, 1976;

Gutzwiller, 1971, 1990). Such a formula relates the density of states (DOS) to the sum of

a smooth part given by a series of Weyl terms and an oscillating part given in the leading

order by a sum over classical periodic orbits.
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Bogomolny et al. (2008) extended this concept to open dielectric cavities by using the

Krein formula. Their result can be written in the form

1

π

∑

m

−Im km
(k − Re km)2 + (Im km)2

= d̄(k) + d(osc)(k) , (50)

with real wave number k = ω/c. On the left-hand side is the excess DOS which is a sum

over Lorentzian terms for all internal modes (Feshbach resonances) with complex km. On

the right hand side is the semiclassical approximation of the DOS consisting of a smooth

part d̄(k) and an oscillating part d(osc)(k). Note that in contrast to (Bogomolny et al., 2008)

we use the DOS d(k) = dN/dk instead of d(E) = dN/dE = d(k)/2k with E = k2. The two

leading terms of the smooth part are

d̄(k) =
An2

2π
k + r̃(n)

L

4π
, (51)

where A and L are the area and the perimeter of the cavity. The prefactor r̃(n) depends

on the refractive index n and on the polarization. Explicit expressions for TM and TE

polarization can be found in (Bogomolny et al., 2008) and (Bogomolny and Dubertrand,

2012), respectively. Note that the smooth part in Eq. (51) is not in contradiction with the

fractal Weyl law discussed in Sec. IV as the latter considers only a part of the internal modes

with small |Im km|.
The oscillating part of the DOS is a sum taken over all periodic ray trajectories inside

the cavity,

d(osc)(k) =
∑

p

(

cpe
inklp + c.c.

)

. (52)

lp is the length of the periodic ray trajectory. The coefficient cp can be calculated from the

properties of the considered ray trajectory. cp differs from the closed billiard case only by a

product over Fresnel reflection coefficients (TM or TE) computed at all reflection points of

the given trajectory.

The comparison of measurements, numerical calculations, and trace formula can be most

conveniently done by a Fourier transformation of the DOS with respect to the wave number

k. According to Eq. (52) the resulting length spectrum is peaked at the lengths of the periodic

ray trajectories. An example is shown in Fig. 44.

The trace formula (50)-(52) has been derived for the integrable circular cavity but there

is numerical and experimental evidence that the formula applies also to other geometries.
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Bogomolny et al. (2011) confirmed the validity of the trace formula for the square, rectangle,

ellipse, pentagon, and stadium in numerical simulations and in experiments on organic

microlasers (such as in Fig. 11(a)). Good qualitative agreement between the trace formula

and microwave experiments on dielectric resonators of circular, square, and stadium shape

has been reported by Bittner et al. (2010, 2012a,b). However, the authors emphasized the

need of higher-order corrections of the trace formula and showed that the application of

curvature corrections to the Fresnel reflection coefficients improves the agreement (Bittner

et al., 2012b). Bogomolny et al. (2008) have shown that higher-order corrections lead to

a small shift of the peak positions in the length spectrum which can be interpreted as an

analogue to the Goos-Hänchen shift.

Hales et al. (2011) extended the trace formula to the case of a dielectric disk with a point

scatterer. In this nonintegrable system, additional contributions appear stemming from

diffractive ray trajectories, which are closed trajectories that begin and end at the scatterer.

Good agreement with full numerical calculations was obtained.

A superficially similar approach is the periodic-orbit-sum formula introduced by Fukushima

et al. (2006) for the decay rate of modes Γ = −Imω in an elongated quasistadium laser

diode. It is based on a semiclassical approximation to the extended Fox-Lie mode calculation

method.

A very different semiclassical approach is the one developed by Narimanov et al. (1999) for

the decay rate Γ and far-field intensity pattern f(ϕ) of isolated resonances. These quantities

are expressed in terms of eigenstates of a related closed billiard, which incorporates the

effect of a refractive index in the boundary conditions. In a semiclassical approximation this

allows to represent Γ and f(ϕ) as sums over the contribution of ray trajectories which escape

the cavity by refraction (evanescent escape is ignored). This approach can be considered as

a first-order perturbation theory in Γ. It is not perturbative in the degree of deformation.

The original formulation by Narimanov et al. (1999) suffers from spurious solutions that

correspond to bound states satisfying Neumann boundary conditions at the boundary. A

subsequent formulation by Hackenbroich (2001) avoids any spurious solution. Because of

the requirement that the eigenstates of the closed billiard have to be known beforehand,

this semiclassical approach seems to be only practical for Gaussian modes based on stable

periodic orbits (Sec. IV, Fig. 15) computed in the parabolic equation approximation (Tureci

et al., 2002). For this particular case, a full analytic semiclassical solution can be found.
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IX. ROTATING MICROCAVITIES

The previous sections describe stationary microcavities. In this section, we will consider

microcavities that rotate. Light propagation in rotating macrocavities has been studied as

one of the most fundamental problems of electromagnetics in arbitrary accelerated systems

(Chow et al., 1985; Post, 1967). Of particular interest is the rotating ring cavity, due to

its application to the optical gyroscope. Since the cavity size is typically much larger than

the wavelength, the ray dynamical description has been widely used. What happens in a

microcavity of size comparable to the wavelength? How will the rotation modify the cavity

resonances? Answering these questions is important not only in terms of the fundamental

physics but also for the realization of ultrasmall optical gyroscopes.

A. Sagnac effect in microcavities

In 1913 Sagnac pointed out that the path length of clockwise (CW) propagating light in

a rotating ring interferometer for one round trip is different from that of counterclockwise

(CCW) propagating light; the resulting phase difference was later used to detect the rotation

speed (Chow et al., 1985; Post, 1967). In a ring cavity, the round-trip path-length difference

for the CW and CCW waves lift the degeneracy of resonances; the frequency splitting has

become the operation principle for ring laser gyroscope.

In 2006 Harayama and coworkers studied Sagnac effect in 2D microcavities of various

shape (Sunada and Harayama, 2006). The microcavity rotates around a fixed axis (z-axis)

perpendicular to the cavity plane (xy-plane). The rotation angular velocity Ω is assumed to

be constant in time, and the maximal speed v = ΩR to be small in magnitude compared to

the speed of light. In the reference frame rotating with the cavity, the Maxwell’s equations

retain their forms in the inertial frame, but the constitutive relations are modified (Shiozawa,

1973). Like in an inertial frame, the electromagnetic fields in a rotating 2D system can be

decomposed to transverse electric (TE) modes and transverse magnetic (TM) modes (Sarma

et al., 2012). Without loss of generality, we consider TM modes below. To the first order

of ΩR/c, the wave equation for the electric field (parallel to z-axis) can be written in the

polar coordinates as (Sunada and Harayama, 2006):
[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
+ 2ik

Ω

c

∂

∂ϕ
+ n2k2

]

Ez(r, ϕ) = 0, (53)
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where n is the refractive index inside the cavity, k = 2π/λ, λ is the vacuum wavelength.

