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The magnetic properties of a material are determined by a subtle balance between the various
interactions at play, a fact that makes the design of new magnets a daunting task. High-throughput
electronic structure theory may help to explore the vast chemical space available and offers a design
tool to the experimental synthesis. This method efficiently predicts the elementary magnetic prop-
erties of a compound and its thermodynamical stability, but it is blind to information concerning the
magnetic critical temperature. Here we introduce a range of machine-learning models to predict the
Curie temperature, Tc, of ferromagnets. The models are constructed by using experimental data
for about 2,500 known magnets and consider the chemical composition of a compound as the only
feature determining Tc. Thus, we are able to establish a one-to-one relation between the chemical
composition and the critical temperature. We show that the best model can predict Tc’s with an
accuracy of about 50 K. Most importantly our model is able to extrapolate the predictions to regions
of the chemical space, where only a little fraction of the data was considered for training. This is
demonstrated by tracing the Tc of binary intermetallic alloys along their composition space and for

the Al-Co-Fe ternary system.

I. INTRODUCTION

Magnets [1, 2], compounds in which the atomic spins
arrange themselves yielding a macroscopic order, are
known since antiquity, but still represent a fascinating
class of materials. In these, the interplay between the
local Hund’s coupling, the exchange interaction and the
magneto-crystalline anisotropy, is able to generate a mul-
titude of ground states, which may differ both at the
microscopic and macroscopic level. Often the particular
magnetic configuration of a material is the result of a sub-
tle balance between the interactions at play, so that the
prediction of the magnetic state based solely on chemical
and structural information is a delicate exercise. Prob-
ably the largest subset of magnetic compounds is popu-
lated by ferromagnets, where the atomic spins align along
the same direction. Regardless of the specific magnetic
phase, a magnet loses its collective order at the critical
temperature that, in the case of a ferromagnet, is known
as the Curie temperature, Tc. This means that at and
above T a ferromagnet ceases to be magnetic.

When a magnet is then employed in a given technology,
for instance in energy production and transformation or
in data storage, its T¢ must significantly exceed room
temperature. This means that typically a magnet will be
considered as ‘useful’, if its Curie temperature is around
600 K. Unfortunately, not many magnetic compounds
reach such value. In Fig. 1 we present the distribution
of the measured T¢’s of about 2,500 known ferromagnets
(see later for details). The median of the distribution is
227 K, meaning that the vast majority of ferromagnets
known to date are actually paramagnetic at room tem-
perature. Furthermore, it is clear that the number of
compounds satisfying the T > 600 K criterion is only
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a small fraction of the total, suggesting that finding new
‘useful’ ferromagnets is indeed a rare event and welcome
news.
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FIG. 1. Histogram of the Tc¢’s of about 2,000 known ferro-
magnets. The median value of the distribution is 227 K. The
insert shows the relative elemental abundance, in logarithmic
scale, for the ferromagnets included in the dataset (the log-
arithm of the number of compounds containing a particular
element). The most frequent magnetic element is Co followed
by Fe and Gd.

Figure 1 also presents the relative elemental abundance
for the ferromagnets included in the dataset, namely for
every element the number of compounds that contain
that given element. As expected the vast majority of the
ferromagnets contains at least one of the 3d magnetic
transition metals, Fe, Co, Ni and Mn, with Al being the
most frequent of the non-magnetic ions. However, it is
interesting to note that, with the only exception of noble
gases and highly radioactive elements, magnets can be
made by incorporating essentially any ion in the periodic
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table. This gives us a potentially very large chemical
space to explore when designing new magnets.

In the last few years there have been a few attempts
at systematically predicting the existence of new magnets
ahead of experiments. These study are typically based
on high-throughput numerical explorations [3], where the
electronic structure of hypothetical compounds is com-
puted at the level of density functional theory. The con-
struction of the prototypes to calculate usually proceeds
by substituting elements in known phases [4, 5], or by
exploring the entire chemical space compatible with a
given crystal structure [6]. In both cases one can ex-
tract some elementary magnetic properties of the pro-
totypes (magnetic moment per cell, density of states,
magneto-crystalline anisotropy, etc.) and possibly assess
their thermodynamical stability, namely one can forecast
if a given prototype can be made and what its magnetic
properties would be.

However, little information about T¢ can be extracted,
unless the specific class of compounds investigated satis-
fies some simple empirical rules. For example the Curie
temperature of Heusler alloys of composition Co XY,
with X and Y being either a transition metal or a main
group element, follows a Slater-Pauling curve [7], while
Mn-containing magnets can be arranged along the phe-
nomenological Castelliz-Kanomata curves [8, 9]. In the
absence of such empirical rules the search for new com-
pounds remains blind to T¢. This is a rather severe de-
ficiency, since the calculations cannot distinguish from
the outset which regions of the chemical space may yield
high-T magnets. As a consequence most of the discov-
ery computational effort is usually spent for materials
with little technological potential.

