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Effect of atomic structure on the electrical response of aluminum oxide tunnel junctions
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Many nanoelectronic devices rely on thin dielectric barriers through which electrons tunnel. For instance,
aluminium oxide barriers are used as Josephson junctions in superconducting electronics. The reproducibility
and drift of circuit parameters in these junctions are affected by the uniformity, morphology, and composition
of the oxide barriers. To improve these circuits the effect of the atomic structure on the electrical response of
aluminium oxide barriers must be understood. We create three-dimensional atomistic models of aluminium oxide
tunnel junctions and simulate their electronic transport properties with the nonequilibrium Green’s function
formalism. With this approach we are better able to understand the role that fluctuations in the density and
stoichiometry of the oxide play in the electrical response of the junctions. For instance, increasing the oxide
density produces an exponential increase in the junction resistance. In addition we observe the formation of
metallic channels in highly oxygen-deficient junctions. We find that local variations in density or stoichiometry
can lead to localized conduction channels, even for a junction of uniform thickness. The atomistic approach we
have taken provides a better understanding of these transport processes and guides the design of junctions for
nanoelectronics applications.

DOI: 10.1103/PhysRevResearch.2.013110

I. INTRODUCTION

Superconducting qubits are one of the most promising
architectures for quantum computers and are currently the
favored technology for many quantum computing groups
around the world [1–5]. These qubits rely on the nonlinear
response of Josephson junctions, which are often fabricated as
Al−AlOx−Al trilayer junctions [6–8]. As we move to large-
scale quantum computer engineering, it becomes critical to
understand what limits junction performance and variability.

The conductance of Al−AlOx−Al junctions is commonly
understood in a simplified one-dimensional picture. In the
simplest case, the tunnel junction is considered to be a rectan-
gular barrier where the transmission probability of an incident
electron can be calculated using the Wentzel-Kramers-
Brillouin (WKB) equations [9]. More detailed analytic models
of the tunneling barrier include corrections for temperature,
applied voltage, image forces, and asymmetries [10].

Two of these models—the Simmons model [11] and
the Brinkman, Dynes, and Rowell model [12]—are often
used to estimate parameters such as the barrier height and
the oxide thickness by fitting to experimental measure-
ments [13–18]. Barrier heights calculated by fitting to the
Simmons model [15–17] range from 0.8 to 3.0 eV while a
“typical” height of 2 eV is often quoted [19–22]. Estimates of

*jared.cole@rmit.edu.au

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the barrier height and oxide thickness given by such models
are effective values which include contributions from oxide
properties such as the density and stoichiometry implicitly.
While useful, one-dimensional descriptions of the barrier
system are unable to fully represent the amorphous oxide
layer.

To include the full three-dimensional structure of the junc-
tion we turn to a numerical approach. There is a growing body
of literature in which the nonequilibrium Green’s function
(NEGF) formalism is used to calculate the electronic prop-
erties of nanoscale devices. This is a numerical method which
allows us to calculate properties such as the transmission
probability, current, and charge density. A range of systems
have been studied with this approach including graphene,
silicon, and phosphorus-in-silicon nanowires and carbon nan-
otubes [23–28]. These systems all consist of regular repeating
units which allow for the calculation to be performed in
reciprocal space, potentially yielding improvements in com-
putational efficiency. However, the Al−AlOx−Al junctions
which are the subject of this study are inherently disordered;
this removes any symmetries we might exploit to reduce the
complexity of the problem.

The computational challenges that arise when dealing
with disordered systems may explain the small number of
first-principles calculations in the literature with a focus on
Al−AlOx−Al junctions. One study by Zemanová Diešková
et al. [29] presents ab initio transport calculations for small
atomistic junction models. The conductance was calculated
using a transfer matrix method and compared to the conduc-
tance of rectangular and trapezoidal barriers as well as an
sp-like tight-binding model. A ground-state ab initio simula-
tion is used to determine the parameters of the tight binding
calculation. Relatively poor agreement with experimentally