In a circular cavity of radius R, the separation of variables gives Ez(r, ϕ) = f(r)e−imϕ,

where m is an integer, and

[

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+K2

m

]

f(r) = 0, (54)

where

K2
m = k2

[

n2 + 2m

(

Ω

ω

)]

, (55)

and ω = ck. Equation (55) implies that rotation induces a change of the dielectric constant

or the refractive index, which is given by

n2
Ω = n2 + 2m(Ω/ω). (56)

For a given direction of rotation, the CW and CCW waves inside the cavity experience

different nΩ as their azimuthal numbers, m, are of opposite sign. The wave traveling in the

same direction of rotation acquires a higher nΩ than that traveling in the opposite rotation,

thus rotation lifts the degeneracy of WGMs. For a closed cavity, where Dirichlet boundary

conditions are applied at the boundary, the frequency splitting between CW and CCW

modes can be obtained to the first order of Ω (Sunada and Harayama, 2006)

∆ω =
2|m|
n2

Ω. (57)

Equation (57) describes the Sagnac effect in a closed cavity.

For an open cavity, nΩ is modified both inside and outside the cavity. It is difficult,

however, to obtain an analytical expression for the Sagnac effect. Numerical simulation

(Sarma et al., 2012) shows that the rotation-induced frequency splitting between CW and

CCW modes in an open microcavity is larger than that in a closed cavity of same R. This

is attributed to the increased mode size in the open cavity, where the electromagnetic fields

extend beyond the cavity boundary.

B. Wave chaos in rotating cavities

In the last subsection, we consider circular cavities in which the WGMs consist of CW- and

CCW-propagating waves, and the Sagnac effect is consistent with the original description

based on the path length difference between the CW and CCW waves. When the cavity
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shape is deformed from a circle, the intracavity ray dynamics may become chaotic or partially

chaotic, and the resonant modes may not localize on well-defined ray trajectories. What

happens to the chaotic microcavities upon rotation? To answer this question, Harayama

and coworkers developed a perturbation theory to analyze the effects of rotation in deformed

microcavities (Sunada and Harayama, 2006). They treated the rotation term in the wave

equation as a perturbation to the cavity resonances, and calculated the changes in resonance

frequencies and wave functions.

Without rotation, the CW and CCW waves in a circular cavity have the same frequency,

and their superposition forms the standing waves. In a deformed cavity, the CW and CCW

waves are often coupled, which lift the degeneracy. The eigenmodes have slightly different

frequencies, and the eigenfunctions are standing waves [assuming that a mirror-reflection

symmetry is present or that the system is closed (Wiersig et al., 2011a)] approximately

described for small deformation by sine or cosine functions. Due to their frequency difference,

the eigenmodes cannot superpose to form CW or CCW modes. The frequency splitting,

caused by cavity shape deformation, leads to a threshold for the Sagnac effect (Sunada and

Harayama, 2007). When the rotation speed Ω is less than the threshold value Ωth, the

frequency shift due to rotation is negligible.

Figure 45(a) presents an example of the quadrupole cavity. A pair of quasi-degenerate

modes localized on a diamond-shaped periodic orbit is chosen. At low rotation speed, the

frequency difference of the two modes does not increase with the angular velocity Ω. Only

when Ω exceeds a threshold (Ωth), the frequency difference increases proportionally to the

angular velocity Ω. Therefore, there exists a dead zone (|Ω| < Ωth) for the Sagnac effect due

to intrinsic frequency splitting from cavity deformation.

The existence of a dead zone is detrimental to the application of microcavity to optical

gyroscope. To eliminate the dead zone, Sunada and Harayama (2007) designed a microcavity

of symmetry Cpν . The cavity boundary is defined by r(ϕ) = R(1 + ε cos pϕ), where p is

an integer and p ≥ 3. Despite its shape is deformed from a circle, such cavity supports

degenerate modes. Upon rotation, the frequency degeneracy is lifted, and the frequency

splitting is proportional to angular velocity Ω. Figure 45(b) shows an example of a pair

of degenerate modes localized on a triangle-shaped periodic orbit in a cavity of p = 3 and

ε = 0.065. The absence of dead zone is evident.

In the above examples, the cavity resonances localize on periodic ray orbits, so the Sagnac
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effect is similar to that in a ring cavity. However, the deformed microcavities also sup-

port wave chaotic modes, which do not localize on any ray-dynamical trajectories. The

Sagnac effect still exists for wave chaotic modes, even though such modes do not convert

to unidirectional-propagating wave modes upon rotation. Harayama et al. (2007) showed

numerically that the angular momentum spectra of wave-chaotic modes contain both CW

and CCW propagating wave components even at high rotation speed. Nevertheless, the

frequency splitting of two degenerate modes is proportional to the angular velocity. This

can be explained by the average angular momentum 〈m〉, which turns positive and negative

for the two modes upon rotation. The frequency splitting is then given by the difference in

their average angular momenta, ∆ω = 2|〈m〉|Ω/n2, which is a more general expression than

Eq. (57).

C. Rotation-induced changes of quality factors of open microcavities

In the previous subsection, the rotating microcavities have closed boundary, and the

frequency splitting is the only observable for rotation sensing. The small cavity size, however,

weakens the Sagnac effect dramatically, and the frequency shift in a microcavity is too small

to detect. In reality, most microcavities at optical frequency are made of dielectric materials,

as metal is lossy. Such cavities have open boundaries, from which light may escape. Hence,

the cavity resonances have complex frequencies, the real part representing the oscillation

frequency, the imaginary part reflecting the decay time or the quality (Q) factor. The Q

determines the lasing threshold and the emission power above the threshold. According to

Eq. (56), both the refractive index inside the cavity ni and outside the cavity no are modified

by rotation. The resulting change in the refractive index contrast affects the degree of optical

confinement in the cavity. Therefore, in an open microcavity, rotation not only induces a

resonant frequency shift, but also modifies the lasing threshold and the output power level.

The latter modifications can be more sensitive to the rotation than the lasing frequencies,

because the lasing threshold is determined by the Q factor which scales exponentially with

the refractive index contrast. For example, in circular Bragg microlasers, the rotation-

induced intensity modulation has exponential dependence on the rotation velocity (Scheuer,

2007). Next let us see what happens to a dielectric microdisk where light is confined by

total internal reflection at the disk boundary.
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To investigate the change of quality factor by rotation, Sarma et al. (2012) developed a

FDTD algorithm to simulate microdisk cavities in the rotating frame. Unlike the previous

FDTD model which substitutes the constitutive relations into the Maxwell’s equations, they

solved simultaneously and separately the Maxwell’s equations (which is identical to those in a

stationary frame) and the modified constitutive relations in the rotating frame. In a circular

microdisk, for a WGM traveling in the same direction of rotation, the Q factor decreases

exponentially with the angular velocity Ω, whereas the Q factor for a WGM traveling in the

opposite direction of rotation increases exponentially (Sarma et al., 2012).