Note that the prediction of T¢ by first-principle meth-
ods is not an easy task either. The most common strategy
consists in mapping electronic structure calculations onto
some effective Hamiltonian, most typically the Heisen-
berg model, which is then used to extract Tc via Monte
Carlo techniques. This is a valid approach only if the rele-
vant part of the magnetic excitation spectrum has a spin-
wave nature, which is not universally guaranteed. As
such the same method applied to different materials may
result in predictions of T¢’s with a very different level of
agreement to experiments [10]. Certainly, the computa-
tion of the entire magnetic excitation spectrum with den-
sity functional theory is possible [11], but the computa-
tional overheads are significant. Furthermore, also in this
case uncertainty and errors arise from the choice of the
exchange and correlation functional and from the other
approximations taken. Overall, first-principle methods
are very valuable for understanding the origin of a par-
ticular T, but they are currently not fit to be used as
a prediction tool ahead of experiments. For all these
reasons it would be desirable to construct a universal
predictor for T based solely on chemical information.

The present work responds to this demand. We intro-
duce a range of machine-learning (ML) models, uniquely
based on known experimental data for about 2,500 ferro-

magnets, which can predict the Curie temperature using
only chemical information. Machine learning is rapidly
becoming a valuable tool in physics and materials science
and it has been used already for a relatively wide range
of problems. These go from the accelerated discovery
of new materials [12, 13], to the estimation of materi-
als physical quantities [14, 15], to the definition of novel
density functionals [16, 17]. Here we use ML to unveil
patterns in the chemical-to-T¢ relation, and use these
patterns as predictors for the T¢ of new materials. Our
approach is in the same spirit of that used by Stanev
and co-workers [18] to sort superconductors according to
their critical temperature.

Our paper is structured as follows. Firstly, we intro-
duce the computational methods used. In particular we
discuss extensively the issues of representing the chemical
composition of a given compound, of creating and pro-
cessing the dataset, and of training and choosing the most
appropriate and best performing ML model. We then
discuss the performance of the various models against
our dataset and show their ability to extrapolate in re-
gions of data, where little information were available dur-
ing the model training. These, for instance, include the
prediction of T along the composition space of differ-
ent transition-metal binary systems and for the Al-Co-
Fe ternary one. Finally we outline some possible ways to
include information about the materials structure in the
ML model and its effect on the overall accuracy.

II. METHODS

A. Definition of the feature vectors

The goal of supervised ML is to estimate a function,
f, that maps a feature vector, x, to a target variable,
y, namely to find the function f : x — y that better
interpolates a set of available data (note that the target
variable does not need to be a scalar quantity). In our
case the feature vector contains information concerning
a given compound, while the target variable is T¢. Al-
though there are no rigorous stringent rules on how to
construct the feature vector, ultimately the success of
any ML strategy resides on the ability to define the most
relevant features correlating to a given property. When
the ML strategy is applied to materials science a number
of desirable conditions defining the feature vector emerge
naturally [14, 19-22]. In particular it was proposed that
the feature vector

1. should be computationally inexpensive to create.

2. should be continuous, reflecting the fact that the
properties of a material vary continuously.

3. should be independent of both the choice of unit
cell and of the number of atoms in the unit cell (for
periodic solids).



4. should be able to distinguish different materials
with different properties, namely different com-
pounds with different T should have different fea-
ture vectors.

We begin by defining feature vectors that do not include
any structural information of compounds, but are con-
structed to satisfy the first three conditions. Clearly the
last one will be automatically violated, since polymorphs
of a given chemical composition presenting different T¢’s
will be described by identical feature vectors. In particu-
lar our goal is for the feature vectors to capture the chem-
ical composition of a given compound, namely its chem-
ical formula. We can then divide the features defining
a given compound into three categories: features which
only take elemental properties into account (e.g. the
atomic number), features which take only the compound
stoichiometry into account, and features which take both
into account.

Notably features belonging to the first category can be
found to violate the second criterion and, for this reason,
they have been excluded. Take as an example the max-
imum atomic number, Z™** of a given compound [23]
and consider the binary alloy A;_,B,, with Zg > Za as
an example. At z = 0 a feature vector containing this
component will be discontinuous as the Euclidean dis-
tance between A1 and any A;_,B, will always be greater
than | Z — Zp| and will not go to zero smoothly as x goes
to zero. In order to avoid this shortcoming we need to
consider features that, either explicitly or implicitly, pre-
serve information related to the atomic fractions of the
various elements in a compound, and exclude those that
just relate to the elemental properties. As such, features
like the number of different elements in the compound
(2 for binaries, 3 for ternaries, etc.) or the maximum
atomic number are ruled out. In contrast a feature like
the mode of the atomic number [24] is acceptable, since
it encodes information about the atomic fractions.

Possible features created solely from the stoichiometry
of a compound include the L? stoichiometry norm [23]
and the stoichiometry entropy. The first one is gener-
ally defined as ||z||, = (3, |#:|P)*/P, while the second is
S = =3, x;log(z;), where x; is the atomic fraction of
the i-th element. Features based on the product of the
atomic fractions or on the number of different elements
in the compound are ruled out by the second principle,
using arguments similar to the one given above. In any
case, one has still to establish whether stoichiometry-only
features are informative enough for predicting most quan-
tities.

