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Dissolution arrest and stability of armored bubbles
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Dissolving armored bubbles stabilize with nonspherical shapes by jamming the initially Brownian
particles adsorbed on their interfaces. In a gas-saturated solution, these shapes are characterized
by planar facets or folds for decreasing ratios of the particle to bubble radii. We perform numerical
simulations that mimic dissolution, and show that the faceted shape represents a local minimum
of energy during volume reduction. This minimum is marked by the vanishing of the Laplace
overpressure ∆P , which together with the existence of a V -interval where d∆P/dV > 0 guarantees
stability against dissolution. The reduction of ∆P is due to the saddle-shape deformation of most
of the interface which accompanies the reduction in the mean curvature of the interface.
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It is well established that colloidal particles adsorbed
on bubble surfaces can increase bubble [1, 2, 3, 4] and
foam [5, 6] lifetimes by several orders of magnitude in
gas-saturated solutions. This significant increase in sta-
bility has potential applications in fields as diverse as
biomedicine [7], materials science [8], mineral flotation
[9] and food processing [10]. Nevertheless, in spite of
the many reports of long-lived foams and bubbles cov-
ered with particles (armored bubbles), the mechanism of
armored bubble stabilization remains an open question.

In this Letter, we seek to address the issue of sta-
bilization using both experimental and numerical ap-
proaches. We begin by considering the dissolution of a
single component gas bubble in a liquid saturated with
the same gas. The driving force for dissolution is the
pressure difference created inside the bubble due to the
mean curvature, H and the surface tension γ that ex-
ists at the bubble surface. This Laplace pressure differ-
ence, ∆P = 2γH , is positive for bubbles, and thus gas
in the bubble has a higher chemical potential than the
gas dissolved in the liquid. On thermodynamic grounds,
dissolution in saturated solutions can be slowed down if
this overpressure is reduced or even stopped if the over-
pressure is eliminated. Indeed, the modest increase in
bubble lifetimes for surfactant-coated interfaces is due
to the lowering of the gas-liquid surface tension, with
more significant increases in lifetime occurring for bub-
bles covered with gelled monolayers of lipids [11]. How-
ever, unlike molecular surfactants or lipids, colloidal par-
ticles are not amphiphillic, and thus do not change the
surface tension. This then raises the question of how
do the adsorbed particles reduce the overpressure of the
bubble?

Several related studies provide some insight. Numer-
ical studies of fluid infiltration of granular media have
shown a concave deformation of the infiltrating interface

as a function of the volume and contact angle of the parti-
cles [12]. A 2D analytical study of armored bubbles found
that the “particles” pack into a circular shape, while the
interface becomes flat [13] and such a flat interface is
stable to perturbations [14]. As we show below, armored
bubbles stabilize in various non-spherical and irregular
shapes, whose stability can be understood in terms of the
interface shapes, characterized by the mean and Gaussian
curvatures at the scale of individual particles.

We perform our experiments with negatively charged,
surfactant-free fluorescent latex particles (Interfacial Dy-
namics). Partially coated bubbles were produced as de-
scribed in [15]. An aqueous sample containing the bub-
bles was placed on a microscope slide and viewed with
an inverted microscope. The small size of the sample en-
sures that it is saturated with gas. All experiments were
carried out at room temperature. The images were ac-
quired with a CCD camera and treated with Image J to
obtain a projection of the visible surface of the armored
bubble (for details see [16]).

In a typical experiment, the particles adsorbed on a
partially covered bubble are dispersed and exhibit ther-
mal motion (Fig. 1A). Occasionally, a few particles form
transient aggregates. Analogous equilibrium configura-
tions of colloidal particles on liquid droplets of fixed vol-
ume have been observed [17]. In the case of dissolving
gas bubbles, the interparticle distances become smaller
until Brownian motion is arrested, which we term the
interfacial jamming transition. This jammed state can
also be reached by packing the bubble surface with col-
loidal particles in a microfluidic device [18] or by fusing
two or more particle-covered bubbles [19]. Once the par-
ticle movements have stopped, the bubble does not sta-
bilize but continues to lose gas and deforms away from a
spherical shape (Fig. 1A). It is this nonspherical bubble
that remains stable, as apparently was first observed by
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FIG. 1: (A) Dissolution of a partially-covered bubble; 3 s
between each frame. Interparticle distances are reduced and
the bubble develops planar facets as it stabilizes (white dashed
lines). (B-D) Various stable faceted and crumpled shapes of
armored bubbles a/R: (B) 0.22; (C) 0.19; (D) 0.008. The
white arrows indicate missing particle defects at the vertices
of the bubble. Scale bars 8 µm.