The exponential dependence of Q factor on Ω can be explained by the rotation-induced

change in the refractive index contrast. Assuming the refractive index outside the cavity is

equal to 1 at Ω = 0, the refractive index difference at the angular velocity Ω is

ni(Ω)− no(Ω) ≃ (ni(0)− 1) +

(

mΩ

ω

)[

1

ni(0)
− 1

]

. (58)

Equation (58) implies the rotation increases the refractive index difference for the counter-

propagating mode (wave traveling in the opposite direction of rotation). Thus its Q factor

increases with the rotation speed Ω. For the co-propagating mode (wave traveling in the

same direction of rotation), the Q factor decreases with rotation. In a circular microdisk,

the change in the refractive index contrast is symmetric and opposite for the pair of CW

and CCW modes. The Q factor of the WGM depends exponentially on the difference in the

refractive index inside and outside the cavity. Since the index difference varies linearly with

the rotation speed (Eq. (58)), the Q factor changes exponentially with Ω.

For the wavelength-scale cavity, Sarma et al. (2012) found the sensitivity of the Q factor

to rotation is more than one order of magnitude higher than that of the resonant frequency

(Fig. 46). The change of Q by rotation would modify the lasing thresholds for CW and

CCW modes, and break the balance between the CW and CCW output power. The higher

sensitivity of Q to Ω indicates the rotation-induced changes in lasing threshold and output

power can be more dramatic than the lasing frequency shift in the wavelength-scale microdisk

lasers.

In deformed microcavities, the Q factors for a quasi-degenerate pair of resonances may

cross or anticross with increasing rotation speed (Ge et al., 2014b). While the standing-wave

resonances at Ω = 0 evolve to traveling-wave resonances at high Ω, either the clockwise (CW)

or counterclockwise (CCW) traveling-wave resonance can have a lower Q, contrary to the
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intuitive expectation from the rotation-dependent effective index of refraction in a circular

cavity. With increasing rotation speed, a phase locking between the CW and CCW waves in

a resonance takes place. These phenomena result from the rotation-induced mode coupling,

which is strongly influenced by the openness of the microcavity. Such coupling can also

make the frequency splitting change non-monotonically with rotation (Ge et al., 2014b).

D. Far-field patterns from rotating microcavities of deformed shape

Besides the resonant frequency and Q factor of a dielectric microcavity, the emission

pattern in the far-field zone is also modified by rotation. A characteristic of deformed

microcavities is the directional output. The output directionality can be dramatically altered

due to rotation, which may be useful for rotation sensing. This is an advantage that deformed

cavities have over circular cavities which have isotropic output.

Ge et al. (2014a) used a non-perturbative approach based on the modified scattering

matrix method to calculate the far-field emission patterns of deformed microcavities. This

method utilizes the analytical form of the cavity boundary and is free of spatial grids that

are used in the finite-difference or finite-element method. When the deformed cavity has the

chiral symmetry [ρ(−ϕ) = ρ(ϕ)], CW and CCW traveling waves make equal contributions

to each standing-wave resonance. The output directions of CW and CCW waves may differ,

but they are symmetric with respect to the ϕ = 0 axis. Consequently, the far-field pattern

of a standing-wave resonance has the mirror symmetry about the ϕ = 0 axis. With rotation,

the balance between the CW and CCW waves in a resonance is broken, and the far-field

pattern becomes asymmetric. This asymmetry increases linearly at low rotation speed,

which is free of the “dead zone” that plagues the Sagnac effect. A coupled-mode theory has

been employed to provide a quantitative explanation and guidance on the optimization of

the far-field sensitivity to rotation (Ge et al., 2014a).

A further increase of the emission sensitivity to rotation can be achieved by breaking the

chiral symmetry of cavity shape (Sarma et al., 2014). Without rotation, a pair of nearly-

degenerate modes in an open microcavity with broken chiral symmetry [ρ(−ϕ) 6= ρ(ϕ)] have

similar far-field patterns, because they are both dominated by either CW or CCW traveling

waves. With rotation, one of them evolves from co-propagating to counter-propagating wave

mode, and its far-field pattern will change dramatically if the CW and CCW waves have
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distinct output directions. This is illustrated in Fig. 47 for an asymmetric limaçon cavity.

The degree of spatial chirality can be tuned to maximize the difference between CW and

CCW far-field patterns, and reach the highest sensitivity of microcavity emission to rotation

(Sarma et al., 2014).

In summary, the sensitivity of emission pattern to rotation can be many orders of magni-

tude higher than the Sagnac effect, providing an alternative mechanism of rotation sensing

for on-chip gyroscopes.

X. SUMMARY AND PROSPECTS

In the past two decades, the quest to achieve directional radiation from microcavity

lasers has stimulated a lot of activities in the field of optical microresonators and consider-

ably deepened our understanding of them by applying very different physical principles and

mechanisms and by using theoretical concepts that were originally developed in other fields.

As a result, a number of distinct approaches were found and investigated, and they com-

prise a broad range of concepts from tailoring resonator shapes for directed light emission

(such as in the limaçon microlasers) to mode interactions occurring at avoided resonance

crossings (such as in the annular resonator) or a pumping-induced mode-beating interaction

(such as in the spiral cavity). They not only considerably enlarged our understanding of

microlasers, but at the same time highlighted the role played by wave chaos in such open

systems. The recognition of the importance of the unstable manifold that explains, e.g., the

observed universality of the far-field patterns, is one prominent example for this. In turn,

based on this knowledge, new resonator shapes can now be designed and easily (pre-)tested

by ray and wave simulations, which is a tremendously help to the application side.

The output directionality of deformed microcavities also provide alternative schemes for

microcavity-based sensors. In addition to resonance frequency shift, a change of far-field

pattern may be used for high-precision on-chip rotation rate detection. From the time

reversal point of view, directional emission implies directional excitation, namely, free-space

propagating beams can be efficiently coupled into microcavities (Lee et al., 2007b; Liu et al.,

2012). More recently, active control of emission directionality of semiconductor microdisk

lasers has been demonstrated by shaping the spatial profile of the pump (Liew et al., 2014).

The adaptive pumping technique provides an efficient way of tuning the lasing frequency
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and the output direction. Such tunability by external pump after the laser is fabricated will

enhance the functionality of microcavity lasers.

One important direction for future research on chaotic microcavities is the study of the

details of the localization of optical modes on the chaotic saddle and its unstable manifold.