2643-1564/2020/2(1)/013110(10) 013110-1 Published by the American Physical Society

https://orcid.org/0000-0003-2432-5865
https://orcid.org/0000-0002-7769-7438
https://orcid.org/0000-0003-4184-2071
https://orcid.org/0000-0003-3589-3040
https://orcid.org/0000-0002-8943-6518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013110&domain=pdf&date_stamp=2020-01-31
https://doi.org/10.1103/PhysRevResearch.2.013110
https://creativecommons.org/licenses/by/4.0/


M. J. CYSTER et al. PHYSICAL REVIEW RESEARCH 2, 013110 (2020)

FIG. 1. An atomistic model of a Josephson junction (d =
14 Å, ρ = 0.7, γ = 1.1) created using a simulated annealing
method. Aluminium and oxygen atoms are shown as gray and orange
spheres, respectively. The yellow and blue regions correspond to the
central and interfacial parts of the oxide barrier, respectively, which
are referenced in Sec. IV B and Fig. 4(b).

reported conductances is observed. Inaccurate estimation of
the barrier thickness with the Simmons model is raised as a
possible cause for this discrepancy.

In this paper we use molecular dynamics techniques to
create three-dimensional models of Al−AlOx−Al junctions
that include the detail of the atomic structure. The shape of the
potential barrier—used as an input to our electronic transport
model—is calculated in three dimensions from the atomic po-
sitions and charges. The electronic properties of the junction
models are calculated with the NEGF formalism [30]. Due
to the native disorder in the oxide noted above we calculate
solutions to the NEGF equations for a three-dimensional real
space representation of the system. By starting with a model
of the atomic structure of the Al−AlOx−Al junction and
retaining a full three-dimensional description of the structure
through each part of our calculations, we probe the effect of
structural changes on commonly measured quantities such as
the junction resistance.

The structure of the present work is as follows. In Sec. II
we describe our approach for creating atomistic models of
Al−AlOx−Al junctions. The nonequilibrium Green’s func-
tion formalism used to calculate the electronic properties
of the junction models is laid out in Sec. III. The results
presented in Sec. IV demonstrate the way in which changes
in the material properties of the oxide layer such as thickness,
stoichiometry, and density affect the junction resistance. Vari-
ation in the local structure at the Al/AlOx interfaces is shown
to affect the uniformity of current flow through the junction.

II. ATOMISTIC JUNCTION MODEL

To study the effect of atomic scale structure on the elec-
tronic properties of the junction we create atomistic models,
starting with a large supercell of crystalline Al2O3 (corun-
dum). We adopt a convention where the thickness of the
barrier d is measured along the z axis while x and y are
the lateral directions. The variable ρ is used to describe the
density of the junction oxide as a multiple of the density
of crystalline Al2O3 (3.97 g cm−3) [31]. The variable γ

represents the stoichiometric ratio of oxygen to aluminium
in the center of the oxide (the yellow region in Fig. 1). A
crystalline Al2O3 structure would therefore be described by
values of ρ = 1.0 and γ = 1.5.

TABLE I. Three sets of junction models are constructed in
response to experimentally reported values of the barrier thickness,
oxide density, and oxide stoichiometry [32,36,37].

Data set Thickness (Å) Density (ρ) Stoichiometry (γ )

1 10–30 0.8 1.1
2 14 0.6–1.0 1.1
3 14 0.8 0.3–1.5

By modifying the Al2O3 crystal we produce oxide struc-
tures with a range of densities and stoichiometries. Bulk
amorphous AlOx is experimentally reported to have lower
density and stoichiometry than the crystalline structure [32].
To create an oxide barrier of a given thickness d but a reduced
density, a volume is cut from the corundum supercell of size
�x × �y × ρd after which the structure is expanded in the
z direction by a factor of ρ−1. The desired stoichiometry
is then obtained by randomly removing oxygen atoms from
the structure. Following this, a geometry optimization is per-
formed to find the lowest energy configuration of the atoms
during which the atoms are free to move, but the size of the
simulation box is fixed to ensure that the density remains
constant. We use the General Utility Lattice Program for both
this optimization and the subsequent molecular dynamics cal-
culations [33]. Interations between the aluminium and oxygen
atoms are described with an empirical potential parameterized
by Streitz and Mintmire [34].