Ramsden [1].
We observe that in an air-saturated solution the final

non-spherical shape depends on the ratio of the radius
a of the bead and R of the bubble. For a/R ∼ 0.1,
the bubble exhibits a polyhedral faceted structure (Fig.
1B-C). The intersection of the facets is often a missing
particle defect, which represents the position of a five-fold
dislocation (white arrows in Fig. 1B and C). The faceting
becomes progressively disordered until for a/R ≪ 0.1 the
bubble appears highly crumpled (Fig. 1D).
The measurement of both the local shape of the air-

water interface between the particles and the pressure
drop in these micron-size bubbles remains an experimen-
tal challenge. A recent numerical approach [20] using
Surface Evolver (SE) [21] has shown promise in solving
the three-dimensional spherical packing of a small num-
ber of particles on emulsion droplets [22]. We perform SE
simulations following [20] and report here the evolution of
the shape for 122 particles on a bubble surface. We have
done additional simulations with almost 400 particles.
Solving the full interparticle potential on the surface is
computationally expensive, with simulation time scaling
as the exponential of the number of particles. Here we use
our experimental observations that large-scale rearrange-
ments of the particles are rare to restrict the interparticle
potential calculation to nearest neighbors and next near-
est neighbors, which makes the simulations with such a
large number of particles tractable.
Particles of volume Vp are modeled as liquid droplets

embedded on a larger liquid droplet of volume V . The
particles have a high surface tension (typically 30 times
larger than the main liquid-gas surface tension of the
bubble) thus maintaining their spherical shape through-
out the simulation. Interfacial tensions of the bubble
and the particles are chosen to satisfy Young’s law at

the solid-liquid contact line and to constrain the con-
tact angle to a fixed value. An exponential repulsive
potential is implemented in order to ensure particle non-
interpenetrability (see [16]). To approximate the volume
reduction that accompanies slow dissolution, the volume
V of the bubble is decreased by 2% increments in each nu-
merical step. SE calculates the equilibrium configuration
of the particles and the shape of the gas-liquid surface at
each step by minimizing the sum of the gas-liquid sur-
face energies and the total repulsive energy between the
particles.
The simulated armored bubble evolves from a spheri-

cal shape (Fig. 2A(a)) towards a polyhedral shape with
facets as V/Vp is decreased (Fig. 2A(b)), which matches
our experimental observations. Large volume reductions
lead to the inward buckling of the facets (Fig. 2A(c)).
To quantify this observation further we calculate the as-
phericity of the bubble [23] which measures the deviation
of the shape from that of a perfect sphere. The aspheric-

ity is defined as ∆R2/R
2

= 1/(NR
2

)
∑N

i=1
(Ri − R)2,

where N is the number of beads, Ri the distance be-
tween the center of the bead i and the center of mass
of all the beads, and R the mean radius defined by
R = 1/N

∑N
i=1

Ri. We observe a sharp increase of the
asphericity when the bubble starts to facet and a signif-
icant change of slope when inward buckling is observed
(Fig. 2B).
We next calculate the pressure difference ∆P , obtained

through a native algorithm in SE, between the bubble
and its surroundings as a function of V/Vp (Fig. 2B).
Unlike a normal bubble, where ∆P is a monotonically
increasing function for decreasing V/Vp (Fig. 2B), ∆P
of an armored bubble becomes a decreasing function
at (V/Vp)c1, and eventually reaches zero at (V/Vp)c2.
It is significant that these simulations match the ex-
perimentally determined shape of the pressure curve of
millimeter-size particle-covered oil droplets [24]. Fig. 2B
demonstrates the correlation between ∆P and the as-
phericity. Since the particles are held by the interface,
this correlation suggests that the interface is being de-
formed as the volume is decreased. Indeed, the abso-
lute value of the mean curvature |H | of the gas-liquid in-
terface follows exactly the variation of ∆P (except near
(V/Vp)c2, as SE gives only |H |). It is thus clear that the
vanishing of ∆P is due to the decrease of mean curvature
of the gas-liquid interface towards zero.
Furthermore, we observe that d∆P/dV =

dPbubble/dV > 0 at (V/Vp)c1, which is a require-
ment for stability [13]. For gas-saturated solutions (the
case considered in our experiments), ∆P also has to
go to zero to ensure mechanical equilibrium. However,
more generally chemical potentials must be equal on
either side of the interface [25], which can be satisfied
with ∆P 6= 0. Thus, in the cases of an oversaturated
liquid, the bubble may stabilize at various intermediate
stages of faceting provided that V/Vp < (V/Vp)c1 (the
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FIG. 2: (A)Bubble shapes obtained for V/Vp equal to (a) 203,
(b) 138 and (c) 120. The darker particles represent five-fold
dislocation defects. (B) Top graph. Left vertical axis: (⋄) ∆P
without particles, (•) ∆P with particles and (◦) 2 | H | versus
V/Vp where H is the mean curvature. Right vertical axis: (�)
asphericity versus V/Vp. Bottom graph. Left vertical axis:
(◦) total energy E and (•) the surface energy ES of the fluid
interface versus V/Vp. Right vertical axis: (�) total repulsive
energy EP between particles versus V/Vp.

limit being almost no faceting), while in moderately
undersaturated solutions an armored bubble should
stabilize with a highly buckled shape. Thus, in principle,
the degree of faceting may be used as a probe to
determine the degree of saturation of the surrounding
medium.