Finally there are generally two ways to define features
that take both elemental properties and stoichiometry
into account. One possibility is to associate to each com-
pound a high-dimension vector defined as

(1)

the atomic {fraction of element «a.
Fe3O4 is represented as the vector

Vchem = {xHaxHeathxBea }

where x, 1is
For instance,

(...,0,4/7,0,...,0,3/7,0...), with 4/7 assigned at the
eighth position (oxygen) and 3/7 to the 26th one (iron).
The advantage of vipem is that it uniquely represents
a chemical formula, and its disadvantage that the vec-
tors tend to be very sparse and high dimensional, hence
difficult to train. A second option was suggested by
Ward et al. [23] and consists in using composition-
weighted elemental-properties. An example of these
is the composition-weighted atomic number, defined as
(Z) =", Ziz;, with Z; and z; being the atomic number
and the atomic fraction of the element i. In the case of
Fe304 thisis 8(4/7)+26(3/7) = 15.71. Similar quantities
can be constructed with analogous definitions. Further-
more, for any elemental quantity ) one can also define
a composition-weighted mode (|@|), which takes the @
value of the element with the highest atomic fraction in
the compound and an average in the case of multiple
modes, and a composition-weighted absolute deviation
(AQ) = >, |Qi — (@)|x;. Table I summarises the fea-
tures used in this work.

Features Symbol Dim.
L? stoichiometry norm (p = 1,2, 3) [lz||p 3
Stoichiometry entropy S 1
Atomic fraction vector Vchem 84
CW atomic number (Z), (|Z]), (AZ) 3
CW valence electrons (Nv), {(INv]), (ANv)| 3
CW period (P), {|P), (AP) 3
CW group (@), (IG]), (AG) | 3
CW molar volume ), (IV]), (AV) 3
CW melting T <TM>, <|TM|>, (ATM> 3
CW electronegativity (€), (le]), (Ae) 3

TABLE I. The full list of features used in this work. In the
last column we report the dimension of any given feature. The
atomic fraction vector has dimension 84, as not all elements in
the periodic table can be found in the ferromagnets included
in our database (e.g. He, Ar, etc.). In total our feature vector
has a dimension of 129. Here “CW?” denotes “composition-
weighted”. The numerical values of the elemental properties
are taken from Ref. [25].

B. Machine-learning models training

In an ideal situation, where there is abundance of
data, the training of ML models proceeds by splitting the
dataset into three mutually exclusive partitions, a train-
ing set, a validation set and a test set [26]. The training
set is used to train the model. Most ML models are de-
fined by one or more parameters, called hyperparameters,
which cannot be learnt from the data and thus need to be
specified from the outset. The validation set is then used
for determining the best hyperparameters of any given
model and for choosing the best overall model. Finally,
the test set is used for estimating the generalization er-
ror of the model, namely for assessing how well the given
model performs on never-seen-before data. However, in
situations where the datasets are small, splitting the data




into three sets makes each one of them too small, dimin-
ishing the overall ability of the model to learn and hence
its accuracy. Therefore, in this case the training and the
validation sets are combined into a single set, which we
will refer to henceforth as the training set. Then K-fold
cross-validation is used to determine the hyperparame-
ters and to select the best model. Here the training set
is split into K subsets (in this work K was chosen to be
K = 3). For each given set the model is trained over
the other K — 1 sets and tested over the remaining one,
the cross-validation error is the average of all the errors.
Then the best model, namely the model with the lowest
cross-validation error, is trained over the entire training
set. Finally, the test set is used to estimate the accuracy
of the chosen model.

In order to quantify the model’s performance we have
used the coefficient of determination, R?. Given a set of
target variables {y'}, with mean p and predicted values
{f(x")}, R? is given by

T SR
B=l-—a

A perfect predictor of the target variables would always
score R? =1 on any set [f(x?) = y* for Vi].

(2)

C. Construction of the dataset

The dataset of experimental T has been constructed
by aggregating the following sources: the AtomWork
database [27], Springer Materials [28], the Handbook of
Magnetic Materials [29] and the book Magnetism and
Magnetic Materials [1]. A few additional values have
been taken from the references [30-32]. For a number
of compounds the various databases report multiple val-
ues of T, and there are also compounds where the same
database returns a range of T¢’s for the same ferromag-
net. Notably in the vast majority of cases the spread of
Tc¢’s about the mean is rather small, so that the choice
of a particular value is irrelevant. In particular, for 79%
of the compounds associated to multiple T’s the differ-
ence between the maximum and minimum value is less
than 50 K. However, there is also a number of compounds
presenting a much larger range of reported critical tem-
peratures, namely for 4.9% of the multiple-T¢ data the
difference between the maximum and minimum 7¢ value
is greater than 300 K.

There are several reason for these occurrences. In some
compounds magnetism is subtly related to the quality
of the sample, so that experiments performed by differ-
ent groups may report different T-. This is particularly
relevant, since the various data sources contain T¢’s ex-
tracted over different periods of time, so that the spread
of data sometime reflects the improvements in crystal
growth over time. A second reason is related to polymor-
phism, namely to the existence of compounds with the
same stoichiometry but different crystal structure, and

hence different 7. Finally, there are several transition-
metal /rare-earth intermetallic magnets for which mul-
tiple Tc are reported. For instance the two values of
186 K [33] and 641 K [34] have been both reported for
SmyNij7.  Such large discrepancy has been attributed
to the presence of possible secondary phases [34]. Since
we are aiming at constructing ML models that use only
chemical information to define compounds, our feature
vector can not include any attribute related to sample
quality or polymorphism. As such, in the presence of
multiple Tx’s we have to establish a criterion to select a
single value for any stoichiometry. In this work we have
used the median of the distribution instead of the mean
or the maximum value as this is more resistant to outliers.
For instance, if for a given compound the reported T¢’s
are 300 K, 305 K and 700 K, their mean is 435 K while
their median is 305 K. The first one is not associated to
any real measurement while the second is.