To introduce disorder in the structure we run a molecular
dynamics calculation at 3300 K (which is 1000 K above the
melting point of corundum) for 4 ps with a time step of
1 fs. Following this the simulation temperature is linearly
reduced to 300 K over 6 ps to quench the oxide in a specific
disorder configuration. Crystalline aluminium regions are then
placed adjacent to the oxide (in the positive and negative z
directions) and a second geometry optimization is performed
to reconstruct the interfacial regions between the oxide and
the aluminium contacts [35]. During this optimization the box
can expand or contract along the z axis, and atoms in the
aluminium contacts and up to 4 Å into the oxide on each side
are free to move. By fixing the atoms in the central region we
are able to retain the desired density and stoichiometry even
in cases where the final structure may not be energetically
optimal. An example of an atomistic junction model produced
in this way is shown in Fig. 1.

Experimental studies of aluminium oxide structure [32,36]
show that the amorphous phase has a density approximately
0.8 times that of the crystal phase and a stoichiometry of
γ = 1.10. Though epitaxial stoichiometric Al2O3 junctions
have previously been realized [38], we focus on the more com-
mon amorphous barrier systems. The oxide layer in a single
junction [37] varies from 10 to 20 Å. On the basis of these
values we create three sets of junction models summarized in
Table I. In each data set we vary one parameter while keeping
the other two fixed at realistic values based on experimental
data.

The lateral dimensions of each junction model are �x =
�y = 24 Å, whereas those of junctions in real circuits usually
exceed 100 nm [7,18]. For this reason periodic boundary
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conditions are applied during the development of the junction
model.

III. ELECTRONIC TRANSPORT MODEL

In order to calculate the electronic transport properties of
the atomistic Al−AlOx−Al junction models we implement a
nonequilibrium Green’s function model in one, two, and three
dimensions. This provides a single-particle description of a
free electron moving through a disordered potential obtained
from the atomistic model. A finite difference approximation
of the kinetic operator is used to describe the channel through
which transmission occurs and the source and drain contacts
which are connected to it. In the three-dimensional transport
calculation the boundary conditions are periodic in x and y,
with open boundary conditions in z.

To second order, the finite difference representation of the
kinetic energy for a one-, two-, or three-dimensional system
can be written as

T =
N∑
i

ε|i〉〈i| −
N∑

〈i, j〉
tk|i〉〈 j|, (1)

where k ∈ {x, y, z}. The magnitude of the on-site energy ε

changes with dimensionality:

ε =
⎧⎨⎩2tz, 1D

2tz + 2ty, 2D
2tz + 2ty + 2tx, 3D

. (2)

The magnitudes of the hopping energies tk = h̄2/2m∗a2
k are

determined by the spacing between points ak � 1/3 Å and
the effective mass m∗. We choose m∗ to be the free electron
mass me as the model is designed to describe electrons tun-
neling between two contacts composed of bulk aluminium in
which m∗ � me [39].

The electrostatic potential V (x, y, z) in the junction struc-
ture is calculated on a Cartesian grid and added to the
kinetic energy T to form the complete channel Hamilto-
nian HC = T + V . Details of the numerical approximations
made when computing the electrostatic potential are given in
Appendix A 1. To obtain the transmission function T (E ) we
calculate the retarded Green’s function,

Gr (E ) = [(E + iη)I − H]−1 (3)

= [(E + iη)I − HC − �S (E ) − �D(E )]−1, (4)

where I is the identity matrix, iη is a positive imaginary
infinitesimal number, and �S (E ) and �D(E ) are the self-
energies for each contact where the subscripts S and D denote
the source and drain, respectively. The matrix inversion in
Eq. (4) is computationally expensive, and we take advantage
of a recursive algorithm to speed up our calculations [40].

The trace over the product of the broadening matrices
�S,D = i(�S,D − �

†
S,D) and the retarded Green’s function

yields the probability of transmission through the channel as
a function of the energy of the incoming electron:

T (E ) = Tr(�SGr�DGa). (5)

In the Landauer-Büttiker formalism [30] we can use the
value of T (E ) to evaluate the current in the channel as a

function of applied bias:

I = 2e2

h

∫ ∞

−∞
T (E )[ fS (E ) − fD(E )]dE , (6)

where e is the charge of an electron, h is Planck’s constant,
and fi(E ) is the Fermi-Dirac distribution for contact i:

fi(E ) =
[

exp

(
E − μ0 − eVi/2

kBT

)
+ 1

]−1

, (7)

where μ0 is the Fermi level, kB is Boltzmann’s constant, and T
is the temperature. The junction is symmetrically biased such
that VS = −VD. Equation (6) could also be used to determine
the junction resistance from the gradient of the linear I–V
response at low bias. The computational cost can be reduced
by working in the limit V → 0 where we can use the zero-bias
conductance formula

G = −2e2

h

∫ ∞

−∞
T (E )

∂ f0(E )

∂E
dE , (8)

where f0(E ) is the equilibrium Fermi-Dirac distribution
function

∂ f0(E )

∂E
= − 1

4kBT
sech2

(
E − μ0

2kBT

)
. (9)

A further optimization is obtained by taking the zero-
temperature limit where Eq. (9) becomes a δ function centered
at μ0. This gives us an expression for the resistance which
requires only the evaluation of the transmission function at a
single energy:

RN = 2

G0T (E = μ0)
, (10)

where G0 = 2e2/h is the conductance quantum. When
the transmission function is smoothly varying (see Ap-
pendix A 2), this becomes a sufficiently good first approxi-
mation at higher temperatures.

We report the resistance area RN A given by the product of
the normal resistance [calculated with Eq. (10)] and the area of
the simulation cell transverse to the conduction direction. We
choose to calculate the resistance area because it is commonly
measured in experiment and can be calculated assuming nor-
mal state conduction. With the Ambegaokar-Baratoff relation

ICRN = π�

2e
tanh

(
�

2kBT

)
(11)

we are then able to link the resistance in the normal state
with the critical current of the device when it is superconduct-
ing [41].

Calculations of the current and resistance [with Eqs. (6)
and (10), respectively] depend on the value of the Fermi level
μ0. To estimate μ0 we fit our simulation to an experimental
value of the resistance area. For a reference junction (with
typical thickness, density, and stoichiometry) we calculate the
resistance area for a range of energies. The Fermi level is then
found by matching the calculated resistance area with a rep-
resentative experimental [18] resistance area of 600 � μm2.
For our data set this gives a value of μ0 = 1.35 eV. In Sec. IV
we are limited to a discussion of qualitative trends only as
variation in μ0, which would occur if a different junction or
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experimental value was chosen as a reference point, leads to
an offset in the calculated resistances for the junction models.

We can also calculate electronic properties which vary
spatially within the junction structure. The charge density in
three dimensions is given by

n(x, y, z) = − i

2πaxayaz
diag(Gn(E )), (12)

with the electron Green’s function

Gn(E ) = Gr (E )�in(E )Gr (E )† (13)

and

�in(E ) = �S (E ) fS (E ) + �D(E ) fD(E ). (14)

The current flowing between two points can be determined
from the element-wise product of H and Gn:

J (r, r′, E ) = e

h
Im[H (E ) ◦ Gn(E )]. (15)

The net current in a particular direction is then calculated
from the difference between pairs of points and normalized
by the area of the discretization in the other two directions.
For example,

Jz(x, y, z; E ) = 1

axay
[J (r, r′, E ) − J (r′, r, E )], (16)

where r = (x, y, z) and r′ = (x, y, z + az ). The expressions for
Jx and Jy are constructed similarly. It is worth noting that
the equations presented here are entirely general to any one-,
two-, or three-dimensional transport system that is well de-
scribed by a nearest-neighbor finite difference model.

IV. RESULTS

A. Current-voltage response

The response of a tunnel junction to an applied bias is
expected to be linear when the bias is close to zero and to
become nonlinear as the bias is increased. When a sufficiently
large bias is applied the Fowler-Nordheim tunneling theory
can be used to describe the response [42]. The current-voltage
relationship for an atomistic junction model, calculated in
three dimensions with Eq. (6), is shown in Fig. 2. We observe
a linear response at low bias and find that the behavior is well
described by the Fowler-Nordheim tunneling model above
an applied voltage of approximately 2 V. It should be noted
that this is well above the typical experimental breakdown
voltage for junctions and is used here simply to benchmark
the technique.