In particular, it is still a puzzle why the appearance of scarred modes in open microcavities

is the rule rather than the exception. Another future direction is three-dimensional chaotic

microcavities. Most of the work that have been done so far is on two-dimensional microcav-

ities. Three-dimensional cavities have more degree of freedom and can produce interesting

effects that do not exist in two dimension.

Although most studies on deformed cavities were focused on microlasers, single photon

sources would also benefit from the unique characteristic of deformed microcavities, e.g.,

efficient collection of emission and directional coupling to waveguides. One future direction

could be the application of deformed dielectric microcavities to the cavity quantum electro-

dynamics, e.g., to study the influence of wave chaos on weak or strong coupling of single

emitters to cavity resonances.

For dense on-chip integration, there is an increasing push for further reduction of cavity

size to subwavelength scale. Although optical diffraction limits the cavity size to the wave-

length (in the dielectric material), recent works aimed to overcome this limit by utilizing

plasmonic effects (Bergman and Stockman, 2003; Ma et al., 2012). Hybrid metal-dielectric

cavities were fabricated, and surface-plasmons at the meta-dielectric interfaces enable con-

finement of optical energy in nanoscale dimension (Hill et al., 2007; Ma et al., 2010; Min

et al., 2009; Nezhad et al., 2010; Oulton et al., 2009). It would be interesting to extend

the concepts and approaches developed for the dielectric microcavities to metal-dielectric

nanocavities to control the surface plasmon modal distributions, spectra, lifetimes and emis-

sion characteristics. Furthermore, the exploration of microcavities made with novel mate-

rials, e.g., metamaterials with negative refractive index, would lead to unusual phenomena

such as negative refraction and negative Goos-Hänchen shift (Wiersig et al., 2010).

The existence of exceptional points and related non-Hermitian effects in optical micro-

cavities is now established. It would be interesting to study in the future the influence of

the exceptional points on light-matter interaction in microcavities. Further future topics are

non-Hermitian effects in CROWs and the properties of higher-order exceptional points in

optical microcavities.
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Rev. Lett. 106, 150403.

Djellali, N., I. Gozhyk, D. Owens, S. Lozenko, M. Lebental, J. Lautru, C. Ulysse, B. Kippelen,

and J. Zyss (2009), Appl. Phys. Lett. 95, 101108.

Dong, H., Z. Chen, L. Sun, J. Lu, W. Xie, H. Hoe Tan, C. Jagadish, and X. Shen (2009), Appl.

Phys. Lett 94, 173115.

Doron, E., and S. D. Frischat (1995), Phys. Rev. Lett. 75, 3661.

Dubertrand, R., E. Bogomolny, N. Djellali, M. Lebental, and C. Schmit (2008), Phys. Rev. A 77,

013804.
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Grgić, J., E. Campaioli, S. Raza, P. Bassi, and N. A. Mortensen (2011), Opt. Quant. Electron 42,

511.

89



Guo, A., G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou,

and D. N. Christodoulides (2009), Phys. Rev. Lett. 103, 093902.

Guo, W.-H., Y.-Z. Huang, Q.-Y. Lu, and L.-J. Yu (2003), IEEE J. Quantum Elect. 39, 1106.

Gutkin, E. (1996), J. Stat. Phys. 83 (1/2), 7.

Gutzwiller, M. C. (1971), J. Math. Phys. 12 (3), 343.

Gutzwiller, M. C. (1990), Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied

Mathematics, Vol. 1 (Springer, Berlin).

Hackenbroich, G. (2001), Physica E 9, 560.
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and S. M. K. (2007), Nature Photon. 1, 589.

Huang, K. F., Y. F. Chen, H. C. Lai, and Y. P. Lan (2002), Phys. Rev. Lett. 89, 224102.

Husimi, K. (1940), Proc. Phys. Math. Soc. Jpn. 22, 264.

Ilchenko, V. S., and A. B. Matsko (2006), IEEE J. Sel. Top. Quantum Electron. 12, 15.

Jackson, J. D. (1962), Classical Electrodynamics (John Wiley and Sons, New York).

Jiang, X.-F., Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and

Q. Gong (2012), Adv. Mater. 24, 260.

Kapur, P. L., and R. Peierls (1938), Proc. Roy. Soc. Lond. A 166, 277.

Kato, T. (1966), Perturbation Theory for Linear Operators (Springer, New York).

Keating, J. P., M. Novaes, S. D. Prado, and M. Sieber (2006), Phys. Rev. Lett. 97, 15406.

Keating, J. P., M. Novaes, and H. Schomerus (2008), Phys. Rev. A 77, 013834.

Kim, C., Y. J. Kim, E. S. Jang, G. C. Yi, and H. H. Kim (2006), Appl. Phys. Lett. 88, 093104.

Kim, C.-M., S. H. Lee, K. R. Oh, and J. H. Kim (2009), Appl. Phys. Lett. 94, 231120.

Kim, M., K. Kwon, J. Shim, Y. Jung, and K. Yu (2014), Opt. Lett. 39, 2423.

Kim, S.-K., S.-H. Kim, G.-H. Kim, H.-G. Park, D.-J. Shin, and Y.-H. Lee (2004), Appl. Phys.

Lett. 84, 861.

Kippenberg, T. J., R. Holzwarth, and S. A. Diddams (2011), Science 332, 555.

Kippenberg, T. J., J. Kalkman, A. Polman, and K. J. Vahala (2006), Phys. Rev. A 74, 051802(R).

Kippenberg, T. J., and K. J. Vahala (2008), Science 321, 1172.

Kneissl, M., M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang (2004), Appl.

Phys. Lett. 84, 2485.

Kolmogorov, A. N. (1954), Dokl. Akad. Nauk SSSR 98, 527.

Korthout, K., P. F. Smet, and D. Poelman (2009), Appl. Phys. Lett. 94, 051104.

Kotik, D., and M. Hentschel (2013), J. Opt. 15, 014010.

Kouno, T., K. Kishino, and M. Sakai (2011), IEEE J. Quantum Elect. 47 (12), 1565.

Kraft, M., and J. Wiersig (2014), to appear in Phys. Rev. A.

91



Kudo, H., R. Suzuki, and T. Tanabe (2013), arXiv:1304.3496.
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Kuhl, U., R. Schäfer, and H. J. Stöckmann (2011), in Trends in Nano- and Micro-Cavities, edited

by O. Kwon, B. Lee, and K. An (Bentham Books, Sharjah) pp. 153–185.

Kurdoglyan, M. S., S.-Y. Lee, S. Rim, and C.-M. Kim (2004), Opt. Lett. 29, 2758.

Kuwata-Gonokami, M., R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher,

and S. Ozawa (1995), Opt. Lett. 20, 2093.

Kwak, H., Y. Shin, S. Moon, and K. An (2013), arXiv:1305.6019.

Lacey, S., and H. Wang (2001), Opt. Lett. 26, 1943.