In preparing our dataset we have carefully checked that
there is enough diversity in the entries. Consider the fol-
lowing thought experiment. Suppose that for every en-
try in our database there are also many similar entries,
namely there are several compounds with similar stoi-
chiometry (feature vector) and similar T¢. This may be,
for instance, the case of a binary alloy A,Bi_,, where
many data are available in a narrow range of composi-
tions. For a dataset of such homogeneous composition
it is likely that almost any ML model will perform well.
However, the same model will be unlikely to perform well
for compounds significantly different to the ones found in
the training set, namely the model will have little ability
to generalize to a broader composition range. This is,
of course, an unwanted feature. Our strategy to curate
the database is then the following. Firstly, we standard-
ise the chemical formula notation, by replacing fractional
stoichiometry with integer one (e.g. Cug 5Nip.5 becomes
CuNi = Cu;Niy), and by simplify the stoichiometry when
possible (eg Ni75A125 becomes N13A1 = N13A11) At
this point we check for duplicates and, if these result in
multiple T¢’s for the same stoichiometry we take the me-
dian value. Next the dataset is ordered according to the
number of atoms in the chemical formula and we com-
pute the L'-norm of the atomic fraction vector, Vehem,
between all the entries in the database. If the distance
between two entries is less than 0.01 we remove the com-
pound with the larger number of atoms in its chemical
formula. The rational for doing this reflects our intuition
that Fe;Sns and FegSny, with a distance of 0.019, should
be considered as two different compounds, while CosThq
and Cos.1Tby, with a distance of 0.005, are essentially
the same compound. In this last case we keep only the
simpler Co;Th;.

Finally our data needs to enable the ML models to dis-
tinguish between magnetic and non-magnetic materials.
This is not an issue if our only goal is that of describ-
ing the T of known ferromagnets, but it becomes one
when the ML model is used as T¢ predictor for unknown,
hypothetical, compounds. As constructed, our data dis-



tribution, pgata, only includes ferromagnets, so that a
ML model will not be able to learn from pga.t. about
stoichiometries having T¢ = 0. A possible way out, as
suggested by Stanev et al. [18], is that of first training
a classifier to predict whether or not a given compound
has a T greater than some critical value, Teyitical- If one
sets Teritical relatively low, the classifier will distinguish
between magnetic compounds and magnetic only at very
low temperature. Here, however, we take a somewhat
more straightforward approach and we simply include in
our dataset some non-magnetic materials. In particular
we include the elemental phases of all the non-magnetic
elements of the periodic table. This procedure effectively
provides to the ML model some information about non-
ferromagnets and hopefully it makes it more robust when
making new predictions.

After the data processing described above our train-
ing set contains 1,866 entries, while the test set has 767.
About 3% of the compounds are unaries, including the
non-ferromagnetic ones. The ferromagnetic elemental
phases are: Co (T¢ = 1380 K), Fe (1040 K), Ni (630 K),
Gd (290 K), Tb (220 K), Dy (85 K), Nd (30 K), Tm
(30 K), Er (20 K), Ho (20 K) and Pr (8.7 K). Binaries
and ternaries make up 31% and 49% of the dataset re-
spectively with the rest of the dataset having more than
3 distinct elements.

III. RESULTS
A. Machine-learning model performance

In the construction of the ML models we compare four
different algorithms, namely Ridge Regression (Ridge),
Neural Network (NN), Kernel Ridge Regression (KRR)
and Random Forests (RF). The NN is implemented em-
ploying Keras [35], while for the rest we use Scikit-Learn
[36]. For both Ridge and KRR the cross-validation set is
used to determine the optimum regularization parameter.
In contrast the dropout rate is the hyper-parameter used
for the NN, while the maximum depth of the tree is that
for RF. The accuracy of many algorithms can be some-
times improved by reducing the dimension of the feature
space. This is particularly true when there is correlation
between the various features and for ML algorithms af-
fected by the curse of dimensionality [37]. For a feature
vector of dimension p, one can construct 2P possible sub-
sets of the features, which in our case translates in ~ 1039
subsets [38]. It is, therefore, infeasible to perform an ex-
haustive search for the best performing subset. Instead,
we have decided to use two different methods of feature-
dimension reduction, namely Correlation (C) and Princi-
ple Component Analysis (PCA), and used such methods
together with all the chosen ML algorithms. Correla-
tion ranks the features according to the absolute value
of the Pearson correlation coefficient, which is defined as
cp = cov(z,y)/og0y, with cov(z,y) being the (x,y) co-
variance and o the standard deviation. In our case y is

the T and z corresponds to each feature. In contrast,
the PCA projects the feature space into a lower dimen-
sional one, while trying to preserve as much data variance
as possible [39].