The current in the Fowler-Nordheim model is given
by [9,43,44]

I (V ) = αAaβ2V 2

φ
exp

(
−bφ3/2

βV

)
, (17)

where α is a scaling factor related to the proportion of the
barrier which participates in tunneling via field emission, A is
the cross-sectional area of the device, φ is the work function,
and β is the inverse of the barrier thickness d . The quanti-
ties a and b are the Fowler-Nordheim constants, which are

FIG. 2. The current-voltage response of an Al−AlOx−Al junc-
tion model calculated with our NEGF model. The material properties
of the oxide (d = 20 Å, ρ = 0.8, and γ = 1.25) are close to the mean
of experimental reports [32,36,37]. At low bias a linear response is
observed, while agreement with the Fowler-Nordheim model is seen
at high bias.

given by

a = e3

8πh
and b = 8π

3

√
2m̃

eh
, (18)

where m̃ is the effective mass of the electron in the oxide. An
estimate of the work function φ can be found by fitting the
calculated current-voltage data with Eq. (17).

The effective mass used during the fitting process af-
fects the calculated value of the work function. An effective
mass of m̃ = 0.4 me estimated from band structure calcula-
tions [45,46] for crystalline Al2O3 yields a value for the work
function of φ = 2.4 eV. Alternatively, direct measurement
of aluminium oxide barriers [47] gives an estimate of m̃ =
0.75 me leading to a value of φ = 2.0 eV. Both values are
close to the commonly quoted barrier height [19–22] of 2 eV.

B. Effect of oxide morphology on resistance area

The resistance area is calculated with Eq. (10) for each
junction in the three data sets described in Table I. The
resistance area as a function of oxide thickness is shown
in Fig. 3(a). A linear fit to the log of the resistance area
data is calculated using MATLAB. This data set consists of
18 junctions with approximate thicknesses of 10–30 Å and
densities in the narrow range ρ = 0.77−0.87. The exponential
increase in the resistance area with barrier thickness is in
agreement with experimental observations [15] and an expo-
nential reduction in the tunneling probability.

Figure 3(b) shows the relationship between the density of
the barrier oxide and the resistance area. Here we observe
that the resistance of the junction is also exponentially related
to the oxide density. We note that each junction in this second
data set has a similar thickness (d = 16 ± 1 Å). The height
of the potential barrier increases with increasing density [see
inset in Fig. 3(b)]. To the authors’ knowledge, no systematic
studies exist investigating the relationship between the
junction resistance and the oxide density. Sullivan et al. [32]
report that oxides manufactured with an O2 plasma deposition
process are of higher density (ρ = 0.8) when Al is evaporated
simultaneously and lower density (ρ = 0.6−0.7) when the
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FIG. 3. The calculated resistance area of the junctions is expo-
nentially dependent on both (a) the thickness of the tunneling barrier
and (b) the density of the barrier oxide. The insets show the aver-
aged 1D electrostatic potential for high- and low-density junctions.
Linear fits to the log of the resistance-area data are calculated with
MATLAB.

substrate is exposed only to the plasma. From Fig. 3(b) we can
estimate that this variation in the density would correspond to
change in the resistance area of 1–2 orders of magnitude.

Resistance-area data are presented in Fig. 4(a) for a range
of oxide stoichiometries. Between γ = 0.9 and γ � 1.2
the resistance area is approximately constant. This range is
comparable to reported experimental values for oxide sto-
ichiometry of γ = 0.8−1.2 (depending on fabrication con-
ditions) [36]. A significant drop in the resistance is seen
for values of γ outside this region. At low stoichiometries
(γ < 0.9) this is due to oxygen deficiency in the junctions
creating metallic channels which dominate conduction and
lead to a decreased resistance. We can therefore identify the
metal-insulator transition at approximately γ = 0.8−0.9.

FIG. 4. (a) The calculated resistance area varies over several
orders of magnitude as the structure moves from an oxygen deficient
to an oxygen-rich configuration. Charge and current densities are
presented in Fig. 6 for the structures corresponding to the three data
points marked with red arrows. The shaded data points correspond to
the current density histograms presented in Fig. 7. The upper and
lower bounds of experimentally reported stoichiometries [36] are
shown by the vertical dashed lines. (b) The stoichiometry in both the
center of the oxide barrier and in the interfaces between the oxide
and the aluminium contacts are plotted. The gray line illustrates
deviation from uniform stoichiometry across the width of the oxide.
The central and interfacial regions of the oxide are defined in Fig. 1.