Lacey, S., H. Wang, D. H. Foster, and J. U. Nöckel (2003), Phys. Rev. Lett. 91, 033902.
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Persson, E., I. Rotter, H.-J. Stöckmann, and M. Barth (2000), Phys. Rev. Lett. 85, 2478.

Peter, E., P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch (2005),

Phys. Rev. Lett. 95, 067401.

Petermann, K. (1979), IEEE J. Quantum Electron. 15, 566.

Philipp, M., P. von Brentano, G. Pascovici, and A. Richter (2000), Phys. Rev. E 62, 1922.

Pillay, J. C., Y. Natsume, A. D. Stone, and Y. D. Chong (2014), Phys. Rev. A 89, 033840.

Podolskiy, V., and E. Narimanov (2003), Phys. Rev. Lett. 91, 263601.

Podolskiy, V., and E. Narimanov (2005), Opt. Lett. 30, 474.

Podolskiy, V. A., E. Narimanov, W. Fang, and H. Cao (2004), Proceedings of Nat. Acad. of Sci.

USA 101, 10498.

Poellinger, M., D. O’Shea, F. Warken, and A. Rauschenbeutel (2009), Phys. Rev. Lett. 103,

053901.

Poli, C., B. Dietz, O. Legrand, F. Mortessagne, and A. Richter (2009), Phys. Rev. E 80, 035204(R).
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Shim, J.-B., A. Eberspächer, and J. Wiersig (2013), New. J. Phys. 15, 113058.

Shim, J.-B., A. Eberspächer, J. Wiersig, J. Unterhinninghofen, Q. H. Song, L. Ge, H. Cao, and

A. D. Stone (2012), in Quantum optics with semiconductor nanostructures, edited by F. Jahnke

(Woodhead Publishing) pp. 225–251.

Shim, J.-B., S.-B. Lee, S. W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An (2008),

Phys. Rev. Lett. 100, 174102.

Shim, J.-B., and J. Wiersig (2013), Opt. Express 21, 24240.

Shim, J.-B., J. Wiersig, and H. Cao (2011), Phys. Rev. E 84, 035202(R).

Shinohara, S., T. Fukushima, and T. Harayama (2008), Phys. Rev. A 77, 033807.

Shinohara, S., and T. Harayama (2007), Phys. Rev. E 75, 036216.

Shinohara, S., and T. Harayama (2011), in Trends in Nano- and Micro-Cavities, edited by

O. Kwon, B. Lee, and K. An (Bentham Books, Sharjah) pp. 62–108.

Shinohara, S., T. Harayama, and T. Fukushima (2011a), Opt. Lett. 36, 1023.

Shinohara, S., T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov (2010),

Phys. Rev. Lett. 104, 163902.

Shinohara, S., T. Harayama, T. Fukushima, M. Hentschel, S. Sunada, and E. E. Narimanov

(2011b), Phys. Rev. A 83, 053837.

98



Shinohara, S., M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama (2009), Phys. Rev. A 80,

031801(R).

Shiozawa, T. (1973), Proceedings OF The IEEE 61, 1694.

Shudo, A., and K. S. Ikeda (1995), Phys. Rev. Lett. 74, 682.

Shudo, A., and K. S. Ikeda (2012), Phys. Rev. Lett. 109, 154102.

Siegman, A. E. (1986), Lasers (University Science Books, Sausalito, CA).

Sirko, L., S. Bauch, Y. Hlushchuck, P. M. Koch, R. Blümel, M. Barth, U. Kuhl, and H.-J.
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FIG. 1 (Color online) A few examples of deformed dielectric cavities. (a) Side-view and top-

view scanning electron microscope (SEM) images of a quantum cascade laser made of a flattened

quadrupolar-shaped GaAs cylinder. From (Gmachl et al., 1998). (b) Optical image of a liquid

microjet which traps light on one cross section by total internal reflection from the liquid-air

interface. Image courtesy of Kyungwon An, Seoul National University. (c) Optical image of a

deformed fused-silica sphere with the long axis equal to 200 µm. From (Lacey and Wang, 2001).

(d) Photo of a microwave cavity made of a Teflon disc on a brass ground plate with dimensions

380mm × 260mm. From (Schäfer et al., 2006).

FIG. 2 Resonances and long-lived optical modes. The back panel shows the intensity scattered off a

dielectric circular disk of radius R and refractive index n = 1.5 at 170◦ with respect to the incoming

plane wave with wave number k = ω/c, where c is the speed of light in vacuum. The scattering

intensity shows narrow peaks (resonances) at the scaled complex frequencies Ω = ωR/c = kR

which are closest to the real axis. These are the frequencies of the long-lived modes; the short-lived

modes contribute to broader peaks and the scattering background. From (Tureci et al., 2005).
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FIG. 3 Illustration of ray dynamics in a billiard; s is the arclength coordinate along the boundary

of the cavity and χ is the angle of incidence with respect to the boundary normal ~ν. (a) The solid

line 1 → 2 → 3 is a counterclockwise traveling ray in real space and the dashed line 1′ → 2′ → 3′ is a

clockwise traveling ray. (b) The same dynamics in the Poincaré surface of section. The coordinate s

is normalized to the total circumference of the boundary smax. In this representation the angle χ

is conventionally defined negative for clockwise traveling rays.

FIG. 4 (Color online) Example of a simple mixed phase space. Numerically computed Poincaré

surface of section for a desymmetrized mushroom billiard showing regular and chaotic regions in

phase space; the size of the billiard is scaled such that smax = π/2. From (Bäcker et al., 2008a).

FIG. 5 Poincaré surface of section of a quadrupole billiard (12) for ε = 0.072. The boundary is

here parametrized by the polar angle ϕ. The direction ϕ = 0 corresponds to the right part of the

horizontal axis in the three real space plots. From (Tureci et al., 2002).
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FIG. 6 Refractive escape from a dielectric cavity with refractive index n > 1. A ray with intensity

I is split into a reflected ray with intensity RTM,TEI and a transmitted ray with intensity (1 −

RTM,TE)I. ~ν is the outward normal vector. The angle of the reflected ray η is related to the angle

of the incident ray χ by Snell’s law. The emission direction can be described by the polar angle ϕ

which equals asymptotically the angle φ between the x-axis and the emitted ray.

FIG. 7 The leaky region in phase space of a dielectric cavity. (a) Poincaré surface of section

with leaky region | sinχ| ≤ 1/n in which the condition for total internal reflection is not met. (b)

Reflection coefficient RTM,TE(sinχ) for a planar dielectric interface with the incident plane wave

coming from the high-index medium (n = 2). The low-index medium is air with n = 1.