The results of the 3-fold cross validation score for the
different algorithms operated together with different fea-
ture reduction techniques are shown in Table II. In gen-

R® |All C10 C20 C40 C80 P10 P20 P40 P80
Ridge[0.53 0.48 0.5 0.52 0.52 0.24 0.27 0.31 0.39
KRR [0.69 0.72 0.72 0.72 0.69 0.69 0.72 0.70 0.68
NN [0.76 0.72 0.76 0.77 0.78 0.73 0.77 0.77 0.77
RF |0.81 0.76 0.77 0.78 0.79 0.72 0.74 0.73 0.72

TABLE II. 3-fold cross-validation R? score of all the algo-
rithms chosen combined with the various feature reduction
techniques. “All” indicates the case where no feature reduc-
tion is applied. “C” means Correlation feature reduction and
“P” is for PCA. The number beside the type of feature re-
duction scheme indicates the size of the reduced feature space.
Thus, for example, P40 means that PCA has generated a 40-
dimensional feature space.

eral we find that the performance of the different algo-
rithms ranks them in the following order Ridge, KRR,
NN and RF. Dimensionality reduction does not seem to
significantly improve the R? and in fact, with the only
exception of the Correlation scheme applied to KRR and
NN, it appears always better to run the ML algorithm
over the full feature space. Overall Random Forests using
the entire set of features performs the best on the cross-
validation sets and, therefore, it is chosen as the final
model. RF achieves a cross-validation R? of 0.81 and a
test one of 0.87, demonstrating that the cross-validation
score is a good estimate of the test error.

In Fig. 2 we present our best result for the RF algo-
rithm. Here we plot the predicted T¢’s against the ex-
perimental ones for all the ferromagnets contained in the
test set. In addition we present a distribution of the ab-
solute errors and one for the relative error of compounds
presenting T > 300 K. In general we find that our ML
model can predict relatively well the experimental T, in
particular for Curie temperatures exceeding 300 K. This
is important since in this range one finds the magnets
useful for room-temperature applications. The mean ab-
solute error over the entire distribution is 57 K. Such
a value gives us confidence that the ML model can dis-
tinguish between high-T¢ ferromagnets and low-T¢ ones,
namely it allows us to identify the potential of an hypo-
thetical chemical composition against ferromagnetism.

The distribution of the T absolute errors for our best
ML model is exponential with decay coefficient, A, of
0.018. From the distribution one can learn that an
1 — e~ fraction of the data are with x K of the ex-
perimental data. For example 59 % of the predicted T¢’s
are within 50 K from the measured ones, and 83 % are
within 100 K. Large absolute errors are found only for
compounds presenting a rather small T, which are erro-
neously predicted to be robust ferromagnets. A more de-
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FIG. 2. RF model for the Tc of ferromagnets. In the left-
hand side panel we compare the experimental and predicted
Tc for the test set. The R? coefficient of the model is 0.87 and
the mean absolute value is 57 K. The upper left panel shows
the distribution of absolute errors, |T&® — TE4¢| while the
lower one displays the distribution of the relative errors for
compounds with T¢c > 300 K. The orange lines indicate the
best fit respectively to an exponential and a Gaussian distri-
bution.

tailed understanding of the performance of our ML model
can be obtained by looking at the distribution of the rel-
ative error, defined as (TS — TH™V) /TSP, where TS

and Tgredlc are respectively the average experimental Tq
and the predicted one. In this case we present data only
for compounds with T¢ exceeding 300 K (right-hand side
panel of Fig. 2). There are two main reasons behind such
choice. On the one hand, these are the compounds poten-
tially useful for room-temperature applications. On the
other hand, for ferromagnets presenting low measured
Tc, relative small absolute errors may result in rather
large relative ones. In this case the distribution appears
symmetric around zero, indicating that our ML model
has no systematic bias towards either overestimating or
underestimating Tc. The shape of the distribution is
Gaussian-type with a half-height width of 0.51. We find
that only 5 % of the compounds present a relative error
larger than 50 %, and only 15 % have errors larger than
25 %.

Finally we take a look at whether or not our ML model
tends to systematically fail for some particular chemical
compositions. Again we analyse data only for compounds
with T > 300 K. In Table III we present the elemental
abundance, fj3;, of the most relevant magnetic transi-
tion metals, M, among compounds presenting a relative
error beyond a give threshold, a. For instance, in the
cell corresponding to f3? and Cr we show the relative
abundance of the Cr element among the compounds pre-
senting a predicted T¢ with a relative error larger than
50 %, fE0. The abundance is calculated as the total num-

ber of compounds presenting a given element divided by
the total number of compounds. Note that the elemental
abundances do not necessarily sum up to unity, since a
compound may contain more than one transition metal.

Element|f3; fi7 fip far fu fir fu
Cr 0.0 0.01 0.02 0.02 0.04 0.05 0.05
Mn 0.02 0.04 0.08 0.09 0.12 0.14 0.15
Fe 0.03 0.07 0.13 0.24 0.38 0.56 0.74
Co 0.01 0.02 0.03 0.06 0.11 0.17 0.21
Ni 0.01 0.02 0.02 0.03 0.04 0.05 0.05
Total ~ {0.05 0.13 0.21 0.36 0.56 0.79 1.0

TABLE III. Elemental abundance, f3;, of the most relevant
magnetic transition metals, M, among compounds presenting
a relative error beyond a give threshold, « (in %). The last
row, labelled as ‘total’, lists the fraction of compounds with
errors exceeding « (e.g. 0.13 of the compounds have a pre-
dicted Tc with error exceeding 30%). The last column (error
0 %) shows the elemental abundance over the entire set.

In general, as expected, we find that the elemental
abundance grows as the error on the predicted T gets
smaller. Such dependence is rather flat for Cr, Mn and
Ni, mostly because a relatively limited number of com-
pounds containing these three transition metals are found
ferromagnetic above 300 K. The distribution of errors
is thus dominated by Fe-containing, and partially Co-
containing, ferromagnets, which are calculated with an
accuracy comparable to that of the total set. We can
then conclude that our best ML model is well balanced
across chemical composition and does not favour any par-
ticular region of the chemical space.