At high stoichiometries (γ > 1.2) the resistance drops
again, which is the result of fixing the density at ρ = 0.8
to systematically compare between different stoichiometries.
The reduction in resistance at high stoichiometries for this set
of junctions can be attributed to changes in the distribution
of oxygen within the barrier. Two additional data points
are included at ρ = 0.9 and ρ = 1.0. As expected from the
exponential dependence shown in Fig. 3(b), increasing the
density increases the resistance.

Figure 4(b) helps to explain the change in the oxygen
distribution at higher stoichiometries (γ > 1.2). We define the
stoichiometry in the interfaces as γinterface and plot how this
changes as a function of the stoichiometry in the center of the
barrier γ . The central and interfacial regions are defined in
Fig. 1. We observe that γinterface begins to decrease at higher
values of γ . This implies that the interfacial regions between
the contacts and the oxide barrier tend to reach a limiting
stoichiometry of γ � 0.8 irrespective of the higher oxygen
concentration in the center of the barrier. Constraints used
during the preparation of the structure such as requiring a
density of ρ = 0.8 and limiting the motion of atoms during
the optimization are forcing the system away from thermody-
namic equilibrium and may drive this variation in stoichiome-
try across the oxide. The oxygen-deficient interfaces are more
conductive and cause a decrease in the effective thickness of
the tunneling barrier leading to the observed decrease in the
resistance-area product. We note that while high conductance
is observed at both low and high stoichiometries (when ρ =
0.8), the transport in the high stoichiometry region is still in
the tunneling regime where T (E ) < 1.

C. Charge and current density

To better understand how conductance changes as a func-
tion of stoichiometry, we calculate the charge density and
current density in three dimensions for junction models with
stoichiometries of γ = 0.3, 0.9, and 1.5 (corresponding to
the three data points in Fig. 4 marked with red arrows).
These properties were computed with Eqs. (12) and (16) at an
applied bias of 50 mV. In Fig. 5 we plot n(y, z) and J (y, z)
for a junction in the tunneling regime (γ = 0.9) for three
planes at different positions along the x axis. Lighter regions
with lower charge density are associated with the presence of
oxygen. The disorder in the atomic structure of the oxide can
be observed in the contours of the charge density in the barrier
region. The current density varies as a function of x and y with
regions of higher current around the center of Fig. 5(c) and on
the bottom of Fig. 5(d).

Variation in the physical thickness of the oxide layer has
been observed directly in microscopy studies where it is
estimated that less than 10% of the total barrier area dominates
the tunneling of electrons [37]. This gives rise to the idea
that there are localized regions of higher conductance or “hot
spots” in the junctions. For example, Aref et al. [18] report
an effective conduction channel size of 20 nm2. Our results
demonstrate that the effective width of the tunneling barrier
can be affected by small local differences in the density of
aluminium and oxygen atoms at the oxide/metal interfaces.
This is evident even in our junction models with minimal
variation in physical thickness across the structure.
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FIG. 5. The calculated charge density n(y, z) and current density
J (y, z) (for an applied bias of 50 mV) are shown for a junction
model with a stoichiometry of γ = 0.9. This structure has a material
density of ρ = 0.8 and a barrier thickness of d = 15 Å. Panels (b)–
(d) correspond to different positions along the x axis as shown in (a).

A comparison of the calculated current for the various sto-
ichiometries is shown in Fig. 6. The charge density contours
in Fig. 6(a) (γ = 0.3) show a significantly weaker suppres-
sion of the current than is evident in the insulating γ = 0.9
junction. The low stoichiometry structure (γ = 0.3) contains
small regions of aluminium oxide that do not span the entire
lateral width of the junction model, leaving metallic channels
through which the majority of the current flows.

FIG. 6. The calculated charge density n(y, z) and current density
J (y, z) (for an applied bias of 50 mV) are shown for junction models
of increasing stoichiometry: (a) γ = 0.3, (b) γ = 0.9, and (c) γ =
1.5. Each structure has a material density of ρ = 0.8 and a barrier
thickness of d = 15 Å. The current density is normalized within each
panel by the value shown in the top right corner.