(a) (b)
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FIG. 8 (Color online) Husimi function in phase space. (a) Poincaré surface of section (dots,

horizontal lines with | sinχ| > 0.6), critical lines (horizontal lines with | sinχ| ≈ 0.3), and emerging

Husimi function (shaded regions) of a mode in an annular cavity. (b) Mode in real space.
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FIG. 9 (Color online) A series of photographs of laser emission from the droplet stream within

the first few millimeters of the vibrating orifice. (Left) The upper portion of the stream showing

the periodically perturbed, continuously connected liquid cylinder and the development of sepa-

rate, highly distorted droplets. (Right) The lower portion of the stream, showing the transition

from oscillating prolate-to- oblate spheroids to a stream of monodisperse, equally spaced spherical

droplets. From (Qian et al., 1986).
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FIG. 10 (a) Scanning electron micrograph (SEM) of a silica microsphere at the end of the preform

wire. Its diameter is 70µm. No surface defect was observed on a 30 nm scale. From (Collot et al.,

1993). (b) SEM of a silica microtoroid. From (Armani et al., 2003).

FIG. 11 (a) Optical microscope image of a spiral microcavity made of a DCM-doped polysmethyl-

methacrylated film. From (Ben-Messaoud and Zyss, 2005). (b) Side-view SEM of a InGaAsP

microdisk on top of an InP pedestal. The disk diameter is 3 µm. From (McCall et al., 1992).

(c) SEM of a GaAs/AlGaAs microstadium laser with an metal electrode on the top for current

injection. From (Fukushima and Harayama, 2004). (d) SEM of a limaçon-shaped micropillar with

a vertical cavity formed by two Bragg mirrors. Image courtesy of S. Reitzenstein, TU Berlin.

(a) (b)

FIG. 12 (Color online) Numerically computed standing wave modes in a dielectric microdisk;

n = 3.3 (GaAs), TM polarization. (a) Radial mode number l = 1 and azimuthal mode number

m = 19, scaled frequency Ω = kR = 7.02783 − i2.99188 · 10−13; (b) l = 3, m = 12, and Ω =

7.0175 − i6.29188 · 10−5.
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FIG. 13 (Color online) Kolmogorov-Arnol′d-Moser transition to chaos in the limaçon cavity (23).

The left-hand side shows the Poincaré surface of section for parameter ε = 0.1 (a), ε = 0.3 (b),

ε = 0.43 (c). The shaded region indicate the leaky region for n = 3.3. The right-hand side shows

the marked trajectories in real space.
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FIG. 14 Four chaotic whispering gallery rays in the phase space of the quadrupole billiard (12) for

ε = 0.072 followed for 100-200 reflections. Superimposed are the adiabatic curves (24) for different

values of α. The thick lines mark the border of the leaky region for two different refractive indices n.

From (Nöckel et al., 1996).

FIG. 15 (Color online) Calculated bowtie mode localized on a stable periodic orbit in a flattened

quadrupole (25) with TM polarization, refractive index n = 3.3 and deformation parameter ε =

0.15. Inset: measured far-field pattern for ε = 0 (triangles), ε = 0.14 (open circles), and ε = 0.16

(filled circles) compared to calculated data for ε = 0.15 (dashed line). Adapted from (Gmachl

et al., 1998).
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FIG. 16 (Color online) Quality factors and dynamical tunneling rates for the annular microcavity.

Shown is the theoretical prediction (solid curve) which is the sum of the direct tunneling contribu-

tion (dotted curve) and the dynamical tunneling contribution (dashed curve) based on the fictitious

integrable system, and numerical data (filled circles) for azimuthal mode number m = 7, . . . , 21.

From (Bäcker et al., 2009).

FIG. 17 (Color online) Using chaos-assisted tunneling for channeling rays into waveguides for effi-

cient collection of light emission from microcavities. (a) Poincaré surface of section of a quadruple

billiard, Eq. (12), at ε = 0.08. Red squares mark a period-4 orbit in the center of an island chain.

Blue dots indicate a typical chaotic trajectory out of the island chain. Vertical lines mark the exit

window due to the attached waveguide. (b) Real space representation of the period-4 orbit and the

chaotic trajectory. Inset: scanning electron microscope image of the experimental realization (Song

et al., 2012).
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FIG. 18 (Color online) Light emission along unstable manifolds of short periodic orbits. (a)

Emitted-ray intensity (color scale) overlaid on the Poincaré surface of section of the quadruple

cavity for ε = 0.18, Eq. (12), and refractive index n = 1.49. The blue curve is the unstable

manifold of a rectangular periodic orbit. (b) Experimental far-field data (color scale) projected

onto the Poincaré surface of section (available data is restricted to ϕ ∈ [−π/2, π/2]). From (Schwefel

et al., 2004).

(e)

FIG. 19 (Color online) Light emission along the unstable manifold of the chaotic saddle. (a) and

(b) Calculated Husimi functions of two different modes in the quadruple cavity (12) for ε = 0.16

and refractive index n = 1.361. The leaky region below the critical line sinχc = 1/n (red horizontal

line) is magnified in (c) and (d), respectively. Superimposed is the unstable manifold of the chaotic

saddle. (e) Measured far-field pattern of individual modes in a liquid-jet cavity of the same shape

and refractive index as in (a)-(d). Adapted from (Lee et al., 2007c).
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(b)(a)

FIG. 20 Dynamical localization in optical microcavities with strong boundary roughness. (a)

Scanning electron microscope image of rough microdisk (Podolskiy et al., 2004). (b) Computed

high-Q mode dynamically localized in angular momentum space.

FIG. 21 (Color online) Scarring in optical microcavities. Computed optical mode in the quadruple

cavity (12) which is scarred by the triangular periodic ray trajectories depicted in the inset; ε = 0.12

and refractive index n = 2.65. From (Rex et al., 2002).

FIG. 22 Illustration for the perturbation theory of deformed microdisk cavities. Circle (solid curve)

and a deformed circle (dashed). The horizontal line represents a symmetry axis. Grey regions mark

the area δa where the refractive index of the deformed cavity differs from the one of the circular

cavity.
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(a)

(c)

(b)

FIG. 23 (Color online) Hexagonal-shaped microcavities. (a) Scanning electron microscope image

of a zeolitic aluminophosphate-microcavity. (b) Computed mode structure. (c) Four members of

the family of periodic-6 ray trajectories. The ray picture breaks down for the rightmost orbit which

hits the corners of the hexagon. Adapted from (Braun et al., 2000).

(a)

FIG. 24 (Color online) (a) Calculated optical mode in the spiral (41) with ε = 0.1, n = 2.6, and

nkR ≈ 200. (b) Experimental (open circles) and calculated (solid and dashed) far-field pattern.