B. Ability of the model to extrapolate

Next we demonstrate the ability of our model to ex-
trapolate to regions of the chemical space where only a
few data points were present in the training set. Our
first example consists in predicting the T¢ as a function
of composition for three binary systems. In particular
we consider Co-Mn, Fe-Ni and Ni-Rh for concentration
ranges where the alloys remain ferromagnetic. Our re-
sults are presented in Fig. 3, where we show the pre-
diction of our ML model against available experimental
data. In particular we distinguish between the data in-
cluded in the training set (black crosses) and those that
they were not (green dots). Using the Random Forest al-
gorithm we can measure the models uncertainty by look-
ing at the distribution of the predictions of the individual
trees. In practice, we measure the uncertainty by group-
ing the trees into subsets of five trees each, averaging over
these subsets and then using the minimum and maximum
average as our uncertainty boundaries. In the test set
82 % of the experimental values were within 50 K of the
confidence interval. In the figure for every composition
we present the average predicted T¢ (blue line) and also



the confidence interval of the random forest algorithm
(light-blue shadow).
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FIG. 3. T¢ prediction as a function of composition for three
binary transition-metal systems, namely Co-Mn, Fe-Ni and
Ni-Rh. Data are presented as a function of the atomic frac-
tion of one of the two species. The blue line traces the ML
prediction, black crosses (green dots) are experimental points
included (not included) in the training set. The experimen-
tal results are taken from references [40-42]. The light-blue
shadowed area corresponds to the range of predicted T¢’s of
subsets of the trees, namely it indicates the uncertainty of the
ML model. In the middle panel the red dots correspond to
the T¢ associated to the FeNis intermetallic phase, while the
green ones correspond to random Ni-Fe alloys.

Manganese and cobalt can form disordered alloys with
a few possible crystal structures across the entire com-
position range [43]. The magnetic phase diagram was
determined sometime ago [40] and comprises both fer-
romagnetic and antiferromagnetic orders. In particular
when the Co atomic fraction is larger than about 0.68 the
alloys are ferromagnetic with a T¢ that monotonically in-
creases as a function of the Co content. In contrast, Mn-
rich alloys are antiferromagnetic with a Néel temperature
that this time monotonically increases as the Mn concen-
tration gets larger. Our ML model predicts well the T
for all the ferromagnetic phases, with a constant minimal
error. For this case only two data points were included
in the training set, namely elemental Co and the end-of-
the-series alloy, CojsMnyz. Intriguingly, the model seems
to be able to predict also the upturn in critical temper-
ature occurring for Co atomic fractions lower than 0.68,
although these correspond to antiferromagnetic phases.
It is worth noting that the spread of values returned by
the RF algorithm is certainly larger for these Mn-rich
phases.

The Ni-Fe system presents a different level of complex-
ity, with the ferromagnetic order being present over the
entire composition range [41]. In the region of tempera-
tures relevant for T¢ the Fe-rich phases (for a Fe atomic
fraction down to 0.65) are characterized by Ni-doped bcc

iron with a T¢ that grows monotonically as a function
of the Fe fraction. In contrast, when the Fe atomic frac-
tion is reduced below 0.65 the relevant phase is an fcc
random alloy, which can be stabilized up to bulk Ni. In
this case the T¢ is non-monotonic, it increases with the
Ni atomic fraction up to 0.70 (the maximum 7¢ is about
870 K for FegoNizg) and then it decreases down to the
Tc of bulk Ni. Furthermore, there is also an ordered
intermetallic FeNis ferromagnetic phase, which persists
over a relatively narrow composition range. This means
that in Fe;_,Ni, at  ~ 0.75 there are two ferromag-
netic phases with different T¢’s. Also in this case our
ML model performs rather well. This time seven experi-
mental data points were included in the training set, two
for the elemental Ni and Fe and five across the Fe;_,Ni,
alloys. In particular the composition corresponding to
the maximum at the intermetallic FeNiz phase was in-
cluded. Our ML model interpolates well between these
points, in particular in the Ni-rich part of the composi-
tion diagram. As expected from the fact that structural
information are not included in the model, we are not
able to distinguish the different T’s associated to differ-
ent structures.

Finally, we look at the Ni-Rh binary system, an alloy
where only one of the two elements is magnetic. As with
several other elements of the Pt group, Rh is highly sol-
uble in Ni and random alloys can be formed over almost
the entire composition range. Here the T¢ monotonically
decreases from that of bulk Ni as Rh is added to the al-
loy. This continues up to a critical composition, found
for a Ni atomic fraction of around 63%, where the ferro-
magnetism disappears completely [44]. Our ML model is
fully capable of describing such behaviour. In particular
the ML model successfully predicts the critical concentra-
tion for the suppression of ferromagnetism at a Ni atomic
fraction lower then 0.7. This is a rather compelling re-
sult.

As a second example of the ability of our ML model to
extrapolate to unexplored regions of the chemical space
we present the T diagram of the ternary system Al-
Co-Fe. In Fig. 4 we show the T¢ across the ternary
composition space as a colour-coded heat map and that
across the three possible binary systems as a standard
graph, similar to those of Fig. 3. Also in this case for
the binary systems we represent the data included in the
training set as black crosses and those outside the train-
ing set as solid dots. The same convention is adopted
for phases in the middle of the ternary diagram, where
now the data included in the training set are solid square.
Note that this ternary system includes three stoichiomet-
ric magnetic phases, namely CoyFeAl [46], FeaCoAl [47]
and FezAl [48]. Furthermore, magnetic solid state solu-
tions can be stabilized over a rather large composition
space.