Figures 6(b) and 6(c) show the charge and current density
for the higher stoichiometry structures (γ = 0.9 and 1.5).
It is important to note here that the arrows depicting the
current density are 103 times smaller than those in Fig. 6(a).
Figure 6(b) (γ = 0.9) corresponds to a junction in the fully
insulating regime, while a path of higher current density can
be seen at the top of Fig. 6(c) (γ = 1.5). Oxygen deficiency
in the Al/AlOx interfaces creates areas where the insulating
barrier is thinner and electrons can more easily tunnel through
the oxide. The current densities presented in Fig. 6 allow us
to understand the drop in the calculated resistance-area values
(at both low and high stoichiometries) in Fig. 4.

The formation of localized conduction channels in oxides
with high stoichiometries and reduced densities can be seen
directly by examining the current density in the xy plane
perpendicular to conduction. In Fig. 7 we illustrate this with
three examples: (I) high stoichiometry and reduced density
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FIG. 7. Histograms of the current density in xy slices through the
junction structure averaged over the central region of the oxide (i.e.,
the yellow region defined in Fig. 1). The three series correspond to
the data points marked on Fig. 4 in the same colors. The inset figures
are representative of typical xy current densities in these different
systems with the given densities and stoichiometries.

(γ = 1.5, ρ = 0.8), (II) high stoichiometry and high density
(γ = 1.5, ρ = 1.0), and (III) typical density and stoichiome-
try for an insulating barrier as observed experimentally (γ =
0.9, ρ = 0.8). The histograms in Fig. 7 are of the current
density in the xy plane averaged over the central region of
the oxide (i.e., the yellow region in Fig. 1). From these
distributions we see that when a localized conduction channel
forms there is also a corresponding reduction of current in
the surrounding region [see Fig. 7 (I)]. In contrast, a more
typical barrier conducts current uniformly across its entire
lateral extent [Fig. 7 (III)].

The localized conduction channel visible in Fig. 7 (I) is ap-
proximately 2–3 Å in diameter, which is substantially smaller
than the usual “hot spots” discussed in the literature [18]. The
distribution of current in Fig. 7 (II) is more uniform, but some
areas of higher current density are observed. In Fig. 7 (III)
the disorder of the oxide at the atomic scale is visible in the
calculated current density.

Due to the dominance of the localized conduction channel
in junction (I), we see a large weighting near zero in the
histogram as many points in the xy plane have close to zero
current density relative to the maximum current density. In
junction (III), the typical insulating barrier, the distribution of
current is comparatively uniform. The histogram for junction
(II) lies between these two extremes where there are some
regions of high current density but most of the cross-sectional
area conducts only a small proportion of the current.

V. CONCLUSIONS

Fine control of the critical current is highly desirable for
creating addressable qubits when fabricating devices contain-
ing tens or hundreds of Josephson junctions. In this work we
study the interplay between the internal structure of the oxide

and its electrical characteristics using a three-dimensional
description of the junction. The material properties of the
oxide layer in the Al−AlOx−Al junction are found to affect
the calculated resistance-area product. We observe the expo-
nential dependence between the thickness of the oxide barrier
and the junction resistance as expected. Additionally we find
that the junction resistance is exponentially dependent on the
oxide density. The junction resistance also changes with the
stoichiometry of the barrier with conduction in highly substoi-
chiometric structures being dominated by metallic conduction
channels. These local variations in current are of smaller
length scales than those typically discussed in previous work.

To study how the electronic characteristics change due to
local atomic structure we calculate the charge density and cur-
rent density. In highly oxygen deficient structures conduction
is dominated by metallic channels. However, even with more
oxygen present, particular paths through the oxide contribute
more to the current flow. This nonuniformity of the current
distribution has important consequences for the influence
of charged defects within the amorphous structure. Defects
near dominant conduction paths are more likely to couple
strongly to the current, contributing to the noise in the critical
current IC .