Reproduced with permission from (Chern et al., 2003). Copyright 2003, AIP Publishing LLC.
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FIG. 25 (Color online) Illustration of an avoided crossing of two energy levels E±(∆) in a closed

system. Equation (43) has been used with E1 being linear dependent on the parameter ∆, whereas

E2 and V = W ∗ are kept constant. The arrows visualize the eigenvectors for certain values of ∆.
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FIG. 26 (Color online) Illustration of an avoided resonance crossing in the weak (left) and strong

(right) coupling regime in the case of internal coupling. Small (large) |Im(E)| corresponds to a long

(short) lifetime. The arrows indicate eigenvectors of the system which hybridize near the region of

resonant coupling.
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FIG. 27 Illustration of an avoided resonance crossing in the strong coupling regime for the case of

external coupling. The resonant formation of a long-lived mode moving close to the real energy

axis can be clearly seen.
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FIG. 28 (Color online) Calculated near field intensity of modes in a dielectric ellipse with refractive

index n = 3.3. Modes A and B (E and F ) are on the left (right) hand side of an avoided

crossing. The rectangular-shaped mode C and the diamond-shaped mode D at the center of the

avoided crossing show a localization of intensity along periodic ray trajectories (dashed lines).

From Unterhinninghofen et al. (2008).
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FIG. 29 (Color online) Complex-square-root topology of eigenvalue surfaces E = E±(∆, |V |) with

a branch point singularity at the exceptional point (EP). The black curves result from a double

loop in the parameter space (∆, |V |).
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FIG. 30 (Color online) Measured eigenfrequency surfaces νl−νref of modes in a smoothly deformed

liquid-jet microcavity near an exceptional point (EP). The two independent parameters consists of

a deformation parameter and a quasicontinuous internal parameter, the mode number n. From Lee

et al. (2009a).

FIG. 31 (Color online) Chirality of a mode in a microdisk perturbed by two small bumps. The

disk is optically excited and the directionality of the light outcoupled to a waveguide is measured

(squares) as function of the normalized angle between the bumps. Positive (negative) values mean

transmission mainly to the left (right) indicating a finite chirality of the excited mode. The calcu-

lated chirality shown as circles is positive (negative) for mainly counter-clockwise (clockwise) rota-

tion of the mode. Inset: SEM of the perturbed microdisk with the coupling waveguide. From Kim

et al. (2014).

FIG. 32 (Color online) (a) Family of interior whispering-gallery type trajectories. (b) Far-field

intensity distribution, showing unidirectional emission. The index of refraction of the dielectric

disk is n = 3. Adapted from Ref. (Baryshnikov et al., 2004).
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FIG. 33 (Color online) Normalized frequencies Ω = ωR/c and quality factors vs. d for a high-Q

WGM and a low-Q mode with directed emission in the annular cavity, a microdisk of radius R

with an air hole of radius R2 = 0.22R located at the distance d to the disk’s boundary. The index

of refraction for TM polarization is n = 3.3. The coupling of the two modes leads to unidirectional

emission in the far field (lower right).

(a) (b)

FIG. 34 (Color online) Ray simulations of unidirectional emission from a limaçon cavity with

refractive index n = 3.3 and deformation parameter ε = 0.43. (a) Far-field intensity patterns

are normalized so that the integrated intensity is unity. The solid (dashed) curve is for TE (TM)

polarization. (b) Survival probability distribution for an ensemble of 50,000 rays starting uniformly

in the phase space with identical intensity for TE polarization. The arclength s is normalized to the

cavity’s perimeter. The Fresnel weighted unstable manifold in the leaky region (| sinχ| < 1/n) are

concentrated on very few high-intensity spots, giving highly directional output. (b) is from Wiersig

and Hentschel (2008).
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FIG. 35 (Color online) Calculated intensity distribution of an even-parity TE mode inside (a) and

outside (b) a limaçon cavity with refractive index n = 3.3 and deformation parameter ε = 0.43.

The mode has a normalized frequency Ω = ωR/c = 26.0933, and a Q factor of 185,000. The

mode is confined spatially near the cavity boundary and emit predominantly to the direction

ϕ = 0. (c) Husimi function of the TE mode in (a), exhibiting enhanced mode intensity around an

unstable periodic ray trajectory illustrated in the inset. The dots mark the bouncing points of the

periodic ray trajectory from the cavity boundary. The red horizontal lines sinχc = 1/n enclosing

the leaky region are indicated. (d) Magnified Husimi function in the leaky region agrees to the

unstable manifold in Fig. 34(b), confirming its responsibility for the directional emission. Adapted

from Wiersig and Hentschel (2008).

119



FIG. 36 (Color online) Ray dynamics in the face cavity made of silica. (a) shows the Poincaré

SOS. The red diamonds mark the unstable period-4 orbit. Its unstable manifold is shaped by the

islands around the stable periodic-4 orbit. The horizontal line is the critical line. Correspondingly,

(b) shows the cavity boundary and a ray trajectory close to the stable periodic-4 orbit, while (c) is

the far-field pattern obtained by ray simulations with modified Fresnel’s law. Adapted from (Zou

et al., 2013).
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FIG. 37 (Color online) (A) Illustration of the notched-elliptical cavity. The arrows indicate that

light is scattered by the notch and collimated as a parallel beam by the right-side boundary of

the cavity. The boundary of the cavity (solid curve) is designed to best approximate that of the

auxiliary ellipse (dashed curve) within the largest possible range. The notch is located at one of

the foci of the auxiliary ellipse. The optimal long-to-short aspect ratio of the elliptical cavity is 1.2

for the refractive index of 3.2. (B) Ray simulation of the collimation effect: a number of rays are

started at the position of the notch with different outgoing angles, simulating a scattering process.

The solid rays leave the notch under relatively smaller outgoing angles, they hit the right boundary

of the cavity and get refracted out. The dash-dotted ray leaves the notch at a high outgoing angle

and is relaunched into a whispering-gallery mode. (C) A single ray is started at some position

along the cavity boundary with an initial angle of incidence larger than the critical angle. It is

then specularly reflected many times until at some point it hits the notch and gets reflected to the

opposite boundary, refracted out, and leaves the cavity parallel to the horizontal axis due to the

collimation effect. (D) Scanning electron microscope image of the notched-elliptical cavity. (E)

Experimental (blue) and simulated (red) far-field intensity profiles. Adapted from (Wang et al.,

2010).

(a)

∆s
∆η(b)

∆χ

FIG. 38 Goos-Hänchen shift and Fresnel filtering at a dielectric interface. (a) Goos-Hänchen shift

near/above the critical angle of incidence: the center of a beam (solid lines) with finite beam waist

(curve) reflected at a dielectric interface is spatially shifted by ∆s with respect to the geometric-

optics prediction (dashed line). (b) Fresnel filtering near/below the critical angle of incidence:

deviations from the law of reflection (angular shift ∆χ of reflected beam) and Snell’s law (angular

shift ∆η of transmitted beam).
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FIG. 39 (Color online) Calculated optical mode in a dielectric ellipse with refractive index n = 3.3.