In order to check the stability in terms of energy, we
calculate the total energy E, defined as the sum of the
total surface energies ES of all of the interfaces and
the total repulsive energy EP between the particles as
a function of V/Vp (Fig. 2B). All energies are normal-

ized by γL2, where L is defined such that L = V
1/3
p =

(4π/3)1/3a. For comparison both ES and EP are plotted
in Fig. 2B. We observe that E and ES change slopes as
the particles start interacting, reaching a local minimum
at the faceted shape when the particle interactions are
the highest. Inward buckling of the facets (Fig. 2A(c))
corresponds to a local increase of E in the energy land-
scape. Thus, the local minimum is a metastable equilib-
rium for this system.

The peculiar “kink” that the EP curve exhibits dur-
ing volume reduction (Fig. 2B) can be traced directly to
the packing of the particles on the surface of the bubble.
As the particles are pushed together during volume re-
duction, the 12 five-fold defects serve as the vertices of
buckling (dark gray particles in Fig. 2A) and are pushed

away from the center of the bubble. The increased dis-
tance slightly reduces EP . This kink in EP also leads
to the kink in the |H | and ∆P curves. We suggest that
the observations on Fig. 1 B,C of defects associated with
missing particles of five-fold coordination could arise from
the dewetting and ejection of the particles due to the
higher stresses at these points.

It appears that the configuration of the gas-liquid in-
terface is intimately linked to the stability of the armored
bubble. We thus sought to characterize the evolution of
the gas-liquid interface whose shape can be fully specified
by the local variation of the mean curvature H and the
Gaussian curvature G. Obtaining accurate local numeri-
cal values of G for all simulated V/Vp through SE proved
impossible at the level of refinement of our surface due
to numerical errors. Thus, we chose four representative
stages in the evolution of the bubble, and systematically
refined the triangulation of the interface to reduce numer-
ical noise. The spatial distributions of H and G of these
surfaces were then determined with Matlab using algo-
rithms proposed forH [26] and forG [27]. Representative
images of the interface at approximately (V/Vp)c2 are re-
ported in a color-coded scheme in Fig. 3 A,B. Away from
the particle contact lines the mean curvature H is very
nearly constant, as expected on thermodynamic grounds,
and close to zero; G has a natural distribution since the
Gaussian curvature need not be constant.

Despite the high level of refinement, it is apparent that
there is still some dispersion in H (and in G as well),
whose origins are (i) difficulty in numerical calculations
near contact lines and (ii) errors associated with the tri-
angulation valence around the vertices which can be am-
plified during the determination of G [28]. Nevertheless,
we can draw some conclusions about the global evolu-
tion of the surface curvatures. Indeed, a pair of values
(Hi, Gi) is associated for each vertex defining the inter-
face. To characterize the global nature of the interface,
we calculate the number density of vertices whose curva-
tures range [H,H + 0.03] and [G,G + 0.03]. We report
on Fig. 3C-F the plot of the contour map of this binning
of the H −G space; shading corresponds to the number
density of points. As a guide, a sphere would correspond
to a parabola (G = H2) in these plots and the origin
(0, 0) corresponds to a planar interface. For large V/Vp,
when the particles are not interacting, the distribution
of points is concentrated on the parabola, where both H
and G are positive (Fig. 3C). Then, for decreasing values
of V/Vp, the center of the distribution shift towards zero
in the H-direction, while in the G-direction it becomes
negative. These results indicate a saddle-shape deforma-
tion of much of the interface as the volume is reduced.

We interpret the inward curvature of the interface as a
consequence of Newton’s third law. The repulsive beads
produce an outward normal force on each other, because
of their confinement on a closed spherical surface. This
outward force must be balanced by an inward saddle-
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FIG. 3: Interfacial distributions of (A) the mean curvature
H and (B) the Gaussian curvature G, for V/Vp 138.1 close
to (V/Vp)c2. 2D histogram of the number of vertices of the
interface whose curvatures range between [H,H+0.03] and
[G,G+0.03] obtained for V/Vp = (C) 253, (D) 162.3, (E)
138.1 and (F) 117.5. Total number of vertices 63016.

shaped deformation of the fluid-fluid interface. This re-
active deformation of the interface, which is required for
mechanical equilibrium at each volume reduction, leads
to a reduction in the Laplace pressure. We emphasize
that this saddle-shaped deformation should appear on
any initially spherical fluid-fluid interface carrying repul-
sive particles, as soon as the particles are close enough to
interact. The details of the interparticle repulsive force
is not relevant for this argument, the limiting case being
the case of a hard sphere repulsion between the particles,
where the interface will deviate from its spherical shape
only when the particles enter into contact.

In conclusion, we have shown that armored bubbles
stabilize in faceted or crumpled shapes by jamming the
particles on their interfaces. Through simulations we
demonstrated that the faceted state is a minimum energy
configuration characterized by a mostly saddle-shaped
gas-liquid interface with zero mean curvature. This min-
imum is also marked by the vanishing of the Laplace
overpressure ∆P , and d∆P/dV > 0 which guarantees
stability against dissolution. The results we obtained in
this study should also be applicable to describe the in-
terface and behavior of liquid-liquid systems.
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