Despite their widespread usage, Al−AlOx−Al junctions
suffer universally from noise caused by two-level systems
whose exact physical origin is an ongoing topic of interest
[48]. Magnetic surface spins [49], delocalized atoms [50,51],
and many other models have been proposed to explain the
observed noise [52]. Understanding the physical origin of
two-level defects and their impact on the electrical properties
of junctions is key in achieving improvements and consistency
in fabrication. The present work provides a framework for a
better understanding of how the performance of a junction in
a circuit relates to its atomic structure.

We have developed a computational approach for deter-
mining the electrical characteristics of Al−AlOx−Al junc-
tion models based on their atomistic structure. Using this
technique allows us to study the role of junction morphology
and composition in determining junction performance. An
understanding of the exponential dependence of the junction
resistance on barrier thickness and oxide density can be
reached using relatively simple models. However, the relation-
ship between the atomic structure and flow of current through
the junction can only be fully understood with a complete
three-dimensional treatment of the problem. A future appli-
cation of the techniques developed in this work may be to
consider transport in parallel through many junction models
with varying thicknesses and densities. Developing compu-
tational modeling tools for atomistic simulation of electronic
devices at the nanoscale will prove invaluable in optimizing
their fabrication, leading to more reliable and reproducible
nanoelectronics.
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APPENDIX: NOTES ON NUMERICAL APPROXIMATIONS

1. Truncation of the Coulombic potential

In order to calculate the electrostatic potential V (x, y, z)
inside the junction structures we use the Ewald summation
method. This is a standard method for computing the elec-
trostatic energy of a particular configuration of charges in
a periodic system [53]. We implement a version of Ewald
summation in which a modified version of the short range real
space interaction is used. This is necessary because the finite
difference approach used in our NEGF calculations becomes
a poor approximation when confronted with the divergences
arising from the Coulombic potential close to a charged parti-
cle. To account for this we replace the Coulombic potential for
short-range interactions with a potential of a Gaussian form.
The junction potential is calculated on an evenly spaced three-
dimensional grid using the coordinates and charges obtained
from the molecular dynamics calculation.

We define a radius rc inside which the Gaussian-like de-
scription of the potential will be used and write down the
function h(r) which combines the Coulombic and Gaussian
components:

h(r) =
{

1
rc

exp
[

1
2 − r2

2rc
2

] |r| < rc
1
r otherwise.

(A1)

FIG. 9. The three-dimensional transmission function calculated for rc = 1.0, 1.1, and 1.2 Å. Smoothing spline fits calculated with
MATLAB are also shown. The residuals show the behavior of the transmission function becoming smoother as the radius rc is decreased.
A value of rc = 1.2 Å was found to produce a smooth and continuous transmission function.
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The different potential profiles are shown in Fig. 8, where
the red points indicate the potential used in our calculations.
The energy scale is characteristic of the atomic sites in a our
calculations where the magnitude of the potential of the order
of tens of electron-volts. As we are interested in energies
close to the Fermi energy μ0 (∼1 eV), the application of
the truncation still allows for the atomic structure inside the
junction models to be reflected in the calculated electronic
properties. By using the Gaussian-like potential to describe
the short-range interactions we ensure that the potential varies
smoothly throughout the junction structure and avoid the
numerical instabilities of the Coulombic divergences.

2. Finite difference order

To choose an appropriate value for rc the transmission
was calculated in three dimensions for a range of radii using
both three- and five-point finite difference approximations.
The transmission is plotted in the left-hand panels of Fig. 9
for values of rc = 1.0, 1.1, and 1.2 Å along with smoothing
splines fitted with MATLAB. On the right-hand side the resid-
uals are plotted showing the difference between the calculated
transmission and the fitted spline. As the radial truncation
increases the Coulombic divergences are smoothed out, which
in turns affects the stability of the calculated transmission. The
behavior of the residuals is more dependent on the value of rc

than the order of the finite difference approximation.

FIG. 10. The variance of the residuals r in Fig. 9 is plotted as
a function of the truncation radius rc for three- and five-point finite
difference approximations.

To obtain a single metric for the smoothness of the trans-
mission calculation we calculate the variance of the residuals.
Figure 10 shows the decrease in the variance of the calculated
residuals var(r) as rc increases and also highlights that the
choice of rc affects numerical accuracy more than changing
the finite difference approximation. With the view to include
as much of the physics around the atomic sites as possible we
use a value of rc = 1.2 Å for the rest of the work.
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