The mode pattern is localized along an optical beam (beam center is indicated by the dashed lines)

including the spatial Goos-Hänchen shift (highlighted by the red bars); cf. the corresponding

geometric-optics ray in Fig. 28(c).

FIG. 40 (Color online) Numerical simulation of a wavelength-scale deformed dielectric cavity of

refractive index n = 3.13. The cavity boundary is given by r(ϕ) = R(1+ ε cosϕ)(1− ε1 cos 2ϕ)+ d

in polar coordinates, where R = 890nm, ε = 0.28, ε1 = 0.06, and d = 60nm. Calculated Q factor

(a) and directionality U (b) versus kR for the high-Q modes (HQMs) (blue dots) and the low-Q

modes (LQMs) (red squares). The coupling of the HQM and LQM at kR ≃ 7 leads to a drop of

Q for the HQM and an increase of its U . (c-e) Calculated magnetic field intensity for the modes

labeled 1, 5, 4 in (a), revealing mode 4 is a hybrid of 1 and 5. Adapted from (Song et al., 2010).
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FIG. 41 Spatial separation of the period-3 orbit for clockwise (CW) and counter-clockwise (CCW)

propagating rays in a wavelength-scale deformed cavity due to beam shifts. The cavity is the same

as that in Fig. 40, and the orbit corresponds to the LQM. The three bounce points are labeled

i, ii and iii. The arrow outside the cavity represents the direction of dominant emission from the

bounce point where the angle of incidence is the smallest. Both CW and CCW rays emit in the

same direction. From (Song et al., 2011).

FIG. 42 (Color online) Calculated spatial intensity distribution of the CW (a) and CCW (b) waves

that constitute a high-Q mode (HQM) at kR = 3.2 in a limaçon cavity. The intensity maxima for

the CW and CCW waves are spatially separated. The solid lines depict the path for the CW beam

in (a) and CCW beam in (b), reconstructed from the incident and emergent Husimi functions. The

split in the CW and CCW orbits is due to beam shifts. (c) The CW wave intensity is enhanced

outside the cavity to show that the emission is predominantly from the bounce 1. Similarly, the

CCW wave (a mirror image with respect to the horizontal axis) emits from the bounce 3 into the

same direction (not shown). (d) A polar plot of the experimentally measured far-field pattern of

laser emission (thin red dotted line) which agrees well with the calculated output of the high-Q

mode at the same wavelength (thick black solid line). From (Redding et al., 2012b).
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FIG. 43 (Color online) A wavelength-scale deformed microdisk coupled to a waveguide. (a) Calcu-

lated intensity distribution in a waveguide coupled deformed microdisk, showing directional cou-

pling to a waveguide positioned at polar angle θ = 45◦. (b) Directionality of waveguide coupling

V as a function of the coupling position θ on the cavity boundary. V > 0 (V < 0) corresponds to

stronger coupling in the CCW (CW) direction. The crosses represent the experimental data points

which agree well with the numerical simulation (solid line). The inset shows the orbits for the CW

and CCW beams for this mode. (c) Top-view SEM image of a GaAs disk coupled to a waveguide.

The disk is supported on an Al0.7Ga0.3As pedestal at the center, and the GaAs waveguide is free

standing in air and supported by two Al0.7Ga0.3As pedestals at the ends. The background shows

the residual Al0.7Ga0.3As on the GaAs substrate after selective etching of the Al0.7Ga0.3As. (d)

Local chirality W (θ) for the same mode in the absence of waveguide coupling. Locally, the CW and

CCW intensities are not equal, leading to directional output to the waveguide shown in (b). Only

half of the cavity boundary is plotted in (b,d), the other half can be obtained by mirror symmetry.

From (Redding et al., 2012b).
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FIG. 44 Length spectrum of a circular microwave resonator. The solid (dashed, dotted) curve

shows the measured (numerically calculated, semiclassical) spectrum. The arrows mark the lengths

of the depicted periodic ray trajectories and of the circumference of the boundary. Except for the

square-shaped ray trajectory a good agreement can be observed. From (Bittner et al., 2010).

FIG. 45 Sagnac effect in deformed microcavities. The cavity boundary is closed, and the refractive

index inside is equal to 1. The cavity modes under consideration are TM polarized. (a) A rotating

quadrupole cavity (12) with ε = 0.12, and R = R0 = 6.2866 µm. Calculated frequency difference

R∆ω/c of a pair of quasi-degenerate modes at nkR ≃ 49.338 as a function of the (dimensionless)

angular velocity RΩ/c. The frequency difference does not change when the angular velocity is below

the threshold RΩth/c ∼ 5 · 10−8; above the threshold the frequency difference increases linearly

with the angular velocity. From (Sunada and Harayama, 2007). (b) A rotating microcavity of

symmetry C3ν . The cavity boundary is defined by r(ϕ) = R(1 + ε cos 3ϕ), where ε = 0.065.

Calculated frequency splitting R∆ω/c of a pair of degenerate modes at nkR = 50.220 vs. RΩ/c.

The frequency splitting increases linearly with the angular velocity with no threshold. Adapted

from (Sunada and Harayama, 2007).
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FIG. 46 Comparison of rotation-induced changes in frequency and Q factor of resonant modes in a

circular microdisk. The disk radius is R = 590 nm and refractive index is n = 3. Calculated relative

change in Q factor ∆Q/Q0 (squares) and the normalized frequency splitting ∆ω/ω0 (circles) of a

pair of WGMs with l = 1 and m = ±7 as a function of the rotation speed Ω. The lines are linear

fits. The slope for ∆Q/Q0 is 20 times higher than that for ∆ω/ω0, indicating the Q factor is 20

times more sensitive to rotation than the resonant frequency. From (Sarma et al., 2012).
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FIG. 47 (Color online) Numerical simulation of rotation-induced change in the far-field emission

pattern of an asymmetric limaçon cavity. The cavity boundary is defined in the polar coordinates

as r(ϕ) = R[1 + ε1 cos(ϕ) + ε2 cos(2ϕ + δ)], where R = 591nm, ε1 = 0.1, ε2 = 0.075, and δ = 1.94

radians. The refractive index inside the cavity is n = 3.0, and outside the cavity n = 1.0. Without

rotation, a pair of quasi-degenerate modes at λ = 598nm consists mainly of CW traveling wave.

Their near-field patterns are similar, one of them is shown in (a). The intensity outside the

cavity is enhanced to illustrate the main emission direction. At the normalized rotation frequency

ΩR/c = 0.001, one of the two modes is converted to CCW traveling wave (c), the other remains

CW wave (b). Their emission directions are very different. (d) Angular distribution of far-field

emission intensity for the two modes in (b,c). The rotation causes a dramatic change in the far-field

pattern of the mode in (b). From (Sarma et al., 2014).

127