As for the other binary systems investigated (see
Fig. 3) our machine learning model appears well able to
describe the main features of the three relevant binary
alloys, namely Al-Co, Al-Fe and Co-Fe. This is despite
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FIG. 4. Tc prediction as a function of composition for the ternary system Al-Co-Fe. Data are presented as a function of the
atomic fraction of the three species and the T¢ is expressed as a heat map. The figure also introduces a detailed analysis of the
three relevant binary phase diagrams, where the blue line traces the ML prediction, black crosses (green dots) are experimental
points included (not included) in the training set. The light-blue shadowed area in the binary plots corresponds to the range
of predicted T¢’s, namely it indicates the uncertainty of the ML model. The solid square (circles) included in the ternary Tc
diagram are for experimental data included (not included) in the training set, with the colour code describing the Tc. Numbers
correspond to three known stoichiometric phases: 1) CogFeAl, Tc = 1,000 K, 2) Fe2CoAl, Tc > 873 K, 3) FezAl, Tc = 573 K.

The plot was partially made using python-ternary [45].

the fact that only a rather limited number of compounds
across the various phase diagrams were included in our
training set. For instance, the model is capable of de-
scribing the critical Al concentration for the appearance
of ferromagnetism in Al-Co [49], which has been mea-
sured to be at an Al atomic fraction of about 50%. In
this case only the end points of the composition diagram,
namely elemental Co and Al, were present in the train-
ing set, so that the ML model is able to extrapolate such
critical concentration from the learning obtained in other
part of the chemical space.

The case of Al-Fe is relatively more complex. Our ML
model is trained with only three data points from this
binary system, namely the end points and the FezAl sto-
ichiometric phase. The resulting T¢-versus-composition
curve then predicts a monotonic reduction of the Curie
temperature as the Al atomic fraction increases, with a
rather smooth approach to T = 0 for pure Al. Experi-
mental data obtained for rf-sputtered thin films display
a well-disordered bcc phase for Al atomic fractions up to

70%, followed by an amorphous phase between 75% and
85%, and then by an fcc phase for higher Al fractions.
The disordered bcc phases are all ferromagnetic, while
both the amorphous and the fcc ones are paramagnetic
down to 4.2 K [50]. Although the precise position of such
phase boundaries seems to depend somewhat on the de-
tails of the growth conditions [51], our ML model appears
also in the case to be able to capture such behaviour.

At variance with the Al-Fe and Al-Co case, the T of
the Co-Fe binary system presents a non-monotonic be-
haviour with composition. As we move from elemental
Co to elemental Fe, first the T¢ decreases with increas-
ing the Fe content, up to a Fe atomic fraction of around
30%. In this case the magnetic transition takes place
within the Co-Fe ~-phase (fcc structure). Then, for Fe
atomic fractions comprised between ~30% and ~80%,
Tc first increases and then decreases, reaching up a max-
imum at around a 50-50 composition. Such behaviour
effectively traces the phase boundary between the v and
the « phases (bcc structure). At the end of the com-



position range, for Fe atomic fractions above 80%, Tg
keeps decreasing down to that of elemental Fe, but the
alloys remain in the a phase, namely the magnetic phase
transition no longer traces the structural phase boundary
[52].

Finally, we take a look at the T¢’s for the ternary
phases, namely in the center of the composition dia-
gram. In this case no experimental information was in-
cluded in the training set. Two ternary stoichiometry
compounds are known for Al-Co-Fe, namely the Heusler
alloys CooFeAl and FeyCoAl. Their Curie temperature
are 1,000 K for CogFeAl [46] and at least 873 K for
FeyCoAl [47] (Tc has not been measured with precision
and only a lower bound is available). Our ML model
predicts respectively 657 K and 580 K, hence it provides
an underestimation of the real T¢’s, although it ranks
the materials in the right order. Additional experimen-
tal data are available across the Al-Co composition (for
an Al atomic fractions not exceeding 30%) and constant
Fe atomic fractions of 30% and 50% [53]. These data are
reported as full circles in Fig. 4 showing the ability of
our ML model to describe the general trend, namely a
decrease in T¢ as the Al atomic fraction increases. Also
in this case some non-monotonicity is found in the exper-
imental data for small Al concentrations, which is asso-
ciated to the fact that for such composition range the T¢
traces the phase boundary between the o and ~ phases.
Our ML model appears to be able to trace such non-
monotonicity.

C. Incorporating structural information in the
feature vector

As constructed, our ML model does not include any
information about the atomic structure of a given com-
pound. For this reason it is unable to distinguish the
Curie temperatures of two polymorphs having the same
chemical composition, a fact that has been discussed in
connection to the Ni-rich part of the Fe-Ni T¢ diagram
(see Fig. 3). We now present an attempt at overcoming
such shortfall by including structural information in our
feature vector. This is not a trivial task.

Several strategies to encode structural information of
materials in a way that satisfies the four criteria intro-
duced in the Method section have been proposed. These
include partial radial distribution functions [54], Voronoi
tessellation [55] and representations learnt by neural net-
works [56]. The issue with including structural informa-
tion is that it massively increases the size of the input
space, thus requiring much more training data to fully
capture the space. This may not be a problem when
data is abundant or can be easily generated, but it be-
comes one when the data is limited, as in our case. In
fact, out of our entire dataset, only 792 entires have an
associated entry in the ICSD database [57]. As such only
this subset of data can be used in a ML model informed
by structural parameters.

We have then constructed four different ML models,
each one of them containing only a limited description
of the structural information of a compound. The first,
denoted as Original + Volume, associates to any com-
pound, in addition to the previous features, the unit cell
volume per atom. The second one replaces the atomic
fraction of each element present in a compound with its
volume fraction, defined as vepem -V, where V' is the vol-
ume per atom of the material. This is denoted as Orig-
inal with V-Frac. The next two models, instead, include
a more detailed representation of the atomic positions.
We have taken inspiration from the work of Schiitt et al.
[54], who introduced structural information in the form
of a radial distribution function,

Neen
fr) = Nieu ; D 0diy = 1)0(r+A=dis) . (3)

Here Ngen is the number of atoms in the unit cell, the
index i runs over all the atoms in the unit cell, while
the index j over all the atoms neighbouring that at ¢ are
within some distance cutoff, §(z) is the Heaviside step
function, d;; is the distance between the atoms 7 and j
and finally A is the interval, a parameter that we must
specify. Note that 6(d;; — r)8(r + A — d;;) is equal to
one if r < d;j; < r + A and vanishes otherwise. In our
case we evaluate f(r) at the points r, = nA, where n
is an integer, and the resulting function is added to the
original feature vector (Original + fmodel).

A second strategy, which tries to incorporate more in-
formation in the radial distribution function consists in
defining an “interaction-resolved radial distribution func-
tion”

Necen
1 ce
fa<r) = Noo Z E 9((1” — T)@(T + A — dij)éa,ij . (4)
=1

Here o represents a type of “interaction” and é,,;; does
not vanish, if the atoms at the positions 7 and j define
that given interaction. In practice, with “TM” meaning a
transition metal atom, “LA” a lanthanide, and “OT” an
atom of other type, we consider six types of interactions:
TM-TM, TM-LA, TM-OT, LA-LA, LA-OT and OT-OT.
Thus, the f,(r) radial distribution function effectively
defines the type-specific neighbourhood of a given atom.
Note that the two distribution functions are related to
each other by the sum rule f(r) =" fa(r). The ratio-
nale behind f, is that the magnetic exchange interaction
is, in general, dependent on the atom type, and deter-
mines the T¢. As such, by containing the f, our feature
vector is expected to have some freedom to learn about
the exchange interaction of a given compound. A similar,
although more complex, representation was used also by
Schiitt et al. [54]. Here we have simplified the description
to keep the dimension of the feature vector relatively low.
This last model is denoted as Original + fap.-

We then use 3-fold cross-validation on the 792-entires
data subset with the Random Forests and KRR algo-
rithm, and the results are shown in Table IV. Note first



that on this reduced data subset the original feature vec-
tor (129-dimensional) is not able to generate ML models
as accurate as before. For instance the R? coefficient of
the RF algorithm is now only 0.75, compared with the
previous value of 0.81. This is expected, since the pool of
data used for the construction of the model now has been
drastically reduced. Unfortunately, we also find that any
additional feature added to the original vector generally
makes the construction of an accurate ML model less suc-
cessful with R? coefficients systematically smaller than
those obtained for the original model regardless of the
specific ML algorithm used. The exception here is when
adding the volume as a feature. However, the improve-
ment is so small that it is doubtful whether this is a
significant result. There are two possible reasons, prob-
ably both at play, behind this result. Firstly, in all cases
the feature vector dimension is larger, while the training
dataset is smaller. Thus the models have now less data
to train but more information to use, effectively jeopar-
dising their ability to learn. Secondly, we have now little
control on the balance of the data, meaning that we may
have a disproportionated amount of information across
the different regions of the chemical space.

Features |RF R’| KRR R?|Dim.
Original 0.75 0.64 102
Original + Volume 0.76 0.64 103
Original with V-Frac| 0.75 0.61 129
Original + f 0.74 0.63 122
Original + fq 0.74 0.64 220

TABLE IV. The 3-fold cross-validation R? score of the vari-
ously defined feature vectors for both Random Forests (RF)
and Kernel Ridge Regression (KRR). Note that here “Orig-
inal” refers to the original set of features. The last column
reports the dimension of the feature vector.
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IV. CONCLUSION

We have here described the construction of a ML model
to predict the Curie temperature of ferromagnets solely
based on their chemical composition. The model has
been entirely trained over available experimental data
and its construction did not involve any electronic struc-
ture calculations. We have considered several ML algo-
rithms and, by using Random Forest we have been able
to generate a model presenting a mean absolute error
of only 57 K over a test set containing 767 compounds.
Interestingly most of the error is associated to magnets
with low T, so that the model is capable to identify
high-T¢ ferromagnets.

We have then made several attempts to include struc-
tural information into the description, but we have never
been able to outperform the models containing chemical
data only. This is likely to be related to the smaller pool
of data to use for the training and to the larger dimen-
sion of our feature space. It is also interesting to note
that ferromagnets, being mostly metallic, are less sensi-
tive than other magnetically ordered compounds to the
structural details. All in all our ML model can be viewed
as a first rough guide to navigate the chemical space of
magnetism, namely as a first step toward a ML-driven
magnetic materials discovery strategy.
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